1
|
Somri-Gannam L, Meisel-Sharon S, Hantisteanu S, Bar-Noy T, Sigal E, Groisman G, Hallak M, Werner H, Bruchim I. IGF1R inhibition and PD-1 blockade improve anti-tumor immune response in epithelial ovarian cancer. Front Oncol 2024; 14:1410447. [PMID: 39450263 PMCID: PMC11499063 DOI: 10.3389/fonc.2024.1410447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The insulin-like growth factor (IGF) system plays a key role in regulating growth and invasiveness in epithelial ovarian cancer (EOC) and is considered a promising therapeutic target. EOC is an immunosuppressive disease, although there are limited data about the involvement of the IGF1R system in the anti-tumor immune response in the EOC microenvironment. Methods In the current study, we hypothesized that IGF 1 receptor (IGF1R) involvement in the maturation of dendritic cells (DC) with the co-inhibition of IGF1R and PD-1 would affect the EOC microenvironment. Results We found that DC pretreated with IGF1R inhibitor resulted in fewer EOC cells. Moreover, in vivo experiments conducted with an EOC mouse model, with anti-PD-1/IGF1R combined, resulted in lower tumor weight compared to individual treatments. Additionally, anti-PD-1/IGF1R treatment increased DC by 34% compared with AEW-541 and 40% with anti-PD-1. The combined treatment increased CD8+ T-cell levels compared to AEW-541 alone. RNA-seq data analysis indicated that anti-PD-1/IGF1R led to a more potent immune response, as reflected by altered gene expression levels related to anti-tumor immune response, compared with either treatment alone. Discussion These findings provide novel evidence that IGF1R axis inhibition combined with PD-1 blockade may be an effective therapeutic strategy for selected EOC patient populations.
Collapse
Affiliation(s)
- Lina Somri-Gannam
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shilhav Meisel-Sharon
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Tomer Bar-Noy
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Emiliya Sigal
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Gabriel Groisman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mordechai Hallak
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
2
|
Cai S, Yang G, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial cell interplay networks of regulatory T cells predict recurrence in patients with operable non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:189. [PMID: 39093404 PMCID: PMC11297009 DOI: 10.1007/s00262-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The interplay between regulatory T cells (Tregs) and neighboring cells, which is pivotal for anti-tumor immunity and closely linked to patient prognosis, remains to be fully elucidated. METHODS Tissue microarrays of 261 operable NSCLC patients were stained by multiplex immunofluorescence (mIF) assay, and the interaction between Tregs and neighboring cells in the tumor microenvironment (TME) was evaluated. Employing various machine learning algorithms, we developed a spatial immune signature to predict the prognosis of NSCLC patients. Additionally, we explored the interplay between programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interactions and their relationship with Tregs. RESULTS Survival analysis indicated that the interplay between Tregs and neighboring cells in the invasive margin (IM) and tumor center was associated with recurrence in NSCLC patients. We integrated the intersection of the three algorithms to identify four crucial spatial immune features [P(CD8+Treg to CK) in IM, P(CD8+Treg to CD4) in IM, N(CD4+Treg to CK) in IM, N(CD4+Tcon to CK) in IM] and employed these characteristics to establish SIS, an independent prognosticator of recurrence in NSCLC patients [HR = 2.34, 95% CI (1.53, 3.58), P < 0.001]. Furthermore, analysis of cell interactions demonstrated that a higher number of Tregs contributed to higher PD-L1+ cells surrounded by PD-1+ cells (P < 0.001) with shorter distances (P = 0.004). CONCLUSION We dissected the cell interplay network within the TME, uncovering the spatial architecture and intricate interactions between Tregs and neighboring cells, along with their impact on the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
3
|
Passelli K, Repáraz D, Kinj R, Herrera FG. Strategies for overcoming tumour resistance to immunotherapy: harnessing the power of radiation therapy. Br J Radiol 2024; 97:1378-1390. [PMID: 38833685 PMCID: PMC11256940 DOI: 10.1093/bjr/tqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - Remy Kinj
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, 1012-Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| |
Collapse
|
4
|
Liang S, Xiao L, Chen T, Roa P, Cocco E, Peng Z, Yu L, Wu M, Liu J, Zhao X, Deng W, Wang X, Zhao C, Deng Y, Mai Y. Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy. ACS NANO 2024; 18:18963-18979. [PMID: 39004822 DOI: 10.1021/acsnano.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen 518020, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Paola Roa
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Jie Liu
- ISCTE Business School, BRU-IUL, University Institute of Lisbon, Avenida das Armadas, Lisbon 1649-026, Portugal
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York 10314, United States
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| |
Collapse
|
5
|
Kment J, Newsted D, Young S, Vermeulen MC, Laight BJ, Greer PA, Lan Y, Craig AW. Blockade of TGF-β and PD-L1 by bintrafusp alfa promotes survival in preclinical ovarian cancer models by promoting T effector and NK cell responses. Br J Cancer 2024; 130:2003-2015. [PMID: 38622286 PMCID: PMC11183086 DOI: 10.1038/s41416-024-02677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Failure of immunotherapy in high-grade serous ovarian cancer (HGSC) may be due to high levels of transforming growth factor-β (TGF-β) in ascites or tumour immune microenvironment (TIME). Here, we test whether coordinated blockade of TGF-β and PD-L1 with bintrafusp alfa (BA) can provoke anti-tumour immune responses in preclinical HGSC models. METHODS BA is a first-in-class bifunctional inhibitor of TGF-β and PD-L1, and was tested for effects on overall survival and altered TIME in syngeneic HGSC models. RESULTS Using a mouse ID8-derived HGSC syngeneic model with IFNγ-inducible PD-L1 expression, BA treatments significantly reduced ascites development and tumour burden. BA treatments depleted TGF-β and VEGF in ascites, and skewed the TIME towards cytotoxicity compared to control. In the BR5 HGSC syngeneic model, BA treatments increased tumour-infiltrating CD8 T cells with effector memory and cytotoxic markers, as well as cytolytic NK cells. Extended BA treatments in the BR5 model produced ∼50% BA-cured mice that were protected from re-challenge. These BA-cured mice had increased peritoneal T-effector memory and NK cells compared to controls. CONCLUSIONS Our preclinical studies of BA in advanced ovarian cancer models support further testing of BA as an improved immunotherapy option for patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Jacob Kment
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Daniel Newsted
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephanie Young
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Michael C Vermeulen
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Brian J Laight
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Peter A Greer
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Andrew W Craig
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
6
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
7
|
Li Y, Zheng Y, Xu S, Hu H, Peng L, Zhu J, Wu M. The nanobody targeting PD-L1 and CXCR4 counteracts pancreatic stellate cell-mediated tumour progression by disrupting tumour microenvironment. Int Immunopharmacol 2024; 132:111944. [PMID: 38581990 DOI: 10.1016/j.intimp.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yaxian Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Yuejiang Zheng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Shuyi Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Hai Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Liyun Peng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Mingyuan Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
8
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
9
|
Wu CJ, Pan KF, Chen JQ, Tao YC, Liu YC, Chen BR, Hsu C, Wang MY, Sheu BC, Hsiao M, Hua KT, Wei LH. Loss of LECT2 promotes ovarian cancer progression by inducing cancer invasiveness and facilitating an immunosuppressive environment. Oncogene 2024; 43:511-523. [PMID: 38177412 PMCID: PMC10857938 DOI: 10.1038/s41388-023-02918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ke-Fan Pan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Yu -Chen Tao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Rong Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ching Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Bor-Ching Sheu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Lin-Hung Wei
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Yang J, Meng L, Yang Y, Gao H, Jiang H. Elevated programmed cell death-1 protein/ligand (PD-1/PD-L1) and variants are associated with susceptibility to multiple myeloma: a case-control study in the Chinese cohort. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:230-248. [PMID: 37688463 DOI: 10.1080/15257770.2023.2253276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Multiple myeloma (MM) is a malignant disorder characterised by progressive immune dysregulation. The importance of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) in MM has been documented in various populations, but studies have been limited to the Chinese cohort. In the present study, we examined the role of PD-1/PDL-1 in large cohorts of Chinese patients with MM and healthy controls to reveal a possible association with MM. Three hundred thirty-four MM patients and 202 healthy age-sex-matched subjects were enrolled in the present study. Serum levels of PD-1 and PD-L1 were quantified by ELISA. Percentages of T cells (CD4+ and CD8+ T cells) expressing PD-1 receptor were assessed by flow cytometry. Variants in PD-L1 (rs4143815) and PD-1 gene (rs2227981, rs2227982, rs7421861 and rs11568821) were genotyped by PCR-RFLP method. Patients with multiple myeloma had higher levels of PD-1 and PDL-1 than healthy controls, indicating an important role for programmed cell death protein-1 and its ligand in the pathogenesis of MM. T cells expressing PD-1 receptors were also significantly higher in MM patients than in controls. Mutants for PD-L1 (rs4143815) and PD-1 (rs2227982 and rs7421861) polymorphisms were significantly more common in MM than in HC. Interestingly, PD-L1 (rs4143815) and PD-1 (rs2227982 and rs7421861) variants were linked to higher sPD-L1 and sPD-1 levels, respectively. PD-1/PD-L1 levels are significantly higher in MM patients and could be a promising biomarker for the disease. Variants of PD-L1 and PD-1 are linked to serum-soluble proteins and are associated with the development of MM.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ling Meng
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yongxin Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Honggang Jiang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Cekani E, Martorell C, Martucci F, Patella M, Cafarotti S, Valenti A, Freguia S, Molinari F, Froesch P, Frattini M, Stathis A, Wannesson L. Prognostic implication of PD-L1 in early-stage non-small cell lung cancer: a retrospective single-centre study. Swiss Med Wkly 2023; 153:40110. [PMID: 37769653 DOI: 10.57187/smw.2023.40110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The prognostic role of programmed death-ligand 1 (PD-L1) expression in patients with localised and locally advanced non-small cell lung cancer has not been fully elucidated. This information could help to better interpret recent and upcoming results of phase III adjuvant or neoadjuvant anti-PD-1/PD-L1 immunotherapy studies. METHODS In a cohort of 146 patients with early or locally advanced non-small cell lung cancer treated with curative intent (by surgery or radiotherapy), we investigated the prognostic value of PD-L1 expression and its correlation with other biological and clinical features. PD-L1 expression was stratified by quartiles. Primary endpoints were overall and disease-free survival. We also analysed the prognostic impact of the presence of actionable mutations, implemented treatment modality and completion of the treatment plan. Neither type of patient received neoadjuvant or adjuvant immunotherapy or target therapy. RESULTS Of the 146 selected patients, 32 (21.9%) presented disease progression and 15 died (10.3%) at a median follow-up of 20 months. In a univariable analysis, PD-L1 expression ≥25% was associated with significantly lower disease-free survival (hazard ratio [HR]) 1.9, 95% confidence interval [CI] 1.0-3.9, p = 0.049). PD-L1 expression ≥50% did not lead to disease-free survival or overall survival benefits (HR 1.2 and 1.1, respectively; 95% CI 0.6-2.6 and 0.3-3.4, respectively; pnot significant). In a multivariate analysis, a stage >I (HR 2.7, 95% CI 1.2-6, p = 0.012) and having an inoperable tumour (HR 3.2, 95% CI 1.4-7.4, p = 0.005) were associated with lower disease-free survival. CONCLUSION The population of patients with early-stage non-small cell lung cancer and PD-L1 expression ≥25% who were treated with curative intent during the pre-immunotherapy era exhibited a worse prognosis. This finding provides justification for the utilisation of adjuvant immunotherapy in this subgroup of patients, based on the current evidence derived from disease-free survival outcomes. However, for patients with PD-L1 expression <25%, opting to wait for the availability of the overall survival results may be a prudent choice.
Collapse
Affiliation(s)
- Elona Cekani
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Carolina Martorell
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Francesco Martucci
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Miriam Patella
- Thoracic Surgery Department, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Stefano Cafarotti
- Thoracic Surgery Department, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Antonio Valenti
- Pneumology Department, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | | | | | - Patrizia Froesch
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | | | - Anastasios Stathis
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luciano Wannesson
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| |
Collapse
|
12
|
Bronte G, Calabrò L, Olivieri F, Procopio AD, Crinò L. The prognostic effects of circulating myeloid-derived suppressor cells in non-small cell lung cancer: systematic review and meta-analysis. Clin Exp Med 2023; 23:1551-1561. [PMID: 36401744 PMCID: PMC10460713 DOI: 10.1007/s10238-022-00946-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Immunotherapy is the main standard treatment for non-small cell lung cancer (NSCLC) patients. Immune suppressive cells in tumor microenvironment can counteract its efficacy. Myeloid-derived suppressor cells (MDSCs) include two major subsets: polymorphonuclear (PMN-MDSCs) and monocytic (M-MDSCs). Many studies explored the prognostic impact of these cell populations in NSCLC patients. The aim of this systematic review is to select studies for a meta-analysis, which compares prognosis between patients with high vs low circulating MDSC levels. We collected hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of progression-free survival (PFS) or recurrence-free survival (RFS), and overall survival (OS). Among 139 studies retrieved from literature search, 14 eligible studies (905 NSCLC patients) met inclusion criteria. Low circulating MDSC levels favor a better PFS/RFS (HR = 1.84; 95% CI = 1.28-2.65) and OS (HR = 1.78; 95% CI = 1.29-2.46). The subgroup analysis based on MDSC subtypes (total-, PMN-, and M-MDSCs) obtained a statistical significance only for M-MDSCs, both in terms of PFS/RFS (HR = 2.67; 95% CI = 2.04-3.50) and OS (HR = 2.10; 95% CI = 1.61-2.75). NSCLC patients bearing high M-MDSC levels in peripheral blood experience a worse prognosis than those with low levels, both in terms of PFS/RFS and OS. This finding suggests that detecting and targeting this MDSC subset could help to improve NSCLC treatment efficacy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy.
| | - Luana Calabrò
- Medical Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
13
|
Bronte G, Cosi DM, Magri C, Frassoldati A, Crinò L, Calabrò L. Immune Checkpoint Inhibitors in "Special" NSCLC Populations: A Viable Approach? Int J Mol Sci 2023; 24:12622. [PMID: 37628803 PMCID: PMC10454231 DOI: 10.3390/ijms241612622] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Over the last decade, the therapeutic scenario for advanced non-small-cell lung cancer (NSCLC) has undergone a major paradigm shift. Immune checkpoint inhibitors (ICIs) have shown a meaningful clinical and survival improvement in different settings of the disease. However, the real benefit of this therapeutic approach remains controversial in selected NSCLC subsets, such as those of the elderly with active brain metastases or oncogene-addicted mutations. This is mainly due to the exclusion or underrepresentation of these patient subpopulations in most pivotal phase III studies; this precludes the generalization of ICI efficacy in this context. Moreover, no predictive biomarkers of ICI response exist that can help with patient selection for this therapeutic approach. Here, we critically summarize the current state of ICI efficacy in the most common "special" NSCLC subpopulations.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, 60121 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | | | - Chiara Magri
- Department of Oncology, University Hospital of Ferrara, 44124 Cona, Italy
| | | | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Luana Calabrò
- Department of Oncology, University Hospital of Ferrara, 44124 Cona, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Peng Z, Li M, Li H, Gao Q. PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: dilemmas and opportunities. Drug Discov Today 2023:103666. [PMID: 37302543 DOI: 10.1016/j.drudis.2023.103666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized treatment in oncology. Antibodies against PD-1/PD-L1 and ICI-based combinations are under clinical investigations in multiple cancers, including ovarian cancer. However, the success of ICIs has not materialized in ovarian cancer, which remains one of the few malignancies where ICIs exhibit modest efficacy as either monotherapy or combination therapy. In this review, we summarize completed and ongoing clinical trials of PD-1/PD-L1 blockade in ovarian cancer, categorize the underlying mechanisms of resistance emergence, and introduce candidate approaches to rewire the tumor microenvironment (TME) to potentiate anti-PD-1/PD-L1 antibodies. Teaser: The intrinsic resistance of ovarian cancer to PD-1/PD-L1 blockade could be overcome by advanced understanding of underlying mechanisms and discoveries of new actionable targets for combinatory treatment.
Collapse
Affiliation(s)
- Zikun Peng
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Passelli K, Repáraz D, Herrera FG. Opportunities and challenges of low-dose radiation to enable immunotherapy efficacy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:137-156. [PMID: 37438016 DOI: 10.1016/bs.ircmb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Therapeutic monoclonal antibodies blocking different immune checkpoints, have demonstrated efficacy against a wide variety of solid tumors. The exclusion or absence of lymphocytes within the tumor microenvironment (TME) is one of the main resistance mechanisms to immune checkpoint inhibitor (ICI)-based therapies. Therefore, there is a growing interest in identifying novel approaches to promote T cell infiltration on immune-deserted (cold) and immune-excluded tumors to turn them into inflamed (hot) tumors. Here, we provide a comprehensive overview of the recently published studies showing the potential of low-dose radiation (LDRT) to reprogram the TME to allow and promote T-cell infiltration and thus, improve currently approved ICI-based therapies.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland.
| |
Collapse
|
16
|
Ji JH, Ha SY, Lee D, Sankar K, Koltsova EK, Abou-Alfa GK, Yang JD. Predictive Biomarkers for Immune-Checkpoint Inhibitor Treatment Response in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:7640. [PMID: 37108802 PMCID: PMC10144688 DOI: 10.3390/ijms24087640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has one of the highest mortality rates among solid cancers. Late diagnosis and a lack of efficacious treatment options contribute to the dismal prognosis of HCC. Immune checkpoint inhibitor (ICI)-based immunotherapy has presented a new milestone in the treatment of cancer. Immunotherapy has yielded remarkable treatment responses in a range of cancer types including HCC. Based on the therapeutic effect of ICI alone (programmed cell death (PD)-1/programmed death-ligand1 (PD-L)1 antibody), investigators have developed combined ICI therapies including ICI + ICI, ICI + tyrosine kinase inhibitor (TKI), and ICI + locoregional treatment or novel immunotherapy. Although these regimens have demonstrated increasing treatment efficacy with the addition of novel drugs, the development of biomarkers to predict toxicity and treatment response in patients receiving ICI is in urgent need. PD-L1 expression in tumor cells received the most attention in early studies among various predictive biomarkers. However, PD-L1 expression alone has limited utility as a predictive biomarker in HCC. Accordingly, subsequent studies have evaluated the utility of tumor mutational burden (TMB), gene signatures, and multiplex immunohistochemistry (IHC) as predictive biomarkers. In this review, we aim to discuss the current state of immunotherapy for HCC, the results of the predictive biomarker studies, and future direction.
Collapse
Affiliation(s)
- Jun Ho Ji
- Division of Hematology and Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sang Yun Ha
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Danbi Lee
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kamya Sankar
- Division of Medical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina K. Koltsova
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weil Cornell Medicine, Cornell University, New York, NY 14853, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
17
|
Guo RQ, Peng JZ, Li YM, Li XG. Microwave ablation combined with anti-PD-1/CTLA-4 therapy induces an antitumor immune response to renal cell carcinoma in a murine model. Cell Cycle 2023; 22:242-254. [PMID: 35980140 PMCID: PMC9815248 DOI: 10.1080/15384101.2022.2112007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
The study was designed to evaluate the efficiency of microwave ablation (MWA) in combination with anti-programmed death receptor 1 (anti-PD-1)/cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) in renal cell carcinoma (RCC) treatment. After tumors were established on C57/BL6 mice, MWA treatment and/or immune checkpoint inhibitor (ICI) treatment to the mice were performed. Tumor volume was recorded every 7 days. A rechallenge test was conducted on mice with tumors in the left kidney to explore the systemic establishment of antitumor immunity on day 7. In this study, during the 21-day observation period, tumors were continued to grow in all groups. However, compared with the tumor growth rate in MWA or control group, the rate in the ICI or MWA+ICI groups was decreased. Moreover, the population of CD8+T-cells was increased only in the MWA+ICI group, while that of regulatory T cells was decreased in the MWA, ICI, and MWA+ICI groups. Additionally, the MWA+ICI group had the highest interferon-γ level among all groups. Furthermore, histopathological examination revealed that CTLA-4 expression in distant tumors was reduced in the ICI and MWA + ICI groups. MWA treatment increased PD-L1/PD-1 expression; however, after the combination treatment with ICI, PD-L1/PD-1 expression was decreased. According to the rechallenge test, mice (16.7%) in the MWA group, ICI group (50%), and MWA+ICI group (66.7%) exhibited successful tumor rejection, whereas no mice in the control group exhibited the capability of tumor rejection. Overall, the systemic antitumor immunity induced by MWA was boosted when combined with anti-PD-1/CTLA-4 treatment in an RCC murine model.
Collapse
Affiliation(s)
- Run-Qi Guo
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Jin-Zhao Peng
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Yuan-Ming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Xiao-Guang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| |
Collapse
|
18
|
Cheng H, Zong L, Yu S, Chen J, Wan X, Xiang Y, Yang J. Expression of the immune targets in tumor-infiltrating immunocytes of gestational trophoblastic neoplasia. Pathol Oncol Res 2023; 29:1610918. [PMID: 36875956 PMCID: PMC9977799 DOI: 10.3389/pore.2023.1610918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Objectives: To evaluate the expression of emerging immune targets in the tumor-infiltrating immunocytes (TIIs) of human gestational trophoblastic neoplasia (GTN) specimens, and to analyze the correlation between the expression patterns and prognosis of GTN patients. Methods: Between January 2008 and December 2017, patients who were diagnosed histologically with GTN were included in this study. The expression densities of LAG-3, TIM-3, GAL-9, PD-1, CD68, CD8, and FOXP3 in the TIIs were assessed independently by two pathologists blinded to clinical outcomes. The expression patterns and correlation with patient outcomes were analyzed to identify prognostic factors. Results: We identified 108 patients with GTN, including 67 with choriocarcinoma, 32 with placental site trophoblastic tumor (PSTT), and 9 with epithelioid trophoblastic tumor (ETT). Almost all GTN patients showed expression of GAL-9, TIM-3, and PD-1 in TIIs (100%, 92.6%, and 90.7%, respectively); LAG-3 was expressed in 77.8% of the samples. The expression densities of CD68 and GAL-9 were significantly higher in choriocarcinoma than that in PSTT and ETT. The TIM-3 expression density in choriocarcinoma was higher than that in PSTT. In addition, the expression density of LAG-3 in the TIIs of choriocarcinoma and PSTT was higher than that in ETT. There was no statistical difference in the expression pattern of PD-1 among different pathological subtypes. The positive expression of LAG-3 in tumor TIIs was a prognostic factor for disease recurrence, and patients with positive expression of LAG-3 in the TIIs had poorer disease-free survival (p = 0.026). Conclusion: Our study evaluated the expression of immune targets PD-1, TIM-3, LAG-3, and GAL-9 in the TIIs of GTN patients and found that they were widely expressed but not associated with patients' prognoses, excepting the positive expression of LAG-3 was a prognostic factor for disease recurrence.
Collapse
Affiliation(s)
- Hongyan Cheng
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liju Zong
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xirun Wan
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Wang P, Tao L, Yu Y, Wang Q, Ye P, Sun Y, Zhou J. Oral squamous cell carcinoma cell-derived GM-CSF regulates PD-L1 expression in tumor-associated macrophages through the JAK2/STAT3 signaling pathway. Am J Cancer Res 2023; 13:589-601. [PMID: 36895967 PMCID: PMC9989602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023] Open
Abstract
Previous study reported that gastric cancer-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) could mediate neutrophil activation and induce PD-L1 expression through JAK2/STAT3 signaling pathway. Moreover, this pathway in various cancers could also regulate PD-L1 expression of tumor cells. Therefore, our study aimed to investigate whether the JAK2/STAT3 pathway regulates PD-L1 expression in tumor-associated macrophages (TAMs) in oral squamous cell carcinoma (OSCC), which can help us achieve further understanding of immune escape mechanisms in OSCC. We induced human monocytes THP-1 into M0, M1, and M2 macrophages, and applied them to common medium and tumor-conditioned medium, the latter was collected from two types of OSCC cell line. Western blot and RT-PCR were used to detect PD-L1 expression and activation of JAK2/STAT3 pathway in macrophages under various conditions. We found that GM-CSF in tumor-conditioned medium from OSCC cells increased PD-L1 expression in M0 macrophages in a time-dependent manner. Moreover, both GM-CSF neutralizing antibody and JAK2/STAT3 pathway inhibitor AG490 could inhibited its up-regulation. In the meantime, we confirmed that GM-CSF indeed acted through JAK2/STAT3 pathway by measuring phosphorylation of key proteins in this pathway. Therefore, we concluded that OSCC cell-derived GM-CSF was able to up-regulate PD-L1 expression in TAMs through JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Pingping Wang
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China.,Department of Oral Medicine, School of Stomatology, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China
| | - Liqing Tao
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166, Jiangsu, People's Republic of China
| | - Yudu Yu
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China.,Department of Oral Medicine, School of Stomatology, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China
| | - Qiong Wang
- Department of Stomatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) Wuhu 241000, Anhui, People's Republic of China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College) Wuhu 241000, Anhui, People's Republic of China
| | - Peihong Ye
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China.,Department of Oral Medicine, School of Stomatology, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China
| | - Yi Sun
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China
| | - Jingping Zhou
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China.,Department of Oral Medicine, School of Stomatology, Wannan Medical College Wuhu 241000, Anhui, People's Republic of China
| |
Collapse
|
20
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wang X, Wang S, Yao S, Shi W, Ma K. The clinical characteristics and treatment of ovarian malignant mesoderm mixed tumor: a systematic review. J Ovarian Res 2022; 15:104. [PMID: 36114551 PMCID: PMC9482291 DOI: 10.1186/s13048-022-01037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Ovarian malignant mesoderm mixed tumor (OMMMT) is a rare clinical entity. To provide reference for the treatment and prognosis of OMMMT, we analyzed the clinical features, pathology and molecular biology characteristic of published cases. Methods The English and Chinese reported cases of OMMMT were selected from PubMed, Clinical Trials.gov and CNKI database from 2000 to December 15th, 2021 following the PRISMA guidelines. Results A total of 63 literatures including 199 OMMMT cases were included. The average age of patients at diagnosis was 56.46 years, the highest incidence age was 60-65 years, and 82% of them were menopausal women. Most patients were diagnosed in FIGO III stage (59.64%). The most common symptom of OMMMT was abdominal pain (60.5%). 61.6% of patients were accompanied by ascites, while ascites was not associated with metastatic tumor and local recurrence. The CA125 of 88.68% patients increased. The most common reported carcinomatous component and sarcomatous component were serous adenocarcinoma (44.96%) and chondrosarcoma (24.81%), respectively. Initial treatment included surgery (94.97%) and taxanes-based (55.10%) or platinum-based (85.71%) chemotherapy regimens. The median survival time of patients was 20 months. Heterologous sarcoma component did not shorten life expectancy. The optimal ovarian tumor cell debulking surgery (OOTCDS), radiotherapy and chemotherapy could significantly prolong the median survival time of patients. Furthermore, platinum drugs could significantly prolong the survival time after comparing various chemotherapy schemes. Besides, the combination of platinum and taxanes was therapeutically superior to the combination of platinum and biological alkylating agents. Conclusion The OOTCDS and platinum-based chemotherapy regimen can improve the prognosis of OMMMT. Targeted therapy might become a new research direction in the future. Since the elderly patients are the majority, the toxicity of new drugs on the elderly patients is more noteworthy. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01037-6.
Collapse
|
22
|
Evaluating Antibody Pharmacokinetics as Prerequisite for Determining True Efficacy as Shown by Dual Targeting of PD-1 and CD96. Biomedicines 2022; 10:biomedicines10092146. [PMID: 36140247 PMCID: PMC9495994 DOI: 10.3390/biomedicines10092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
One important prerequisite for developing a therapeutic monoclonal antibody is to evaluate its in vivo efficacy. We tested the therapeutic potential of an anti-CD96 antibody alone or in combination with an anti-PD-1 antibody in a mouse colon cancer model. Early anti-PD-1 treatment significantly decreased tumor growth and the combination with anti-CD96 further increased the therapeutic benefit, while anti-CD96 treatment alone had no effect. In late therapeutic settings, the treatment combination resulted in enhanced CD8+ T cell infiltration of tumors and an increased CD8/Treg ratio. Measured anti-PD-1 concentrations were as expected in animals treated with anti-PD-1 alone, but lower at later time points in animals receiving combination treatment. Moreover, anti-CD96 concentrations dropped dramatically after 10 days and were undetectable thereafter in most animals due to the occurrence of anti-drug antibodies that were increasing antibody clearance. Comparison of the anti-PD-1 concentrations with tumor growth showed that higher antibody concentrations in plasma correlated with better therapeutic efficacy. The therapeutic effect of anti-CD96 treatment could not be evaluated, because plasma concentrations were too low. Our findings strongly support the notion of measuring both plasma concentration and anti-drug antibody formation throughout in vivo studies, in order to interpret pharmacodynamic data correctly.
Collapse
|
23
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
24
|
Ryan NM, Lamenza FF, Upadhaya P, Pracha H, Springer A, Swingler M, Siddiqui A, Oghumu S. Black raspberry extract inhibits regulatory T-cell activity in a murine model of head and neck squamous cell carcinoma chemoprevention. Front Immunol 2022; 13:932742. [PMID: 36016924 PMCID: PMC9395668 DOI: 10.3389/fimmu.2022.932742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most diagnosed malignancies globally, with a 5-year survival rate of approximately 40% to 50%. Current therapies are limited to highly invasive surgery, aggressive radiation, and chemotherapies. Recent reports have demonstrated the potential phytochemical properties of black raspberries in inhibiting the progression of various cancers including HNSCCs. However, the effects of black raspberry extracts on immune cells of the tumor microenvironment, specifically regulatory T cells during HNSCC, have not been investigated. We used a mouse model of 4-nitroquinoline-1-oxide (4NQO) chemically induced HNSCC carcinogenesis to determine these effects. C57BL/6 mice were exposed to 4NQO for 16 weeks and regular water for 8 weeks. 4NQO-exposed mice were fed the AIN-76A control mouse diet or the AIN76 diet supplemented with black raspberry extract. At terminal sacrifice, tumor burdens and immune cell recruitment and activity were analyzed in the tumor microenvironment, draining lymph nodes, and spleens. Mice fed the BRB extract-supplemented diet displayed decreased tumor burden compared to mice provided the AIN-76A control diet. Black raspberry extract administration did not affect overall T-cell populations as well as Th1, Th2, or Th17 differentiation in spleens and tumor draining lymph nodes. However, dietary black raspberry extract administration inhibited regulatory T-cell recruitment to HNSCC tumor sites. This was associated with an increased cytotoxic immune response in the tumor microenvironment characterized by increased CD8+ T cells and enhanced Granzyme B production during BRB extract-mediated HNSCC chemoprevention. Interestingly, this enhanced CD8+ T-cell antitumoral response was localized at the tumor sites but not at spleens and draining lymph nodes. Furthermore, we found decreased levels of PD-L1 expression by myeloid populations in draining lymph nodes of black raspberry-administered carcinogen-induced mice. Taken together, our findings demonstrate that black raspberry extract inhibits regulatory T-cell recruitment and promotes cytotoxic CD8 T-cell activity at tumor sites during HNSCC chemoprevention. These results demonstrate the immunomodulatory potential of black raspberry extracts and support the use of black raspberry-derived phytochemicals as a complementary approach to HNSCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Nathan M. Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael Swingler
- Department of Microbiology, Immunology, and Inflammation, Center of Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Arham Siddiqui
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Steve Oghumu,
| |
Collapse
|
25
|
Khatoon E, Parama D, Kumar A, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci 2022; 306:120827. [PMID: 35907493 DOI: 10.1016/j.lfs.2022.120827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
Ovarian cancer is among the deadliest gynecological cancers and the 7th most commonly occurring cancer in women globally. The 5 year survival rate is estimated to be less than 25 %, as in most cases, diagnosis occurs at an advanced stage. Despite recent advancements in treatment, clinical outcomes still remain poor, thus implicating the need for urgent identification of novel therapeutics for the treatment of this cancer. Ovarian cancer is considered a low immune reactive cancer as the tumor cells express insufficient neoantigens to be recognized by the immune cells and thus tend to escape from immune surveillance. Thus, in the recent decade, immunotherapy has gained significant attention and has rejuvenated the understanding of immune regulation in tumor biology. One of the critical immune checkpoints is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis. Engagement of PD-1 to PD-L1 promotes immunologic tolerance and suppresses the effector T cells and maintains tumor Tregs, thus playing a crucial role in enhancing tumor survival. Recent studies are targeted to develop inhibitors that block this signal to augment the anti-tumor activity of immune cells. Also, compared to monotherapy, the combinatorial treatment of immune checkpoint inhibitors with small molecule inhibitors have shown promising results with improved efficacy and acceptable adverse events. The present review provides an overview of the PD-1/PD-L1 axis and role of non-coding RNAs in regulating this axis. Moreover, we have highlighted the various preclinical and clinical investigations on PD-1/PD-L1 immune checkpoint inhibitors and have discussed the limitations of immunotherapies in ovarian cancer.
Collapse
Affiliation(s)
- Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
26
|
Rathod S. T cells in the peritoneum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:15-41. [PMID: 35964999 DOI: 10.1016/bs.ircmb.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The peritoneal cavity is a fluid-packed area that houses most of the abdominal organs, including the omentum, a visceral adipose tissue with milky patches or groups of leukocytes organized in the same way to those observed in typical lymphoid tissues. A distinct population of leukocytes patrols the peritoneal cavity and travels in and out of the milky spots, facing antigens or pathogens in the peritoneal fluid and responding appropriately. T cells may play a crucial function in regulating adaptive immune responses to antigens in the peritoneal cavity to ensure tissue homeostasis and healing. When peritoneal homeostasis is interrupted by inflammation, infection, obesity, or tumor metastasis, the omentum's dedicated fibroblastic stromal cells and mesothelial cells control peritoneal leukocyte recruitment and activation in unique ways. T cells, which employ their T cell receptor to target specific antigens, are an important component of the acquired immune response since they are present in the peritoneal cavity. The peritoneum provides a different environment for T cells to respond to pathogens. This chapter outlines the anatomy relevant to T cell function and biology, such as antigen processing/presentation, T cell activation, and the many T cell subpopulations in the peritoneal cavity, as well as their role in cancer or other infection.
Collapse
Affiliation(s)
- Sanjay Rathod
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Fucikova J, Hensler M, Kasikova L, Lanickova T, Pasulka J, Rakova J, Drozenova J, Fredriksen T, Hraska M, Hrnciarova T, Sochorova K, Rozkova D, Sojka L, Dundr P, Laco J, Brtnicky T, Praznovec I, Halaska MJ, Rob L, Ryska A, Coosemans A, Vergote I, Cibula D, Bartunkova J, Galon J, Galluzzi L, Spisek R. An autologous dendritic cell vaccine promotes anticancer immunity in ovarian cancer patients with low mutational burden and cold tumors. Clin Cancer Res 2022; 28:3053-3065. [PMID: 35536547 DOI: 10.1158/1078-0432.ccr-21-4413] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The successful implementation of immune checkpoint inhibitors (ICIs) in the clinical management of various solid tumors has raised considerable expectations for patients with epithelial ovarian carcinoma (EOC). However, EOC is poorly responsive to ICIs due to immunological features including limited tumor mutational burden (TMB) and poor lymphocytic infiltration. An autologous dendritic cell (DC)-based vaccine (DCVAC) has recently been shown to be safe and to significantly improve progression-free survival (PFS) in a randomized Phase II clinical trial enrolling patients with EOC (SOV01, NCT02107937). EXPERIMENTAL DESIGN We harnessed sequencing, flow cytometry, multispectral immunofluorescence microscopy, immunohistochemistry to analyze (pre-treatment) tumor and (pre-treatment and post-treatment) peripheral blood samples from 82 patients enrolled in SOV01, with the aim of identifying immunological biomarkers that would improve the clinical management of patients with EOC treated with DCVAC. RESULTS Although higher-than-median TMB and abundant CD8+ T cell infiltration were associated with superior clinical benefits in patients with EOC receiving standard-of-care chemotherapy, the same did not hold true in women receiving DCVAC. Conversely, superior clinical responses to DCVAC were observed in patients with lower-than-median TMB and scarce CD8+ T cell infiltration. Such responses were accompanied by signs of improved effector functions and tumor-specific cytotoxicity in the peripheral blood. CONCLUSIONS Our findings suggest that while patients with highly infiltrated, "hot" EOCs benefit from chemotherapy, women with "cold" EOCs may instead require DC-based vaccination to jumpstart clinically relevant anticancer immune responses.
Collapse
Affiliation(s)
| | | | - Lenka Kasikova
- Deparment of Immunology, 2nd Medical School, Charles University and Sotio, Czech Republic
| | | | | | | | | | | | | | | | | | | | - Ludek Sojka
- Charles University, 2nd Medical School, Praha 5, Czech Republic
| | | | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic, Hradec Kralove, Czech Republic
| | - Tomas Brtnicky
- Charles University, 1st Faculty of Medicine and University Hospital Bulovka, Prague, Czech Republic, Prague, Czech Republic
| | - Ivan Praznovec
- Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic, Hradec Kralove, Czech Republic
| | - Michael J Halaska
- 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic, Prague 10, Czech Republic
| | - Ales Ryska
- Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | - Radek Spisek
- Sotio; Charles University, 2nd Medical School, Prague, Czech Republic
| |
Collapse
|
28
|
Jiang Y, Zhao L, Wu Y, Deng S, Cao P, Lei X, Yang X. The Role of NcRNAs to Regulate Immune Checkpoints in Cancer. Front Immunol 2022; 13:853480. [PMID: 35464451 PMCID: PMC9019622 DOI: 10.3389/fimmu.2022.853480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
At present, the incidence of cancer is becoming more and more common, but its treatment has always been a problem. Although a small number of cancers can be treated, the recurrence rates are generally high and cannot be completely cured. At present, conventional cancer therapies mainly include chemotherapy and radiotherapy, which are the first-line therapies for most cancer patients, but there are palliatives. Approaches to cancer treatment are not as fast as cancer development. The current cancer treatments have not been effective in stopping the development of cancer, and cancer treatment needs to be imported into new strategies. Non-coding RNAs (ncRNAs) is a hot research topic at present. NcRNAs, which include microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), participate in all aspects of cancer biology. They are involved in the progression of tumors into a new form, including B-cell lymphoma, glioma, or the parenchymal tumors such as gastric cancer and colon cancer, among others. NcRNAs target various immune checkpoints to affect tumor proliferation, differentiation, and development. This might represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Yicun Jiang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Leilei Zhao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijun Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Pu Cao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| |
Collapse
|
29
|
Shahgordi S, Oroojalian F, Hashemi E, Hashemi M. Recent advances in development of nano-carriers for immunogene therapy in various complex disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:134-147. [PMID: 35655600 PMCID: PMC9124536 DOI: 10.22038/ijbms.2022.59718.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/01/2022] [Indexed: 01/25/2023]
Abstract
Immunotherapy is a novel preference for the treatment of various complex diseases. Considering the application of varying agents for suppression or activation of the immune system, immunogene therapy was confirmed to stand as a proper alternative for other immunotherapeutic strategies due to its capability in targeting cells with more specificity that leads to controlling the expression of therapeutic genes. This method facilitates the local and single-dose application of most gene therapies that result in the usage of high therapeutic doses with a low risk of systemic side effects while being cost-efficient in long-term administrations. However, the existing barriers between the administration site and cell nucleus limited the clinical uses of genetic materials. These challenges can be overcome through the promising method of exerting non-carriers with high stability, low toxicity/immunogenicity, and simple modifications. In this study, we attempted to review the potential of nanoparticle application throughout the immunogene therapy of different diseases including cancer, microbial diseases, allergies, inflammatory bowel disease, rheumatoid arthritis, and respiratory infections. We included the outline of some challenges and opportunities in regards to the delivery of genetic materials that are based on nano-systems through immunotherapy of these disorders. Next to the promising future of these vectors, more detailed analyses are required to overcome the current limitations in clinical approaches.
Collapse
Affiliation(s)
- Sanaz Shahgordi
- Immunology Department, Faculty of Medicine, Golestan University of Medical Science, Gorgan, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran,Corresponding author: Maryam Hashemi. Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801219;
| |
Collapse
|
30
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
31
|
Trebska-McGowan K, Chaib M, Alvarez MA, Kansal R, Pingili AK, Shibata D, Makowski L, Glazer ES. TGF-β Alters the Proportion of Infiltrating Immune Cells in a Pancreatic Ductal Adenocarcinoma. J Gastrointest Surg 2022; 26:113-121. [PMID: 34260016 DOI: 10.1007/s11605-021-05087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/27/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Immunotherapy, such as checkpoint inhibitors against anti-programmed death-ligand 1 (PD-L1), has not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and the TGF-β cytokine are critical in anti-cancer immunity. We hypothesized that TGF-β enhances the immunosuppressive effects of TAM, MDSC, and DC presence in tumors. METHODS Using a murine PDAC cell line derived from a genetically engineered mouse model, we orthotopically implanted treated cells plus drug embedded in Matrigel into immunocompetent mice. Treatments included saline control, TGF-β1, or a TGF-β receptor 1 small molecule inhibitor, galunisertib. We investigated TAM, MDSC, DC, and TAM PD-L1 expression with flow cytometry in tumors. Separately, we used the TIMER2.0 database to analyze TAM and PD-L1 gene expression in human PDAC tumors in TCGA database. RESULTS TGF-β did not alter MDSC or DC frequencies in the primary tumors. However, in PDAC metastases to the liver, TGF-β decreased the proportion of MDSCs (P=0.022) and DCs (P=0.005). TGF-β significantly increased the percent of high PD-L1 expressing TAMs (32 ± 6 % vs. 12 ± 5%, P=0.013) but not the proportion of TAMs in primary and metastatic tumors. TAM PD-L1 gene expression in TCGA PDAC database was significantly correlated with tgb1 and tgfbr1 gene expression (P<0.01). CONCLUSIONS TGF-β is important in PDAC anti-tumor immunity, demonstrating context-dependent impact on immune cells. TGF-β has an overall immunosuppressive effect mediated by TAM PD-L1 expression and decreased presence of DCs. Future investigations will focus on enhancing anti-cancer immune effects of TGF-β receptor inhibition.
Collapse
Affiliation(s)
- Kasia Trebska-McGowan
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Mehdi Chaib
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Marcus A Alvarez
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Rita Kansal
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - David Shibata
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Liza Makowski
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Evan S Glazer
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA.
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
32
|
Qiu L, Ning H, Zhu Y, Yang Q, Liu L, Luo L, Gao Y, Xing Y. Feedback regulation of antioxidant transcription factor NFE2L1 and immunostimulatory factor 41BBL mediates the crosstalk between oxidative stress and tumor immunity. Mol Immunol 2021; 141:265-272. [PMID: 34902807 DOI: 10.1016/j.molimm.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Targeting the immune checkpoint to inhibit tumor immune escape, which is one of the fundamental causes of cancer, has become an important strategy for cancer treatment. The molecular mechanism of tumor immune escape involved in the process of spontaneous hepatocellular carcinoma after specifically knocking out NFE2L1, the core regulator of redox homeostasis, in the mouse liver is still unclear. Transcriptome data showed that the immunostimulatory TNFSF9/41BBL was significantly reduced in NFE2L1 knockdown hepatocarcinoma HepG2 cells, and this suggests that 41BBL may be an oxidative stress-responsive immune checkpoint. The results of the promoter activity experiment showed that NFE2L1 can promote 41BBL gene transcription activation through the ARE element in the promoter region. In addition, cell biology experiments have found that overexpression of 41BBL can inhibit cell proliferation and promote senescence. Importantly, reactive oxygen species in cells significantly increased after overexpression of 41BBL, whereas NFE2L1 was inhibited, indicating that 41BBL has the effect of feedback regulating oxidative stress in cells. In conclusion, in this study, the transcriptional activation effect of NFE2L1 on 41BBL and the feedback inhibition relationship of 41BBL on NFE2L1 was clarified. The NFE2L1/41BBL axis might be an important pathway that mediates the crosstalk between oxidative stress and the tumor immune response.
Collapse
Affiliation(s)
- Lu Qiu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiufang Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
33
|
Wang JJ, Siu MKY, Jiang YX, Leung THY, Chan DW, Wang HG, Ngan HYS, Chan KKL. A Combination of Glutaminase Inhibitor 968 and PD-L1 Blockade Boosts the Immune Response against Ovarian Cancer. Biomolecules 2021; 11:biom11121749. [PMID: 34944392 PMCID: PMC8698585 DOI: 10.3390/biom11121749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Programmed cell death 1 ligand (PD-L1) blockade has been used therapeutically in the treatment of ovarian cancer, and potential combination treatment approaches are under investigation to improve the treatment response rate. The increased dependence on glutamine is widely observed in various type of tumors, including ovarian cancer. Kidney-type glutaminase (GLS), as one of the isotypes of glutaminase, is found to promote tumorigenesis. Here, we have demonstrated that the combined treatment with GLS inhibitor 968 and PD-L1 blockade enhances the immune response against ovarian cancer. Survival analysis using the Kaplan–Meier plotter dataset from ovarian cancer patients revealed that the expression level of GLS predicts poor survival and correlates with the immunosuppressive microenvironment of ovarian cancer. 968 inhibits the proliferation of ovarian cancer cells and enhances granzyme B secretion by CD8+ T cells as detected by XTT assay and flow cytometry, respectively. Furthermore, 968 enhances the apoptosis-inducing ability of CD8+ T cells toward cancer cells and improves the treatment effect of anti-PD-L1 in treating ovarian cancer as assessed by Annexin V apoptosis assay. In vivo studies demonstrated the prolonged overall survival upon combined treatment of 968 with anti-PD-L1 accompanied by increased granzyme B secretion by CD4+ and CD8+ T cells isolated from ovarian tumor xenografts. Additionally, 968 increases the infiltration of CD3+ T cells into tumors, possibly through enhancing the secretion of CXCL10 and CXCL11 by tumor cells. In conclusion, our findings provide a novel insight into ovarian cancer cells influence the immune system in the tumor microenvironment and highlight the potential clinical implication of combination of immune checkpoints with GLS inhibitor 968 in treating ovarian cancer.
Collapse
|
34
|
Sprooten J, Vankerckhoven A, Vanmeerbeek I, Borras DM, Berckmans Y, Wouters R, Laureano RS, Baert T, Boon L, Landolfo C, Testa AC, Fischerova D, Van Holsbeke C, Bourne T, Chiappa V, Froyman W, Schols D, Agostinis P, Timmerman D, Tejpar S, Vergote I, Coosemans A, Garg AD. Peripherally-driven myeloid NFkB and IFN/ISG responses predict malignancy risk, survival, and immunotherapy regime in ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-003609. [PMID: 34795003 PMCID: PMC8603275 DOI: 10.1136/jitc-2021-003609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing. However, current approaches for immunobiomarkers’ detection are largely quantitative, which is unreliable for assessing functional peripheral immunodynamics of patients with cancer. Hence, we aimed to design a functional biomarker modality for capturing peripheral immune signaling in patients with cancer for reliable immunostratification. Methods We used a data-driven in silico framework, integrating existing tumor/blood bulk-RNAseq or single-cell (sc)RNAseq datasets of patients with cancer, to inform the design of an innovative serum-screening modality, that is, serum-functional immunodynamic status (sFIS) assay. Next, we pursued proof-of-concept analyses via multiparametric serum profiling of patients with ovarian cancer (OV) with sFIS assay combined with Luminex (cytokines/soluble immune checkpoints), CA125-antigen detection, and whole-blood immune cell counts. Here, sFIS assay’s ability to determine survival benefit or malignancy risk was validated in a discovery (n=32) and/or validation (n=699) patient cohorts. Lastly, we used an orthotopic murine metastatic OV model, with anti-OV therapy selection via in silico drug–target screening and murine serum screening via sFIS assay, to assess suitable in vivo immunotherapy options. Results In silico data-driven framework predicted that peripheral immunodynamics of patients with cancer might be best captured via analyzing myeloid nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) signaling and interferon-stimulated genes' (ISG) responses. This helped in conceptualization of an ‘in sitro’ (in vitro+in situ) sFIS assay, where human myeloid cells were exposed to patients’ serum in vitro, to assess serum-induced (si)-NFκB or interferon (IFN)/ISG responses (as active signaling reporter activity) within them, thereby ‘mimicking’ patients’ in situ immunodynamic status. Multiparametric serum profiling of patients with OV established that sFIS assay can: decode peripheral immunology (by indicating higher enrichment of si-NFκB over si-IFN/ISG responses), estimate survival trends (si-NFκB or si-IFN/ISG responses associating with negative or positive prognosis, respectively), and coestimate malignancy risk (relative to benign/borderline ovarian lesions). Biologically, we documented dominance of pro-tumorigenic, myeloid si-NFκB responseHIGHsi-IFN/ISG responseLOW inflammation in periphery of patients with OV. Finally, in an orthotopic murine metastatic OV model, sFIS assay predicted the higher capacity of chemo-immunotherapy (paclitaxel–carboplatin plus anti-TNF antibody combination) in achieving a pro-immunogenic peripheral milieu (si-IFN/ISG responseHIGHsi-NFκB responseLOW), which aligned with high antitumor efficacy. Conclusions We established sFIS assay as a novel biomarker resource for serum screening in patients with OV to evaluate peripheral immunodynamics, patient survival trends and malignancy risk, and to design preclinical chemo-immunotherapy strategies.
Collapse
Affiliation(s)
- Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ann Vankerckhoven
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yani Berckmans
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Roxanne Wouters
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thais Baert
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Oncology, Leuven Cancer Institute, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | | | - Chiara Landolfo
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Queen Charlotte's and Chelsea Hospital, Imperial College, London, UK.,Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Antonia Carla Testa
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Dipartimento Scienze della Vita e Sanità pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Tom Bourne
- Queen Charlotte's and Chelsea Hospital, Imperial College, London, UK
| | | | - Wouter Froyman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, Cell Death Research and Therapy Laboratory, KU Leuven, Belgium.,VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Dirk Timmerman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory for Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ignace Vergote
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Oncology, Leuven Cancer Institute, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Udumula MP, Sakr S, Dar S, Alvero AB, Ali-Fehmi R, Abdulfatah E, Li J, Jiang J, Tang A, Buekers T, Morris R, Munkarah A, Giri S, Rattan R. Ovarian cancer modulates the immunosuppressive function of CD11b +Gr1 + myeloid cells via glutamine metabolism. Mol Metab 2021; 53:101272. [PMID: 34144215 PMCID: PMC8267600 DOI: 10.1016/j.molmet.2021.101272] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Immature CD11b + Gr1+ myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b+Gr1+ myeloid cells. METHODS All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti-PD1 mAb. The treatment effect was assessed by a survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess the protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS The depletion of Gr1+ immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. In addition to the adoptive transfer studies, these findings validate the role of immunosuppressive CD11b+Gr1+ myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironments produced recruitment and regulatory factors for immunosuppressive CD11b+Gr1+ myeloid cells. CD11b+Gr1+ myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted primarily by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers' expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found to be the most significantly elevated gene in tumor-primed myeloid cells. The inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression and function in myeloid cells. CONCLUSION Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b + Gr1+ myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in immunosuppressive myeloid cells decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mary P Udumula
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, MI, USA
| | - Sharif Sakr
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Sajad Dar
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, MI, USA
| | - Ayesha B Alvero
- Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University and Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Eman Abdulfatah
- Department of Pathology, Wayne State University and Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jing Li
- Metabolomics Core, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Jun Jiang
- Metabolomics Core, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Amy Tang
- Department of Public Health Services, Henry Ford Health System, Detroit, MI, USA
| | - Thomas Buekers
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, MI, USA; Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Robert Morris
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Adnan Munkarah
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, MI, USA; Department of Oncology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
36
|
Zhong YB, Kang ZP, Wang MX, Long J, Wang HY, Huang JQ, Wei SY, Zhou W, Zhao HM, Liu DY. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Zhang W, Kong X, Ai B, Wang Z, Wang X, Wang N, Zheng S, Fang Y, Wang J. Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy. Front Oncol 2021; 11:582664. [PMID: 34631507 PMCID: PMC8495193 DOI: 10.3389/fonc.2021.582664] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immune escape refers to the phenomenon in which tumor cells escape the recognition and attack of the body’s immune system through various mechanisms so that they can survive and proliferate in vivo. The imbalance of immune checkpoint protein expression is the primary mechanism for breast cancer to achieve immune escape. Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD-1)/programmed cell death protein-ligand 1 (PD-L1) are critical immune checkpoints for breast cancer. Immune checkpoint inhibitors block the checkpoint and relieve its inhibition effect on immune cells, reactivate T-cells and destroy cancer cells and restore the body’s ability to resist tumors. At present, immunological checkpoint inhibitors have made significant progress in breast cancer immunotherapy, and it is expected to become a new treatment for breast cancer.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Bolun Ai
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Shan Zheng
- Department of Pathology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
39
|
Liu S, Liu H, Song X, Jiang A, Deng Y, Yang C, Sun D, Jiang K, Yang F, Zheng Y. Adoptive CD8 +T-cell grafted with liposomal immunotherapy drugs to counteract the immune suppressive tumor microenvironment and enhance therapy for melanoma. NANOSCALE 2021; 13:15789-15803. [PMID: 34528979 DOI: 10.1039/d1nr04036g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immunosuppressive tumor microenvironment has become a formidable obstacle to the treatment of tumors using adoptive T cell therapy, in particular solid tumors. For the purposes of addressing this issue, effector OT-1 CD8+T cells conjugated with liposomal immune regulators (CD8-T-LP-CpG/CD8-T-LP-BMS-202) were developed. An anionic liposome formulation was employed to avoid T cell aggregation and prevent unfavorable side-effects. The inclusion of EGCG in the LP-CpG formulation facilitated the formation of compact complexes with poly lysine (PLL) and is thus expected to increase the stability. CD8-T-LP-CpG administered with a median dose of CpG (20 μg per mouse) markedly reduced the frequency of tumor infiltrating polymorphonuclear leukocyte myeloid-derived suppressor cells (PMN-MDSCs) (20-folds), M2-like macrophages (8-folds), regulatory T-cells (Treg) (2.7-folds), and consequently increased the frequency of cytotoxic CD8+T cells in tumor-infiltrating lymphocytes (TILs) (2-folds) and splenic effector memory CD8+T cells (3-folds) relative to the phosphate buffered saline (PBS) control group. Furthermore, the absolute number of tumor infiltrating lymphocyte subtypes altered followed a consistent trend. The difference remained significant compared to the OT-1 CD8+T cells and the drug-loaded liposome combination group. According to in vivo imaging of CD8-T-LP-DiD, we assumed that the improvement in regulation of the tumor microenvironment of LP-CpG/LP-BMS-202 was attributed to the enhanced drug transportation to the tumor site aided by tumor-specific OT-1 CD8+T cells. In addition, CD8-T-LP-BMS-202 administered with a low dose of BMS-202 (1.5 mg per kg body weight) exerted a dramatically improved therapeutic effect by reducing the tumor infiltrating PMN-MDSCs and M2-like macrophages and the corresponding promoted cytotoxic CD8+T cell recruitment in the TILs and effector memory CD8+T cells mediated anti-tumor immunity. In summary, immune therapy drugs backpacked onto adoptive T cell therapy provides a feasible strategy to improve the therapeutic effect and could result in future clinical translation.
Collapse
Affiliation(s)
- Simeng Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Huimin Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Xiaoshuang Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Ailing Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Yuchuan Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Chengli Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Dan Sun
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
40
|
Zhang Y, Wu Y, Liu H, Gong W, Hu Y, Shen Y, Cao J. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection. Parasit Vectors 2021; 14:497. [PMID: 34565440 PMCID: PMC8474882 DOI: 10.1186/s13071-021-05006-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background CD4+ T helper (Th) cells play critical roles in both host humoral and cellular immunity against parasitic infection and in the immunopathology of schistosomiasis. T follicular helper (Tfh) cells are a specialized subset of Th cells involved in immunity against infectious diseases. However, the role of Tfh cells in schistosome infection is not fully understood. In this study, the dynamics and roles of Tfh cell regulation were examined. We demonstrated that granulocytic myeloid-derived suppressor cells (G-MDSC) can suppress the proliferation of Tfh cells. Methods The levels of Tfh cells and two other Th cells (Th1, Th2) were quantitated at different Schistosoma japonicum infection times (0,3, 5, 8, 13 weeks) using flow cytometry. The proliferation of Tfh cells stimulated by soluble egg antigen (SEA) and soluble worm antigen (SWA) in vivo and in vitro were analyzed. Tfh cells were co-cultured with MDSC to detect the proliferation of Tfh cells labelled by 5(6)-carboxyfluorescein diacetate N-succinimidyl ester. We dynamically monitored the expression of programmed cell death protein 1 (PD-1) on the surface of Tfh cells and programmed cell death ligand 1 (PD-L1) on the surface of MDSC at different infection times (0, 3, 5, 8 weeks). Naïve CD4+ T cells (in Tfh cell differentiation) were co-cultured with G-MDSC or monocytic MDSC in the presence, or in the absence, of PD-L1 blocking antibody. Results The proportion of Tfh cells among CD4+ T cells increased gradually with time of S. japonicum infection, reaching a peak at 8 weeks, after which it decreased gradually. Both SEA and SWA caused an increase in Tfh cells in vitro and in vivo. It was found that MDSC can suppress the proliferation of Tfh cells. The expression of PD-1 on Tfh cells and PD-L1 from MDSC cells increased with prolongation of the infection cycle. G-MDSC might regulate Tfh cells through the PD-1/PD-L1 pathway. Conclusions The reported study not only reveals the dynamics of Tfh cell regulation during S. japonicum infection, but also provides evidence that G-MDSC may regulate Tfh cells by PD-1/PD-L1. This study provides strong evidence for the important role of Tfh cells in the immune response to S. japonicum infection. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Wenci Gong
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yuan Hu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yujuan Shen
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China. .,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.
| |
Collapse
|
41
|
Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA, Ganjalikhani-hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021; 9:1060. [PMID: 34696168 PMCID: PMC8540049 DOI: 10.3390/vaccines9101060] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and the leading cause of death from skin tumors. Given the increased incidence of melanoma diagnoses in recent years, it is essential to develop effective treatments to control this disease. In this regard, the use of cancer vaccines to enhance cell-mediated immunity is considered to be one of the most modern immunotherapy options for cancer treatment. The most recent cancer vaccine options are mRNA vaccines, with a focus on their usage as modern treatments. Advantages of mRNA cancer vaccines include their rapid production and low manufacturing costs. mRNA-based vaccines are also able to induce both humoral and cellular immune responses. In addition to the many advantages of mRNA vaccines for the treatment of cancer, their use is associated with a number of challenges. For this reason, before mRNA vaccines can be used for the treatment of cancer, comprehensive information about them is required and a large number of trials need to be conducted. Here, we reviewed the general features of mRNA vaccines, including their basis, stabilization, and delivery methods. We also covered clinical trials involving the use of mRNA vaccines in melanoma cancer and the challenges involved with this type of treatment. This review also emphasized the combination of treatment with mRNA vaccines with the use of immune-checkpoint blockers to enhance cell-mediated immunity.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Yue Zhao
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
| | - Natalia G. Shebardina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Mazdak Ganjalikhani-hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
42
|
Zhang R, Wan Y, Lv H, Li F, Lee CS. DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy. J Mater Chem B 2021; 9:7544-7556. [PMID: 34551052 DOI: 10.1039/d1tb00269d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunosuppressed tumor microenvironment (TME) is a major cause of the low response rate in solid tumor patients during PD-1/PD-L1 checkpoint blockade therapy. In this study, a series of small molecule nanomedicines with a 100% drug loading rate were prepared via the nanoprecipitation method. They were used in synergistic chemo-immunotherapy for 4T1 tumors. Among four PD-L1 small-molecule nanoinhibitors, BMS-1 NP with the best anti-tumor performance was selected to replace the therapeutic PD-L1 antibody. The core-shell small-molecule nanomedicine DTX@VTX NP (DTX: Docetaxel and VTX: VTX-2337 or Motolimod) was used to reverse immunosuppressed TME through the depletion of myeloid-derived suppressor cells (MDSCs) and the polarization of macrophages from an M2-like phenotype to M1-like phenotype. Thus, the frequency of cytotoxic CD8+ T cells was significantly increased, resulting in an effective attack on cancer cells. Combining BMS-1 NPs with DTX@VTX NPs, synergistic chemo-immunotherapy of 4T1 tumors was performed, and the results indicate that the inhibition rates of primary and rechallenge tumors achieved 90.5% and 94.3%, respectively. These results indicate that DTX@VTX NPs can synergize PD-L1 nanoinhibitor BMS-1 NPs to reshape the immunosuppressive tumor microenvironment for enhancing the anti-tumor effect of chemo-immunotherapy for breast.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Hongying Lv
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, P. R. China
| | - Futian Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
43
|
Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol 2021; 14:147. [PMID: 34526102 PMCID: PMC8444356 DOI: 10.1186/s13045-021-01161-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Qian
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China. .,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China.
| | - Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
44
|
Ruan H, Bao L, Tao Z, Chen K. Flightless I Homolog Reverses Enzalutamide Resistance through PD-L1-Mediated Immune Evasion in Prostate Cancer. Cancer Immunol Res 2021; 9:838-852. [PMID: 34011528 DOI: 10.1158/2326-6066.cir-20-0729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/06/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Tumor cells can evade immune surveillance and immune killing during the emergence of endocrine therapy resistance in prostate cancer, but the mechanisms underlying this phenomenon are still unclear. Flightless I homolog (FLII) is a coregulator for transcription factors in several malignancies. Here, we have demonstrated that endocrine therapy resistance can induce an immunosuppressive prostate tumor microenvironment and immune evasion through FLII downregulation, which leads to activation of the YBX1/PD-L1 signaling pathway. FLII expression negatively correlated with expression of PD-L1 in tumors. Mechanism studies demonstrated that FLII physically interacted with YBX1 to inhibit nuclear localization of YBX1 and thereby suppress transcription of PDL1 in enzalutamide-resistant tumors. Restoration of FLII expression reversed enzalutamide resistance through activation of T-cell responses in the tumor microenvironment through inhibition of the YBX1/PD-L1 pathway. We also found that reversal of endocrine therapy resistance and immune evasion was mediated by proliferation of effector CD8+ T cells and inhibition of tumor infiltration by regulatory T cells and myeloid-derived suppressor cells. Taken together, our results demonstrate a functional and biological interaction between endocrine therapy resistance and immune evasion mediated through the FLII/YBX1/PD-L1 cascade. Combination therapy with FLII expression and endocrine therapy may benefit patients with prostate cancer by preventing tumor immune evasion.
Collapse
Affiliation(s)
- Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China.
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
45
|
McLane LM, Ngiow SF, Chen Z, Attanasio J, Manne S, Ruthel G, Wu JE, Staupe RP, Xu W, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Schuchter LM, Huang AC, Freedman BD, Betts MR, Wherry EJ. Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Rep 2021; 35:109120. [PMID: 33979613 PMCID: PMC8195461 DOI: 10.1016/j.celrep.2021.109120] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/06/2020] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The transcription factors T-bet and Eomesodermin (Eomes) regulate CD8 T cell exhaustion through undefined mechanisms. Here, we show that the subcellular localization of T-bet and Eomes dictate their regulatory activity in exhausted T cells (TEXs). TEXs had a higher ratio of nuclear Eomes:T-bet than memory T cells (TMEMs) during chronic lymphocytic choriomeningitis virus (LCMV) infection in preclinical cancer models and in human tumors. Biochemically, T-bet and Eomes compete for the same DNA sequences, including the Pdcd1 T-box. High nuclear T-bet strongly represses Pdcd1 transcription in TMEM, whereas low nuclear T-bet in TEX leads to a dominant effect of Eomes that acts as a weaker repressor of Pdcd1. Blocking PD-1 signaling in TEXs increases nuclear T-bet, restoring stronger repression of Pdcd1, and driving T-bet-associated gene expression programs of chemotaxis, homing, and activation. These data identify a mechanism whereby the T-bet-Eomes axis regulates exhaustion through their nuclear localization, providing insights into how these transcription factors regulate TEX biology. McLane et al. demonstrate that T-bet and Eomes expression contributes to exhaustion, but also their nuclear localization, and therefore functional activity, plays a key role. PD-1 blockade restores nuclear T-bet and promotes T cell homing and activation through direct competition with Eomes at gene promoters, such as Pdcd1.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Attanasio
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander C Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Zhang W, Yin Q, Huang H, Lu J, Qin H, Chen S, Zhang W, Su X, Sun W, Dong Y, Li Q. Personal Neoantigens From Patients With NSCLC Induce Efficient Antitumor Responses. Front Oncol 2021; 11:628456. [PMID: 33928024 PMCID: PMC8076796 DOI: 10.3389/fonc.2021.628456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Objective To develop a neoantigen-targeted personalized cancer treatment for non-small cell lung cancer (NSCLC), neoantigens were obtained from collected human lung cancer samples, and the utility of neoantigen and neoantigen-reactive T cells (NRTs) was assessed. Methods Tumor specimens from three patients with NSCLC were obtained and analyzed by whole-exome sequencing, and neoantigens were predicted accordingly. Dendritic cells and T lymphocytes were isolated, NRTs were elicited and IFN-γ ELISPOT tests were conducted. HLA-A2.1/Kb transgenic mice were immunized with peptides from HLA-A*02:01+patient with high immunogenicity, and NRTs were subjected to IFN-γ, IL-2 and TNF-α ELISPOT as well as time-resolved fluorescence assay for cytotoxicity assays to verify the immunogenicity in vitro. The HLA-A*02:01+lung cancer cell line was transfected with minigene and inoculated into the flanks of C57BL/6nu/nu mice and the NRTs induced by the immunogenic polypeptides from autologous HLA-A2.1/Kb transgenic mice were adoptively transfused to verify their immunogenicity in vivo. Results Multiple putative mutation-associated neoantigens with strong affinity for HLA were selected from each patient. Immunogenic neoantigen were identified in all three NSCLC patients, the potency of ACAD8-T105I, BCAR1-G23V and PLCG1-M425L as effective neoantigen to active T cells in suppressing tumor growth was further proven both in vitro and in vivo using HLA-A2.1/Kb transgenic mice and tumor-bearing mouse models. Conclusion Neoantigens with strong immunogenicity can be screened from NSCLC patients through the whole-exome sequencing of patient specimens and machine-learning-based neoantigen predictions. NRTs shown efficient antitumor responses in transgenic mice and tumor-bearing mouse models. Our results indicate that the development of neoantigen-based personalized immunotherapies in NSCLC is possible. Precis Neoantigens with strong immunogenicity were screened from NSCLC patients. This research provides evidence suggesting that neoantigen-based therapy might serve as feasible treatment for NSCLC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Haidong Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hao Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Wenjun Zhang
- Department of Emergency, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou Tea Mountain Higher Education Park, Wenzhou, China
| | - Weihong Sun
- Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital, Qingdao University, Qingdao, China
| | - Yuchao Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
47
|
Li L, Wang J, Radford DC, Kopeček J, Yang J. Combination treatment with immunogenic and anti-PD-L1 polymer-drug conjugates of advanced tumors in a transgenic MMTV-PyMT mouse model of breast cancer. J Control Release 2021; 332:652-659. [PMID: 33607175 DOI: 10.1016/j.jconrel.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/27/2023]
Abstract
Immune checkpoint blockade has revolutionized the treatment of tumors with immunogenic microenvironments. However, low response rate and acquired resistance are still major challenges. Herein we used a more clinically relevant model of transgenic MMTV-PyMT tumor that more closely mimics the development of human breast cancer in an immunocompetent background to investigate a polymer-based chemo-immunotherapy. We have found that tumors acquired an increased degree of immune suppression during progression, rendering them unresponsive to anti-PD-L1 therapy. To treat large tumors at their advanced stage, we applied a combination strategy consisting of two polymer-drug conjugates that could induce immunogenic cell death (ICD) and disrupt the PD-L1/PD-1 interaction, respectively. Although ICD-inducing conjugate remodeled tumor immune microenvironment by facilitating significant CD8+ T cell infiltration, advanced tumor adapted the immune suppressive mechanism of elevating PD-L1 expression on both cancer cells and myeloid cells thereafter to enable continued tumor growth. Concurrent treatment of PD-L1 blocking conjugate not only abrogated the PD-L1 expression from the two disparate cellular sources, but also considerably reduced the number of immunosuppressive myeloid cells, thereby leading to a significant shrinkage of advanced tumors. Our data provide evidence that combinatory strategy of ICD-inducing and PD-L-blocking modalities could reverse immune suppression and establish a basis for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
48
|
Sugiyarto G, Prossor D, Dadas O, Arcia-Anaya ED, Elliott T, James E. Protective low-avidity anti-tumour CD8+ T cells are selectively attenuated by regulatory T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltaa001. [PMID: 33748824 PMCID: PMC7958313 DOI: 10.1093/immadv/ltaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives Regulatory T cells (Treg) play a major role in the suppression of protective anti-tumour T cell responses. In the CT26 BALB/c murine model of colorectal carcinoma, Tregs differentially suppress responses to two characterised CD8+ T epitopes, AH1 and GSW11, which results in an absence of detectable IFN-γ-producing GSW11-specific T cells in the spleen and lymph nodes of tumour challenged mice. Activation of GSW11-specific T cells correlates with protection against tumour progression. We wanted to examine the presence of non-functional GSW11-specific T cells in Treg replete and depleted mice, assess their phenotype and their affinity compared to AH1-specific T cells. Methods We used peptide-specific tetramers to identify tumour-specific CD8+ T cells and assessed the cell surface expression of markers associated with exhaustion (PD-1, Tim3 and Lag-3) and their function by IFN-g production using flow cytometry. We also assessed the T cell receptor (TcR) clonality of tumour-specific T cells. Tetramer competition assays were performed to determine the relative affinity of identified TcR. Results Here, we show that GSW11-specific T cells are in fact induced in Treg-replete, CT26-bearing mice, where they make up the majority of tumour-infiltrating CD8+ lymphocytes, but exhibit an ‘exhausted’ phenotype. This dysfunctional phenotype is induced early in the anti-tumour response in tumours. Depletion of Tregs prior to tumour challenge correlates with an altered T cell receptor (TcR) repertoire. Moreover, the avidity of GSW11-specific TcRs that expanded in the absence of Tregs was significantly lower compared with TcRs of CD8+populations that were diminished in protective anti-tumour responses. Conclusion Our results indicate that Tregs suppress the induction of protective anti-tumour T cell responses and may signify that low-avidity T cells play an important role in this protection.
Collapse
Affiliation(s)
- Gessa Sugiyarto
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - David Prossor
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Osman Dadas
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - E David Arcia-Anaya
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life sciences, University of Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life sciences, University of Southampton, Southampton, UK
| |
Collapse
|
49
|
Horn LA, Fousek K, Hamilton DH, Hodge JW, Zebala JA, Maeda DY, Schlom J, Palena C. Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers (Basel) 2021; 13:cancers13050968. [PMID: 33669155 PMCID: PMC7956439 DOI: 10.3390/cancers13050968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.
Collapse
Affiliation(s)
- Lucas A. Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Duane H. Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - John A. Zebala
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Dean Y. Maeda
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
- Correspondence: ; Tel.: +1-240-858-3475; Fax: +1-240-541-4558
| |
Collapse
|
50
|
Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 2021; 6:75. [PMID: 33619259 PMCID: PMC7900181 DOI: 10.1038/s41392-021-00484-9] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The current treatment strategies in advanced malignancies remain limited. Notably, immunotherapies have raised hope for a successful control of these advanced diseases, but their therapeutic responses are suboptimal and vary considerably among individuals. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are often correlated with poor prognosis and therapy resistance, including immunotherapies. Thus, a deeper understanding of the complex roles of TAMs in immunotherapy regulation could provide new insight into the TME. Furthermore, targeting of TAMs is an emerging field of interest due to the hope that these strategies will synergize with current immunotherapies. In this review, we summarize recent studies investigating the involvement of TAMs in immune checkpoint inhibition, tumor vaccines and adoptive cell transfer therapies, and discuss the therapeutic potential of targeting TAMs as an adjuvant therapy in tumor immunotherapies.
Collapse
Affiliation(s)
- Xiaonan Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|