1
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
2
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
3
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Souchak J, Mohammed NBB, Lau LS, Dimitroff CJ. The role of galectins in mediating the adhesion of circulating cells to vascular endothelium. Front Immunol 2024; 15:1395714. [PMID: 38840921 PMCID: PMC11150550 DOI: 10.3389/fimmu.2024.1395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of β-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.
Collapse
Affiliation(s)
- Joseph Souchak
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Sutherland M, Gordon A, Al-Shammari FOFO, Throup A, Cilia La Corte A, Philippou H, Shnyder SD, Patterson LH, Sheldrake HM. Synthesis and Biological Evaluation of Cyclobutane-Based β3 Integrin Antagonists: A Novel Approach to Targeting Integrins for Cancer Therapy. Cancers (Basel) 2023; 15:4023. [PMID: 37627051 PMCID: PMC10452181 DOI: 10.3390/cancers15164023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The Arg-Gly-Asp (RGD)-binding family of integrin receptors, and notably the β3 subfamily, are key to multiple physiological processes involved in tissue development, cancer proliferation, and metastatic dissemination. While there is compelling preclinical evidence that both αvβ3 and αIIbβ3 are important anticancer targets, most integrin antagonists developed to target the β3 integrins are highly selective for αvβ3 or αIIbβ3. We report the design, synthesis, and biological evaluation of a new structural class of ligand-mimetic β3 integrin antagonist. These new antagonists combine a high activity against αvβ3 with a moderate affinity for αIIbβ3, providing the first evidence for a new approach to integrin targeting in cancer.
Collapse
Affiliation(s)
- Mark Sutherland
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Andrew Gordon
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Adam Throup
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Amy Cilia La Corte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Steven D. Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Helen M. Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
6
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
7
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
8
|
Li F, Liang H, You H, Xiao J, Xia H, Chen X, Huang M, Cheng Z, Yang C, Liu W, Zhang H, Zeng L, Wu Y, Ge F, Li Z, Zhou W, Wen Y, Zhou Z, Liu R, Jiang D, Xie N, Liang B, Liu Z, Kong Y, Chen C. Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis. Signal Transduct Target Ther 2022; 7:264. [PMID: 35918322 PMCID: PMC9345961 DOI: 10.1038/s41392-022-01057-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis. Surgery is a common intervention for most primary solid tumors. However, surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells (ECs). Currently, there are no effective interventions to prevent distant metastasis. Here, we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models. HECTD3 depletion downregulates expression of adhesion molecules, such as VCAM-1, ICAM-1 and E-selectin, in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo. We demonstrate that HECTD3 promotes stabilization, nuclear localization and kinase activity of IKKα by ubiquitinating IKKα with K27- and K63-linked polyubiquitin chains at K296, increasing phosphorylation of histone H3 to promote NF-κB target gene transcription. Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization, while conditional knockin promotes that. IKKα kinase inhibitors prevented LPS-induced pulmonary metastasis. These findings reveal the promotional role of the HECTD3-IKKα axis in tumor hematogenous metastasis and provide a potential strategy for tumor metastasis prevention.
Collapse
Affiliation(s)
- Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Pathology, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Ji Xiao
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yingying Wu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fei Ge
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen Li
- Department of the Third Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Zhenzhen Liu
- Department of Breast disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
9
|
Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:ijms222413333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
|
10
|
Xing X, Bai Y, Song J. The Heterogeneity of Neutrophil Recruitment in the Tumor Microenvironment and the Formation of Premetastatic Niches. J Immunol Res 2021; 2021:6687474. [PMID: 33688508 PMCID: PMC7910074 DOI: 10.1155/2021/6687474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/26/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The recruitment of neutrophil to the primary cancer has been shown to be steered by neoplastic cells or tumor-educated mesenchymal stromal cells and has a prometastatic effect. However, the neutrophil chemotaxis and their interaction with tumor cells in the distal metastasized tissues remain elusive. In this review, we discussed emerging research on the interaction between neutrophil recruitment and tumor metastasis, which is essential for studying tumor cell invasion and related immunotherapy.
Collapse
Affiliation(s)
- Xin Xing
- Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Road, Shanghai, China 201499
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 200127
| | - Jian Song
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 200127
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Mollica V, Rizzo A, Rosellini M, Marchetti A, Ricci AD, Cimadamore A, Scarpelli M, Bonucci C, Andrini E, Errani C, Santoni M, Montironi R, Massari F. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13030546. [PMID: 33535541 PMCID: PMC7867059 DOI: 10.3390/cancers13030546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Over the disease course of metastatic prostate cancer, approximately the 90% of patients develops bone metastases, with bone involvement frequently leading to various skeletal complications including pathological fractures, spinal cord compression, and pain. Notably enough, the peculiar inclination of prostate cancer cells to seed the bone is considered an important cause of morbidity for prostate cancer patients. Recent years have witnessed the advent of several novel treatments for prostate cancer, and therapeutic paradigms are rapidly shifting. In this review, we aim at giving an overview of current knowledge on the relationship between prostate cancer and bone, especially focusing on the use of bone-targeted agents in this setting. Abstract Bone health represents a major issue in castration-resistant prostate cancer (CRPC) patients with bone metastases; in fact, the frequently prolonged use of hormonal agents causes important modifications in physiological bone turnover and most of these men will develop skeletal-related events (SREs), including spinal cord compression, pathologic fractures and need for surgery or radiation to bone, which are estimated to occur in almost half of this patient population. In the last decade, several novel therapeutic options have entered into clinical practice of bone metastatic CRPC, with recent approval of enzalutamide and abiraterone acetate, cabazitaxel chemotherapy and radium-223, on the basis of survival benefit suggested by landmark Phase III trials assessing these agents in this setting. Conversely, although bone-targeted agents (BTAs)—such as the bisphosphonate zoledronic acid and the receptor activator of nuclear factor kappa-B (RANK) ligand inhibitor denosumab—are approved for the prevention of SREs, these compounds have not shown benefit in terms of overall survival. However, emerging evidence has suggested that the combination of BTAs and abiraterone acetate, enzalutamide and the radiopharmaceutical radium-223 could result in improved clinical outcomes and prolonged survival in bone metastatic CRPC. In this review, we will provide an overview on bone tropism of prostate cancer and on the role of BTAs in metastatic hormone-sensitive and castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Veronica Mollica
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Matteo Rosellini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Andrea Marchetti
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Angela Dalia Ricci
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60121 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60121 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Chiara Bonucci
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Elisa Andrini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
| | - Costantino Errani
- Department of Musculo–Skeletal Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60121 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (V.M.); (A.R.); (M.R.); (A.M.); (A.D.R.); (C.B.); (E.A.)
- Correspondence: or
| |
Collapse
|
12
|
Abstract
Cancer metastasis is a multistep process during which tumor cells leave the primary tumor mass and form distant secondary colonies that are lethal. Circulating tumor cells (CTCs) are transported by body fluids to reach distant organs, where they will extravasate and either remain dormant or form new tumor foci. Development of methods to study the behavior of CTCs at the late stages of the intravascular journey is thus required to dissect the molecular mechanisms at play. Using recently developed microfluidics approaches, we have demonstrated that CTCs arrest intravascularly, through a two-step process: (a) CTCs stop using low energy and rapidly activated adhesion receptors to form transient metastable adhesions and (b) CTCs stabilize their adhesions to the endothelial layer with high energy and slowly activated adhesion receptors. In this methods chapter, we describe these easy-to-implement quantitative methods using commercially available microfluidic channels. We detail the use of fast live imaging combined to fine-tuned perfusion to measure the adhesion potential of CTC depending on flow velocities. We document how rapidly engaged early metastable adhesion can be discriminated from slower activated stable adhesion using microfluidics. Finally, CTC extravasation potential can be assessed within this setup using long-term cell culture under flow. Altogether, this experimental pipeline can be adapted to probe the adhesion (to the endothelial layer) and extravasation potential of any circulating cell.
Collapse
|
13
|
Zhang S, Yu J, Sun BF, Hou GZ, Yu ZJ, Luo H. MicroRNA-92a Targets SERTAD3 and Regulates the Growth, Invasion, and Migration of Prostate Cancer Cells via the P53 Pathway. Onco Targets Ther 2020; 13:5495-5514. [PMID: 32606766 PMCID: PMC7298502 DOI: 10.2147/ott.s249168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background The miR-17-92 cluster, consisting of six mature miRNAs including miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a, plays a key role in the tumorigenesis and development of various cancers. The dysregulation of the cluster correlates with the biological mechanism of tumor growth and metastasis in vivo. However, the relationship between miR-17-92 cluster and malignancy of prostate cancer remains unclear, and its regulatory mechanism is worth investigating for controlling the proliferation and invasion of prostate cancer. Materials and Methods The expressions of miR-17-92 cluster members were measured using real-time quantitative RT-PCR. WB and real-time quantitative RT-PCR were used to detect the expression of SERTAD3, p38, p21, p53 protein levels and transcription levels. Cell proliferation and apoptosis were evaluated using cell proliferation assay, EdU and Hoechst assay, colony formation experiment and flow cytometry analyses. Cell migration and invasion were determined via transwell assays. The TargetScan, miRDB, starBase databases and luciferase reporter assays were used to confirm the target gene of miR-92a. Results The relative expression of miR-92a was threefold higher in the metastatic PC-3 cells compared with the non-metastatic LNCaP cells. Down-regulation of miR-92a in PC-3 cells led to the inhibition of cell proliferation, migration, and invasion, while its overexpression in LNCaP cells resulted in the promotion of cell proliferation, migration, and invasion. The role of SERTAD3 in prostate cancer can be alleviated by miR-92a inhibitor. Conclusion SERTAD3 was the direct target gene of miR-92a in prostate cancer cells; inhibition of SERTAD3-dependent miR-92a alleviated the growth, invasion, and migration of prostate cancer cells by regulating the expression of the key genes of the p53 pathway, including p38, p53 and p21. These results suggested that targeting SERTAD3 by the induction of overexpression of miR-92a may be a treatment option in prostate cancer.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| | - Bao-Fei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Gui-Zhong Hou
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Zi-Jiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Heng Luo
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| |
Collapse
|
14
|
Chakraborty A, Dimitroff CJ. Cancer immunotherapy needs to learn how to stick to its guns. J Clin Invest 2020; 129:5089-5091. [PMID: 31710312 DOI: 10.1172/jci133415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy and its budding effectiveness at improving patient outcomes has revitalized our hope to fight cancer in a logical and safe manner. Immunotherapeutic approaches to reengage the immune system have largely focused on reversing immune checkpoint inhibitor pathways, which suppress the antitumor response. Although these approaches have generated much excitement, they still lack absolute success. Interestingly, newly described host-tumor sugar chains (glycosylations) and glycosylation-binding proteins (lectins) play key roles in evading the immune system to determine cancer progression. In this issue of the JCI, Nambiar et al. used patient head and neck tumors and a mouse model system to investigate the role of galactose-binding lectin 1 (Gal1) in immunotherapy resistance. The authors demonstrated that Gal1 can affect immune checkpoint inhibitor therapy by increasing immune checkpoint molecules and immunosuppressive signaling in the tumor. Notably, these results suggest that targeting a tumor's glycobiological state will improve treatment efficacy.
Collapse
|
15
|
Zhao Z, Li E, Luo L, Zhao S, Liu L, Wang J, Kang R, Luo J. A PSCA/PGRN–NF-κB–Integrin–α4 Axis Promotes Prostate Cancer Cell Adhesion to Bone Marrow Endothelium and Enhances Metastatic Potential. Mol Cancer Res 2019; 18:501-513. [PMID: 31722969 DOI: 10.1158/1541-7786.mcr-19-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Zhigang Zhao
- Department of Urology and Andrology, The First Affiliated Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Urology, Guangzhou, Guangdong Province, China.
| | - Ermao Li
- Medical school, University of South China, Hengyang, Hunan Province, China
| | - Lianmin Luo
- Department of Urology and Andrology, The First Affiliated Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Urology, Guangzhou, Guangdong Province, China
| | - Shankun Zhao
- Department of Urology and Andrology, The First Affiliated Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Urology, Guangzhou, Guangdong Province, China
| | - Luhao Liu
- Department of organ transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jiamin Wang
- Department of Urology and Andrology, The First Affiliated Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Urology, Guangzhou, Guangdong Province, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jintai Luo
- Department of Urology and Andrology, The First Affiliated Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Urology, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Osmani N, Follain G, García León MJ, Lefebvre O, Busnelli I, Larnicol A, Harlepp S, Goetz JG. Metastatic Tumor Cells Exploit Their Adhesion Repertoire to Counteract Shear Forces during Intravascular Arrest. Cell Rep 2019; 28:2491-2500.e5. [DOI: 10.1016/j.celrep.2019.07.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022] Open
|
17
|
Chen MB, Kamm RD, Moeendarbary E. Engineered Models of Metastasis with Application to Study Cancer Biomechanics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:189-207. [PMID: 30368754 DOI: 10.1007/978-3-319-95294-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
18
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
19
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
20
|
Esposito M, Mondal N, Greco TM, Wei Y, Spadazzi C, Lin SC, Zheng H, Cheung C, Magnani JL, Lin SH, Cristea IM, Sackstein R, Kang Y. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol 2019; 21:627-639. [PMID: 30988423 PMCID: PMC6556210 DOI: 10.1038/s41556-019-0309-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
How disseminated tumor cells (DTCs) engage specific stromal components in distant organs for survival and outgrowth is a critical but poorly understood step of the metastatic cascade. Previous studies have demonstrated the importance of the epithelial-mesenchymal transition (EMT) in promoting the cancer stem cell properties needed for metastasis initiation, while the reverse process of mesenchymal-epithelial transition (MET) is required for metastatic outgrowth. Here we report that this paradoxical requirement for simultaneous induction of both MET and cancer stem cell traits in DTCs is provided by bone vascular niche E-selectin, whose direct binding to cancer cells promotes bone metastasis by inducing MET and activating Wnt signaling. E-selectin binding activity mediated by α1–3 Fucosyltransferases Fut3/Fut6 and Glg1 are instrumental to the formation of bone metastasis. These findings provide unique insights into the functional role of E-selectin as a component of the vascular niche critical for metastatic colonization in bone.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanqiu Zheng
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Corey Cheung
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Sowder ME, Johnson RW. Bone as a Preferential Site for Metastasis. JBMR Plus 2019; 3:e10126. [PMID: 30918918 PMCID: PMC6419612 DOI: 10.1002/jbm4.10126] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Bone marrow provides a unique microenvironment favoring the colonization and outgrowth of metastatic tumor cells. Despite the high incidence of bone metastasis in breast and prostate cancer patients, many of the molecular mechanisms controlling metastatic progression remain unclear. Several gene signatures associated with bone metastasis have been reported, but no metastasis-specific gene alterations have been identified. Therefore, there has been considerable interest in understanding how the bone microenvironment impacts the behavior of disseminated tumor cells (DTCs) prior to and following colonization of the bone. Substantial evidence indicates that disruption of normal bone homeostasis by tumor-derived factors establishes a premetastatic niche within the bone that favors DTC colonization. Following dissemination, bone resident cells and the surrounding stroma provide critical signals that support tumor cell colonization, survival, and eventual outgrowth. Clinical data suggest that patients can harbor DTCs for years to decades prior to developing overt bone metastases, suggesting a period of tumor dormancy occurs in the bone marrow. Several dormancy-promoting factors have been recently identified; however, critical questions surrounding the molecular triggers and timing of tumor cell emergence from dormancy remain. Here, we review how metastatic tumor cells co-opt the bone marrow microenvironment for metastatic progression and discuss emerging insights into how to more effectively target DTCs and prevent metastasis. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Miranda E Sowder
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone BiologyDepartment of MedicineDivision of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Rachelle W Johnson
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone BiologyDepartment of MedicineDivision of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineDivision of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
22
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Sweeney JG, Liang J, Antonopoulos A, Giovannone N, Kang S, Mondala TS, Head SR, King SL, Tani Y, Brackett D, Dell A, Murphy GF, Haslam SM, Widlund HR, Dimitroff CJ. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nat Commun 2018; 9:3368. [PMID: 30135430 PMCID: PMC6105653 DOI: 10.1038/s41467-018-05795-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.
Collapse
Affiliation(s)
- Jenna Geddes Sweeney
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer Liang
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Aristotelis Antonopoulos
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Nicholas Giovannone
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Shuli Kang
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tony S. Mondala
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sandra L. King
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Yoshihiko Tani
- 0000 0004 1762 2623grid.410775.0Japanese Red Cross Kinki Block Blood Center, 7-5-17 Saito Asagi, Ibaraki-shi, Osaka 567-0085 Japan
| | - Danielle Brackett
- 0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Anne Dell
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - George F. Murphy
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA ,0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Stuart M. Haslam
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Hans R. Widlund
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Charles J. Dimitroff
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
24
|
Thompson TJ, Han B. Analysis of adhesion kinetics of cancer cells on inflamed endothelium using a microfluidic platform. BIOMICROFLUIDICS 2018; 12:042215. [PMID: 29937953 PMCID: PMC5993669 DOI: 10.1063/1.5025891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/21/2018] [Indexed: 06/01/2023]
Abstract
Metastasis is the ultimate cause of death among the vast majority of cancer patients. This process is comprised of multiple steps, including the migration of circulating cancer cells across microvasculature. This trans-endothelial migration involves the adhesion and eventual penetration of cancer cells to the vasculature of the target organ. Many of these mechanisms remain poorly understood due to poor control of pathophysiological conditions in tumor models. In this work, a microfluidic device was developed to support the culture and observation of engineered microvasculature with systematic control of the environmental characteristics. This device was then used to study the adhesion of circulating cancer cells to an endothelium under varying conditions to delineate the effects of hemodynamics and inflammations. The resulting understanding will help to establish a quantitative and biophysical mechanism of interactions between cancer cells and endothelium.
Collapse
Affiliation(s)
- Taylor J. Thompson
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed: . Present address: 585 Purdue Mall, West Lafayette, IN 47907, USA, Phone: +1-765-494-5626, Fax: +1-765-496-7535
| |
Collapse
|
25
|
Park SH, Keller ET, Shiozawa Y. Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis. Calcif Tissue Int 2018; 102:152-162. [PMID: 29094177 PMCID: PMC5807175 DOI: 10.1007/s00223-017-0350-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Bone is the most common site of prostate cancer metastasis. Once prostate cancer cells metastasize to bone, the mortality rate of prostate cancer patients increases significantly. Furthermore, bone metastases produce multiple skeletal complications, including bone pain that impairs the patients' quality of life. Effective therapies for bone metastatic disease are underdeveloped with most current therapies being primarily palliative with modest survival benefit. Although the exact mechanisms through which prostate cancer metastasizes to bone are unclear, growing evidence suggests that the bone marrow microenvironment, particularly its hematopoietic activity, is a significant mediator of prostate cancer bone tropism. Moreover, the bone microenvironment may regulate metastatic prostate cancer cells between dormant and proliferative states. In this review, we discuss (1) how prostate cancer cells interact with the bone microenvironment to establish bone metastases and (2) current and future potential treatments for prostate cancer patients with bone metastases.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Evan T Keller
- Departments of Urology and Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
26
|
Fang LL, Sun BF, Huang LR, Yuan HB, Zhang S, Chen J, Yu ZJ, Luo H. Potent Inhibition of miR-34b on Migration and Invasion in Metastatic Prostate Cancer Cells by Regulating the TGF-β Pathway. Int J Mol Sci 2017; 18:E2762. [PMID: 29257105 PMCID: PMC5751361 DOI: 10.3390/ijms18122762] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
The importance of miRNAs in the progression of prostate cancer (PCa) has further been supported by the finding that miRNAs have been identified as potential oncogenes or tumor suppressors in PCa. Indeed, in eukaryotes, miRNAs have been found to regulate and control gene expression by degrading mRNA at the post-transcriptional level. In this study, we investigated the expression of miR-34 family members, miR-34b and miR-34c, in different PCa cell lines, and discussed the molecular mechanism of miR-34b in the invasion and migration of PCa cells in vitro. The difference analyses of the transcriptome between the DU145 and PC3 cell lines demonstrated that both miR-34b and -34c target critical pathways that are involved in metabolism, such as proliferation, and migration, and invasion. The molecular expression of miR-34b/c were lower in PC3 cells. Moreover, over-expression of miR-34b/c in PC3 cells caused profound phenotypic changes, including decreased cell proliferation, migration and invasion. Moreover, the players that regulate expression levels of transforming growth factor-β (TGF-β), TGF-β receptor 1 (TGF-βR1), and p53 or phosphorylation levels of mothers against decapentaplegic 3 (SMAD3) in the TGF-β/Smad3 signaling pathway have yet to be elucidated, and will provide novel tools for diagnosis and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Li-Li Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Bao-Fei Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Li-Rong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| | - Hai-Bo Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Jing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Zi-Jiang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| |
Collapse
|
27
|
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol 2017; 216:3799-3816. [PMID: 29021221 PMCID: PMC5674895 DOI: 10.1083/jcb.201704053] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
Collapse
Affiliation(s)
- Begum Erdogan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Mingfang Ao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Lauren M White
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Anna L Means
- Department of Surgery, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Omar E Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Simon W Hayward
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
28
|
Barbazán J, Alonso-Alconada L, Elkhatib N, Geraldo S, Gurchenkov V, Glentis A, van Niel G, Palmulli R, Fernández B, Viaño P, Garcia-Caballero T, López-López R, Abal M, Vignjevic DM. Liver Metastasis Is Facilitated by the Adherence of Circulating Tumor Cells to Vascular Fibronectin Deposits. Cancer Res 2017; 77:3431-3441. [PMID: 28536280 DOI: 10.1158/0008-5472.can-16-1917] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/19/2016] [Accepted: 05/10/2017] [Indexed: 12/23/2022]
Abstract
The interaction between circulating tumor cells (CTC) and endothelial cells during extravasation is a critical process during metastatic colonization, but its mechanisms remain poorly characterized. Here we report that the luminal side of liver blood vessels contains fibronectin deposits that are enriched in mice bearing primary tumors and are also present in vessels from human livers affected with metastases. Cancer cells attached to endothelial fibronectin deposits via talin1, a major component of focal adhesions. Talin1 depletion impaired cancer cell adhesion to the endothelium and transendothelial migration, resulting in reduced liver metastasis formation in vivo Talin1 expression levels in patient CTC's correlated with prognosis and therapy response. Together, our findings uncover a new mechanism for liver metastasis formation involving an active contribution of hepatic vascular fibronectin and talin1 in cancer cells. Cancer Res; 77(13); 3431-41. ©2017 AACR.
Collapse
Affiliation(s)
- Jorge Barbazán
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France. .,Translational Medical Oncology; Health Research Institute of Santiago (IDIS); SERGAS, Santiago de Compostela, Spain
| | - Lorena Alonso-Alconada
- Translational Medical Oncology; Health Research Institute of Santiago (IDIS); SERGAS, Santiago de Compostela, Spain
| | - Nadia Elkhatib
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Sara Geraldo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Vasily Gurchenkov
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | | | | | - Roberta Palmulli
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Beatriz Fernández
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - Patricia Viaño
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain.,IDIS, CHUS, Santiago de Compostela, Spain
| | - Tomas Garcia-Caballero
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael López-López
- Translational Medical Oncology; Health Research Institute of Santiago (IDIS); SERGAS, Santiago de Compostela, Spain
| | - Miguel Abal
- Translational Medical Oncology; Health Research Institute of Santiago (IDIS); SERGAS, Santiago de Compostela, Spain
| | | |
Collapse
|
29
|
Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. J Transl Med 2017; 97:669-697. [PMID: 28346400 PMCID: PMC5446300 DOI: 10.1038/labinvest.2017.25] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Rm 671, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Barthel
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Correspondence to: Dr. Steven R. Barthel, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115;
| |
Collapse
|
30
|
Abstract
The spread of cancer from a primary tumor to distant organ sites is the most devastating aspect of malignancy. Dissemination to specific organs depends upon blood flow patterns and characteristics of the distant organ environment, such as the vascular architecture, stromal cell content, and the biochemical milieu of growth factors, signaling molecules, and metabolic substrates, which can be permissive or antagonistic to metastatic colonization. Metastatic tumor cells possess intrinsic cellular properties selected for adaptation to specific organ environments, where they co-opt growth and survival signals, undergo metabolic reprogramming, and subvert resident stromal cell activities to promote extravasation, immune evasion, angiogenesis, and overt metastatic growth. Recent work and new experimental models of metastatic organotropism are uncovering crucial details of how malignant cells metastasize to specific tissues, revealing key mediators that prepare metastatic niches in specific organs and identifying new targets that offer attractive options for therapeutic intervention.
Collapse
Affiliation(s)
- Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
31
|
Lee CY, Hsieh SL, Hsieh S, Tsai CC, Hsieh LC, Kuo YH, Wu CC. Inhibition of human colorectal cancer metastasis by notoginsenoside R1, an important compound from Panax notoginseng. Oncol Rep 2016; 37:399-407. [DOI: 10.3892/or.2016.5222] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 11/05/2022] Open
|
32
|
Hoja-Łukowicz D, Przybyło M, Duda M, Pocheć E, Bubka M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta Gen Subj 2016; 1861:3237-3257. [PMID: 27565356 DOI: 10.1016/j.bbagen.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
Changes in the profile of protein glycosylation are a hallmark of ongoing neoplastic transformation. A unique set of tumor-associated carbohydrate antigens expressed on the surface of malignant cells may serve as powerful diagnostic and therapeutic targets. Cell-surface proteins with altered glycosylation affect the growth, proliferation and survival of those cells, and contribute to their acquisition of the ability to migrate and invade. They may also facilitate tumor-induced immunosuppression and the formation of distant metastases. Deciphering the information encoded in these particular glycan portions of glycoconjugates may shed light on the mechanisms of cancer progression and metastasis. A majority of the related review papers have focused on overall changes in the patterns of cell-surface glycans in various cancers, without pinpointing the molecular carriers of these glycan structures. The present review highlights the ways in which particular tumor-associated glycan(s) coupled with a given membrane-bound protein influence neoplastic cell behavior during the development and progression of cancer. We focus on altered glycosylated cell-adhesion molecules belonging to the cadherin, integrin and immunoglobulin-like superfamilies, examined in the context of molecular interactions.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| |
Collapse
|
33
|
Lin CL, Hsieh SL, Leung W, Jeng JH, Huang GC, Lee CT, Wu CC. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside suppresses human colorectal cancer cell metastasis through inhibiting NF-κB activation. Int J Oncol 2016; 49:629-38. [PMID: 27278328 DOI: 10.3892/ijo.2016.3574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/03/2016] [Indexed: 11/05/2022] Open
Abstract
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a major component of Polygonum multiflorum Thunb (He-Shou-Wu), has been reported to exhibit antioxidant and anti-inflammatory effects. However, its anti-metastatic effect against colorectal cancer is still unclear. In this study, cell migration, invasion and adhesion abilities as well as metastasis-associated protein and NF-κB pathway signaling factor expression were analyzed after treating HT-29 cells with THSG. According to the results, the migration and invasiveness of HT-29 cells were reduced after treatment with 5 or 10 mM THSG (p<0.05). Additionally, the levels of matrix metalloproteinase-2 (MMP-2) and phosphorylated VE-cadherin in HT-29 cells were reduced and the transepithelial electrical resistance (TEER) of EA.hy926 endothelial cell monolayers was increased after incubation in THSG for 24 h (p<0.05). Cell adhesion ability and the E-selectin and intercellular adhesion molecule-1 (ICAM-1) protein levels were reduced when EA.hy926 endothelial cells were treated with THSG (p<0.05). In addition, the cytoplasmic phosphorylation of IκB, the nuclear p65 level and the DNA-binding activity of NF-κB were reduced after treating HT-29 or EA.hy926 cells with 5 or 10 mM THSG (p<0.05). These results suggest that THSG inhibits HT-29 cell metastasis by suppressing cell migration, invasion and adhesion. Furthermore, THSG inhibits metastasis-associated protein expression by suppressing NF-κB pathway activation.
Collapse
Affiliation(s)
- Chien-Liang Lin
- Department of Pharmacy, Yuan's General Hospital, Kaohsiung 802, Taiwan, R.O.C
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan, R.O.C
| | - Wan Leung
- Department of Radiology and Nuclear Medicine, Yuan's General Hospital, Kaohsiung 802, Taiwan, R.O.C
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan, R.O.C
| | - Guan-Cheng Huang
- Department of Health-Business Administration, School of Nursing, Fooyin University, Kaohsiung 831, Taiwan, R.O.C
| | - Chining-Ting Lee
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan, R.O.C
| |
Collapse
|
34
|
Hsieh SL, Hsieh S, Kuo YH, Wang JJ, Wang JC, Wu CC. Effects of Panax notoginseng on the Metastasis of Human Colorectal Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:851-70. [PMID: 27222068 DOI: 10.1142/s0192415x16500476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The goal of this study was to investigate the effect of the Panax notoginseng ethanol extract (PNEE) on the regulation of human colorectal cancer (CRC) metastasis. The migratory, invasive, and adhesive abilities and the expression of metastasis-associated regulatory molecules in cultured human CRC cells (HCT-116) treated with the PNEE were analyzed in this study. The migratory and invasive abilities of HCT-116 cells were reduced after PNEE treatment. The incubation of HCT-116 cells with the PNEE for 24 h decreased MMP-9 expression and increased E-cadherin expression compared with the control group. The adhesion reaction assay indicated that treatment with the PNEE led to significantly decreased HCT-116 adhesion to endothelial cells (EA.hy926 cells). The integrin-1 protein levels in HCT-116 cells were significantly decreased following treatment with the PNEE. Similarly, the protein levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased by treatment of the EA.hy926 endothelial cells with PNEE. A scanning electron microscope (SEM) examination indicated that HCT-116 cells treated with LPS combined with the PNEE had a less flattened and retracted shape compared with LPS-treated cells, and this change in shape was found to be a phenomenon of extravasation invasion. The transepithelial electrical resistance (TEER) of the EA.hy926 endothelial cell monolayer increased after incubation with the PNEE for 24 h. A cell-cell permeability assay indicated that HCT-116 cells treated with the PNEE displayed significantly reduced levels of phosphorylated VE-cadherin (p-VE-cadherin). These results demonstrate the antimetastatic properties of the PNEE and show that the PNEE affects cells by inhibiting cell migration, invasion, and adhesion and regulating the expression of metastasis-associated signaling molecules.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Shuchen Hsieh
- † Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Hao Kuo
- * Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Jinn-Chyi Wang
- § Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| |
Collapse
|
35
|
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc 2016; 11:937-48. [PMID: 27101515 DOI: 10.1038/nprot.2016.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Karla C Williams
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Carson T Gavin
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Emily Jardine
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Ann F Chambers
- Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
36
|
Breiman A, Robles MDL, de Carné Trécesson S, Echasserieau K, Bernardeau K, Drickamer K, Imberty A, Barillé-Nion S, Altare F, Le Pendu J. Carcinoma-associated fucosylated antigens are markers of the epithelial state and can contribute to cell adhesion through CLEC17A (Prolectin). Oncotarget 2016; 7:14064-82. [PMID: 26908442 PMCID: PMC4924698 DOI: 10.18632/oncotarget.7476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Terminal fucosylated motifs of glycoproteins and glycolipid chains are often altered in cancer cells. We investigated the link between fucosylation changes and critical steps in cancer progression: epithelial-to-mesenchymal transition (EMT) and lymph node metastasis.Using mammary cell lines, we demonstrate that during EMT, expression of some fucosylated antigens (e.g.: Lewis Y) is decreased as a result of repression of the fucosyltransferase genes FUT1 and FUT3. Moreover, we identify the fucose-binding bacterial lectin BC2L-C-Nt as a specific probe for the epithelial state.Prolectin (CLEC17A), a human lectin found on lymph node B cells, shares ligand specificities with BC2L-C-Nt. It binds preferentially to epithelial rather than to mesenchymal cells, and microfluidic experiments showed that prolectin behaves as a cell adhesion molecule for epithelial cells. Comparison of paired primary tumors/lymph node metastases revealed an increase of prolectin staining in metastasis and high FUT1 and FUT3 mRNA expression was associated with poor prognosis. Our data suggest that tumor cells invading the lymph nodes and expressing fucosylated motifs associated with the epithelial state could use prolectin as a colonization factor.
Collapse
Affiliation(s)
- Adrien Breiman
- Inserm U892, CNRS UMR6299, University of Nantes, 44007 Nantes, France
- Nantes University Hospital, 44007 Nantes, France
| | | | | | - Klara Echasserieau
- Inserm U892, CNRS UMR6299, University of Nantes, 44007 Nantes, France
- Recombinant Protein Core Facility of The University of Nantes, 44007 Nantes, France
| | - Karine Bernardeau
- Inserm U892, CNRS UMR6299, University of Nantes, 44007 Nantes, France
- Recombinant Protein Core Facility of The University of Nantes, 44007 Nantes, France
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London SW7, UK
| | - Anne Imberty
- CERMAV-UPR 5301, CNRS, Université Grenoble Alpes, 38041 Grenoble, France
| | | | - Frédéric Altare
- Inserm U892, CNRS UMR6299, University of Nantes, 44007 Nantes, France
| | - Jacques Le Pendu
- Inserm U892, CNRS UMR6299, University of Nantes, 44007 Nantes, France
| |
Collapse
|
37
|
Gasparics Á, Rosivall L, Krizbai IA, Sebe A. When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition. Am J Physiol Heart Circ Physiol 2016; 310:H1055-63. [PMID: 26993222 DOI: 10.1152/ajpheart.00042.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023]
Abstract
Endothelial-mesenchymal transition (EndMT) is an important mechanism during organ development and in certain pathological conditions. For example, EndMT contributes to myofibroblast formation during organ fibrosis, and it has been identified as an important source of cancer-associated fibroblasts, facilitating tumor progression. Recently, EndMT was proposed to modulate endothelial function during intravasation and extravasation of metastatic tumor cells. Evidence suggests that endothelial cells are not passive actors during transendothelial migration (TEM) of cancer cells, as there are profound changes in endothelial junctional protein expression, signaling, permeability, and contractility. This review describes these alterations in endothelial characteristics during TEM of metastatic tumor cells and discusses them in the context of EndMT. EndMT could play an important role during metastatic intravasation and extravasation, a novel hypothesis that may lead to new therapeutic approaches to tackle metastatic disease.
Collapse
Affiliation(s)
- Ákos Gasparics
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary; Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania; and
| | - Attila Sebe
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary; Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
38
|
Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, Hadadeh O, Abou-Kheir W, Liu YN. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget 2016; 6:441-57. [PMID: 25436980 PMCID: PMC4381606 DOI: 10.18632/oncotarget.2690] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/02/2014] [Indexed: 01/07/2023] Open
Abstract
Aberrant activation of Ras and WNT signaling are key events that have been shown to be up-regulated in prostate cancer that has metastasized to the bone. However, the regulatory mechanism of combinatorial Ras and WNT signaling in advanced prostate cancer is still unclear. TCF7, a WNT signaling-related gene, has been implicated as a critical factor in bone metastasis, and here we show that TCF7 is a direct target of miR-34a. In samples of prostate cancer patients, miR-34a levels are inversely correlated with TCF7 expression and a WNT dependent gene signature. Ectopic miR-34a expression inhibited bone metastasis and reduced cancer cell proliferation in a Ras-dependent xenograft model. We demonstrate that miR-34a can directly interfere with the gene expression of the anti-proliferative BIRC5, by targeting BIRC5 3′UTR. Importantly, BIRC5 overexpression was sufficient to reconstitute anti-apoptotic signaling in cells expressing high levels of miR-34a. In prostate cancer patients, we found that BIRC5 levels were positively correlated with a Ras signaling signature expression. Our data show that the bone metastasis and anti-apoptotic effects found in Ras signaling-activated prostate cancer cells require miR-34a deficiency, which in turn aids in cell survival by activating the WNT and anti-apoptotic signaling pathways thereby inducing TCF7 and BIRC5 expressions.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yang Liu
- Department of Acupuncture and Manipulation, College of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yung-Sheng Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Juan Juan Yin
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, HsinChu, Taiwan
| | - Tarek H Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Lee YC, Lin SC, Yu G, Cheng CJ, Liu B, Liu HC, Hawke DH, Parikh NU, Varkaris A, Corn P, Logothetis C, Satcher RL, Yu-Lee LY, Gallick GE, Lin SH. Identification of Bone-Derived Factors Conferring De Novo Therapeutic Resistance in Metastatic Prostate Cancer. Cancer Res 2015; 75:4949-59. [PMID: 26530902 DOI: 10.1158/0008-5472.can-15-1215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Resistance to currently available targeted therapies significantly hampers the survival of patients with prostate cancer with bone metastasis. Here we demonstrate an important resistance mechanism initiated from tumor-induced bone. Studies using an osteogenic patient-derived xenograft, MDA-PCa-118b, revealed that tumor cells resistant to cabozantinib, a Met and VEGFR-2 inhibitor, reside in a "resistance niche" adjacent to prostate cancer-induced bone. We performed secretome analysis of the conditioned medium from tumor-induced bone to identify proteins (termed "osteocrines") found within this resistance niche. In accordance with previous reports demonstrating that activation of integrin signaling pathways confers therapeutic resistance, 27 of the 90 osteocrines identified were integrin ligands. We found that following cabozantinib treatment, only tumor cells positioned adjacent to the newly formed woven bone remained viable and expressed high levels of pFAK-Y397 and pTalin-S425, mediators of integrin signaling. Accordingly, treatment of C4-2B4 cells with integrin ligands resulted in increased pFAK-Y397 expression and cell survival, whereas targeting integrins with FAK inhibitors PF-562271 or defactinib inhibited FAK phosphorylation and reduced the survival of PC3-mm2 cells. Moreover, treatment of MDA-PCa-118b tumors with PF-562271 led to decreased tumor growth, irrespective of initial tumor size. Finally, we show that upon treatment cessation, the combination of PF-562271 and cabozantinib delayed tumor recurrence in contrast to cabozantinib treatment alone. Our studies suggest that identifying paracrine de novo resistance mechanisms may significantly contribute to the generation of a broader set of potent therapeutic tools that act combinatorially to inhibit metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bin Liu
- Department of Genetics, Center for Cancer Genetics and Genomics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsuan-Chen Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andreas Varkaris
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Yasmin-Karim S, King MR, Messing EM, Lee YF. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis. Oncotarget 2015; 5:12097-110. [PMID: 25301730 PMCID: PMC4322988 DOI: 10.18632/oncotarget.2503] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
Abstract
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Edward M Messing
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Yi-Fen Lee
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
41
|
The role of "bone immunological niche" for a new pathogenetic paradigm of osteoporosis. Anal Cell Pathol (Amst) 2015; 2015:434389. [PMID: 26491648 PMCID: PMC4605147 DOI: 10.1155/2015/434389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue. The etiology and pathogenetic mechanisms of osteoporosis have not been clearly elucidated. Osteoporosis is linked to bone resorption by the activation of the osteoclastogenic process. The breakdown of homeostasis among pro- and antiosteoclastogenic cells causes unbalanced bone remodeling. The complex interactions among these cells in the bone microenvironment involve several mediators and proinflammatory pathways. Thus, we may consider the bone microenvironment as a complex system in which local and systemic immunity are regulated and we propose to consider it as an "immunological niche." The study of the "bone immunological niche" will permit a better understanding of the complex cell trafficking which regulates bone resorption and disease. The goal of a perfect therapy for osteoporosis would be to potentiate good cells and block the bad ones. In this scenario, additional factors may take part in helping or hindering the proosteoblastogenic factors. Several proosteoblastogenic and antiosteoclastogenic agents have already been identified and some have been developed and commercialized as biological therapies for osteoporosis. Targeting the cellular network of the "bone immunological niche" may represent a successful strategy to better understand and treat osteoporosis and its complications.
Collapse
|
42
|
Pasquier J, Abu-Kaoud N, Abdesselem H, Madani A, Hoarau-Véchot J, Thawadi HA, Vidal F, Couderc B, Favre G, Rafii A. SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction. BMC Cancer 2015; 15:569. [PMID: 26231656 PMCID: PMC4522077 DOI: 10.1186/s12885-015-1556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites. Methods Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases. Results We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion. Conclusion We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Nadine Abu-Kaoud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Houari Abdesselem
- Department of Immunology and Microbiology, Weill Cornell Medical College in Qatar, Qatar Foundation, Education city, P.O. Box: 24144, Doha, Qatar.
| | - Aisha Madani
- Department of Immunology and Microbiology, Weill Cornell Medical College in Qatar, Qatar Foundation, Education city, P.O. Box: 24144, Doha, Qatar.
| | - Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Hamda Al Thawadi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | | | - Gilles Favre
- INSERM U1037 Cancer Research Center of Toulouse, Institut Claudius Regaud, Toulouse, France.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA. .,Department of Advanced gynecologic Surgery, Université Montpellier 1, Montpellier, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem cell and microenvironment laboratory Weill Cornell Medical College in Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| |
Collapse
|
43
|
AbuSamra DB, Al-Kilani A, Hamdan SM, Sakashita K, Gadhoum SZ, Merzaban JS. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay. J Biol Chem 2015; 290:21213-30. [PMID: 26124272 DOI: 10.1074/jbc.m114.629451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow on- and off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling.
Collapse
Affiliation(s)
- Dina B AbuSamra
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alia Al-Kilani
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Kosuke Sakashita
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samah Z Gadhoum
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jasmeen S Merzaban
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
44
|
An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 2015; 4:27522. [PMID: 26095380 PMCID: PMC4475684 DOI: 10.3402/jev.v4.27522] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.
Collapse
Affiliation(s)
- Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sihua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yueting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK;
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China;
| |
Collapse
|
45
|
Gutierrez-Uzquiza A, Lopez-Haber C, Jernigan DL, Fatatis A, Kazanietz MG. PKCε Is an Essential Mediator of Prostate Cancer Bone Metastasis. Mol Cancer Res 2015; 13:1336-46. [PMID: 26023164 DOI: 10.1158/1541-7786.mcr-15-0111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1β, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. IMPLICATIONS This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis.
Collapse
Affiliation(s)
- Alvaro Gutierrez-Uzquiza
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Danielle L Jernigan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania. Program in Biology of Prostate Cancer, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
46
|
Abstract
Bone metastases develop in most patients with metastatic castration-resistant prostate cancer (mCRPC). They affect the structural integrity of bone, manifesting as pain and skeletal-related events (SREs), and are the primary cause of patient disability, reduced quality of life (QOL) and death. Understanding the pathophysiology of bone metastases resulted in the development of agents that improve clinical outcome, suggesting that managing both the systemic disease and associated bone events is important. Historically, the treatment of CRPC bone metastases with early radiopharmaceuticals and external beam radiation therapy was largely supportive; however, now, zoledronic acid and denosumab are integral to the therapeutic strategy for mCRPC. These agents substantially reduce skeletal morbidity and improve patient QOL. Radium-223 dichloride is the first bone-targeting agent to show improved survival and reduced pain and symptomatic skeletal events in patients with mCRPC without visceral disease. Five other systemic agents are currently approved for use in mCRPC based on their ability to improve survival. These include the cytotoxic drugs docetaxel and cabazitaxel, the hormone-based therapies, abiraterone and enzalutamide, and the immunotherapeutic vaccine sipuleucel-T. Abiraterone and enzalutamide are able to reduce SREs and improve survival in this setting. Novel agents targeting tumour and bone cells are under clinical development.
Collapse
|
47
|
Krizbai IA, Gasparics Á, Nagyőszi P, Fazakas C, Molnár J, Wilhelm I, Bencs R, Rosivall L, Sebe A. Endothelial-mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation. PLoS One 2015; 10:e0119655. [PMID: 25742314 PMCID: PMC4350839 DOI: 10.1371/journal.pone.0119655] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/20/2015] [Indexed: 12/24/2022] Open
Abstract
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation.
Collapse
Affiliation(s)
- István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldis Western University of Arad, Liviu Rebreanu Str. 86, 310414, Arad, Romania
| | - Ákos Gasparics
- Department of Pathophysiology, Semmelweis University, Nagyvárad Square 4, 1089, Budapest, Hungary
| | - Péter Nagyőszi
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Judit Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Rita Bencs
- Department of Pathophysiology, Semmelweis University, Nagyvárad Square 4, 1089, Budapest, Hungary
| | - László Rosivall
- Department of Pathophysiology, Semmelweis University, Nagyvárad Square 4, 1089, Budapest, Hungary
- Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Nagyvárad Square 4, 1089, Budapest, Hungary
| | - Attila Sebe
- Department of Pathophysiology, Semmelweis University, Nagyvárad Square 4, 1089, Budapest, Hungary
- * E-mail:
| |
Collapse
|
48
|
Shenoy AK, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett 2014; 380:534-544. [PMID: 25449784 DOI: 10.1016/j.canlet.2014.10.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
49
|
Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 2014; 34:1811-21. [PMID: 24793790 PMCID: PMC4221586 DOI: 10.1038/onc.2014.116] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/17/2022]
Abstract
Talins are adaptor proteins that regulate focal adhesion signaling by conjugating integrins to the cytoskeleton. Talins directly bind integrins and are essential for integrin activation. We previously showed that β1 integrins are activated in metastatic prostate cancer (PCa) cells, increasing PCa metastasis to lymph nodes and bone. However, how β1 integrins are activated in PCa cells is unknown. In this study, we identified a novel mechanism of β1 integrin activation. Using knockdown experiments, we first demonstrated talin1, but not talin2, is important in β1 integrin activation. We next showed that talin1 S425 phosphorylation, but not total talin1 expression, correlates with metastatic potential of PCa cells. Expressing a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 and C4-2B4 PCa cells, decreased activation of β1 integrins, integrin-mediated adhesion, motility, and increased the sensitivity of the cells to anoikis. In contrast, re-expression of the phosphorylation-mimicking mutant talin1S425D led to increased β1 integrin activation and generated biologic effects opposite to talin1S425A expression. In the highly metastatic PC3-MM2 cells, expression of a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 cells, abolished their ability to colonize in the bone following intracardiac injection, while re-expression of phosphorylation-mimicking mutant talin1S425D restored their ability to metastasize to bone. Immunohistochemical staining demonstrated that talin S425 phosphorylation is significantly increased in human bone metastases when compared to normal tissues, primary tumors, or lymph node metastases. We further showed that p35 expression, an activator of Cdk5, and Cdk5 activity were increased in metastatic tumor cells, and that Cdk5 kinase activity is responsible for talin1 phosphorylation and subsequent β1 integrin activation. Together, our study reveals Cdk5-mediated phosphorylation of talin1 leading to β1 integrin activation is a novel mechanism that increases metastatic potential of PCa cells.
Collapse
|
50
|
Chanda D, Lee JH, Sawant A, Hensel JA, Isayeva T, Reilly SD, Siegal GP, Smith C, Grizzle W, Singh R, Ponnazhagan S. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer. PLoS One 2014; 9:e89940. [PMID: 24587138 PMCID: PMC3937391 DOI: 10.1371/journal.pone.0089940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/25/2014] [Indexed: 01/08/2023] Open
Abstract
Anterior Gradient Protein (AGR-2) is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s) has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL) induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joo Hyoung Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anandi Sawant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jonathan A. Hensel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tatyana Isayeva
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephanie D. Reilly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gene P. Siegal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Claire Smith
- Hospital Laboratories, University of Alabama Hospital, Birmingham, Alabama, United States of America
| | - William Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raj Singh
- Vivo Biosciences Inc., Birmingham, Alabama, United States of America
| | - Selvarangan Ponnazhagan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|