1
|
Li X, Sun X, Wang Y, Chen H, Gao Y. A nanotheranostics with hypoxia-switchable fluorescence and photothermal effect for hypoxia imaging-guided immunosuppressive tumor microenvironment modulation. J Colloid Interface Sci 2025; 678:897-912. [PMID: 39321645 DOI: 10.1016/j.jcis.2024.09.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Modulating the immunosuppressive tumor immune microenvironment (TIME) is considered a promising strategy for cancer treatment. However, effectively modulating the immunosuppressive TIME within hypoxic zones remains a significant challenge. In this work, we developed a hypoxia-responsive amphiphilic drug carrier using boron-dipyrromethene (BODIPY) dye-modified chitosan (CsB), and then fabricated a hypoxia-targeted nanotheranostic system, named CsBPNs, through self-assembly of CsB and pexidartinib (5-((5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl), PLX3397), an immunotherapeutic drug targeting tumor-associated macrophages (TAMs), for synergistic photothermal/immunotherapy and hypoxia imaging. CsBPNs demonstrated uniform size, good stability, and hypoxia-switchable fluorescence and photothermal effects, enabling deep penetration and hypoxia imaging capacities in three-dimensional tumor cell spheres and tumor tissues. In vitro and in vivo experiments showed that CsBPNs under laser irradiation promoted TAMs repolarization, reversed the immunosuppressive TIME, and enhanced the therapeutic outcome of PLX3397 in solid tumors by facilitating deep delivery into hypoxic regions and synergistic photothermal therapy. This work provides a new strategy for detecting and modulating the immunosuppressive TIME in hypoxic zones, potentially enabling more precise and effective photo-immunotherapy in the future.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
3
|
Barilo J, Bouzeineddine NZ, Philippi A, Basta S. Polarized macrophage functions are affected differentially after CSF-1R inhibition with PLX5622. Eur J Pharmacol 2024; 984:177059. [PMID: 39419432 DOI: 10.1016/j.ejphar.2024.177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
PLX5622 is a colony stimulating factor 1 receptor (CSF-1R) inhibitor that is known to deplete microglial cells in vivo. Recently its effects on macrophages (Mφ) were also observed in vivo. Therefore, we performed this study to assess its in vitro effects on the differentiation and functions of polarized Mφ derived from different tissues. Our findings show that addition of PLX5622 early on after ex vivo isolation hinders Mφ differentiation and survival. However, its addition post Mφ differentiation did not significantly affect the viability. Furthermore, PLX5622 affects certain functions and degree of polarization of IL-4 (M2a) Mφ but not polarization of M1-like Mφ. Our study provides novel aspects on the application of PLX5622 to study Mφ functions in vitro, where polarization is affected by CSF-1R signalling and provides distinctive evidence to its ability to affect certain populations of Mφ during in vitro differentiation and maturation.
Collapse
Affiliation(s)
- Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
4
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
5
|
León-Rodríguez A, Grondona JM, Marín-Wong S, López-Aranda MF, López-Ávalos MD. Long-term reprogramming of primed microglia after moderate inhibition of CSF1R signaling. Glia 2024. [PMID: 39448548 DOI: 10.1002/glia.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
Collapse
Affiliation(s)
- Ana León-Rodríguez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Sonia Marín-Wong
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel F López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
6
|
Azimi M, Manavi MS, Afshinpour M, Khorram R, Vafadar R, Rezaei-Tazangi F, Arabzadeh D, Arabzadeh S, Ebrahimi N, Aref AR. Emerging immunologic approaches as cancer anti-angiogenic therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03667-2. [PMID: 39294514 DOI: 10.1007/s12094-024-03667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Targeting tumor angiogenesis, the formation of new blood vessels supporting cancer growth and spread, has been an intense focus for therapy development. However, benefits from anti-angiogenic drugs like bevacizumab have been limited by resistance stemming from activation of compensatory pathways. Recent immunotherapy advances have sparked interest in novel immunologic approaches that can induce more durable vascular pruning and overcome limitations of existing angiogenesis inhibitors. This review comprehensively examines these emerging strategies, including modulating tumor-associated macrophages, therapeutic cancer vaccines, engineered nanobodies and T cells, anti-angiogenic cytokines/chemokines, and immunomodulatory drugs like thalidomide analogs. For each approach, the molecular mechanisms, preclinical/clinical data, and potential advantages over conventional drugs are discussed. Innovative therapeutic platforms like nanoparticle delivery systems are explored. Moreover, the importance of combining agents with distinct mechanisms to prevent resistance is evaluated. As tumors hijack angiogenesis for growth, harnessing the immune system's specificity to disrupt this process represents a promising anti-cancer strategy covered by this review.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Biochemistry, Medical Faculty, Saveh Branch, Islamic Azad University, Saveh, Iran
| | | | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Danyal Arabzadeh
- Xi'an Jaiotong University Medical Campus, Xi'an Jaiotong University, Xi'an, Shaanxi Province, China
| | - Sattar Arabzadeh
- Xi'an Jaiotong University Medical Campus, Xi'an Jaiotong University, Xi'an, Shaanxi Province, China
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lu J, Ma Y, Li Q, Xu Y, Xue Y, Xu S. CAR Macrophages: a promising novel immunotherapy for solid tumors and beyond. Biomark Res 2024; 12:86. [PMID: 39175095 PMCID: PMC11342599 DOI: 10.1186/s40364-024-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
With the advent of adoptive cellular therapy, chimeric antigen receptor (CAR)-T cell therapy has gained widespread application in cancer treatment and has demonstrated significant efficacy against certain hematologic malignancies. However, due to the limitations of CAR-T cell therapy in treating solid tumors, other immune cells are being modified with CAR to address this issue. Macrophages have emerged as a promising option, owing to their extensive immune functions, which include antigen presentation, powerful tumor phagocytosis, and particularly active trafficking to the tumor microenvironment. Leveraging their unique advantages, CAR-macrophages (CAR-M) are expected to enhance the effectiveness of solid tumor treatments as a novel form of immunotherapy, potentially overcoming major challenges associated with CAR-T/NK therapy. This review outlines the primary mechanism underlying CAR-M and recent progressions in CAR-M therapy, while also discussing their further applications.
Collapse
Affiliation(s)
- Jialin Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yuqing Ma
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Qiuxin Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yihuan Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
8
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
9
|
Spiga M, Martini E, Maffia MC, Ciceri F, Ruggiero E, Potenza A, Bonini C. Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. Semin Immunopathol 2024; 46:8. [PMID: 39060547 DOI: 10.1007/s00281-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 07/28/2024]
Abstract
Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.
Collapse
Affiliation(s)
- Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Martini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
10
|
Mok S, Ağaç Çobanoğlu D, Liu H, Mancuso JJ, Allison JP. Post-immunotherapy CTLA-4 Ig treatment improves antitumor efficacy. Proc Natl Acad Sci U S A 2024; 121:e2404661121. [PMID: 38923991 PMCID: PMC11228532 DOI: 10.1073/pnas.2404661121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Immune checkpoint therapies (ICT) improve overall survival of patients with cancer but may cause immune-related adverse events (irAEs) such as myocarditis. Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA-4 Ig), an inhibitor of T cell costimulation through CD28, reverses irAEs in animal models. However, concerns exist about potentially compromising antitumor response of ICT. In mouse tumor models, we administered CTLA-4 Ig 1) concomitantly with ICT or 2) after ICT completion. Concomitant treatment reduced antitumor efficacy, while post-ICT administration improved efficacy without affecting frequency and function of CD8 T cells. The improved response was independent of the ICT used, whether CTLA-4 or PD-1 blockade. The frequency of Tregs was significantly decreased with CTLA-4 Ig. The resulting increased CD8/Treg ratio potentially underlies the enhanced efficacy of ICT followed by CTLA-4 Ig. This paradoxical mechanism shows that a CTLA-4 Ig regimen shown to reduce irAE severity does not compromise antitumor efficacy.
Collapse
Affiliation(s)
- Stephen Mok
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Didem Ağaç Çobanoğlu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Huey Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - James J. Mancuso
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
11
|
Shimizu D, Yuge R, Kitadai Y, Ariyoshi M, Miyamoto R, Hiyama Y, Takigawa H, Urabe Y, Oka S. Pexidartinib and Immune Checkpoint Inhibitors Combine to Activate Tumor Immunity in a Murine Colorectal Cancer Model by Depleting M2 Macrophages Differentiated by Cancer-Associated Fibroblasts. Int J Mol Sci 2024; 25:7001. [PMID: 39000110 PMCID: PMC11241126 DOI: 10.3390/ijms25137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are known to play supportive roles in tumor development and progression, but their interactions in colorectal cancer (CRC) remain unclear. Here, we investigated the effects of colon-cancer-derived CAFs on TAM differentiation, migration, and tumor immunity, both in vitro and in vivo. When co-cultured with monocytes, CAFs attracted monocytes and induced their differentiation into M2 macrophages. Immunohistology of surgically resected human CRC specimens and orthotopically transplanted mouse tumors revealed a correlation between numbers of CAFs and numbers of M2 macrophages. In a mouse model of CRC orthotopic transplantation, treatment with an inhibitor of the colony-stimulating factor-1 receptor (PLX3397) depleted M2 macrophages and increased CD8-positive T cells infiltrating the tumor nest. While this treatment had a minor effect on tumor growth, combining PLX3397 with anti-PD-1 antibody significantly reduced tumor growth. RNA-seq following combination therapy showed activation of tumor immunity. In summary, CAFs are involved in the induction and mobilization of M2 macrophage differentiation in the CRC tumor immune microenvironment, and the combination of cancer immunotherapy and PLX3397 may represent a novel therapeutic option for CRC.
Collapse
Affiliation(s)
- Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuki Kitadai
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuichi Hiyama
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| |
Collapse
|
12
|
Zhu N, Chen S, Jin Y, Wang M, Fang L, Xue L, Hua D, Zhang Z, Jia M, Hao M, Zhang C. Enhancing Glioblastoma Immunotherapy with Integrated Chimeric Antigen Receptor T Cells through the Re-Education of Tumor-Associated Microglia and Macrophages. ACS NANO 2024; 18:11165-11182. [PMID: 38626338 DOI: 10.1021/acsnano.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.
Collapse
Affiliation(s)
- Nianci Zhu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Sijia Chen
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Luyao Fang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Jia
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
13
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
14
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
16
|
Scafetta G, D'Alessandria C, Bartolazzi A. Galectin-3 and cancer immunotherapy: a glycobiological rationale to overcome tumor immune escape. J Exp Clin Cancer Res 2024; 43:41. [PMID: 38317202 PMCID: PMC10845537 DOI: 10.1186/s13046-024-02968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Immunotherapy with checkpoint inhibitors (ICIs) has radically changed the landscape of therapeutic opportunities in oncology, but much still needs to be understood from a mechanistic point of view. There is space for further improving tumors' response to ICIs, as supported by a strong biological rationale. For this achievement a detailed analysis of tumor cell phenotype with functional dissection of the molecular interactions occurring in the TME is required. Galectin-3 is a pleiotropic tumor relevant molecule, which deserves particular attention in immuno-oncology. Due to its ability to finely modulate immune response in vivo, Galectin-3 is a potential target molecule to be considered for overcoming tumor immune escape.
Collapse
Affiliation(s)
- Giorgia Scafetta
- Pathology Research Laboratory St, Andrea University Hospital, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Calogero D'Alessandria
- Klinikum Rechts Der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armando Bartolazzi
- Pathology Research Laboratory St, Andrea University Hospital, Via Di Grottarossa 1035, 00189, Rome, Italy.
- Pathology Research Laboratory Cancer Center Karolinska, Karolinska Hospital, S-17176, Stockholm, Sweden.
| |
Collapse
|
17
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2024:S2090-1232(24)00026-2. [PMID: 38242529 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
18
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
19
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
20
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Wong RSJ, Ong RJM, Lim JSJ. Immune checkpoint inhibitors in breast cancer: development, mechanisms of resistance and potential management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:768-787. [PMID: 38263984 PMCID: PMC10804393 DOI: 10.20517/cdr.2023.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
The use of immune checkpoint inhibitors (ICIs) has increased exponentially in the past decade, although its progress specifically for breast cancer has been modest. The first U.S. Food and Drug Administration approval for ICI in breast cancer came in 2019, eight years after the first-ever approval of an ICI. At present, current indications for ICIs are relevant only to a subset of patients with triple-negative breast cancer, or those displaying high microsatellite instability or deficiency in the mismatch repair protein pathway. With an increasing understanding of the limitations of using ICIs, which stem from breast cancer being innately poorly immunogenic, as well as the presence of various intrinsic and acquired resistance pathways, ongoing trials are evaluating different combination therapies to overcome these barriers. In this review, we aim to describe the development timeline of ICIs and resistance mechanisms limiting their utility, and summarise the available approaches and ongoing trials relevant to overcoming each resistance mechanism.
Collapse
Affiliation(s)
- Rachel SJ Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rebecca JM Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joline SJ Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
22
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Barnwal A, Gaur V, Sengupta A, Tyagi W, Das S, Bhattacharyya J. Tumor Antigen-Primed Dendritic Cell-Derived Exosome Synergizes with Colony Stimulating Factor-1 Receptor Inhibitor by Modulating the Tumor Microenvironment and Systemic Immunity. ACS Biomater Sci Eng 2023; 9:6409-6424. [PMID: 37870457 DOI: 10.1021/acsbiomaterials.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Dendritic cell-derived exosomes (Dex) have overcome the disadvantages associated with dendritic cell (DC) vaccines, such as cost effectiveness, stability, and sensitivity to the systemic microenvironment. However, in clinical trials, Dex failed to provide satisfactory results because of many reasons, including inadequate maturation of DC as well as the immunosuppressive tumor microenvironment (TME). Hence, culturing DCs in the presence of a maturation cocktail showed an induced expression of MHCs and co-stimulatory molecules. Additionally, targeting the colony stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-1R) signaling pathway by a CSF-1R inhibitor could deplete tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) which are responsible for immunosuppressive TME. Hence, in this study, mDexTA were isolated from bone marrow-derived DC cultured in the presence of a novel maturation cocktail and tumor antigen. mDexTA showed elevated expression of major histocompatibility complexes (MHCs) and co-stimulatory molecules and was found capable of activating naïve DC and T cells in vitro more efficiently when compared to imDexTA isolated from immature DCs. In addition, PLX-3397, a small molecule inhibitor of CSF-1/CSF-1R, was used in combination to enhance the antitumor efficacy of mDexTA. PLX-3397 showed dose-dependent toxicity against bone marrow-derived macrophages (BMDMs). In the B16-F10 murine melanoma model, we found that the combination treatment delayed tumor growth and improved survival compared to the mice treated with mDexTA alone by enhancing the CD8 T cells infiltration in TME. mDexTA when combined with PLX-3397 modulated the TME by shifting the Th1/Th2 toward a dominant Th1 population and depleting the TAMs and MDSCs. Interestingly, PLX-3397-induced FoxP3 expression was diminished when it was used in combination with mDexTA. Combination treatment also induced favorable systemic antitumor immunity in the spleen and lymph node. In conclusion, our findings provide insights into the synergy between mDexTA-based immunotherapy and PLX-3397 as the combination overcame the disadvantages associated with monotherapy and offer a therapeutic strategy for the treatment of solid tumors including melanoma.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Anindita Sengupta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Witty Tyagi
- National Institute of Immunology, Delhi 110067, India
| | - Sanjeev Das
- National Institute of Immunology, Delhi 110067, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| |
Collapse
|
24
|
Unver N. Sophisticated genetically engineered macrophages, CAR-Macs, in hitting the bull's eye for solid cancer immunotherapy approaches. Clin Exp Med 2023; 23:3171-3177. [PMID: 37278931 DOI: 10.1007/s10238-023-01106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Studies have begun to employ macrophages engineered with chimeric antigen receptor (CAR-Macs) against solid tumors since they can enter solid tumor tissue and interact with approximately all cellular components in the tumor microenvironment. The chimeric antigen receptor (CAR) has emerged as an appealing strategy for improving immune cells' ability to detect cancer. Tumor-associated macrophages (TAMs) generated with CAR designs exhibit appropriate potency based on their capacity to enter solid tumors and communicate through the inhibitory tumor microenvironment. CAR-Macs technology is a new therapeutic method for attacking cancer cells by switching pro-tumoral M2 macrophages to anti-tumoral M1 macrophages, enhancing macrophage phagocytosis, or increasing antigen presentation activity. CAR-Macs may have a prevailing impact on surrounding immune cells, indicating that they retain anti-tumor activity in the presence of human M2 macrophages, demonstrating their use in CAR technology. Understanding the biology of TAM and targeting novel domains for the advanced CAR-Macrophage platform, it will be feasible to add a new dimension to immunotherapy techniques used exclusively in solid malignancies. This review describes how CAR-Macs technologies modulate CAR-Macrophage production, potential target biomarkers on these platforms, their role in immunotherapeutic approaches, and tumor microenvironment.
Collapse
Affiliation(s)
- Nese Unver
- Department of Basic Oncology, Cancer Institute, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
25
|
Karg MM, Moorefield M, Hoffmann E, Philipose H, Krasniqi D, Hoppe C, Shu DY, Shirahama S, Ksander BR, Saint-Geniez M. Microglia preserve visual function loss in the aging retina by supporting retinal pigment epithelial health. Immun Ageing 2023; 20:53. [PMID: 37838654 PMCID: PMC10576380 DOI: 10.1186/s12979-023-00358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Increased age is a risk factor for the development and progression of retinal diseases including age-related macular degeneration (AMD). Understanding the changes that occur in the eye due to aging is important in enhancing our understanding of AMD pathogenesis and the development of novel AMD therapies. Microglia, the resident brain and retinal immune cells are associated with both maintaining homeostasis and protection of neurons and loss of microglia homeostasis could be a significant player in age related neurodegeneration. One important characteristic of retinal aging is the migration of microglia from the inner to outer retina where they reside in the subretinal space (SRS) in contact with the retinal pigment epithelial (RPE) cells. The role of aged subretinal microglia is unknown. Here, we depleted microglia in aged C57/BL6 mice fed for 6 weeks with a chow containing PLX5622, a small molecule inhibitor of colony-stimulating factor-1 receptor (Csf1r) required for microglial survival. RESULTS The subretinal P2RY12 + microglia in aged mice displayed a highly amoeboid and activated morphology and were filled with autofluorescence droplets reminiscent of lipofuscin. TEM indicates that subretinal microglia actively phagocytize shed photoreceptor outer segments, one of the main functions of retinal pigmented epithelial cells. PLX5622 treatment depleted up to 90% of the retinal microglia and was associated with significant loss in visual function. Mice on the microglia depletion diet showed reduced contrast sensitivity and significantly lower electroretinogram for the c-wave, a measurement of RPE functionality, compared to age-matched controls. The loss of c-wave coincided with a loss of RPE cells and increased RPE swelling in the absence of microglia. CONCLUSIONS We conclude that microglia preserve visual function in aged mice and support RPE cell function, by phagocytosing shed photoreceptor outer segments and lipids, therefore compensating for the known age-related decline of RPE phagocytosis.
Collapse
Affiliation(s)
- Margarete M Karg
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - May Moorefield
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
| | - Emma Hoffmann
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
| | - Hannah Philipose
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
| | - Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Daisy Y Shu
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shintaro Shirahama
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI. CSF1R inhibition is not specific to innate immune cells but also affects T-helper cell differentiation independently of microglia depletion. RESEARCH SQUARE 2023:rs.3.rs-3308220. [PMID: 37720036 PMCID: PMC10503844 DOI: 10.21203/rs.3.rs-3308220/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a specific method for microglia depletion. However, recent work revealed that in addition to microglia, CSF1R inhibition also affects other innate immune cells, such as peripheral monocytes and tissue-resident macrophages of the lung, liver, spleen, and peritoneum. Here, we show that this effect is not restricted to innate immune cells only but extends to the adaptive immune compartment. CSF1R inhibition alters the transcriptional profile of bone marrow cells that control T helper cell activation. In vivo or ex vivo inhibition of CSF1R profoundly changes the transcriptional profile of CD4+ cells and suppresses Th1 and Th2 differentiation in directionally stimulated and unstimulated cells and independently of microglia depletion. Given that T cells also contribute in CNS pathology, these effects may have practical implications in the interpretation of relevant experimental data.
Collapse
Affiliation(s)
- Fengyang Lei
- Massachusetts Eye and Ear, Harvard Medical School
| | | | | | | | | | | |
Collapse
|
27
|
Xu Z, Lin X, Zeng H, Ma X, Nabi G, Abidin ZU, Wang L, Wang L. Immune regulation in gastric adenocarcinoma is linked with therapeutic efficacy and improved recovery. Front Genet 2023; 14:1238248. [PMID: 37636266 PMCID: PMC10450621 DOI: 10.3389/fgene.2023.1238248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Adenocarcinomas are one of the most common histological types of gastric cancer. It has been ranked fifth among common cancers and is the third among death causing cancers worldwide. The high mortality rate among patients with gastric cancer is because of its silent evolution, genetic heterogeneity, high resistance to chemotherapy as well as unavailability of highly effective therapeutic strategy. Until now a number of several treatment strategies have been developed and are being practiced such as surgery, chemotherapy, radio therapy, and immunotherapy, however, further developments are required to improve the treatment responses and reduce the side effects. Therefore, novel personal therapeutic strategies based on immunological responses should be developed by targeting different check points and key immune players. Targeting macrophages and related molecular elements can be useful to achieve these goals. In this minireview, we discuss the available treatment options, molecular underpinnings and immunological regulations associated with gastric adenocarcinoma. We further describe the possible check points and immunological targets that can be used to develop novel therapeutic options.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ximin Lin
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Haotian Zeng
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Zain Ul Abidin
- Department of Intensive Care Unit, Kabir Medical College, Peshawar, Pakistan
| | - Luolin Wang
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Shao J, Jin Y, Jin C. A new approach to overcoming resistance to immunotherapy: nanotechnology. Front Oncol 2023; 13:1210245. [PMID: 37637050 PMCID: PMC10457008 DOI: 10.3389/fonc.2023.1210245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapy for immune response has ushered in a new era of cancer treatment. In recent years, new immunotherapeutic agents have been introduced into clinical trials and even approved for marketing. However, the widespread use of immunotherapeutic agents faces an unavoidable challenge: immunotherapy does not work at all for some patients, or has good efficacy in the initial phase, but immunotherapy resistance develops within a short period of time, and immunotherapy can also cause serious adverse effects such as autoimmune inflammation and non-specific inflammation. How to enable patients to overcome drug resistance, reduce the toxic side effects of drugs, enhance patient compliance and improve patient survival has become a problem that clinicians have to face. The advent of nanotechnology provides an encouraging platform for immunotherapy. It can not only improve the bioavailability and stability of drugs and reduce toxic side effects, but also reduce resistance to immunotherapy. Here, we discuss these research advances and discuss potential challenges and future directions.
Collapse
Affiliation(s)
- Jiangbo Shao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Kim D, An L, Moon J, Maymi VI, McGurk AI, Rudd BD, Fowell DJ, White AC. Ccr2+ Monocyte-Derived Macrophages Influence Trajectories of Acquired Therapy Resistance in Braf-Mutant Melanoma. Cancer Res 2023; 83:2328-2344. [PMID: 37195124 PMCID: PMC10478295 DOI: 10.1158/0008-5472.can-22-2841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Therapies targeting oncogene addiction have had a tremendous impact on tumor growth and patient outcome, but drug resistance continues to be problematic. One approach to deal with the challenge of resistance entails extending anticancer treatments beyond targeting cancer cells by additionally altering the tumor microenvironment. Understanding how the tumor microenvironment contributes to the evolution of diverse resistance pathways could aid in the design of sequential treatments that can elicit and take advantage of a predictable resistance trajectory. Tumor-associated macrophages often support neoplastic growth and are frequently the most abundant immune cell found in tumors. Here, we used clinically relevant in vivo Braf-mutant melanoma models with fluorescent markers to track the stage-specific changes in macrophages under targeted therapy with Braf/Mek inhibitors and assessed the dynamic evolution of the macrophage population generated by therapy pressure-induced stress. During the onset of a drug-tolerant persister state, Ccr2+ monocyte-derived macrophage infiltration rose, suggesting that macrophage influx at this point could facilitate the onset of stable drug resistance that melanoma cells show after several weeks of treatment. Comparison of melanomas that develop in a Ccr2-proficient or -deficient microenvironment demonstrated that lack of melanoma infiltrating Ccr2+ macrophages delayed onset of resistance and shifted melanoma cell evolution towards unstable resistance. Unstable resistance was characterized by sensitivity to targeted therapy when factors from the microenvironment were lost. Importantly, this phenotype was reversed by coculturing melanoma cells with Ccr2+ macrophages. Overall, this study demonstrates that the development of resistance may be directed by altering the tumor microenvironment to improve treatment timing and the probability of relapse. SIGNIFICANCE Ccr2+ melanoma macrophages that are active in tumors during the drug-tolerant persister state following targeted therapy-induced regression are key contributors directing melanoma cell reprogramming toward specific therapeutic resistance trajectories.
Collapse
Affiliation(s)
- Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Jiwon Moon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Viviana I Maymi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Alexander I McGurk
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Deborah J Fowell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
30
|
Wang F, Cheng F, Zheng F. Bioinformatic-based genetic characterizations of neural regulation in skin cutaneous melanoma. Front Oncol 2023; 13:1166373. [PMID: 37404751 PMCID: PMC10315675 DOI: 10.3389/fonc.2023.1166373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Background Recent discoveries uncovered the complex cancer-nerve interactions in several cancer types including skin cutaneous melanoma (SKCM). However, the genetic characterization of neural regulation in SKCM is unclear. Methods Transcriptomic expression data were collected from the TCGA and GTEx portal, and the differences in cancer-nerve crosstalk-associated gene expressions between normal skin and SKCM tissues were analyzed. The cBioPortal dataset was utilized to implement the gene mutation analysis. PPI analysis was performed using the STRING database. Functional enrichment analysis was analyzed by the R package clusterProfiler. K-M plotter, univariate, multivariate, and LASSO regression were used for prognostic analysis and verification. The GEPIA dataset was performed to analyze the association of gene expression with SKCM clinical stage. ssGSEA and GSCA datasets were used for immune cell infiltration analysis. GSEA was used to elucidate the significant function and pathway differences. Results A total of 66 cancer-nerve crosstalk-associated genes were identified, 60 of which were up- or downregulated in SKCM and KEGG analysis suggested that they are mainly enriched in the calcium signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, and so on. A gene prognostic model including eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG) was built and verified by independent cohorts GSE59455 and GSE19234. A nomogram was constructed containing clinical characteristics and the above eight genes, and the AUCs of the 1-, 3-, and 5-year ROC were 0.850, 0.811, and 0.792, respectively. Expression of CCR2, GRIN3A, and CSF1 was associated with SKCM clinical stages. There existed broad and strong correlations of the prognostic gene set with immune infiltration and immune checkpoint genes. CHRNA4 and CHRNG were independent poor prognostic genes, and multiple metabolic pathways were enriched in high CHRNA4 expression cells. Conclusion Comprehensive bioinformatics analysis of cancer-nerve crosstalk-associated genes in SKCM was performed, and an effective prognostic model was constructed based on clinical characteristics and eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG), which were widely related to clinical stages and immunological features. Our work may be helpful for further investigation in the molecular mechanisms correlated with neural regulation in SKCM, and in searching new therapeutic targets.
Collapse
Affiliation(s)
- Fengdi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
31
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Xu C, Xia Y, Zhang B, Drokow EK, Li H, Xu S, Wang Z, Wang S, Jin P, Fang T, Xiong X, Huang P, Jin N, Tan J, Zhong Q, Chen Y, Zhang Q, Fang Y, Ye F, Gao Q. Macrophages facilitate tumor cell PD-L1 expression via an IL-1β-centered loop to attenuate immune checkpoint blockade. MedComm (Beijing) 2023; 4:e242. [PMID: 37009412 PMCID: PMC10063777 DOI: 10.1002/mco2.242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play critical roles in reprogramming other immune cells and orchestrating antitumor immunity. However, the interplay between TAMs and tumor cells responsible for enhancing immune evasion remains insufficiently understood. Here, we revealed that interleukin (IL)-1β was among the most abundant cytokines within the in vitro tumor-macrophage coculture system, and enhanced IL-1β expression was associated with impaired cytotoxicity of CD8+ T cells in human ovarian cancer, indicating the possibility that IL-1β mediated immunosuppression during tumor-TAMs crosstalk. Mechanistically, we demonstrated that IL-1β significantly boosted programmed death-ligand 1 (PD-L1) expression in tumor cells via the activation of the nuclear factor-κb signaling cascade. Specifically, IL-1β released from TAMs was triggered by lactate, the anaerobic metabolite of tumor cells, in an inflammasome activation-dependent manner. IL-1β sustained and intensified immunosuppression by promoting C-C motif chemokine ligand 2 secretion in tumor cells to fuel TAMs recruitment. Importantly, IL-1β neutralizing antibody significantly curbed tumor growth and displayed synergistic antitumor efficacies with anti-PD-L1 antibody in tumor-bearing mouse models. Together, this study presents an IL-1β-centered immunosuppressive loop between TAMs and tumor cells, highlighting IL-1β as a candidate therapeutic target to reverse immunosuppression and potentiate immune checkpoint blockade.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Xia
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bai‐Wei Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Emmanuel Kwateng Drokow
- Department of Radiation OncologyZhengzhou University People's Hospital & Henan Provincial People's HospitalZhengzhouChina
| | - Hua‐Yi Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Xu
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si‐Yuan Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ping Jin
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tian Fang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Ming Xiong
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pu Huang
- Department of Obstetrics and GynecologyThe Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Ning Jin
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia‐Hong Tan
- Department of Obstetrics and GynecologyThe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Qing Zhong
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu‐Xin Chen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yong Fang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Ye
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing‐Lei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
33
|
Manickam V, Gawande DY, Stothert AR, Clayman AC, Batalkina L, Warchol ME, Ohlemiller KK, Kaur T. Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy. J Neurosci 2023; 43:2075-2089. [PMID: 36810227 PMCID: PMC10039750 DOI: 10.1523/jneurosci.1273-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.
Collapse
Affiliation(s)
- Vijayprakash Manickam
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Dinesh Y Gawande
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Andrew R Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Anna C Clayman
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Lyudmila Batalkina
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Kevin K Ohlemiller
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
34
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
35
|
Alshaebi F, Safi M, Algabri YA, Al-Azab M, Aldanakh A, Alradhi M, Reem A, Zhang C. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Front Oncol 2023; 13:1099696. [PMID: 36798830 PMCID: PMC9927403 DOI: 10.3389/fonc.2023.1099696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Interleukin-34 (IL-34) is a cytokine that is involved in the regulation of immune cells, including macrophages, in the tumor microenvironment (TME). Macrophages are a type of immune cell that can be found in large numbers within the TME and have been shown to have a role in the suppression of immune responses in cancer. This mmune suppression can contribute to cancer development and tumors' ability to evade the immune system. Immune checkpoint inhibitors (ICIs) are a type of cancer treatment that target proteins on immune cells that act as "checkpoints," regulating the activity of the immune system. Examples of these proteins include programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). ICIs work by blocking the activity of these proteins, allowing the immune system to mount a stronger response against cancer cells. The combination of IL-34 inhibition with ICIs has been proposed as a potential treatment option for cancer due to the role of IL-34 in the TME and its potential involvement in resistance to ICIs. Inhibiting the activity of IL-34 or targeting its signaling pathways may help to overcome resistance to ICIs and improve the effectiveness of these therapies. This review summarizes the current state of knowledge concerning the involvement of IL-34-mediated regulation of TME and the promotion of ICI resistance. Besides, this work may shed light on whether targeting IL-34 might be exploited as a potential treatment option for cancer patients in the future. However, further research is needed to fully understand the mechanisms underlying the role of IL-34 in TME and to determine the safety and efficacy of this approach in cancer patients.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China
| | - Mohammed Safi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| | - Yousif A. Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Alradhi
- Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Alariqi Reem
- Faculty of Medicine and Health Sciences, Amran University, Amran, Yemen
| | - Caiqing Zhang
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| |
Collapse
|
36
|
Li B, Sun S, Li JJ, Yuan JP, Sun SR, Wu Q. Adipose tissue macrophages: implications for obesity-associated cancer. Mil Med Res 2023; 10:1. [PMID: 36593475 PMCID: PMC9809128 DOI: 10.1186/s40779-022-00437-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity is one of the most serious global health problems, with an incidence that increases yearly and coincides with the development of cancer. Adipose tissue macrophages (ATMs) are particularly important in this context and contribute to linking obesity-related inflammation and tumor progression. However, the functions of ATMs on the progression of obesity-associated cancer remain unclear. In this review, we describe the origins, phenotypes, and functions of ATMs. Subsequently, we summarize the potential mechanisms on the reprogramming of ATMs in the obesity-associated microenvironment, including the direct exchange of dysfunctional metabolites, inordinate cytokines and other signaling mediators, transfer of extracellular vesicle cargo, and variations in the gut microbiota and its metabolites. A better understanding of the properties and functions of ATMs under conditions of obesity will lead to the development of new therapeutic interventions for obesity-related cancer.
Collapse
Affiliation(s)
- Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
37
|
Cao J, Chow L, Dow S. Strategies to overcome myeloid cell induced immune suppression in the tumor microenvironment. Front Oncol 2023; 13:1116016. [PMID: 37114134 PMCID: PMC10126309 DOI: 10.3389/fonc.2023.1116016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer progression and metastasis due to tumor immune evasion and drug resistance is strongly associated with immune suppressive cellular responses, particularly in the case of metastatic tumors. The myeloid cell component plays a key role within the tumor microenvironment (TME) and disrupts both adaptive and innate immune cell responses leading to loss of tumor control. Therefore, strategies to eliminate or modulate the myeloid cell compartment of the TME are increasingly attractive to non-specifically increase anti-tumoral immunity and enhance existing immunotherapies. This review covers current strategies targeting myeloid suppressor cells in the TME to enhance anti-tumoral immunity, including strategies that target chemokine receptors to deplete selected immune suppressive myeloid cells and relieve the inhibition imposed on the effector arms of adaptive immunity. Remodeling the TME can in turn improve the activity of other immunotherapies such as checkpoint blockade and adoptive T cell therapies in immunologically "cold" tumors. When possible, in this review, we have provided evidence and outcomes from recent or current clinical trials evaluating the effectiveness of the specific strategies used to target myeloid cells in the TME. The review seeks to provide a broad overview of how myeloid cell targeting can become a key foundational approach to an overall strategy for improving tumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jennifer Cao
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Steven Dow,
| |
Collapse
|
38
|
Wen J, Wang S, Guo R, Liu D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem 2023; 245:114884. [DOI: 10.1016/j.ejmech.2022.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
|
39
|
The Role of Cellular Immunity and Adaptive Immunity in Pathophysiology of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:51-72. [PMID: 36587381 DOI: 10.1007/978-3-031-14732-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major advances have been made in our understanding of CNS tumors, especially glioma, however, the survival of patients with malignant glioma remains poor. While radiation and chemotherapy have increased overall survival, glioblastoma multiforme (GBM) still has one of the worst 5-year survival rates of all human cancers. Here, in this chapter, the authors review the abrogation of the immune system in the tumor setting, revealing many plausible targets for therapy and the current immunotherapy treatment strategies employed. Notably, glioma has also been characterized as a subset of primary spinal cord tumor and current treatment recommendations are outlined here.
Collapse
|
40
|
Zhu Z, Shi L, Dong Y, Zhang Y, Yang F, Wei J, Huo M, Li P, Liu X. Effect of crosstalk among conspirators in tumor microenvironment on niche metastasis of gastric cancer. Am J Cancer Res 2022; 12:5375-5402. [PMID: 36628284 PMCID: PMC9827080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
In Traditional Chinese medicine, the metaphoric views of the human body are based on observations of nature guided by the theory of "Yin-Yang". The direct meanings of yin and yang are the bright and dark sides of an object, which often represent a wider range of opposite properties. When we shifted our view to gastric cancer (GC), we found that there are more distinctive Yin and Yang features in the mechanism of GC development and metastasis, which is observed in many mechanisms such as GC metastasis, immune escape, and stem cell homing. When illustrating this process from the yin-yang perspective, categorizing different cells in the tumor microenvironment enables new and different perspectives to be put forward on the mechanism and treatment of GC metastasis.
Collapse
Affiliation(s)
- Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Lijuan Shi
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Jingjing Wei
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Minfeng Huo
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Peiqing Li
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| |
Collapse
|
41
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
42
|
Qin Y, Xu G. Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Front Immunol 2022; 13:1053120. [PMID: 36569859 PMCID: PMC9773088 DOI: 10.3389/fimmu.2022.1053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, belonging to adoptive immune cells therapy, utilizes engineered immunoreceptors to enhance tumor-specific killing. By now new generations of CAR T-cell therapies dramatically promote the effectiveness and robustness in leukemia cases. However, only a few CAR T-cell therapies gain FDA approval till now, which are applied to hematologic cancers. Targeting solid tumors through CAR T-cell therapies still faces many problems, such as tumor heterogeneity, antigen loss, infiltration inability and immunosuppressive micro-environment. Recent advances provide new insights about the mechanisms of CAR T-cell therapy resistance and give rise to potential reversal therapies. In this review, we mainly introduce existing barriers when treating solid tumors with CAR T-cells and discuss the methods to overcome these challenges.
Collapse
Affiliation(s)
- Yue Qin
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Guotai Xu
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China,*Correspondence: Guotai Xu,
| |
Collapse
|
43
|
Wang Y, Wang Z, Jia F, Xu Q, Shu Z, Deng J, Li A, Yu M, Yu Z. CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment. Bioact Mater 2022; 17:147-161. [PMID: 35386453 PMCID: PMC8965090 DOI: 10.1016/j.bioactmat.2022.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Clinical sorafenib treatment could activate C-X-C receptor type 4 (CXCR4)/stromal source factor-1α (SDF-1α) axis to aggravate intra-tumoral hypoxia of hepatocellular carcinoma (HCC), which further leads to progression, invasion, metastasis, and immunosuppression of tumors and in return causes resistance to sorafenib therapy. Therefore, a multi-functional oxygen delivery nanoplatform was rationally constructed based on an oxygen-saturated perfluorohexane (PFH)-cored liposome, with the CXCR4 antagonist LFC131 peptides modifying on the surface to simultaneously deliver sorafenib and the CSF1/CSF1R inhibitor PLX3397 (named PFH@LSLP) for sorafenib-resistant HCC treatment. The PFH@LSLP was developed to overcome sorafenib resistance by synergistic effects of the following 3 roles: 1) the O2-saturated PFH core could alleviate the tumor hypoxia by O2 supply; 2) the LFC131 peptide recognized the hypoxia-related overexpressed CXCR4 and then blocked SDF-1α/CXCR4 axis to re-sensitize the HCC cells to sorafenib; 3) PLX3397 activated the immune responses via inhibiting the CSF1/CSF1R pathway in TAMs, further enhanced CD8+ T cell infiltration to reverse immunosuppression in tumors. Antitumor performance on H22 tumor-bearing mice and HCC patient-derived tumor xenograft (PDX) model showed that PFH@LSLP could overcome sorafenib resistance by synergistic effect of hypoxia attenuation, resistance-related gene regulation, and immune-microenvironment modification. PFH@LSLP was developed to overcome sorafenib resistance. LFC131 peptide blocked SDF-1α/CXCR4 to sensitize sorafenib. PLX3397 blocked CSF1/CSF1R to activate immune response.
Collapse
|
44
|
Gross SM, Dane MA, Smith RL, Devlin KL, McLean IC, Derrick DS, Mills CE, Subramanian K, London AB, Torre D, Evangelista JE, Clarke DJB, Xie Z, Erdem C, Lyons N, Natoli T, Pessa S, Lu X, Mullahoo J, Li J, Adam M, Wassie B, Liu M, Kilburn DF, Liby TA, Bucher E, Sanchez-Aguila C, Daily K, Omberg L, Wang Y, Jacobson C, Yapp C, Chung M, Vidovic D, Lu Y, Schurer S, Lee A, Pillai A, Subramanian A, Papanastasiou M, Fraenkel E, Feiler HS, Mills GB, Jaffe JD, Ma’ayan A, Birtwistle MR, Sorger PK, Korkola JE, Gray JW, Heiser LM. A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. Commun Biol 2022; 5:1066. [PMID: 36207580 PMCID: PMC9546880 DOI: 10.1038/s42003-022-03975-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.
Collapse
Affiliation(s)
- Sean M. Gross
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Mark A. Dane
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Rebecca L. Smith
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kaylyn L. Devlin
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Ian C. McLean
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Daniel S. Derrick
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Caitlin E. Mills
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Kartik Subramanian
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Alexandra B. London
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Denis Torre
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Erol Evangelista
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel J. B. Clarke
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhuorui Xie
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cemal Erdem
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Nicholas Lyons
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ted Natoli
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sarah Pessa
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Xiaodong Lu
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - James Mullahoo
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jonathan Li
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Miriam Adam
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Brook Wassie
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Moqing Liu
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - David F. Kilburn
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Tiera A. Liby
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Elmar Bucher
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Crystal Sanchez-Aguila
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kenneth Daily
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Larsson Omberg
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Yunguan Wang
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Connor Jacobson
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Clarence Yapp
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Mirra Chung
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Dusica Vidovic
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stephan Schurer
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Albert Lee
- grid.94365.3d0000 0001 2297 5165Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Ajay Pillai
- grid.94365.3d0000 0001 2297 5165Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Aravind Subramanian
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Malvina Papanastasiou
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ernest Fraenkel
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Heidi S. Feiler
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Gordon B. Mills
- grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Division of Oncological Sciences, OHSU, Portland, OR USA
| | - Jake D. Jaffe
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Avi Ma’ayan
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marc R. Birtwistle
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Peter K. Sorger
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - James E. Korkola
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Joe W. Gray
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Laura M. Heiser
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| |
Collapse
|
45
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
46
|
Vu SH, Vetrivel P, Kim J, Lee MS. Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. Int J Mol Sci 2022; 23:10906. [PMID: 36142818 PMCID: PMC9513751 DOI: 10.3390/ijms231810906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy has fundamentally altered cancer treatment; however, its efficacy is limited to a subset of patients in most clinical settings. The immune system plays a key role in cancer progression from tumor initiation to the metastatic state. Throughout the treatment course, communications between the immune cells in the tumor microenvironment and the immune macroenvironment, as well as interactions between the immune system and cancer cells, are dynamic and constantly evolving. To improve the clinical benefit for patients who do not respond completely to immunotherapy, the molecular mechanisms of resistance to immunotherapy must be elucidated in order to develop effective strategies to overcome resistance. In an attempt to improve and update the current understanding of the molecular mechanisms that hinder immunotherapy, we discuss the molecular mechanisms of cancer resistance to immunotherapy and the available treatment strategies.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72308, Vietnam
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 117643, Singapore
| | - Jongmin Kim
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Myeong-Sok Lee
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
47
|
Cowan MN, Kovacs MA, Sethi I, Babcock IW, Still K, Batista SJ, O’Brien CA, Thompson JA, Sibley LA, Labuzan SA, Harris TH. Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis. PLoS Pathog 2022; 18:e1010637. [PMID: 36067217 PMCID: PMC9481170 DOI: 10.1371/journal.ppat.1010637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to “disease-associated microglia” (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states. The brain, an immune-privileged organ, can be invaded and colonized by pathogens such as the opportunistic parasite, Toxoplasma gondii. How microglia, the resident immune cells of the brain, provide resistance to infection is an active area of investigation. In this study, we used a genetic approach to generate and study mice with microglia that lack STAT1, a critical transcription factor that confers protection against intracellular pathogens in both humans and mice. We find that despite robust activation and recruitment of immune cells from the blood to the brain during infection, STAT1 deficiency in microglia leads to increased brain parasite burden and uniform lethality in mice when challenged with T. gondii. Our bioinformatic analyses also indicate that STAT1 in microglia regulates (i) the expression of large families of genes associated with parasite killing and (ii) a microglial activation state that has been classically seen in neurodegeneration. Our findings identify mechanisms by which microglia contribute to parasite control and contribute to a greater understanding of their cellular physiology during neuroinflammation.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Isaac W. Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lydia A. Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sydney A. Labuzan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
49
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| |
Collapse
|
50
|
Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14163972. [PMID: 36010965 PMCID: PMC9406446 DOI: 10.3390/cancers14163972] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapy helps a person’s immune system to target tumor cells. Recent advances in cancer immunotherapy, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination, have changed the landscape of cancer treatment. These approaches have had profound success in certain cancer types but still fail in the majority of cases. This review will cover both successes and current challenges in cancer immunotherapy, as well as recent advances in the field of basic tumor immunology that will allow us to overcome resistance to existing treatments. Abstract Cancer immunotherapy has revolutionized the field of oncology in recent years. Harnessing the immune system to treat cancer has led to a large growth in the number of novel immunotherapeutic strategies, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination. In this review, we will discuss the current landscape of immuno-oncology research, with a focus on elements that influence immunotherapeutic outcomes. We will also highlight recent advances in basic aspects of tumor immunology, in particular, the role of the immunosuppressive cells within the tumor microenvironment in regulating antitumor immunity. Lastly, we will discuss how the understanding of basic tumor immunology can lead to the development of new immunotherapeutic strategies.
Collapse
|