1
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
3
|
Paredes F, Williams HC, Liu X, Holden C, Bogan B, Wang Y, Crotty KM, Yeligar SM, Elorza AA, Lin Z, Rezvan A, San Martin A. The mitochondrial protease ClpP is a druggable target that controls VSMC phenotype by a SIRT1-dependent mechanism. Redox Biol 2024; 73:103203. [PMID: 38823208 PMCID: PMC11169483 DOI: 10.1016/j.redox.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Xuesong Liu
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Claire Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Yu Wang
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Zhiyong Lin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
4
|
Feng Z, Yuan L, Ma L, Yu W, Kheir F, Käsmann L, Brueckl WM, Jin K, Wang D, Shen Y, Li R, Tian H. Peptidyl-prolyl isomerase F as a prognostic biomarker associated with immune infiltrates and mitophagy in lung adenocarcinoma. Transl Lung Cancer Res 2024; 13:1346-1364. [PMID: 38973949 PMCID: PMC11225036 DOI: 10.21037/tlcr-24-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Background Lung adenocarcinoma (LUAD) is among the most prevalent malignancies worldwide, with unfavorable treatment outcomes. Peptidyl-prolyl isomerase F (PPIF) is known to influence the malignancy traits of tumor progression by modulating the bioenergetics and mitochondrial permeability in cancer cells; however, its role in LUAD remains unclear. Our study seeks to investigate the clinical significance, tumor proliferation, and immune regulatory functions of PPIF in LUAD. Methods The expression of PPIF in LUAD tissues and cells was assessed using bioinformatics analysis, immunohistochemistry (IHC), and Western blotting. Survival curve analysis was conducted to examine the prognostic association between PPIF expression and LUAD. The immunomodulatory role of PPIF in LUAD was assessed through the analysis of PPIF expression and immune cell infiltration. A series of gain- and loss-of-function experiments were conducted on PPIF to investigate its biological functions in LUAD both in vitro and in vivo. The mechanisms underlying PPIF's effects on LUAD were delineated through functional enrichment analysis and Western blotting assays. Results PPIF exhibited overexpression in LUAD tissues compared to normal controls. Survival curve analysis revealed that patients with LUAD exhibiting higher PPIF expression demonstrated decreased overall survival and a shorter progression-free interval. PPIF was implicated in modulating immune cell infiltration, particularly in regulating the T helper 1-T helper 2 cell balance. Functionally, PPIF was discovered to promote tumor cell proliferation and advance cell-cycle progression. Furthermore, PPIF could impede mitophagy by targeting the FOXO3a/PINK1-Parkin signaling pathway. Conclusions The findings of this study indicate that the prognosis-related gene PPIF may have a significant role in the regulation of LUAD cell proliferation, tumor-associated immune cell infiltration, and mitophagy, and thus PPIF may be a promising therapeutic target of LUAD.
Collapse
Affiliation(s)
- Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Yuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Luyuan Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Wolfgang M. Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuernberg, Nuremberg, Germany
| | - Kai Jin
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Dingxin Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Shen
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Song J, Bai H, Chen S, Xing Y, Lou J. Inhibition of sugar-binding activity of Galectins-8 by thiogalactoside (TDG) attenuates secondary brain damage and improves long-term prognosis following intracerebral hemorrhage. Heliyon 2024; 10:e30422. [PMID: 38737270 PMCID: PMC11088311 DOI: 10.1016/j.heliyon.2024.e30422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Galectins-8 (Gal-8), the tandem repeat sequences of the galectin family, can influence the pathophysiologic processes in neurological disorders. However, its effect on intracerebral hemorrhage and related mechanisms remains nebulous. Using collagenase VII-S-induced ICH in the left striatum of mice, we investigated the effects of Gal-8 on cellular and molecular immune inflammatory responses in hemorrhagic brain and evaluated the severity of short- and long-term brain injury. Our results showed that activated microglia in the periphery of hematoma in mice with intracerebral hemorrhage expressed Gal-8, while Gal-8 could regulate the expression of cytokines, such as HMGB-1 (P = 0.0032), TNF-α (P = 0.0158), and IL-10 (P = 0.0379). Inhibition of the glucose-binding activity of Gal-8 by thiogalactoside (TDG) significantly reduced the volume of cerebral hematoma (P = 0.0241) and hydrocephalus (P = 0.0112) during the acute phase of cerebral hemorrhage and improved the long-term prognosis. TDG can reduce acute-phase brain tissue injury and improve the prognosis by inhibiting the activation of immune-inflammatory cells in the periphery of hematoma and reducing the release of pro-inflammatory factors.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Hongying Bai
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Si Chen
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Yuanyuan Xing
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jiyu Lou
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| |
Collapse
|
6
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Chen ZW, Dong ZB, Xiang HT, Chen SS, Yu WM, Liang C. Helicobacter pylori CagA protein induces gastric cancer stem cell-like properties through the Akt/FOXO3a axis. J Cell Biochem 2024; 125:e30527. [PMID: 38332574 DOI: 10.1002/jcb.30527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhe-Bin Dong
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Han-Ting Xiang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Sang-Sang Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei-Ming Yu
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chao Liang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Chen W, Maze I. Repurposing the dopamine transporter antagonist vanoxerine to treat colorectal cancer. NATURE CANCER 2024; 5:378-379. [PMID: 38351183 DOI: 10.1038/s43018-024-00723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Affiliation(s)
- Winnie Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Yuan Y, Zhang XF, Li YC, Chen HQ, Wen T, Zheng JL, Zhao ZY, Hu QY. VX-509 attenuates the stemness characteristics of colorectal cancer stem-like cells by regulating the epithelial-mesenchymal transition through Nodal/Smad2/3 signaling. World J Stem Cells 2024; 16:207-227. [PMID: 38455101 PMCID: PMC10915959 DOI: 10.4252/wjsc.v16.i2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC. AIM To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism. METHODS CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments in vitro and tumor growth, immunohistochemistry and immunofluorescence assessments in vivo. RESULTS Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality in vitro, and suppressed the tumor of CCSC-derived xenograft tumors in vivo. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling in vitro. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression. CONCLUSION VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xu-Fan Zhang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yu-Chen Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong-Qing Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tian Wen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jia-Lian Zheng
- Department of Hepatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - Zi-Yi Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan Province, China
| | - Qiong-Ying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
10
|
Meng XY, Wang KJ, Ye SZ, Chen JF, Chen ZY, Zhang ZY, Yin WQ, Jia XL, Li Y, Yu R, Ma Q. Sinularin stabilizes FOXO3 protein to trigger prostate cancer cell intrinsic apoptosis. Biochem Pharmacol 2024; 220:116011. [PMID: 38154548 DOI: 10.1016/j.bcp.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zhao-Yu Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zuo-Yan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Wei-Qi Yin
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Xiao-Long Jia
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, #818 Fenghua Road, Ningbo 315211, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Yi-Huan Genitourinary Cancer Group, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
11
|
Parker CS, Zhou L, Prabhu VV, Lee S, Miner TJ, Ross EA, El-Deiry WS. ONC201/TIC10 plus TLY012 anti-cancer effects via apoptosis inhibitor downregulation, stimulation of integrated stress response and death receptor DR5 in gastric adenocarcinoma. Am J Cancer Res 2023; 13:6290-6312. [PMID: 38187068 PMCID: PMC10767330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Gastric adenocarcinoma typically presents with advanced stage when inoperable. Chemotherapy options include non-targeted and toxic agents, leading to poor 5-year patient survival outcomes. Small molecule ONC201/TIC10 (TRAIL-Inducing Compound #10) induces cancer cell death via ClpP-dependent activation of the integrated stress response (ISR) and up-regulation of the TRAIL pathway. We previously found in breast cancer, pancreatic cancer and endometrial cancer that ONC201 primes tumor cells for TRAIL-mediated cell death through ISR-dependent upregulation of ATF4, CHOP and TRAIL death receptor DR5. We investigated the ability of ONC201 to induce apoptosis in gastric adenocarcinoma cells in combination with recombinant human TRAIL (rhTRAIL) or PEGylated trimeric TRAIL (TLY012). AGS (caspase 8-, KRAS-, PIK3CA-mutant, HER2-amplified), SNU-1 (KRAS-, MLH1-mutant, microsatellite unstable), SNU-5 (p53-mutant) and SNU-16 (p53-mutant) gastric adenocarcinoma cells were treated with ONC201 and TRAIL both in cell culture and in vivo. Gastric cancer cells showed synergy following dual therapy with ONC201 and rhTRAIL/TLY012 (combination indices < 0.6 at doses that were non-toxic towards normal fibroblasts). Synergy was observed with increased cells in the sub-G1 phase of the cell cycle with dual ONC201 plus TRAIL therapy. Increased PARP, caspase 8 and caspase 3 cleavage after ONC201 plus TRAIL further documented apoptosis. Increased cell surface expression of DR5 with ONC201 therapy was observed by flow cytometry, and immunoblotting revealed ONC201 upregulation of the ISR, ATF4, and CHOP. We observed downregulation of anti-apoptotic cIAP-1 and XIAP in all cells except AGS, and cFLIP in all cells except SNU-16. We tested the regimen in an organoid model of human gastric cancer, and in murine sub-cutaneous xenografts using AGS and SNU-1 cells. Our results suggest that ONC201 in combination with TRAIL may be an effective and non-toxic option for the treatment of gastric adenocarcinoma by inducing apoptosis via activation of the ISR, increased cell surface expression of DR5 and down-regulation of inhibitors of apoptosis. Our results demonstrate in vivo anti-tumor effects of ONC201 plus TLY012 against gastric cancer that could be further investigated in clinical trials.
Collapse
Affiliation(s)
- Cassandra S Parker
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | | | - Seulki Lee
- D&D Pharmatech Inc.Bundang-gu, Seongnam-si, Korea
| | - Thomas J Miner
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Eric A Ross
- Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
12
|
Tang Z, Zhang Y, Yu Z, Luo Z. Metformin Suppresses Stemness of Non-Small-Cell Lung Cancer Induced by Paclitaxel through FOXO3a. Int J Mol Sci 2023; 24:16611. [PMID: 38068934 PMCID: PMC10705988 DOI: 10.3390/ijms242316611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on cancer stemness derived from paclitaxel (PTX)-resistant non-small-cell lung cancer (NSCLC) cells. We showed that CSC-like features were acquired by the chronic induction of resistance to PTX, concurrently with inactivation of FOXO3a. In line with this, knockdown of FOXO3a in PTX-sensitive cells led to changes toward stemness, while overexpression of FOXO3a in PTX-resistant cells mitigated stemness in vitro and remarkably curbed the tumorigenesis of NSCLC/PTX cells in vivo. Furthermore, metformin suppressed the self-renewal ability of PTX-resistant cells, reduced the expression of stemness-related markers (c-MYC, Oct4, Nanog and Notch), and upregulated FOXO3a, events concomitant with the activation of AMP-activated protein kinase (AMPK). All these changes were recapitulated by silencing FOXO3a in PTX-sensitive cells. Intriguingly, the introduction of the AMPK dominant negative mutant offset the inhibitory effect of metformin on the stemness of PTX-resistant cells. In addition, FOXO3a levels were elevated by the treatment of PTX-resistant cells with MK2206 (an Akt inhibitor) and U0126 (a MEK inhibitor). Collectively, our findings indicate that metformin exerts its effect on FOXO3a through the activation of AMPK and the inhibition of protein kinase B (Akt) and MAPK/extracellular signal-regulated kinase (MEK), culminating in the suppression of stemness in paclitaxel-resistant NSCLC cells.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
| | - Yilan Zhang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhengyi Yu
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| |
Collapse
|
13
|
Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis 2023; 14:702. [PMID: 37891184 PMCID: PMC10611805 DOI: 10.1038/s41419-023-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
Collapse
Affiliation(s)
- Bruno F Santos
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Centro Hospitalar Universitário do Algarve (CHUA). Rua Leão Penedo, 8000-386, Faro, Portugal
| | - Inês Grenho
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Martel
- Center for Health Technology and Services Research (CINTESIS)@RISE, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Di Cristofano F, George A, Tajiknia V, Ghandali M, Wu L, Zhang Y, Srinivasan P, Strandberg J, Hahn M, Sanchez Sevilla Uruchurtu A, Seyhan AA, Carneiro BA, Zhou L, Huntington KE, El-Deiry WS. Therapeutic targeting of TRAIL death receptors. Biochem Soc Trans 2023; 51:57-70. [PMID: 36629496 PMCID: PMC9988005 DOI: 10.1042/bst20220098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.
Collapse
Affiliation(s)
- Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Laura Wu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Marina Hahn
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Ashley Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| |
Collapse
|
18
|
Synergistic activity of ABT-263 and ONC201/TIC10 against solid tumor cell lines is associated with suppression of anti-apoptotic Mcl-1, BAG3, pAkt, and upregulation of pro-apoptotic Noxa and Bax cleavage during apoptosis. Am J Cancer Res 2023; 13:307-325. [PMID: 36777502 PMCID: PMC9906082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/24/2022] [Indexed: 02/14/2023] Open
Abstract
A major underlying cause of the resistance of solid tumor cells to cancer therapy is the evasion of cell death following anti-cancer drug treatment. We explored the combination of TRAIL-inducing compound ONC201/TIC10 and Bcl-xL/Bcl-2 inhibitor ABT-263 to target the extrinsic and intrinsic apoptotic pathways, respectively, in solid tumor cell lines (N = 13) derived from different tissues (colon, prostate, lung, breast, ovary, bladder). We found an IC50 range of 0.83-20.10 μM for ONC201 and 0.06-14.75 μM for ABT-263 among the 13 cancer cell lines. We show that combination of ONC201 and ABT-263 produces a strong synergistic effect leading to tumor cell death, and that the combination is not toxic to human fibroblast cells. In OVCAR-3 ovarian cancer cells, 2.5 μM ONC201 and 1.25 μM ABT-263 yielded 37% and 27% inhibition of viability, respectively, while the combination of the two agents yielded 92% inhibition of viability, resulting in a high synergy score of 52; conversely, the same combination in the HFF-1 human fibroblast cells yielded 2.45% inhibition of viability and a synergy score of 6.92 (synergy scores were calculated using SynergyFinder; scores greater than 10 are considered synergistic). We also found that the combination of these two agents resulted in synergistic caspase activation and PARP cleavage consistent with induction of apoptosis. Combination therapy-induced cell death correlated with decreased levels of Mcl-1, BAG3, pAkt, and upregulation of Noxa along with Bax cleavage during apoptosis at 48 hours, and ATF4, TRAIL, and DR5 induction at 24 hours. There was some heterogeneity in the cell lines with regard to these responses. Our data provide evidence for synergy from the combination of ONC201 and ABT-263 against human solid tumor cell lines associated with alterations in cell death and pro-survival mediators. The combination of ONC201 and ABT-263 merits further exploration in vivo and in clinical trials against a variety of solid malignancies.
Collapse
|
19
|
Capasso D, Pirone L, Di Gaetano S, Russo R, Saviano M, Frisulli V, Antonacci A, Pedone E, Scognamiglio V. Galectins detection for the diagnosis of chronic diseases: An emerging biosensor approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Kandil NS, Kandil LS, Mohamed R, Selima M, El Nemr M, Barakat AR, Alwany YN. The Role of miRNA-182 and FOXO3 Expression in Breast Cancer. Asian Pac J Cancer Prev 2022; 23:3361-3370. [PMID: 36308360 PMCID: PMC9924337 DOI: 10.31557/apjcp.2022.23.10.3361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE evaluating the role of FOXO3 mRNA and mi RNA 182-5P expression levels in BC patients. METHOD 25 Samples of breast cancer and paired samples of non-cancerous tissues from the same resected breast were obtained from 25 female patients suffering from breast cancer and examined and analyzed by real time PCR to detect the expression levels of FOXO3 mRNA and mi RNA 182-5P. Patients' data were collected from patients medical records. RESULTS Foxo3 m RNA expression was down regulated in BC tissues (1.37± 1.96) as compared to control group (23.62 ± 54.39) and decreased FOXO3 expression was associated with larger tumor size (p= 0.046), late histopathological grading (p= 0.002), late TNM staging (<0.001) and increased miR-182 expression (p= 0.025). We found that expression level of miR-182 was significantly higher among breast cancer group (1.10±1.15) as compared to the control group (0.58±0.96 ) with p value = 0.017. We noted a significant increased expression associated with larger tumor size (p= 0.002), late histopathological grading (p= 0.008), late TNM staging (p= 0.002) and decreased FOXO3 expression (p= 0.025). A significant negative correlation between miR-182 and FOXO3 mRNA fold expression with r = - 0.447, and a p value of 0.025, this could be attributed to miRNA targeting FOXO gene. COCLUSION Down regulation of FOXO3 and up regulation of miR-182 expression was associated with advanced breast cancer. The negative correlation between miR-182 and FOXO3 mRNA could be attributed to miRNA targeting FOXO gene.
Collapse
Affiliation(s)
- Noha S Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Egypt. ,For Correspondence:
| | - Lamia Said Kandil
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University, Egypt. ,Lecturer in the School of Biological Sciences, Faculty of Science, University of East Anglia, UK.
| | - Radwa Mohamed
- Department of Pathology, Medical Research Institute, Alexandria University, Egypt.
| | - Mohamed Selima
- Department of Surgery, Medical Research Institute, Alexandria University, Egypt.
| | - Mohamed El Nemr
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt. ,Centre hospitalier de Troyes, radiotherapy department, France.
| | | | - Yasmine Nagy Alwany
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
21
|
Zhang J, Luo B, Sui J, Qiu Z, Huang J, Yang T, Luo Y. IMP075 targeting ClpP for colon cancer therapy in vivo and in vitro. Biochem Pharmacol 2022; 204:115232. [PMID: 36030831 DOI: 10.1016/j.bcp.2022.115232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
ONC201 is a well-known caseinolytic protease (ClpP)activator with established benefits against multiple tumors, including colorectal cancer (CRC). In this study, we investigated the anticancer effects and associated mechanisms of the ClpP agonist IMP075, derived from ONC201. Acute toxicity and CCK-8 assayswere employed to determine the safety of IMP075. The effectiveness of IMP075 was investigated in HCT116 cells and a mouse xenograft tumor model. Additionally, the properties of IMP075 were evaluated by pharmacokinetic,CYP inhibition, and hERG inhibition assays. Finally, isothermal titration calorimetry (ITC), differential scanning fluorimetry (DSF), cellular thermal shift assay (CETSA), molecular dynamics simulations, point mutations, and shRNA experiments were employed to elucidate the potential mechanism of IMP075. Compared with ONC201, IMP075 exhibited similar toxicity and improved antitumor effects in vitro and in vivo. Interestingly, the affinity and agonistic effects of IMP075 on ClpP were superior to ONC201, which allowed IMP075 to disrupt respiratory chain integrity at lower doses in HCT116 cells, leading to mitochondrial dysfunction. Furthermore, molecular dynamics simulations demonstrate that IMP075 forms two pairs of hydrogen bonds with ClpP, maintaining ClpP in an agonistic state. Importantly, the antiproliferative activity of IMP075 significantly decreased following ClpP knockdown. Our findings substantiate that IMP075 exerts excellent antitumor effects against CRC by activating ClpP-mediated impairment of mitochondrial function. Due to its superior properties, IMP075 appears to be have huge prospects for application.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Cantor E, Wierzbicki K, Tarapore RS, Ravi K, Thomas C, Cartaxo R, Nand Yadav V, Ravindran R, Bruzek AK, Wadden J, John V, May Babila C, Cummings JR, Rahman Kawakibi A, Ji S, Ramos J, Paul A, Walling D, Leonard M, Robertson P, Franson A, Mody R, Garton HJL, Venneti S, Odia Y, Kline C, Vitanza NA, Khatua S, Mueller S, Allen JE, Gardner SL, Koschmann C. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol 2022; 24:1366-1374. [PMID: 35137228 PMCID: PMC9340643 DOI: 10.1093/neuonc/noac030] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Diffuse Midline Glioma (DMG) with the H3K27M mutation is a lethal childhood brain cancer, with patients rarely surviving 2 years from diagnosis. METHODS We conducted a multi-site Phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients enrolled on Arm D of the trial (n = 24) underwent serial lumbar puncture for cell-free tumor DNA (cf-tDNA) analysis and patients on all arms at the University of Michigan underwent serial plasma collection. We performed digital droplet polymerase chain reaction (ddPCR) analysis of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal 2D tumor area on MRI). RESULTS Change in H3.3K27M VAF over time ("VAF delta") correlated with prolonged PFS in both CSF and plasma samples. Nonrecurrent patients that had a decrease in CSF VAF displayed a longer progression free survival (P = .0042). Decrease in plasma VAF displayed a similar trend (P = .085). VAF "spikes" (increase of at least 25%) preceded tumor progression in 8/16 cases (50%) in plasma and 5/11 cases (45.4%) in CSF. In individual cases, early reduction in H3K27M VAF predicted long-term clinical response (>1 year) to ONC201, and did not increase in cases of later-defined pseudo-progression. CONCLUSION Our work demonstrates the feasibility and potential utility of serial cf-tDNA in both plasma and CSF of DMG patients to supplement radiographic monitoring. Patterns of change in H3K27M VAF over time demonstrate clinical utility in terms of predicting progression and sustained response and possible differentiation of pseudo-progression and pseudo-response.
Collapse
Affiliation(s)
- Evan Cantor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Kyle Wierzbicki
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | | | - Karthik Ravi
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Chase Thomas
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Rodrigo Cartaxo
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Viveka Nand Yadav
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Ramya Ravindran
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Amy K Bruzek
- Department of Neurosurgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Vishal John
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | | | | | | | - Sunjong Ji
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Johanna Ramos
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Alyssa Paul
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Dustin Walling
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Marcia Leonard
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | | | - Andrea Franson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Rajen Mody
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan,USA
| | - Hugh J L Garton
- Department of Neurosurgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Sriram Venneti
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Yazmin Odia
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas A Vitanza
- Department of Neurology, The Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - Soumen Khatua
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | | | - Sharon L Gardner
- Department of Pediatrics, NYU Langone Health, New York, New York, USA
| | - Carl Koschmann
- Corresponding Author: Carl Koschmann, MD, University of Michigan Medical School, 3520D MSRB I, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA ()
| |
Collapse
|
23
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
24
|
Grant CE, Flis A, Ryan BM. Understanding the Role of Dopamine in Cancer: Past, Present, and Future. Carcinogenesis 2022; 43:517-527. [PMID: 35616105 DOI: 10.1093/carcin/bgac045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA, 3-hydroxytyramine) is member of the catecholamine family and is classically characterized according to its role in the central nervous system as a neurotransmitter. In recent decades, many novel and intriguing discoveries have been made about the peripheral expression of DA receptors (DRs) and the role of DA signaling in both normal and pathological processes. Drawing from decades of evidence suggesting a link between DA and cancer, the DA pathway (DAP) has recently emerged as a potential target in antitumor therapies. Due to the onerous, expensive, and frequently unsuccessful nature of drug development, the repurposing of dopaminergic drugs for cancer therapy has the potential to greatly benefit patients and drug developers alike. However, the lack of clear mechanistic data supporting the direct involvement of DRs and their downstream signaling components in cancer represents an ongoing challenge that has limited the translation of these drugs to the clinic. Despite this, the breadth of evidence linking DA to cancer and non-tumor cells in the tumor microenvironment (TME) justifies further inquiry into the potential applications of this treatment modality in cancer. Herein, we review the literature characterizing the interplay between the DA signaling axis and cancer, highlighting key findings, and then propose rational lines of investigation to follow.
Collapse
Affiliation(s)
- Christopher E Grant
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Amy Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
25
|
Madka V, De La Cruz A, Pathuri G, Panneerselvam J, Zhang Y, Stratton N, Hacking S, Finnberg NK, Safran HP, Sei S, Glaze ER, Shoemaker R, Fox JT, Raufi AG, El-Deiry WS, Rao CV. Oral administration of TRAIL-inducing small molecule ONC201/TIC10 prevents intestinal polyposis in the Apc min/+ mouse model. Am J Cancer Res 2022; 12:2118-2131. [PMID: 35693092 PMCID: PMC9185612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023] Open
Abstract
Colorectal cancer (CRC) incidence is rising globally. Hence, preventing this disease is a high priority. With this aim, we determined the CRC prevention potential of the TRAIL-inducing small molecule ONC201/TIC10 using a preclinical model representing high-risk familial adenomatous polyposis (FAP) patients, Apc min/+ mice. Prior to the efficacy study, optimal and non-toxic doses of ONC201 were determined by testing five different doses of ONC201 (0-100 mg/kg body weight (BW); twice weekly by oral gavage) in C57BL/6J mice (n=6/group) for 6 weeks. BW gain, organ weights and histopathology, blood profiling, and the plasma liver enzyme profile suggested no toxicities of ONC201 at doses up to 100 mg/kg BW. For efficacy determination, beginning at six weeks of age, groups of Apc min/+ male and female mice (n≥20) treated with colon carcinogen azoxymethane (AOM) (AOM-Apc min/+) were administered ONC201 (0, 25, and 50 mg/kg BW) as above up to 20 weeks of age. At termination, efficacy was determined by comparing the incidence and multiplicity of intestinal tumors between vehicle- and drug-treated groups. ONC201 showed a strong suppressive effect against the development of both large and small intestinal tumors in male and female mice. Apc min/+ mice treated with ONC201 (50 mg/kg BW) showed >50% less colonic tumor incidence (P<0.0002) than controls. Colonic tumor multiplicity was also significantly reduced by 68% in male mice (0.44 ± 0.11 in treated vs. 1.4 ± 0.14 in controls; P<0.0001) and by 75% in female mice (0.30 ± 0.10 in treated vs. 1.19 ± 0.19 in controls; P<0.0003) with ONC201 treatment (50 mg/kg BW). Small intestinal polyps were reduced by 68% in male mice (11.40 ± 1.19 in treated vs. 36.08 ± 2.62 in controls; P<0.0001) and female mice (9.65 ± 1.15 in treated vs. 29.24 ± 2.51 in controls; P<0.0001). Molecular analysis of the tumors suggested an increase in TRAIL, DR5, cleaved caspases 3/7/8, Fas-associated death domain protein (FADD), and p21 (WAF1) in response to drug treatment. Serum analysis indicated a decrease in pro-inflammatory serum biomarkers, such as IL1β, IL6, TNFα, G-CSF, and GM-CSF, in the ONC201-treated mice compared with controls. Our data demonstrated excellent chemopreventive potential of orally administered ONC201 against intestinal tumorigenesis in the AOM-Apc min/+ mouse model.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Arielle De La Cruz
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical SchoolRI, USA
- Joint Program in Cancer Biology at Brown University and The Lifespan Health SystemRI, USA
- Legorreta Cancer Center at Brown UniversityRI, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Nicole Stratton
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Sean Hacking
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical SchoolRI, USA
| | | | - Howard P Safran
- Hematology/Oncology Division, Warren Alpert Medical SchoolRI, USA
- Joint Program in Cancer Biology at Brown University and The Lifespan Health SystemRI, USA
- Legorreta Cancer Center at Brown UniversityRI, USA
| | - Shizuko Sei
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer InstituteRockville, MD, USA
| | - Elizabeth R Glaze
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer InstituteRockville, MD, USA
| | - Robert Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer InstituteRockville, MD, USA
| | - Jennifer T Fox
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer InstituteRockville, MD, USA
| | - Alexander G Raufi
- Hematology/Oncology Division, Warren Alpert Medical SchoolRI, USA
- Joint Program in Cancer Biology at Brown University and The Lifespan Health SystemRI, USA
- Legorreta Cancer Center at Brown UniversityRI, USA
| | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical SchoolRI, USA
- Fox Chase Cancer CenterPhiladelphia, PA, USA
- Hematology/Oncology Division, Warren Alpert Medical SchoolRI, USA
- Joint Program in Cancer Biology at Brown University and The Lifespan Health SystemRI, USA
- Legorreta Cancer Center at Brown UniversityRI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
- VA Medical CenterOklahoma City, OK, USA
| |
Collapse
|
26
|
ANGPTL1 attenuates cancer migration, invasion, and stemness through regulating FOXO3a-mediated SOX2 expression in colorectal cancer. Clin Sci (Lond) 2022; 136:657-673. [PMID: 35475476 PMCID: PMC9093149 DOI: 10.1042/cs20220043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022]
Abstract
Angiopoietin-like protein 1 (ANGPTL1) is a member of the ANGPTL family that suppresses angiogenesis, cancer invasion, metastasis, and cancer progression. ANGPTL1 is down-regulated in various cancers including colorectal cancer (CRC); however, the effects and mechanisms of ANGPTL1 on liver metastasis and cancer stemness in CRC are poorly understood. In the present study, we identified that ANGPTL1 was down-regulated in CRC and inversely correlated with metastasis and poor clinical outcomes in CRC patients form the ONCOMINE database and Human Tissue Microarray staining. ANGPTL1 significantly suppressed the migration/invasion abilities, the expression of cancer stem cell (CSC) markers, and sphere formation by enhancing FOXO3a expression, which contributed to the reduction of stem cell transcription factor SOX2 expression in CRC cells. Consistently, overexpression of ANGPTL1 reduced liver metastasis, tumor growth, and tumorigenicity in tumor-bearing mice. ANGPTL1 expression was negatively correlated with CSC markers expression and poor clinical outcomes in CRC patients. Taken together, these findings demonstrate that the molecular mechanisms of ANGPTL1 in colorectal cancer stem cell progression may provide a novel therapeutic strategy for CRC.
Collapse
|
27
|
Liu M, Xu C, Qin X, Liu W, Li D, Jia H, Gao X, Wu Y, Wu Q, Xu X, Xing B, Jiang X, Lu H, Zhang Y, Ding H, Zhao Q. DHW-221, a Dual PI3K/mTOR Inhibitor, Overcomes Multidrug Resistance by Targeting P-Glycoprotein (P-gp/ABCB1) and Akt-Mediated FOXO3a Nuclear Translocation in Non-small Cell Lung Cancer. Front Oncol 2022; 12:873649. [PMID: 35646704 PMCID: PMC9137409 DOI: 10.3389/fonc.2022.873649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is considered as a primary hindrance for paclitaxel failure in non-small cell lung cancer (NSCLC) patients, in which P-glycoprotein (P-gp) is overexpressed and the PI3K/Akt signaling pathway is dysregulated. Previously, we designed and synthesized DHW-221, a dual PI3K/mTOR inhibitor, which exerts a remarkable antitumor potency in NSCLC cells, but its effects and underlying mechanisms in resistant NSCLC cells remain unknown. Here, we reported for the first time that DHW-221 had favorable antiproliferative activity and suppressed cell migration and invasion in A549/Taxol cells in vitro and in vivo. Importantly, DHW-221 acted as a P-gp inhibitor via binding to P-gp, which resulted in decreased P-gp expression and function. A mechanistic study revealed that the DHW-221-induced FOXO3a nuclear translocation via Akt inhibition was involved in mitochondrial apoptosis and G0/G1 cell cycle arrest only in A549/Taxol cells and not in A549 cells. Interestingly, we observed that high-concentration DHW-221 reinforced the pro-paraptotic effect via stimulating endoplasmic reticulum (ER) stress and the mitogen-activated protein kinase (MAPK) pathway. Additionally, intragastrically administrated DHW-221 generated superior potency without obvious toxicity via FOXO3a nuclear translocation in an orthotopic A549/Taxol tumor mouse model. In conclusion, these results demonstrated that DHW-221, as a novel P-gp inhibitor, represents a prospective therapeutic candidate to overcome MDR in Taxol-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Deping Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiangbo Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaowen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyuan Lu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
28
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
29
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
30
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
31
|
Ma L, Chen Z, Li J, Zhang H, Jia Y, Liu J. DP from Euphorbia fischeriana S. mediated apoptosis in leukemia cells via the PI3k/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113889. [PMID: 33524514 DOI: 10.1016/j.jep.2021.113889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia fischeriana S. (E. fischeriana) is a classic Chinese herb with toxicity that is mainly used for cancer treatment and in insect repellent, anti-inflammatory and anti-edema applications (Liu et al., 2001). 12-Deoxyphorbol13-palmitate (DP), a tetracyclic diterpene monomer compound, was extracted from the roots of E. fischeriana by our research groups. AIM Previous studies found that DP could inhibit the proliferation of leukemia cells in vitro. However, the underlying mechanism of DP in leukemia is unknown. Hence, DP's pharmacological effect on leukemia cells was investigated in this study. MATERIALS AND METHODS DP was obtained from the Natural Medicine Chemistry Laboratory of Qiqihaer Medical University. In vitro, K562 cells and HL60 cells were incubated with DP or DP combined with LY294002 at different concentrations. Cell proliferation and apoptosis were detected by the relevant experimental methods. In vivo, nude mouse xenograft models were established by injecting K562 cells. DP was intraperitoneally administered to observe the influence on the growth of transplanted tumors. Gene detection and immunoblot analysis were performed to validate the mechanisms. RESULTS The cell counting kit-8 (CCK-8) assay proved that DP inhibited the growth of K562 and HL60 cells in a time- or dose-dependent manner. At 12 h, DP could induce apoptosis by Annexin V-FITC/propidium iodide (PI) dual labeling, loss of mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB) staining and transmission electron microscopy (TEM) observation in K562 or HL60 cells. Furthermore, in an assay of gene and protein expression, we found that DP could downregulate the gene and protein expression levels of Bcl-2, upregulate the gene and protein expression levels of Bax and Bim, and downregulate the protein expression levels of PI3k, p-Akt, and p-FoxO3a. Moreover, the effects of DP on proliferation and apoptosis in K562 cells were enhanced by LY294002. Then, we tested the antitumor effects of DP in vivo. Nude mouse xenograft models were established by subcutaneously injecting K562 cells. We found that tumor volume was significantly decreased in DP-treated xenograft nude mice. Morphologic changes, apoptosis degree, and related gene and protein expression levels in transplanted tumor tissue of DP-treated nude mice were assessed by different experimental methods. CONCLUSIONS The in vivo and in vitro experimental results indicated that DP might inhibit the proliferation and induce the apoptosis of leukemia cells, which might be a result of suppressing the PI3k/Akt signaling pathways.
Collapse
Affiliation(s)
- Liwei Ma
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Zhe Chen
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jing Li
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Hongtao Zhang
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Yongming Jia
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jicheng Liu
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China.
| |
Collapse
|
32
|
Licari E, Sánchez-Del-Campo L, Falletta P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol 2021; 139:106059. [PMID: 34400318 DOI: 10.1016/j.biocel.2021.106059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape. In this review we provide an overview of the Integrated Stress Response, emphasise its dual role during tumorigenesis and cancer progression, and highlight the therapeutic strategies available to target it.
Collapse
Affiliation(s)
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Spain
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
33
|
She X, Gao Y, Zhao Y, Yin Y, Dong Z. A high-throughput screen identifies inhibitors of lung cancer stem cells. Biomed Pharmacother 2021; 140:111748. [PMID: 34044271 DOI: 10.1016/j.biopha.2021.111748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the main cause of cancer morbidity and mortality. Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that can drive metastasis. The identification of CSC inhibitors and CSC-related genes is an alluring strategy for suppressing metastasis. Here, we established a simple and repeatable high-throughput CSC inhibitor screening platform that combined tumor sphere formation assays and cell viability assays. Human lung cancer cells were cocultured with 1280 pharmacologically active compounds (FDA-approved). Fifty-four candidate compounds obtained from our screening system completely or partially inhibited tumor sphere formation. A total of 5 of these 54 compounds (prochlorperazine dimaleate, thioridazine hydrochloride, ciproxifan hydrochloride, Ro 25-6981 hydrochloride, and AMN 082) completely inhibited the self-renewal of CSCs without cytotoxicity in vitro via their targets and suppressed lung cancer metastasis in vivo, suggesting that our screening platform is selective and reliable. DRD2, HRH3, and GRIN2B exhibited potent genes promoting CSCs in vitro experiments and clinical datasets. Further validation of the top hit (DRD2) and previously published studies demonstrate that our screening platform is a useful tool for CSC inhibitor and CSC-related gene screening.
Collapse
Affiliation(s)
- Xiaofei She
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China.
| | - Yaqun Gao
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China.
| | - Yan Zhao
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Yue Yin
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Zhewen Dong
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
34
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
35
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
36
|
Al Madhoun A, Haddad D, Al Tarrah M, Jacob S, Al-Ali W, Nizam R, Miranda L, Al-Rashed F, Sindhu S, Ahmad R, Bitar MS, Al-Mulla F. Microarray analysis reveals ONC201 mediated differential mechanisms of CHOP gene regulation in metastatic and nonmetastatic colorectal cancer cells. Sci Rep 2021; 11:11893. [PMID: 34088951 PMCID: PMC8178367 DOI: 10.1038/s41598-021-91092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
The imipramine ONC201 has antiproliferative effects in several cancer cell types and activates integrated stress response pathway associated with the induction of Damage Inducible Transcript 3 (DDIT3, also known as C/EBP homologous protein or CHOP). We investigated the signaling pathways through which ONC201/CHOP crosstalk is regulated in ONC201-treated nonmetastatic and metastatic cancer cell lines (Dukes' type B colorectal adenocarcinoma nonmetastatic SW480 and metastatic LS-174T cells, respectively). Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry, gene expression was assessed by Affymetrix microarray, signaling pathway perturbations were assessed in silico, and key regulatory proteins were validated by Western blotting. Unlike LS-174T cells, SW480 cells were resistant to ONC201 treatment; Gene Ontology analysis of differentially expressed genes showed that cellular responsiveness to ONC201 treatment also differed substantially. In both ONC201-treated cell lines, CHOP expression was upregulated; however, its upstream regulatory mechanisms were perturbed. Although, PERK, ATF6 and IRE1 ER-stress pathways upregulated CHOP in both cell types, the Bak/Bax pathway regulated CHOP only LS-174T cells. Additionally, CHOP RNA splicing profiles varied between cell lines; these were further modified by ONC201 treatment. In conclusion, we delineated the signaling mechanisms by which CHOP expression is regulated in ONC201-treated non-metastatic and metastatic colorectal cell lines. The observed differences could be related to cellular plasticity and metabolic reprogramming, nevertheless, detailed mechanistic studies are required for further validations.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait. .,Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait.
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Mustafa Al Tarrah
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Waleed Al-Ali
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, 046302, Jabriya, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Lavina Miranda
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Fatema Al-Rashed
- Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait.,Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Milad S Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, 046302, Jabriya, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait.
| |
Collapse
|
37
|
Bonner ER, Waszak SM, Grotzer MA, Mueller S, Nazarian J. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro Oncol 2021; 23:542-556. [PMID: 33336683 DOI: 10.1093/neuonc/noaa283] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ONC201 is the first member of the imipridone family of anticancer drugs to enter the clinic for the treatment of diverse solid and hematologic cancers. A subset of pediatric and adult patients with highly aggressive brain tumors has shown remarkable clinical responses to ONC201, and recently, the more potent derivative ONC206 entered clinical trials as a single agent for the treatment of central nervous system (CNS) cancers. Despite the emerging clinical interest in the utility of imipridones, their exact molecular mechanisms are not fully described. In fact, the existing literature points to multiple pathways (e.g. tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) signaling, dopamine receptor antagonism, and mitochondrial metabolism) as putative drug targets. We have performed a comprehensive literature review and highlighted mitochondrial metabolism as the major target of imipridones. In support of this, we performed a meta-analysis of an ONC201 screen across 539 human cancer cell lines and showed that the mitochondrial caseinolytic protease proteolytic subunit (ClpP) is the most significant predictive biomarker of response to treatment. Herein, we summarize the main findings on the anticancer mechanisms of this potent class of drugs, provide clarity on their role, and identify clinically relevant predictive biomarkers of response.
Collapse
Affiliation(s)
- Erin R Bonner
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, California
| | - Javad Nazarian
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC.,Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Ren Y, Deng R, Cai R, Lu X, Luo Y, Wang Z, Zhu Y, Yin M, Ding Y, Lin J. TUSC3 induces drug resistance and cellular stemness via Hedgehog signaling pathway in colorectal cancer. Carcinogenesis 2021; 41:1755-1766. [PMID: 32338281 DOI: 10.1093/carcin/bgaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor candidate 3 (TUSC3) is a coding gene responsible for N-glycosylation of many critical proteins. TUSC3 gene plays an oncogenic role in colorectal cancer (CRC), however, the role of TUSC3 in drug resistance of CRC is still unclear. The aim of this study is to investigate the biological function and molecular mechanism of TUSC3 in CRC drug resistance. The expression of TUSC3 in CRC is positively correlated to tumor stage in 90 paired clinical samples, and negatively associated with overall survival and disease-free survival of CRC patients. In vitro, TUSC3 promotes the formation of stemness and induces the drug resistance to 5-fluorouracil and cis-dichlorodiammineplatinum(II) in CRC cells. The tissue microarray assay and bioinformatic analysis indicate that TUSC3 may promote the expression of CD133 and ABCC1 via Hedgehog signaling pathway. Treatment of Hedgehog signaling pathway agonist or inhibitor in TUSC3-silenced or TUSC3-overexpressed cells reverse the effects of TUSC3 in cellular stemness phenotype and drug resistance. Meanwhile, coimmunoprecipitation and immunofluorescence assays indicate a tight relationship between TUSC3 and SMO protein. Our data suggest that TUSC3 promotes the formation of cellular stemness and induces drug resistance via Hedgehog signaling pathway in CRC.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Ruxia Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Rui Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yuejun Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Ziyuan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yuchen Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Mengyuan Yin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
39
|
Chmurska A, Matczak K, Marczak A. Two Faces of Autophagy in the Struggle against Cancer. Int J Mol Sci 2021; 22:2981. [PMID: 33804163 PMCID: PMC8000091 DOI: 10.3390/ijms22062981] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy can play a double role in cancerogenesis: it can either inhibit further development of the disease or protect cells, causing stimulation of tumour growth. This phenomenon is called "autophagy paradox", and is characterised by the features that the autophagy process provides the necessary substrates for biosynthesis to meet the cell's energy needs, and that the over-programmed activity of this process can lead to cell death through apoptosis. The fight against cancer is a difficult process due to high levels of resistance to chemotherapy and radiotherapy. More and more research is indicating that autophagy may play a very important role in the development of resistance by protecting cancer cells, which is why autophagy in cancer therapy can act as a "double-edged sword". This paper attempts to analyse the influence of autophagy and cancer stem cells on tumour development, and to compare new therapeutic strategies based on the modulation of these processes.
Collapse
Affiliation(s)
- Anna Chmurska
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| |
Collapse
|
40
|
Arrillaga-Romany I, Odia Y, Prabhu VV, Tarapore RS, Merdinger K, Stogniew M, Oster W, Allen JE, Mehta M, Batchelor TT, Wen PY. Biological activity of weekly ONC201 in adult recurrent glioblastoma patients. Neuro Oncol 2021; 22:94-102. [PMID: 31702782 DOI: 10.1093/neuonc/noz164] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ONC201 is a dopamine receptor D2 (DRD2) antagonist that penetrates the blood-brain barrier. ONC201 efficacy has been shown in glioblastoma animal models and is inversely correlated with dopamine receptor DRD5 expression. ONC201 is well tolerated in adult recurrent glioblastoma patients with dosing every 3 weeks and has achieved an objective radiographic response in a patient harboring the H3 K27M mutation. METHODS In a window-of-opportunity arm, 6 adult subjects initiated ONC201 prior to re-resection of recurrent glioblastoma with intratumoral concentrations as the primary endpoint. An additional 20 adults with recurrent glioblastoma received single agent weekly oral ONC201 at 625 mg, with progression-free survival at 6 months (PFS6) by Response Assessment in Neuro-Oncology (RANO) criteria as the primary endpoint. RESULTS The window-of-opportunity arm achieved its primary endpoint with intratumoral ONC201 concentrations at ~24 hours following the second weekly dose ranging from 600 nM to 9.3 µM. Intratumoral pharmacodynamics assessed by activating transcriptional factor 4, death receptor 5, and apoptosis induction relative to archival samples were observed with the strongest intensity and uniformity among patients with low DRD5 tumor expression. The primary endpoint of PFS6 by RANO was not achieved at 5% in this molecularly unselected cohort; however, 1 of 3 patients enrolled with the H3 K27M mutation had a complete regression of enhancing multifocal lesions that remained durable for >1.5 years. No treatment modifications or discontinuations due to toxicity were observed, including in those who underwent re-resection. CONCLUSIONS Weekly ONC201 is well tolerated, and meaningful intratumoral concentrations were achieved. ONC201 may be biologically active in a subset of adult patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tracy T Batchelor
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
41
|
Fatima N, Shen Y, Crassini K, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL. EJHAEM 2021; 2:81-93. [PMID: 35846080 PMCID: PMC9175891 DOI: 10.1002/jha2.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Despite advances in therapy, a significant proportion of patients with chronic lymphocytic leukemia (CLL) relapse with drug resistant disease. Novel treatment approaches are required, particularly for high risk disease. The imipridones represent a new class of cancer therapy that has been investigated in pre-clinical and clinical trials against a range of different cancers. We investigated the effects of the imipridone, ONC-212, against CLL cells cultured under conditions that mimic aspects of the tumour microenvironment and a TP53ko CLL cell line (OSU-CLL-TP53ko). ONC-212 induced dose-dependent apoptosis, cell cycle arrest and reduced the migration of CLL cells in vitro, including cells from patients with TP53 lesions and OSU-CLL-TP53ko cells. The effects of ONC-212 were associated with protein changes consistent with activation of the mitochondrial protease, CIpP, and the integrated stress response. We also observed inhibition of pathways downstream of the B-cell receptor (BCR) (AKT and MAPK-ERK1/2) and a pro-apoptotic shift in the balance of proteins of the BCL2 family of proteins (BCL2, MCL1, BCLxL, BAX and NOXA). In conclusion, the study suggests ONC-212 may represent an effective treatment for high risk CLL disease by inhibiting multiple facets of the BCR signaling pathway and the pro-survival effects of the BCL2-family proteins.
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Yandong Shen
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Kyle Crassini
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
| | | | - Henk Lang
- Madera TherapeuticsLLCCaryNorth Carolina
| | | | | | - Stephen P. Mulligan
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Oliver G. Best
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
- Department of Molecular Medicine and GeneticsFlinders Health and Medical Research Institute (FHMRI)College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| |
Collapse
|
42
|
Castelli V, Giordano A, Benedetti E, Giansanti F, Quintiliani M, Cimini A, d’Angelo M. The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death. Cancers (Basel) 2021; 13:328. [PMID: 33477367 PMCID: PMC7830655 DOI: 10.3390/cancers13020328] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the primary causes of death worldwide. Tumour malignancy is related to tumor heterogeneity, which has been suggested to be due to a small subpopulation of tumor cells named cancer stem cells (CSCs). CSCs exert a key role in metastasis development, tumor recurrence, and also epithelial-mesenchymal transition, apoptotic resistance, self-renewal, tumorigenesis, differentiation, and drug resistance. Several current therapies fail to eradicate tumors due to the ability of CSCs to escape different programmed cell deaths. Thus, developing CSC-selective and programmed death-inducing therapeutic approaches appears to be of primary importance. In this review, we discuss the main programmed cell death occurring in cancer and the promising CSC-targeting agents developed in recent years. Even if the reported studies are encouraging, further investigations are necessary to establish a combination of agents able to eradicate CSCs or inhibit their growth and proliferation.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| |
Collapse
|
43
|
Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol 2021; 17:581-596. [PMID: 33401962 DOI: 10.2217/fon-2020-0727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, can induce apoptosis in cancer cells, sparing normal cells when bound to its associated death receptors (DR4/DR5). This unique mechanism makes TRAIL a potential anticancer therapeutic agent. However, clinical trials of recombinant TRAIL protein and TRAIL receptor agonist monoclonal antibodies have shown disappointing results due to its short half-life, poor pharmacokinetics and the resistance of the cancer cells. This review summarizes TRAIL-induced apoptotic and survival pathways as well as mechanisms leading to apoptotic resistance. Recent development of methods to overcome cancer cell resistance to TRAIL-induced apoptosis, such as protein modification, combination therapy and TRAIL-based gene therapy, appear promising. We also discuss the challenges and opportunities in the development of TRAIL-based therapies for the treatment of human cancers.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
44
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
45
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
46
|
McSweeney KR, Gadanec LK, Qaradakhi T, Gammune TM, Kubatka P, Caprnda M, Fedotova J, Radonak J, Kruzliak P, Zulli A. Imipridone enhances vascular relaxation via FOXO1 pathway. Clin Exp Pharmacol Physiol 2020; 47:1816-1823. [PMID: 32652671 DOI: 10.1111/1440-1681.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 01/30/2023]
Abstract
Cardiovascular complications are a side effect of cancer therapy, potentially through reduced blood vessel function. ONC201 (TIC10) is currently used in phase 2 clinical trials to treat high-grade gliomas. TIC10 is a phosphatidylinositol 3-kinase (PI3K)/AKT/extracellular signal-regulated kinase (ERK) inhibitor that induces apoptosis via upregulation of TNF-related apoptosis-inducing ligand, which via stimulation of FOXO and death receptor could increase eNOS upregulation. This has the potential to improve vascular function through increased NO bioavailability. Our aim was to investigate the role of TIC10 on vascular function to determine if it would affect the risk of CVD. Excised abdominal aorta from White New Zealand male rabbits were cut into rings. Vessels were incubated with TIC10 and AS1842856 (FOXO1 inhibitor) followed by cumulative doses of acetylcholine (Ach) to assess vessel function. Vessels were then processed for immunohistochemistry. Incubation of blood vessels with TIC10 resulted in enhanced vasodilatory capacity. Combination treatment with the FOXO1 inhibitor and TIC10 resulted in reduced vascular function compared to control. Immunohistochemical analysis indicated a 3-fold increase in death receptor 5 (DR5) expression in the TIC10-treated blood vessels but the addition of the FOXO1 inhibitor downregulated DR5 expression. The expression of DR4 receptor was not significantly increased in the presence of TIC10; however, addition of the FOXO1 inhibitor downregulated expression. TIC10 has the capacity to improve the function of healthy vessels when stimulated with the vasodilator Ach. This highlights its therapeutic potential not only in cancer treatment without cardiovascular side effects, but also as a possible drug to treat established CVD.
Collapse
Affiliation(s)
- Kristen R McSweeney
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Laura K Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | | | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine and University Hospital, Bratislava, Slovakia
| | - Julia Fedotova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Academy of Sciences, St. Petersburg, Russian Federation
| | - Jozef Radonak
- 1st Department of Surgery, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovak Republic
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Ralff MD, Jhaveri A, Ray JE, Zhou L, Lev A, Campbell KS, Dicker DT, Ross EA, El-Deiry WS. TRAIL receptor agonists convert the response of breast cancer cells to ONC201 from anti-proliferative to apoptotic. Oncotarget 2020; 11:3753-3769. [PMID: 33144917 PMCID: PMC7584235 DOI: 10.18632/oncotarget.27773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
ONC201 was initially identified as an inducer of cell death through the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway. The compound is currently being tested in patients with hematological malignancies and solid tumors, including those of the breast. We investigated strategies to convert the response of breast cancers to ONC201 from anti-proliferative to apoptotic. ONC201 treatment upregulates TRAIL and primes TRAIL-resistant non-triple negative breast cancer (TNBC) cells to undergo cell death through the extrinsic pathway. Remarkably, the addition of exogenous recombinant human TRAIL (rhTRAIL) converts the response of TRAIL-resistant non-TNBC cells to ONC201 from anti-proliferative to apoptotic in a death receptor 5 (DR5)-dependent manner in vitro. Importantly, normal fibroblasts do not undergo apoptosis following rhTRAIL plus ONC201. In vivo, MDA-MB-361 tumor growth rate is significantly reduced following treatment with a combination of ONC201 and rhTRAIL as compared to control tumors. Natural killer (NK) cells which use TRAIL to kill DR5-expressing cancer cells, exhibit greater cytotoxicity against ONC201-treated breast cancer cells compared to controls. rhTRAIL also converts the response of cells from other tumor types to ONC201 from anti-proliferative to apoptotic. A monoclonal DR5-agonistic antibody converts the response of non-TNBC cells to ONC201 from anti-proliferative to apoptotic. Our findings describe a novel therapeutic strategy that potently converts the response of a cancer cell to ONC201 from anti-proliferative to apoptotic. This approach may be clinically relevant and has potential to induce tumor regression of patient tumors with relative resistance to ONC201 monotherapy.
Collapse
Affiliation(s)
- Marie D Ralff
- MD/PhD Program, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aakash Jhaveri
- Master of Science in Biotechnology Program, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, USA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jocelyn E Ray
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Division of Gynecologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, USA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Avital Lev
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, USA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, USA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,Hematology-Oncology Division, Brown University and the Lifespan Cancer Institute, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
48
|
Yang L, Ding C, Tang W, Yang T, Liu M, Wu H, Wen K, Yao X, Feng J, Luo J. INPP4B exerts a dual function in the stemness of colorectal cancer stem-like cells through regulating Sox2 and Nanog expression. Carcinogenesis 2020; 41:78-90. [PMID: 31179504 DOI: 10.1093/carcin/bgz110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inositol polyphosphate 4-phosphatase type II (INPP4B), a lipid phosphatase, was identified as a negative regulator of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in several cancers. The expression and biological function of INPP4B in human colorectal cancer (CRC) are controversial, while the role and molecular mechanism of INPP4B in colorectal cancer stem-like cells (CR-CSLCs) remains unclear. Here, we observed that INPP4B expression was markedly decreased in primary non-metastatic CR-CSLCs and increased in highly metastatic CR-CSLCs compared with corresponding control non-CSLCs. INPP4B overexpression inhibited self-renewal, and chemoresistance of primary non-metastatic CR-CSLCs, but exerted the opposite roles in highly metastatic CR-CSLCs in vitro. Similarly, INPP4B knockdown had dual functions in the self-renewal and chemoresistance of different CR-CSLCs. In addition, we demonstrated that INPP4B overexpression suppressed the tumorigenicity of primary non-metastatic CR-CSLCs while induced the tumorigenicity of highly metastatic CR-CSLCs in nude mice. Furthermore, INPP4B was found to modulate the stemness of CR-CSLCs by regulating Sox2 and Nanog expression, which was dependent on PI3K/PTEN/Akt signaling. In conclusion, our results highlight an important role of INPP4B in the stemness of CR-CSLCs for the first time and emphasize INPP4B as a dual therapeutic target for suppressing primary cancer cell proliferation and for preventing metastasis in CRC patients.
Collapse
Affiliation(s)
- Liwen Yang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chenbo Ding
- Department of Clinical Medical Laboratory, Medical School of Southeast University, Nanjing, China
| | - Wendong Tang
- Center of Clinical Laboratory Medicine, the Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, China
| | - Taoyu Yang
- Department of Invasive Technology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Min Liu
- Department of Health, Yancheng Maternal and Child Health Care Hospital, Yancheng, China
| | - Hailu Wu
- Department of Gastroenterology, the Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jihong Feng
- Department of Oncology, Taizhou Municipal Hospital, Taizhou, China
| | | |
Collapse
|
49
|
Jo EB, Lee H, Lee KW, Kim SJ, Hong D, Park JB. Complete regression of metastatic de-differentiated liposarcoma with engineered mesenchymal stromal cells with dTRAIL and HSV-TK. Am J Transl Res 2020; 12:3993-4000. [PMID: 32774752 PMCID: PMC7407704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/30/2019] [Indexed: 06/11/2023]
Abstract
De-differentiated liposarcoma (DDLPS) is a rare cancer with high rates of recurrence and metastasis. Currently, treatment with doxorubicin-ifosphamide, following surgical resection, is routinely performed. However, clinical treatment of these refractory cancers require further study. We investigated the treatment of mesenchymal stromal cells (MSC) transduced with dodecameric tumor necrosis factor receptor apoptosis-inducing ligand (dTRAIL) and herpes simplex virus thymidine kinase (HSV-TK) (MSC-TR/TK), as a method to approach DDLPS therapy. First, in order to assess the efficacy of this therapy, cell viability was evaluated by apoptosis analysis of a DDLPS cell line co-cultured with patient-derived cells (PDCs) and MSC-TR/TK in vitro. In vivo, we established a lung metastasis model using the DDLPS cell line and assessed the anti-tumorigenic efficiency of dTRAIL-TK by injecting MSC-TR/TK. Results confirmed that liposarcoma cells resistant to dTRAIL in PDCs, transformed by HSV-TK, induced apoptosis effectively after treatment with toxic ganciclovir (GCV). Meanwhile, we observed that treatment of GCV after injection of MSC-TR/TK effectively eliminated lung nodules in a lung metastasis model established from LPS246 cells resistant to dTRAIL. When mice were treated with GCV two days after double injection with MSC-TR/TK, the tumor suppression effect was even more pronounced.
Collapse
Affiliation(s)
- Eun Byeol Jo
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University School of MedicineSeoul, Republic of Korea
| | - Hyunjoo Lee
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University School of MedicineSeoul, Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
- Department of Surgery, Samsung Medical CenterSeoul, Republic of Korea
| | - Sung Joo Kim
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University School of MedicineSeoul, Republic of Korea
- Department of Surgery, Samsung Medical CenterSeoul, Republic of Korea
| | - Doopyo Hong
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University School of MedicineSeoul, Republic of Korea
- Department of Surgery, Samsung Medical CenterSeoul, Republic of Korea
| |
Collapse
|
50
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|