1
|
Tran RL, Li T, de la Cerda J, Schuler FW, Khaled AS, Pudakalakatti S, Bhattacharya PK, Sinharay S, Pagel MD. Potentiation of immune checkpoint blockade with a pH-sensitizer as monitored in two pre-clinical tumor models with acidoCEST MRI. Br J Cancer 2025:10.1038/s41416-025-02962-1. [PMID: 39994445 DOI: 10.1038/s41416-025-02962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Tumor acidosis causes resistance to immune checkpoint blockade (ICB). We hypothesized that a "pH-sensitizer" can increase tumor extracellular pH (pHe) and improve tumor control following ICB. We also hypothesized that pHe measured with acidoCEST MRI can predict improved tumor control with ICB. METHODS We tested the effects of pH-sensitizers on proton efflux rate (PER), cytotoxicity, T cell activation, tumor immunogenicity, tumor growth and survival using 4T1 and B16-F10 tumor cells. We measured in vivo tumor pHe of 4T1 and B16-F10 models with acidoCEST MRI. RESULTS Among the pH-sensitizers tested, someprazole caused the greatest reduction in PER without exhibiting cytotoxicity or reducing T cell activation. Esomeprazole improved 4T1 tumor control with ICB administered one day after the pH-sensitizer. Tumor pHe positively correlated with TCF-1 + CD4 effector and CD8 T cell intratumoral frequencies and predicted improved 4T1 tumor control with ICB. For comparison, esomeprazole had a mild effect on B16-F10 tumor pHe, and worsened tumor control with ICB and increased intratumoral myeloid and dendritic cell (DC) frequencies. CONCLUSIONS A pH-sensitizer can improve tumor control with ICB, and acidoCEST MRI can be used to measure pHe and predict tumor control, but only in the 4T1 model and not the B16-F10 model.
Collapse
Affiliation(s)
- Renee L Tran
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Tianzhe Li
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Alia S Khaled
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sanhita Sinharay
- Centre for Biosystems Science & Engineering, Indian Institute of Science, Bangalore, India
| | - Mark D Pagel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Targeting SLC4A4: A Novel Approach in Colorectal Cancer Drug Repurposing. Curr Issues Mol Biol 2025; 47:67. [PMID: 39852182 PMCID: PMC11764095 DOI: 10.3390/cimb47010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a complex and increasingly prevalent malignancy with significant challenges in its treatment and prognosis. This study aims to explore the role of the SLC4A4 transporter as a biomarker in CRC progression and its potential as a therapeutic target, particularly in relation to tumor acidity and immune response. METHODS The study utilized computational approaches, including receptor-based virtual screening and high-throughput docking, to identify potential SLC4A4 inhibitors. A model of the human SLC4A4 structure was generated based on CryoEM data (PDB ID 6CAA), and drug candidates from the DrugBank database were evaluated using two computational tools (DrugRep and CB-DOCK2). RESULTS The study identified the compound (5R)-N-[(1r)-3-(4-hydroxyphenyl)butanoyl]-2-decanamide (DB07991) as the best ligand, demonstrating favorable binding affinity and stability. Molecular dynamics simulations revealed strong protein-ligand interactions with consistent RMSD (~0.25 nm), RMSF (~0.5 nm), compact Rg (4.0-3.9 nm), and stable SASA profiles, indicating that the SLC4A4 structure remains stable upon ligand binding. CONCLUSIONS The findings suggest that DB07991 is a promising drug candidate for further investigation as a therapeutic agent against CRC, particularly for targeting SLC4A4. This study highlights the potential of computational drug repositioning in identifying effective treatments for colorectal cancer.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur 303002, Rajasthan, India; (K.P.); (R.R.K.N.)
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Plot 50, Sector 15, CBD Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Pooran Singh Solanki
- Bioinformatics Center, Birla Institute of Scientific Research, Jaipur 302001, Rajasthan, India;
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur 302001, Rajasthan, India
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur 303002, Rajasthan, India; (K.P.); (R.R.K.N.)
| | - Shanker L. Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur 303002, Rajasthan, India; (K.P.); (R.R.K.N.)
| |
Collapse
|
4
|
Qiu Y, Su Y, Xie E, Cheng H, Du J, Xu Y, Pan X, Wang Z, Chen DG, Zhu H, Greenberg PD, Li G. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity. Cancer Cell 2025; 43:103-121.e8. [PMID: 39642888 PMCID: PMC11756673 DOI: 10.1016/j.ccell.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yapeng Su
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Jing Du
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yue Xu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Zhe Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Daniel G Chen
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Philip D Greenberg
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
5
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Zhai X, Mao L, Kang Q, Liu J, Zhou Y, Wang J, Yang X, Wang D, Wang J, Li Y, Duan J, Zhang T, Lin S, Zhao T, Li J, Wu M, Yu S. Proton pump inhibitor attenuates acidic microenvironment to improve the therapeutic effects of MSLN-CAR-T cells on the brain metastasis. Mol Ther 2025; 33:336-355. [PMID: 39511890 PMCID: PMC11764123 DOI: 10.1016/j.ymthe.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers, BMs have a colder and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pH of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingmei Kang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Xianyan Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junhan Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yao Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
7
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
8
|
Rother C, John T, Wong A. Biomarkers for immunotherapy resistance in non-small cell lung cancer. Front Oncol 2024; 14:1489977. [PMID: 39749035 PMCID: PMC11693593 DOI: 10.3389/fonc.2024.1489977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Immunotherapy has revolutionised the treatment landscape of non-small cell lung cancer (NSCLC), significantly improving survival outcomes and offering renewed hope to patients with advanced disease. However, the majority of patients experience limited long-term benefits from immune checkpoint inhibition (ICI) due to the development of primary or acquired immunotherapy resistance. Accurate predictive biomarkers for immunotherapy resistance are essential for individualising treatment strategies, improving survival outcomes, and minimising potential treatment-related harm. This review discusses the mechanisms underlying resistance to immunotherapy, addressing both cancer cell-intrinsic and cancer cell-extrinsic resistance processes. We summarise the current utility and limitations of two clinically established biomarkers: programmed death ligand 1 (PD-L1) expression and tumour mutational burden (TMB). Following this, we present a comprehensive review of emerging immunotherapy biomarkers in NSCLC, including tumour neoantigens, epigenetic signatures, markers of the tumour microenvironment (TME), genomic alterations, host-microbiome composition, and circulating biomarkers. The potential clinical applications of these biomarkers, along with novel approaches to their biomarker identification and targeting, are discussed. Additionally, we explore current strategies to overcome immunotherapy resistance and propose incorporating predictive biomarkers into an adaptive clinical trial design, where specific immune signatures guide subsequent treatment selection.
Collapse
Affiliation(s)
- Catriona Rother
- Wellington Blood and Cancer Centre, Te Whatu Ora Capital, Wellington, New Zealand
| | - Tom John
- Department of Medical Oncology, Peter MacCallum, Cancer Centre, Melbourne, VIC, Australia
| | - Annie Wong
- Wellington Blood and Cancer Centre, Te Whatu Ora Capital, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
9
|
Feng B, Li R, Li W, Tang L. Metabolic immunoengineering approaches to enhance CD8 + T cell-based cancer immunotherapy. Cell Syst 2024; 15:1225-1244. [PMID: 39701038 DOI: 10.1016/j.cels.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Many cancer immunotherapies rely on robust CD8+ T cells capable of eliminating cancer cells and establishing long-term tumor control. Recent insights into immunometabolism highlight the importance of nutrients and metabolites in T cell activation and differentiation. Within the tumor microenvironment (TME), CD8+ tumor-infiltrating lymphocytes (TILs) undergo metabolic adaptations to survive but compromise their effector function and differentiation. Targeting metabolism holds promise for enhancing CD8+ T cell-mediated antitumor immunity. Here, we overview the metabolic features of CD8+ TILs and their impact on T cell effector function and differentiation. We also highlight immunoengineering strategies by leveraging the Yin-Yang of metabolic modulation for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Rongrong Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01098-w. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
11
|
Bida M, Miya TV, Hull R, Dlamini Z. Tumor-infiltrating lymphocytes in melanoma: from prognostic assessment to therapeutic applications. Front Immunol 2024; 15:1497522. [PMID: 39712007 PMCID: PMC11659259 DOI: 10.3389/fimmu.2024.1497522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by unpredictable growth patterns, and its mortality rate has remained alarmingly high over recent decades, despite various treatment approaches. One promising strategy for improving outcomes in melanoma patients lies in the early use of biomarkers to predict prognosis. Biomarkers offer a way to gauge patient outlook early in the disease course, facilitating timely, targeted intervention. In recent years, considerable attention has been given to the immune response's role in melanoma, given the tumor's high immunogenicity and potential responsiveness to immunologic treatments. Researchers are focusing on identifying predictive biomarkers by examining both cancer cell biology and immune interactions within the tumor microenvironment (TME). This approach has shed light on tumor-infiltrating lymphocytes (TILs), a type of immune cell found within the tumor. TILs have emerged as a promising area of study for their potential to serve as both a prognostic indicator and therapeutic target in melanoma. The presence of TILs in melanoma tissue can often signal a positive immune response to the cancer, with numerous studies suggesting that TILs may improve patient prognosis. This review delves into the prognostic value of TILs in melanoma, assessing how these immune cells influence patient outcomes. It explores the mechanisms through which TILs interact with melanoma cells and the potential clinical applications of leveraging TILs in treatment strategies. While TILs present a hopeful avenue for prognostication and treatment, there are still challenges. These include understanding the full extent of TIL dynamics within the TME and overcoming limitations in TIL-based therapies. Advancements in TIL characterization methods are also critical to refining TIL-based approaches. By addressing these hurdles, TIL-focused research may pave the way for improved diagnostic and therapeutic options, ultimately offering better outcomes for melanoma patients.
Collapse
Affiliation(s)
- Meshack Bida
- Division of Anatomical Pathology, National Health Laboratory Service, University of Pretoria, Hatfield, South Africa
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
12
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
14
|
Jiang M, Wang Y, Zhao X, Yu J. From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape. Front Immunol 2024; 15:1492050. [PMID: 39654883 PMCID: PMC11625744 DOI: 10.3389/fimmu.2024.1492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Lactic acid, a key metabolic byproduct within the tumor microenvironment, has garnered significant attention for its role in immune evasion mechanisms. Tumor cells produce and release large amounts of lactic acid into the tumor microenvironment through aberrant glycolysis via the Warburg effect, leading to a drop in pH. Elevated lactic acid levels profoundly suppress proliferation capacity, cytotoxic functions, and migratory abilities of immune effector cells such as macrophages and natural killer cells at the tumor site. Moreover, lactic acid can modulate the expression of surface molecules on immune cells, interfering with their recognition and attack of tumor cells, and it regulates signaling pathways that promote the expansion and enhanced function of immunosuppressive cells like regulatory T cells, thereby fostering immune tolerance within the tumor microenvironment. Current research is actively exploring strategies targeting lactic acid metabolism to ameliorate tumor immune evasion. Key approaches under investigation include inhibiting the activity of critical enzymes in lactic acid production to reduce its synthesis or blocking lactate transporters to alter intracellular and extracellular lactate distribution. These methods hold promise when combined with existing immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies to enhance the immune system's ability to eliminate tumor cells. This could pave the way for novel combinatorial treatment strategies in clinical cancer therapy, effectively overcoming tumor immune evasion phenomena, and ultimately improving overall treatment efficacy.
Collapse
Affiliation(s)
- Mengqian Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanchun Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
15
|
Watanabe K, Yamamoto T, Fujita T, Hino S, Hino Y, Yamazaki K, Ohashi Y, Sakuraba S, Kono H, Nakao M, Ochiai K, Dan S, Saitoh N. Metabolically inducing defects in DNA repair sensitizes BRCA-wild-type cancer cells to replication stress. Sci Signal 2024; 17:eadl6445. [PMID: 39531517 DOI: 10.1126/scisignal.adl6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration-using glyceollin I, metformin, or phenformin-induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)-associated DNA repair genes. These serial events created so-called "BRCAness," in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as BRCA1 and BRCA2, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell-specific potential of mitochondria-targeting drugs.
Collapse
Affiliation(s)
- Kenji Watanabe
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomoko Fujita
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Koji Ochiai
- PhytoMol-Tech Inc., 3-14-3 Minami-Kumamoto, Chuo-ku, Kumamoto City, Kumamoto 860-0812, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
16
|
Vuillefroy de Silly R, Pericou L, Seijo B, Crespo I, Irving M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J 2024; 43:4922-4953. [PMID: 39284912 PMCID: PMC11535206 DOI: 10.1038/s44318-024-00235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH. Mechanistically, nuclear/cytoplasmic acidification is linked to mTORC1 suppression in a Rheb-, Akt/TSC2/PRAS40-, GATOR1- and Lkb1/AMPK-independent manner, while c-Myc levels drop due to both decreased transcription and higher levels of proteasome-mediated degradation. In addition, lower intracellular levels of glutamine, glutamate, and aspartate, as well as elevated proline levels are observed with no apparent impact on mTORC1 signaling or c-Myc levels. Overall, we suggest that, due to the broad impact of acidity on CD8 + T cells, multiple interventions will be required to restore T-cell function unless intracellular pH is effectively controlled.
Collapse
Affiliation(s)
- Romain Vuillefroy de Silly
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Laetitia Pericou
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
17
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
18
|
Li X, Sun Y, Guo J, Cheng Y, Lu W, Yang W, Wang L, Cheng Z. Sodium bicarbonate potentiates the antitumor effects of Olaparib in ovarian cancer via cGMP/PKG-mediated ROS scavenging and M1 macrophage transformation. Biomed Pharmacother 2024; 180:117509. [PMID: 39442234 DOI: 10.1016/j.biopha.2024.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The high metabolic requirements of cancer cells result in excess accumulation of H+ in the tumor microenvironment. Therefore, the extracellular pH of solid tumors is acidic, whereas the pH of normal tissues is more alkaline. The acidic tumor environment is correlated with tumor metastasis, immune escape, and chemoresistance, but the underlying mechanisms remain elusive. Herein, we demonstrate that sodium bicarbonate, a weakly alkaline compound, induces cytotoxicity in ovarian cancer cells and hinders cancer migration and invasion in vitro. The anti-cancer efficacy of Olaparib can be significantly augmented when combined with sodium bicarbonate. In vivo experiments suggest that the combinatorial treatment of sodium bicarbonate and Olaparib is biocompatible and more effective at inhibiting ovarian cancer growth than either treatment alone. Additionally, RNA-sequencing results reveal that the differentially expressed genes are enriched in pathways related to reactive oxygen species (ROS) generation, such as the cGMP/PKG pathway. The combined treatment increases M1 macrophage composition in tumors and reduces the accumulation of excessive ROS. These findings strongly suggest that sodium bicarbonate holds great potential as an adjuvant treatment by scavenging ROS accumulation and promoting M1 macrophage composition, thereby enhancing Olaparib's anti-cancer activity.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujie Cheng
- Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Lu
- Anhui University of Science and Technology, Huainan 232001, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
19
|
Cappellesso F, Mazzone M, Virga F. Acid affairs in anti-tumour immunity. Cancer Cell Int 2024; 24:354. [PMID: 39465367 PMCID: PMC11514911 DOI: 10.1186/s12935-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic rewiring of cancer cells is one of the hallmarks of cancer. As a consequence, the metabolic landscape of the tumour microenvironment (TME) differs compared to correspondent healthy tissues. Indeed, due to the accumulation of acid metabolites, such as lactate, the pH of the TME is generally acidic with a pH drop that can be as low as 5.6. Disruptions in the acid-base balance and elevated lactate levels can drive malignant progression not only through cell-intrinsic mechanisms but also by impacting the immune response. Generally, acidity and lactate dampen the anti-tumour response of both innate and adaptive immune cells favouring tumour progression and reducing the response to immunotherapy. In this review, we summarize the current knowledge on the functional, metabolic and epigenetic effects of acidity and lactate on the cells of the immune system. In particular, we focus on the role of monocarboxylate transporters (MCTs) and other solute carrier transporters (SLCs) that, by mediating the exchange of lactate (among other metabolites) and bicarbonate, participate in pH regulation and lactate transport in the cancer context. Finally, we discuss advanced approaches to target pH or lactate in the TME to enhance the anti-tumour immune response.
Collapse
Affiliation(s)
- Federica Cappellesso
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, Inflammation Research Center, VIB, Brussels, Belgium.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federico Virga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
20
|
Li G, Ma X, Sui S, Chen Y, Li H, Liu L, Zhang X, Zhang L, Hao Y, Yang Z, Yang S, He X, Wang Q, Tao W, Xu S. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024; 43:278. [PMID: 39363363 PMCID: PMC11451012 DOI: 10.1186/s13046-024-03200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional mechanism, plays a pivotal role in RNA modification and tumor progression. However, the molecular mechanism by which ac4C modification mediates tumor immunosuppression remains elusive in triple-negative breast cancer (TNBC). METHODS NAT10 expression was analyzed in TNBC samples in the level of mRNA and protein, and compared with the corresponding normal tissues. ac4C modification levels also measured in the TNBC samples. The effects of NAT10 on immune microenvironment and tumor metabolism were investigated. NAT10-mediated ac4C and its downstream regulatory mechanisms were determined in vitro and in vivo. The combination therapy of targeting NAT10 in TNBC was further explored. RESULTS The results revealed that the loss of NAT10 inhibited TNBC development and promoted T cell activation. Mechanistically, NAT10 upregulated JunB expression by increasing ac4C modification levels on its mRNA. Moreover, JunB further up-regulated LDHA expression and facilitated glycolysis. By deeply digging, remodelin, a NAT10 inhibitor, elevated the surface expression of CTLA-4 on T cells. The combination of remodelin and CTLA-4 mAb can further activate T cells and inhibite tumor progression. CONCLUSION Taken together, our study demonstrated that the NAT10-ac4C-JunB-LDHA pathway increases glycolysis levels and creates an immunosuppressive tumor microenvironment (TME). Consequently, targeting this pathway may assist in the identification of novel therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xu He
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- Weihan Yu Academy, Harbin Medical University, Harbin, 150086, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
21
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
22
|
Gurel Z, Luy MS, Luo Q, Arp NL, Erbe AK, Kesarwala AH, Fan J, Kimple RJ. Metabolic modulation of melanoma enhances the therapeutic potential of immune checkpoint inhibitors. Front Oncol 2024; 14:1428802. [PMID: 39435293 PMCID: PMC11491500 DOI: 10.3389/fonc.2024.1428802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Lactate is a pivotal molecule with diverse functions in the metabolic reprogramming of cancer cells. Beyond its role in metabolism, lactate exerts a modulatory effect within the tumor microenvironment; it is utilized by stromal cells and has been implicated in the suppression of the immune response against the tumor. Methods Using in vitro assays (including flow cytometry, live-cell imaging and metabolic analyses), the impact of lactate dehydrogenase inhibitors (LDHIs) on melanoma cells were assessed. The therapeutic potential of LDHIs with immune checkpoint inhibitors (ICIs) were tested in vivo in murine models of melanoma tumors. Results A potent anti-proliferative effect (via both cell cycle alterations and enhanced apoptosis) of LDHIs, Oxamate (Oxa) and methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2), was found upon treatment of melanoma cell lines. Using a combination of Oxa and NHI-2, a synergistic effect to inhibit proliferation, glycolysis, and ATP production was observed. Metabolic analysis revealed significant alteration in glycolysis and oxidative phosphorylation, while metabolite profiling emphasized consequential effects on lactate metabolism and induced energy depletion by LDHIs. Detection of increased RANTES and MCP-1, with Oxa and NHI-2 treatment, prompted the consideration of combining LDHIs with ICIs. In vivo studies using a murine B78 melanoma tumor model revealed a significant improvement in treatment efficacy when LDHIs were combined with ICIs. Conclusions These findings propose the potential of targeting lactate metabolism to enhance the efficacy of ICI treatments in patients with melanoma.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Michael S. Luy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Qianyun Luo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin (UW) Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
23
|
Mani NL, Weinberg SE, Chaudhuri S, Montauti E, Tang A, Iyer R, Fang D. Acidity induces durable enhancement of T reg cell suppressive functions for tumor immune evasion. Mol Immunol 2024; 174:57-68. [PMID: 39213947 PMCID: PMC11681611 DOI: 10.1016/j.molimm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The microenvironment within solid tumors often becomes acidic due to various factors associated with abnormal metabolism and cellular activities, including increased lactate production as a result of dysregulated tumor glycolysis. Recently, we have identified multiple tumor microenvironment (TME) factors that potentiate regulatory T (Treg) cell function in evading anti-tumor immunosurveillance. Despite the strong correlation between lactate and acidity, the potential roles of acidity in intratumoral Treg cell adaptation and underlying molecular mechanisms have gone largely unstudied. In this study, we demonstrate that acidity significantly enhances immunosuppressive functions of nTreg cells, but not iTreg cells, without altering the expression of either FoxP3 or the cell surface receptors CD25, CTLA4, or GITR in these cells. Surprisingly, the addition of lactate, often considered a major contributor to increased acidity of the TME, completely abolished the acidity-induced enhancement of nTreg suppressive functions. Consistently, metabolic flux analyses showed elevated basal mitochondrial respiratory capacity and ATP-coupled respiration in acidity-treated nTreg cells without altering glycolytic capacity. Genome-wide transcriptome and metabolomics analyses revealed alterations in multiple metabolic pathways, particularly the one-carbon folate metabolism pathway, with reduced SAM, folate, and glutathione, in nTreg cells exposed to low pH conditions. Addition of a one-carbon metabolic contributor, formate, diminished the acidity-induced enhancement in nTreg cell suppressive functions, but neither SAM nor glutathione could reverse the phenotype. Remarkably, in vitro transient treatment of nTreg cells resulted in sustained enhancement of their functions, as evidenced by more vigorous tumor growth observed in mice adoptively receiving acidity-treated nTreg cells. Further analysis of intratumoral infiltrated T cells confirmed a significant reduction in CD8+ T cell frequency and their granzyme B production. In summary, our study elucidates how acidity-mediated metabolic reprogramming leads to sustained Treg-mediated tumor immune evasion.
Collapse
Affiliation(s)
- Nikita L Mani
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA.
| | | | - Elena Montauti
- Department of Pathology, Northwestern University, USA; Department of Medicine Hematology and Oncology, University of California San Francisco, USA
| | - Amy Tang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern Medicine, USA.
| |
Collapse
|
24
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
25
|
Gao X, Shao W, Wang J, Gao H, Zhang X, Xia C, Li M, Liu S. Integrin β3 enhances glycolysis and increases lactate production in endometriosis. J Reprod Immunol 2024; 165:104312. [PMID: 39094215 DOI: 10.1016/j.jri.2024.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endometriosis (EMs) is a chronic disease characterized by endometrial-like tissue present outside of the uterus. Macrophages have been confirmed to participate in the development of EMs. Integrin β3 (ITGB3), a β-subunit of the integrin family, is crucial in tumor progression. In this study, we investigated the pivotal role of ITGB3 in endometrial stromal cells (ESCs) and its influence on the development of EMs, particularly focusing on the regulatory impact of macrophages. METHODS In this study, we used western blot, Real-time qPCR, Immunohistochemistry to detected the high expression of ITGB3 in ESCs. ITGB3-overexpression ESCs (ITGB3-OE) was constructed and detected by RNA-seq with normal ESCs. ATP and lactate expression assay, transwell migration assay, wound healing, cell adhesion assay and other molecular biology techniques were used to explore the potential mechanisms. In vivo, we constructed the EMs mouse model and injected with cilengitite to inhibit ITGB3. RESULTS Here, we found ITGB3 highly expressed in ectopic lesions in EMs. The increasing ITGB3 resulted in activating the glycolysis, which produced more ATP and lactate in ITGB3-OE. After culturing with lactate, the migration, proliferation and invasion ability of ESCs were enhanced, while the result in 2-DG was reversed. In vivo, the results showed that after antagonizing ITGB3, the number of ectopic lesions was decrease. CONCLUSIONS Our findings indicate that ITGB3 up-regulated by macrophages are able to regulate the glycolysis to promote the development of EMs and lactate enhances the ability of proliferation, migration, invasion and adhesion of EMs iv vivo and in vitro.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Wei Shao
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Han Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Xiaolu Zhang
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Chen Xia
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Mingqing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
| | - Songping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China.
| |
Collapse
|
26
|
Tiersma JF, Evers B, Bakker BM, Reijngoud DJ, de Bruyn M, de Jong S, Jalving M. Targeting tumour metabolism in melanoma to enhance response to immune checkpoint inhibition: A balancing act. Cancer Treat Rev 2024; 129:102802. [PMID: 39029155 DOI: 10.1016/j.ctrv.2024.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Immune checkpoint inhibition has transformed the treatment landscape of advanced melanoma and long-term survival of patients is now possible. However, at least half of the patients do not benefit sufficiently. Metabolic reprogramming is a hallmark of cancer cells and may contribute to both tumour growth and immune evasion by the tumour. Preclinical studies have indeed demonstrated that modulating tumour metabolism can reduce tumour growth while improving the functionality of immune cells. Since metabolic pathways are commonly shared between immune and tumour cells, it is essential to understand how modulating tumour metabolism in patients influences the intricate balance of pro-and anti-tumour immune effects in the tumour microenvironment. The key question is whether modulating tumour metabolism can inhibit tumour cell growth as well as facilitate an anti-tumour immune response. Here, we review current knowledge on the effect of tumour metabolism on the immune response in melanoma. We summarise metabolic pathways in melanoma and non-cancerous cells in the tumour microenvironment and discuss models and techniques available to study the metabolic-immune interaction. Finally, we discuss clinical use of these techniques to improve our understanding of how metabolic interventions can tip the balance towards a favourable, immune permissive microenvironment in melanoma patients.
Collapse
Affiliation(s)
- J F Tiersma
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Evers
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - B M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Reijngoud
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M de Bruyn
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
28
|
Mundhara N, Sadhukhan P. Cracking the Codes behind Cancer Cells' Immune Evasion. Int J Mol Sci 2024; 25:8899. [PMID: 39201585 PMCID: PMC11354234 DOI: 10.3390/ijms25168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Immune evasion is a key phenomenon in understanding tumor recurrence, metastasis, and other critical steps in tumor progression. The tumor microenvironment (TME) is in constant flux due to the tumor's ability to release signals that affect it, while immune cells within it can impact cancer cell behavior. Cancer cells undergo several changes, which can change the enrichment of different immune cells and modulate the activity of existing immune cells in the tumor microenvironment. Cancer cells can evade immune surveillance by downregulating antigen presentation or expressing immune checkpoint molecules. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better outcomes, and robust immune responses can control tumor growth. On the contrary, increased enrichment of Tregs, myeloid-derived suppressor cells, and M2-like anti-inflammatory macrophages can hinder effective immune surveillance and predict poor prognosis. Overall, understanding these immune evasion mechanisms guides therapeutic strategies. Researchers aim to modulate the TME to enhance immune surveillance and improve patient outcomes. In this review article, we strive to summarize the composition of the tumor immune microenvironment, factors affecting the tumor immune microenvironment (TIME), and different therapeutic modalities targeting the immune cells. This review is a first-hand reference to understand the basics of immune surveillance and immune evasion.
Collapse
Affiliation(s)
| | - Pritam Sadhukhan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
29
|
Trojani MC, Santucci-Darmanin S, Breuil V, Carle GF, Pierrefite-Carle V. Lysosomal exocytosis: From cell protection to protumoral functions. Cancer Lett 2024; 597:217024. [PMID: 38871244 DOI: 10.1016/j.canlet.2024.217024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
Collapse
Affiliation(s)
- Marie-Charlotte Trojani
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; INSERM, Paris, France.
| |
Collapse
|
30
|
Chen XY, Tan Y, Wang D, Wei ZX. Radioactive iodine therapy for thyroid cancer coexisting with Hashimoto's thyroiditis: a systematic review and meta-analysis. Br J Radiol 2024; 97:1423-1430. [PMID: 38870537 PMCID: PMC11256929 DOI: 10.1093/bjr/tqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES To investigate the clinical character of differentiated thyroid cancer (DTC) coexisting with Hashimoto's thyroiditis (HT) and provide state-of-art evidence for personalized radioactive iodine-131 therapy (RAIT) for patients coexisting with HT. METHODS From January 2000 to January 2023, PubMed, Embase, and Web of Science databases were searched for relevant original articles that published in English on the RAIT efficacy for DTC with HT. RevMan 5.4 and Stata 17.0 were used for data analysis. RESULTS Eleven studies involving 16 605 DTC patients (3321 with HT) were included. HT was more frequent in female (OR: 2.90, 95% confidence interval [CI]: 1.77-4.76, P < .00001). The size of tumour (MD: -0.20, 95% CI: -0.30 to -0.11), extrathyroidal extension rate (OR: 0.77, 95% CI: 0.67-0.90), and metastasis rate (OR: 0.18, 95% CI: 0.08-0.41) were less in HT, but tumour, node, metastasis (TNM) stage had no significant difference among HT and non-HT group. Disease-free survival (DFS) rate (OR: 1.96, 95% CI: 1.57-2.44, P < .00001), 5-year DFS (OR: 1.73, 95% CI: 1.04-2.89, P = .04), and 10-year DFS (OR: 1.56, 95% CI: 1.17-2.09, P = .003) were higher in HT group. The recurrent (OR: 0.62, 95% CI: 0.45-0.83, P = .002), RAIT dosage (MD = -38.71, 95% CI: -60.86 to -16.56, P = .0006), and treatment (MD: -0.13, 95% CI: -0.22 to -0.03, P = .008) were less in HT group. CONCLUSIONS DTC coexisting with HT was associated with less invasion. DFS of HT group was higher than non-HT group after RAIT. Low-dose treatment did not impair the efficacy of RAIT in DTC with HT. ADVANCES IN KNOWLEDGE Hashimoto's thyroiditis is a risk for DTC, but it minimalizes the progression of cancer and enhance the efficacy of RAIT, which should be considered in personalizing RAIT.
Collapse
Affiliation(s)
- Xiang-Yi Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yang Tan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dawei Wang
- Department of Nuclear Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Zhi-Xiao Wei
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
31
|
Spiga M, Martini E, Maffia MC, Ciceri F, Ruggiero E, Potenza A, Bonini C. Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. Semin Immunopathol 2024; 46:8. [PMID: 39060547 DOI: 10.1007/s00281-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 07/28/2024]
Abstract
Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.
Collapse
Affiliation(s)
- Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Martini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
32
|
Qiu D, He Y, Feng Y, Lin M, Lin Z, Zhang Z, Xiong Y, Hu Z, Ma S, Jin H, Liu J. Tumor perfusion enhancement by microbubbles ultrasonic cavitation reduces tumor glycolysis metabolism and alleviate tumor acidosis. Front Oncol 2024; 14:1424824. [PMID: 39091919 PMCID: PMC11291205 DOI: 10.3389/fonc.2024.1424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The tumor microenvironment is increasingly acknowledged as a critical contributor to cancer progression, mediating genetic and epigenetic alterations. Beyond diverse cellular interactions from the microenvironment, physicochemical factors such as tumor acidosis also significantly affect cancer dynamics. Recent research has highlighted that tumor acidosis facilitates invasion, immune escape, metastasis, and resistance to therapies. Thus, noninvasive measurement of tumor acidity and the development of targeted interventions represent promising strategies in oncology. Techniques like contrast-enhanced ultrasound (CEUS) can effectively assess blood perfusion, while ultrasound-stimulated microbubble cavitation (USMC) has proven to enhance tumor blood perfusion. We therefore aimed to determine whether CEUS assesses tumor acidity and whether USMC treatment can modulate tumor acidity. Firstly, we tracked CEUS perfusion parameters in MCF7 tumor models and compared them with in vivo tumor pH recorded by pH microsensors. We found that the peak intensity and area under curve of tumor contrast-enhanced ultrasound correlated well with tumor pH. We further conducted USMC treatment on MCF7 tumor-bearing mice, tracked changes of tumor blood perfusion and tumor pH in different perfusion regions before and after the USMC treatment to assess its impact on tumor acidity and optimize therapeutic ultrasound pressure. We discovered that USMC with 1.0 Mpa significantly improved tumor blood perfusion and tumor pH. Furthermore, tumor vascular pathology and PGI2 assays indicated that improved tumor perfusion was mainly due to vasodilation rather than angiogenesis. More importantly, analysis of glycolysis-related metabolites and enzymes demonstrated USMC treatment can reduce tumor acidity by reducing tumor glycolysis. These findings support that CEUS may serve as a potential biomarker to assess tumor acidity and USMC is a promising therapeutic modality for reducing tumor acidosis.
Collapse
Affiliation(s)
- Danxia Qiu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangcheng He
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minhua Lin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zekai Lin
- Department of Radiology, The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Zhang
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Xiong
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Suihong Ma
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Papachristos AJ, Serrao-Brown H, Gill AJ, Clifton-Bligh R, Sidhu SB. Medullary Thyroid Cancer: Molecular Drivers and Immune Cellular Milieu of the Tumour Microenvironment-Implications for Systemic Treatment. Cancers (Basel) 2024; 16:2296. [PMID: 39001359 PMCID: PMC11240419 DOI: 10.3390/cancers16132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
In this review, we explore the underlying molecular biology of medullary thyroid carcinoma (MTC) and its interplay with the host immune system. MTC is consistently driven by a small number of specific pathogenic variants, beyond which few additional genetic events are required for tumorigenesis. This explains the exceedingly low tumour mutational burden seen in most MTC, in contrast to other cancers. However, because of the low tumour mutational burden (TMB), there is a correspondingly low level of tumour-associated neoantigens that are presented to the host immune system. This reduces tumour visibility and vigour of the anti-tumour immune response and suggests the efficacy of immunotherapy in MTC is likely to be poor, acknowledging this inference is largely based on the extrapolation of data from other tumour types. The dominance of specific RET (REarranged during Transfection) pathogenic variants in MTC tumorigenesis rationalizes the observed efficacy of the targeted RET-specific tyrosine kinase inhibitors (TKIs) in comparison to multi-kinase inhibitors (MKIs). Therapeutic durability of pathway inhibitors is an ongoing research focus. It may be limited by the selection pressure TKI treatment creates, promoting survival of resistant tumour cell clones that can escape pathway inhibition through binding-site mutations, activation of alternate pathways, and modulation of the cellular and cytokine milieu of the tumour microenvironment (TME).
Collapse
Affiliation(s)
- Alexander J Papachristos
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Hazel Serrao-Brown
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Anthony J Gill
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Roderick Clifton-Bligh
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Stanley B Sidhu
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
34
|
Lin Z, Wei Y, Yang H. Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies. APL Bioeng 2024; 8:021504. [PMID: 38638143 PMCID: PMC11026114 DOI: 10.1063/5.0191800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.
Collapse
Affiliation(s)
- Zhensheng Lin
- Medical Engineering Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuhe Wei
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin 300350, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
35
|
Wang L, Zhang L, Dunmall LC, Wang YY, Fan Z, Cheng Z, Wang Y. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett 2024; 591:216871. [PMID: 38604310 DOI: 10.1016/j.canlet.2024.216871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy, as an adoptive immunotherapy, is playing an increasingly important role in the treatment of malignant tumors. CAR-T cells are referred to as "living drugs" as they not only target tumor cells directly, but also induce long-term immune memory that has the potential to provide long-lasting protection. CD19.CAR-T cells have achieved complete response rates of over 90 % for acute lymphoblastic leukemia and over 60 % for non-Hodgkin's lymphoma. However, the response rate of CAR-T cells in the treatment of solid tumors remains extremely low and the side effects potentially severe. In this review, we discuss the limitations that the solid tumor microenvironment poses for CAR-T application and the solutions that are being developed to address these limitations, in the hope that in the near future, CAR-T cell therapy for solid tumors can attain the same success rates as are now being seen clinically for hematological malignancies.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China; National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yang Yang Wang
- Department of General Pediatrics, Newham General Hospital, E13 8SL, London, United Kingdom
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
36
|
Han J, Dong H, Zhu T, Wei Q, Wang Y, Wang Y, Lv Y, Mu H, Huang S, Zeng K, Xu J, Ding J. Biochemical hallmarks-targeting antineoplastic nanotherapeutics. Bioact Mater 2024; 36:427-454. [PMID: 39044728 PMCID: PMC11263727 DOI: 10.1016/j.bioactmat.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 07/25/2024] Open
Abstract
Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - He Dong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Ke Zeng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
37
|
Liu X, Xiang C, Lv Y, Xiang J, Ma G, Li C, Hu Y, Guo C, Sun H, Cai L, Gong P. Preparation of near-infrared photoacoustic imaging and photothermal treatment agent for cancer using a modifiable acid-triggered molecular platform. Analyst 2024; 149:3064-3072. [PMID: 38712864 DOI: 10.1039/d4an00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ratiometric near-infrared fluorescent pH probes with various pKa values were innovatively designed and synthesized based on cyanine with a diamine moiety. The photochemical properties of these probes were thoroughly evaluated. Among the series, IR-PHA exhibited an optimal pKa value of approximately 6.40, closely matching the pH of cancerous tissues. This feature is particularly valuable for real-time pH monitoring in both living cells and living mice. Moreover, when administered intravenously to tumor-bearing mice, IR-PHA demonstrated rapid and significant enhancement of near-infrared fluorescence and photoacoustic signals within the tumor region. This outcome underscores the probe's exceptional capability for dual-modal cancer imaging utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) modalities. Concurrently, the application of a continuous-wave near-infrared laser efficiently ablated cancer cells in vivo, attributed to the photothermal effect induced by IR-PHA. The results strongly indicate that IR-PHA is well-suited for NIRF/PA dual-modality imaging and photothermal therapy of tumors. This makes it a promising candidate for theranostic applications involving small molecules.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Yalin Lv
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Changzhong Li
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Yan Hu
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Chunlei Guo
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Hua Sun
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| |
Collapse
|
38
|
Prochazkova M, Dreyzin A, Shao L, Garces P, Cai Y, Shi R, Pelayo A, Kim YS, Pham V, Frodigh SE, Fenton S, Karangwa C, Su Y, Martin K, Zhang N, Highfill SL, Somerville RP, Shah NN, Stroncek DF, Jin P. Deciphering the importance of culture pH on CD22 CAR T-cells characteristics. J Transl Med 2024; 22:384. [PMID: 38659083 PMCID: PMC11043048 DOI: 10.1186/s12967-024-05197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.
Collapse
Affiliation(s)
- Michaela Prochazkova
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Dreyzin
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Lipei Shao
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pam Garces
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Yihua Cai
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rongye Shi
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Alejandra Pelayo
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Yong Soo Kim
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Victoria Pham
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sue Ellen Frodigh
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Fenton
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Karangwa
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Yan Su
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Martin
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhang
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Robert P Somerville
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ping Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
40
|
Xie H, Wang S, Niu D, Yang C, Bai H, Lei T, Liu H. A bibliometric analysis of the research landscape on vascular normalization in cancer. Heliyon 2024; 10:e29199. [PMID: 38617971 PMCID: PMC11015447 DOI: 10.1016/j.heliyon.2024.e29199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Tumor vascular normalization profoundly affects the advancement of cancer therapy. Currently, with the rapid increase in research on tumor vascular normalization, few analytical and descriptive studies have investigated the trends in its development, key research power, present research hotspots, and future outlooks. In this study, articles and reviews published between January 1, 2003, and October 29, 2022 were retrieved from Web of Science database. Subsequently, published research trends, countries/regions, institutions, authors, journals, references, and keywords were analyzed based on traditional bibliometric laws (such as Price's exponential growth, Bradford's, Lotka's, and Zipf's). Our results showed that the last two decades have seen an increase in tumor vascular normalization research. USA emerged as the preeminent contributor to the field, boasting the highest H-index and accruing the greatest quantity of publications and citations. Among institutions, Massachusetts General Hospital and Harvard University made significant contributions, and Professor RK Jain was identified as a key leader in this field. Out of 583 academic journals, Cancer Research and Clinical Cancer Research published the most articles on vascular normalization. The research focal points in the field primarily include immunotherapy, tumor microenvironments, nanomedicine, and emerging frontier themes such as metabolism and mechanomedicine. Concurrently, the challenges of vascular normalization in cancer are discussed as well. In conclusion, the study presented a thorough analysis of the literature covering the past 20 years on vascular normalization in cancer, highlighting leading countries, institutions, authors, journals, and the emerging research focal points in this field. Future studies will advance the ongoing efforts in the field of tumor vascular normalization, aiming to enhance our ability to effectively manage and treat cancer.
Collapse
Affiliation(s)
- Hanghang Xie
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Shan Wang
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Dongling Niu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Chao Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Bai
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Ting Lei
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Hongli Liu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| |
Collapse
|
41
|
Zou J, Mai C, Lin Z, Zhou J, Lai G. Targeting metabolism of breast cancer and its implications in T cell immunotherapy. Front Immunol 2024; 15:1381970. [PMID: 38680483 PMCID: PMC11045902 DOI: 10.3389/fimmu.2024.1381970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer is a prominent health issue amongst women around the world. Immunotherapies including tumor targeted antibodies, adoptive T cell therapy, vaccines, and immune checkpoint blockers have rejuvenated the clinical management of breast cancer, but the prognosis of patients remains dismal. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. The deprivation uptake of nutrients (such as glucose, amino acid, and lipid) by breast cancer cells has a significant impact on tumor growth and microenvironment remodeling. In recent years, in-depth researches on the mechanism of metabolic reprogramming and immune escape have been extensively conducted, and targeting metabolic reprogramming has been proposed as a new therapeutic strategy for breast cancer. This article reviews the abnormal metabolism of breast cancer cells and its impact on the anti-tumor activity of T cells, and further explores the possibility of targeting metabolism as a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Jialuo Zou
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cunjun Mai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiqin Lin
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Guie Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
42
|
Kelly JJ, Ankrom ET, Newkirk SE, Thévenin D, Pires MM. Targeted acidosis mediated delivery of antigenic MHC-binding peptides. Front Immunol 2024; 15:1337973. [PMID: 38665920 PMCID: PMC11043575 DOI: 10.3389/fimmu.2024.1337973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Emily T. Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
43
|
Cozzolino M, Panyi G. Intracellular acidity impedes KCa3.1 activation by Riluzole and SKA-31. Front Pharmacol 2024; 15:1380655. [PMID: 38638868 PMCID: PMC11024243 DOI: 10.3389/fphar.2024.1380655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Background The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.
Collapse
Affiliation(s)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
44
|
Pedersen SHF. Acid-base transporters in the context of tumor heterogeneity. Pflugers Arch 2024; 476:689-701. [PMID: 38332178 DOI: 10.1007/s00424-024-02918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.
Collapse
Affiliation(s)
- Stine Helene Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
45
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
46
|
Gomes-Santos IL, Kumar AS, Hausmann F, Meyer MN, Shiferaw SZ, Amoozgar Z, Jain RK, Fukumura D. Exercise intensity governs tumor control in mice with breast cancer. Front Immunol 2024; 15:1339232. [PMID: 38495879 PMCID: PMC10940460 DOI: 10.3389/fimmu.2024.1339232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Exercise is recommended as an adjunct therapy in cancer, but its effectiveness varies. Our hypothesis is that the benefit depends on the exercise intensity. Methods We subjected mice to low intensity (Li), moderate intensity (Mi) or high intensity (Hi) exercise, or untrained control (Co) groups based on their individual maximal running capacity. Results We found that exercise intensity played a critical role in tumor control. Only Mi exercise delayed tumor growth and reduced tumor burden, whereas Li or Hi exercise failed to exert similar antitumor effects. While both Li and Mi exercise normalized the tumor vasculature, only Mi exercise increased tumor infiltrated CD8+ T cells, that also displayed enhanced effector function (higher proliferation and expression of CD69, INFγ, GzmB). Moreover, exercise induced an intensity-dependent mobilization of CD8+ T cells into the bloodstream. Conclusion These findings shed light on the intricate relationship between exercise intensity and cancer, with implications for personalized and optimal exercise prescriptions for tumor control.
Collapse
Affiliation(s)
- Igor L. Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashwin S. Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Franziska Hausmann
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Max N. Meyer
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah Z. Shiferaw
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Dong Z, Liu Y, Wang C, Hao Y, Fan Q, Yang Z, Li Q, Feng L, Liu Z. Tumor Microenvironment Modulating CaCO 3 -Based Colloidosomal Microreactors Can Generally Reinforce Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308254. [PMID: 37918820 DOI: 10.1002/adma.202308254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Tumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO3 ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia, and suppress lactate production upon intratumoral administration. Consequently, CCaP CSs treatment can activate potent antitumor immunity and thus significantly enhance the therapeutic potency of coloaded anti-programmed death-1 (anti-PD-1) antibodies in both murine subcutaneous CT26 and orthotopic 4T1 tumor xenografts. In addition, such CCaP CSs treatment also markedly reinforces the therapeutic potency of epidermal growth factor receptor expressing chimeric antigen receptor T (EGFR-CAR-T) cells toward a human triple-negative breast cancer xenograft by promoting their tumor infiltration and effector cytokine secretion. Therefore, this study highlights that chemical modulation of tumor acidity and hypoxia can collectively reverse tumor immunosuppression and thus significantly potentiate both immune checkpoint blockade and CAR-T cell immunotherapies toward solid tumors.
Collapse
Affiliation(s)
- Ziliang Dong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chunjie Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yu Hao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Qin Fan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhijuan Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Quguang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
48
|
Wang Z, Shang J, Qiu Y, Cheng H, Tao M, Xie E, Pei X, Li W, Zhang L, Wu A, Li G. Suppression of the METTL3-m 6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep 2024; 43:113796. [PMID: 38367240 DOI: 10.1016/j.celrep.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin β1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.
Collapse
Affiliation(s)
- Zhe Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jingzhe Shang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Mengyuan Tao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Xin Pei
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Aiping Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
49
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
50
|
Zhang X, Geng L, Tang Y, Wang Y, Zhang Y, Zhu C, Lei H, Xu H, Zhu Q, Wu Y, Gu W. Ubiquitin-specific protease 14 targets PFKL-mediated glycolysis to promote the proliferation and migration of oral squamous cell carcinoma. J Transl Med 2024; 22:193. [PMID: 38388430 PMCID: PMC10885370 DOI: 10.1186/s12967-024-04943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Aberrant upregulation of the ubiquitin-specific protease 14 (USP14) has been found in some malignant tumors, including oral squamous cell carcinoma (OSCC). In this study, we further demonstrated that aberrantly overexpressed USP14 was also closely related to adverse clinicopathological features and poor prognosis in patients with OSCC, so we hypothesized that USP14 might act as a tumor-promoting factor during the progression of OSCC. Notably, we originally proved that USP14 is a deubiquitinating enzyme for phosphofructokinase-1 liver type (PFKL), a key rate-limiting enzyme involved in the glycolytic pathway. USP14 interacts with PFKL and enhances its stability through deubiquitination in OSCC cells, which in turn enhances PFKL-mediated glycolytic metabolism and ultimately promote cellular proliferation, migration, and tumorigenesis. In this work, we have also demonstrated for the first time that USP14 is a critical regulator of glycolysis in OSCC and verified a novel mechanism whereby it is involved in tumor metastasis and growth. Collectively, our findings provide novel insights into the tumor-promoting role of USP14 and establish mechanistic foundations for USP14-targeting therapies.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lou Geng
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Tang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chujiao Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Zhu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Wenli Gu
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|