1
|
Hoch CC, Hachani K, Han Y, Schmidl B, Wirth M, Multhoff G, Bashiri Dezfouli A, Wollenberg B. The future of interleukin gene therapy in head and neck cancers. Expert Opin Biol Ther 2024; 24:1057-1073. [PMID: 39291462 DOI: 10.1080/14712598.2024.2405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Head and neck cancer (HNC), primarily head and neck squamous cell carcinomas, originates from the squamous epithelium in areas like the oral cavity, lip, larynx, and oropharynx. With high morbidity impacting critical functions, combined treatments like surgery, radiation, and chemotherapy often fall short in advanced stages, highlighting the need for innovative therapies. AREAS COVERED This review critically evaluates interleukin (IL) gene therapy for treating HNC. The discussion extends to key ILs in HNC, various gene therapy techniques and delivery methods. We particularly focus on the application of IL-2, IL-12, and IL-24 gene therapies, examining their mechanisms and outcomes in preclinical studies and clinical trials. The final sections address IL gene therapy challenges in HNC, exploring solutions and critically assessing future therapeutic directions. EXPERT OPINION Despite advancements in genomic and immunotherapy, significant challenges in HNC treatment persist, primarily due to the immunosuppressive nature of the tumor microenvironment and the adverse effects of current therapies. The therapeutic efficacy of IL gene therapy hinges on overcoming these hurdles through refined delivery methods that ensure targeted, tumor-specific gene expression. Future strategies should focus on refining gene delivery methods and combining IL gene therapy with other treatments to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Yu Han
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Li NY, Zhang W, Haensel D, Jussila AR, Pan C, Gaddam S, Plevritis SK, Oro AE. Basal-to-inflammatory transition and tumor resistance via crosstalk with a pro-inflammatory stromal niche. Nat Commun 2024; 15:8134. [PMID: 39289380 PMCID: PMC11408617 DOI: 10.1038/s41467-024-52394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Cancer-associated inflammation is a double-edged sword possessing both pro- and anti-tumor properties through ill-defined tumor-immune dynamics. While we previously identified a carcinoma tumor-intrinsic resistance pathway, basal-to-squamous cell carcinoma transition, here, employing a multipronged single-cell and spatial-omics approach, we identify an inflammation and therapy-enriched tumor state we term basal-to-inflammatory transition. Basal-to-inflammatory transition signature correlates with poor overall patient survival in many epithelial tumors. Basal-to-squamous cell carcinoma transition and basal-to-inflammatory transition occur in adjacent but distinct regions of a single tumor: basal-to-squamous cell carcinoma transition arises within the core tumor nodule, while basal-to-inflammatory transition emerges from a specialized inflammatory environment defined by a tumor-associated TREM1 myeloid signature. TREM1 myeloid-derived cytokines IL1 and OSM induce basal-to-inflammatory transition in vitro and in vivo through NF-κB, lowering sensitivity of patient basal cell carcinoma explant tumors to Smoothened inhibitor treatment. This work deepens our knowledge of the heterogeneous local tumor microenvironment and nominates basal-to-inflammatory transition as a drug-resistant but targetable tumor state driven by a specialized inflammatory microenvironment.
Collapse
Affiliation(s)
- Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna R Jussila
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Zheng H, Wu X, Guo L, Liu J. MyD88 signaling pathways: role in breast cancer. Front Oncol 2024; 14:1336696. [PMID: 38347830 PMCID: PMC10859757 DOI: 10.3389/fonc.2024.1336696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
MyD88 plays a central role in breast cancer, exerting a multitude of effects that carry substantial implications. Elevated MyD88 expression is closely associated with aggressive tumor characteristics, suggesting its potential as a valuable prognostic marker and therapeutic target. MyD88 exerts influence over several critical aspects of breast cancer, including metastasis, recurrence, drug resistance, and the regulation of cancer stem cell properties. Furthermore, MyD88 modulates the release of inflammatory and chemotactic factors, thereby shaping the tumor's immune microenvironment. Its role in immune response modulation underscores its potential in influencing the dynamic interplay between tumors and the immune system. MyD88 primarily exerts intricate effects on tumor progression through pathways such as Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), Toll-like Receptor/Nuclear Factor Kappa B (TLR/NF-κB), and others. Nevertheless, in-depth research is essential to unveil the precise mechanisms underlying the diverse roles of MyD88 in breast cancer. The translation of these findings into clinical applications holds great promise for advancing precision medicine approaches for breast cancer patients, ultimately enhancing prognosis and enabling the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
4
|
Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine 2022; 153:155850. [PMID: 35279620 DOI: 10.1016/j.cyto.2022.155850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Numerous preclinical and clinical studies have demonstrated the significant contribution of inflammation to the development and progression of various types of cancer. Inflammation in the tumor microenvironment mediates complex interactions between innate immunity, adaptive immunity, microbiomes and stroma, and ultimately alters the overall fitness of tumor cells at multiple stages of carcinogenesis. Malignancies are known to arise in areas of chronic inflammation and inflammation in the tumor microenvironment (often called tumor-promoting inflammation) is believed to allow cancer cells to evade immunosurveillance while promoting genetic instability, survival and progression. Among the strongest data suggesting a causal role for inflammation in cancer come from the recent CANTOS trial which demonstrated that interleukin-1β (IL-1β) inhibition with canakinumab leads to a significant, dose-dependent decrease in incident lung cancer. This observation has launched a series of additional clinical studies to understand the role of IL-1β and the inflammasome in cancer, and the clinical utility of IL-1β inhibition in different stages of lung cancer. In this article we will review recent data implicating IL-1β signaling and its upstream regulator NLRP3 in both solid tumor and hematologic malignancies. We will discuss the key preclinical observations and the current clinical landscape, and describe the pharmacologic tools which will be used to evaluate the effects of blocking tumor-promoting inflammation clinically.
Collapse
|
5
|
Jin S, Liu C, Shi G, Mu Y, Zhang H, Zhu Y, Su H, Ye D. IL-1A is associated with postoperative survival and immune contexture in clear cell renal cell carcinoma. Urol Oncol 2022; 40:111.e1-111.e9. [DOI: 10.1016/j.urolonc.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
|
6
|
A model of seven immune checkpoint-related genes predicting overall survival for head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 278:3467-3477. [PMID: 33449165 DOI: 10.1007/s00405-020-06540-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease characterized by different molecular subtypes with different prognosis and response to treatment. Therefore, the aim of this study was to construct reliable gene signatures based on immune checkpoint-related genes to distinguish between subgroups of patients with different risks. METHODS We obtained the HNSCC data from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) as a training set and the external validation set, respectively. First, differentially expressed immune checkpoint-related genes in tumor tissues and normal tissues were determined, and the potential functions of differential genes were explored through GO function annotation and KEGG pathway enrichment analysis. Using univariate Cox regression analysis, 20 immune checkpoint-related genes in HNSCC patients were significantly associated with overall survival (OS). Subsequently, seven genes were selected by multivariate Cox regression analysis to create a gene signature. Next, the stability of gene signatures was assessed using Kaplan-Meier curve, Time-dependent receiver operating characteristic (ROC) curve. Finally, we constructed a nomogram visualization modelled to facilitate subsequent clinical applications. RESULTS A total of 80 differentially expressed genes (DEGs) were obtained, the GO analysis of these DEGs indicated that they were significantly enriched in positive regulation of cell activation, T cell activation; the KEGG analysis results performed and showed that the DEGs were enriched in the MAPK signaling pathway, PI3K - Akt signaling pathway. 7 genes (PPP2R1B, MYD88, CD86, CD80, MAP2K1, TRIB3 and ICOS) were screened by univariate and multivariate Cox regression, and they were used to construct a prognostic model. In the TCGA and GEO datasets, Kaplan-Meier analysis indicated that patients in the high-risk group have a poor prognosis. The sensitivity and specificity evaluation of prognostic model for 1-, 3-, 5-year OS in TCGA were 0.644, 0.661 and 0.625, respectively; and in GSE41613 were 0.748, 0.719, and 0.727, respectively. The calibration chart curve showed that the nomogram has strong clinical performance in the prognosis prediction of HNSCC patients. CONCLUSIONS A novel immune checkpoint-related gene signature can effectively predict and stratify OS in HNSCC patients.
Collapse
|
7
|
Ebert K, Zwingenberger G, Barbaria E, Keller S, Heck C, Arnold R, Hollerieth V, Mattes J, Geffers R, Raimúndez E, Hasenauer J, Luber B. Determining the effects of trastuzumab, cetuximab and afatinib by phosphoprotein, gene expression and phenotypic analysis in gastric cancer cell lines. BMC Cancer 2020; 20:1039. [PMID: 33115415 PMCID: PMC7594334 DOI: 10.1186/s12885-020-07540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer death worldwide. The molecular mechanisms of action for anti-HER-family drugs in gastric cancer cells are incompletely understood. We compared the molecular effects of trastuzumab and the other HER-family targeting drugs cetuximab and afatinib on phosphoprotein and gene expression level to gain insights into the regulated pathways. Moreover, we intended to identify genes involved in phenotypic effects of anti-HER therapies. METHODS A time-resolved analysis of downstream intracellular kinases following EGF, cetuximab, trastuzumab and afatinib treatment was performed by Luminex analysis in the gastric cancer cell lines Hs746T, MKN1, MKN7 and NCI-N87. The changes in gene expression after treatment of the gastric cancer cell lines with EGF, cetuximab, trastuzumab or afatinib for 4 or 24 h were analyzed by RNA sequencing. Significantly enriched pathways and gene ontology terms were identified by functional enrichment analysis. Furthermore, effects of trastuzumab and afatinib on cell motility and apoptosis were analyzed by time-lapse microscopy and western blot for cleaved caspase 3. RESULTS The Luminex analysis of kinase activity revealed no effects of trastuzumab, while alterations of AKT1, MAPK3, MEK1 and p70S6K1 activations were observed under cetuximab and afatinib treatment. On gene expression level, cetuximab mainly affected the signaling pathways, whereas afatinib had an effect on both signaling and cell cycle pathways. In contrast, trastuzumab had little effects on gene expression. Afatinib reduced average speed in MKN1 and MKN7 cells and induced apoptosis in NCI-N87 cells. Following treatment with afatinib, a list of 14 genes that might be involved in the decrease of cell motility and a list of 44 genes that might have a potential role in induction of apoptosis was suggested. The importance of one of these genes (HBEGF) as regulator of motility was confirmed by knockdown experiments. CONCLUSIONS Taken together, we described the different molecular effects of trastuzumab, cetuximab and afatinib on kinase activity and gene expression. The phenotypic changes following afatinib treatment were reflected by altered biological functions indicated by overrepresentation of gene ontology terms. The importance of identified genes for cell motility was validated in case of HBEGF.
Collapse
Affiliation(s)
- Karolin Ebert
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Gwen Zwingenberger
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Elena Barbaria
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Simone Keller
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Corinna Heck
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Rouven Arnold
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Vanessa Hollerieth
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Julian Mattes
- MATTES Medical Imaging GmbH, A-4232, Hagenberg, Austria
| | - Robert Geffers
- Helmholtz Zentrum für Infektionsforschung, 38124, Braunschweig, Germany
| | - Elba Raimúndez
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, 85748, Garching, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, 85748, Garching, Germany.,Faculty of Mathematics and Natural Sciences, University of Bonn, 53113, Bonn, Germany
| | - Birgit Luber
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany.
| |
Collapse
|
8
|
Gelfo V, Romaniello D, Mazzeschi M, Sgarzi M, Grilli G, Morselli A, Manzan B, Rihawi K, Lauriola M. Roles of IL-1 in Cancer: From Tumor Progression to Resistance to Targeted Therapies. Int J Mol Sci 2020; 21:ijms21176009. [PMID: 32825489 PMCID: PMC7503335 DOI: 10.3390/ijms21176009] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
IL-1 belongs to a family of 11 members and is one of the seven receptor-agonists with pro-inflammatory activity. Beyond its biological role as a regulator of the innate immune response, IL-1 is involved in stress and chronic inflammation, therefore it is responsible for several pathological conditions. In particular, IL-1 is known to exert a critical function in malignancies, influencing the tumor microenvironment and promoting cancer initiation and progression. Thus, it orchestrates immunosuppression recruiting pro-tumor immune cells of myeloid origin. Furthermore, new recent findings showed that this cytokine can be directly produced by tumor cells in a positive feedback loop and contributes to the failure of targeted therapy. Activation of anti-apoptotic signaling pathways and senescence are some of the mechanisms recently proposed, but the role of IL-1 in tumor cells refractory to standard therapies needs to be further investigated.
Collapse
Affiliation(s)
- Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
| | - Giada Grilli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
| | - Beatrice Manzan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
| | - Karim Rihawi
- Department of Oncology, Policlinico S. Orsola-Malpighi, University of Bologna, 40138 Bologna, Italy;
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (V.G.); (D.R.); (M.M.); (M.S.); (G.G.); (A.M.); (B.M.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-4118
| |
Collapse
|
9
|
Gilbertson-White S, Perkhounkova Y, Saeidzadeh S, Hein M, Dahl R, Simons-Burnett A. Understanding Symptom Burden in Patients With Advanced Cancer Living in Rural Areas. Oncol Nurs Forum 2020; 46:428-441. [PMID: 31225835 DOI: 10.1188/19.onf.428-441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the feasibility of using a biobehavioral approach to examine symptom burden in rural residents with advanced cancer. SAMPLE & SETTING 21 patients with advanced lung, colorectal, or pancreatic cancer were enrolled at the University of Iowa in Iowa City. METHODS & VARIABLES Using Cleeland's cytokine-immunologic model of symptom expression, symptom burden (i.e., severity, count, and interference) and inflammatory cytokines were measured for 24 weeks. Potential predictors included demographics, clinical characteristics, optimism, social support, and cancer-related stress. Descriptive statistics, Wilcoxon rank-sum, and Fisher's exact test were used for analysis. RESULTS Recruitment and retention rates were similar for rural and nonrural patients. Demographics, optimism, and social support were no different between groups. The cancer-related stress total score for rural patients was nearly half of the score of nonrural patients, with rural patients reporting significantly less avoidance. Symptom severity for the five worst symptoms remained moderate during the 24 weeks, whereas nonrural residents reported steady declines in severity of their five worst symptoms. Significant differences in inflammatory cytokines between groups were only found at one time point. IMPLICATIONS FOR NURSING Rural residents who seek care at a cancer center may be clinically and demographically more similar to their nonrural counterparts than to rural residents seeking local care.
Collapse
|
10
|
Espinosa-Cotton M, Fertig EJ, Stabile LP, Gaither-Davis A, Bauman JE, Schmitz S, Gibson-Corley KN, Cheng Y, Jensen IJ, Badovinac VP, Laux D, Simons AL. A preliminary analysis of interleukin-1 ligands as potential predictive biomarkers of response to cetuximab. Biomark Res 2019; 7:14. [PMID: 31346466 PMCID: PMC6636109 DOI: 10.1186/s40364-019-0164-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) monoclonal IgG1 antibody cetuximab is approved for first-line treatment of recurrent and metastatic (R/M) HNSCC as a part of the standard of care EXTREME regimen (platinum/5-fluorouracil/cetuximab). This regimen has relatively high response and disease control rates but is generally not curative and many patients will experience recurrent disease and/or metastasis. Therefore, there is a great need to identify predictive biomarkers for recurrence and disease progression in cetuximab-treated HNSCC patients to facilitate patient management and allow for treatment modification. The goal of this work is to assess the potential of activating interleukin-1 (IL-1) ligands (IL-1 alpha [IL-1α], IL-1 beta [IL-1β]) as predictive biomarkers of survival outcomes in HNSCC patients treated with cetuximab-based chemotherapy. METHODS Baseline gene, serum and tumor expression of interleukin-1 (IL-1) ligands were analyzed from The Cancer Genome Atlas (TCGA) database or clinical trials of cetuximab-based therapies and interrogated for associations with clinical outcome data. RESULTS High tumor gene expression of IL-1β was associated with a more favorable overall survival in cetuximab-treated HNSCC patients but not in non-cetuximab-treated patients. In HNSCC patients treated with cetuximab-based chemotherapy, higher gene and circulating levels of IL-1α and IL-1β were correlated with a more favorable progression free survival compared to patients with low or undetectable levels of IL-1 ligands. CONCLUSIONS These findings suggest that IL-1 ligands may function as predictive biomarkers for tumor response to cetuximab-based chemotherapy in HNSCC patients and warrants further investigation and validation in larger clinical studies.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA USA
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Elana J. Fertig
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Laura P. Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Autumn Gaither-Davis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Julie E. Bauman
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ USA
| | - Sandra Schmitz
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Katherine N. Gibson-Corley
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Yinwen Cheng
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA USA
| | - Isaac J. Jensen
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Vladimir P. Badovinac
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA USA
| | - Douglas Laux
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Department of Internal Medicine - Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Andrean L. Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA USA
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
| |
Collapse
|
11
|
Impact of Nuclear Interleukin-1 Alpha and EGFR Expression on Recurrence and Survival Outcomes in Oral Squamous Cell Carcinomas. JOURNAL OF ONCOLOGY 2019; 2019:5859680. [PMID: 31320902 PMCID: PMC6607721 DOI: 10.1155/2019/5859680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Interleukin-1 alpha (IL-1α) is a pleiotropic cytokine involved in inflammation and immune response and is upregulated in many solid tumors including head and neck squamous cell carcinomas. Although IL-1α expression is generally associated with poor prognosis, the implications of the subcellular localization of IL-1α expression in patient outcomes are poorly understood. This study is aimed at investigating the prognostic value of nuclear and cytoplasmic immunohistochemical IL-1α expression in oral squamous cell carcinomas (OSCCs). Tissue microarrays containing 146 OSCCs were analyzed for IL-1α and epidermal growth factor receptor (EGFR) expression by immunohistochemistry. IL-1α and EGFR expression scores were correlated with clinicopathological parameters and survival outcomes. IL-1α expression was observed in the nuclear and/or cytoplasmic compartments in 98% of evaluable tumors and 78% of tumors expressed IL-1α in both compartments. There were no differences observed in overall survival or progression-free survival between high, moderate, or negative IL-1α nuclear/cytoplasmic expression scores. When IL-1α nuclear/cytoplasmic expression scores were stratified by positive or negative EGFR expression, tumors with a combined EGFR-positive and high nuclear IL-1α expression profile were significantly more likely to possess perineural invasion and were significantly associated with a high risk of tumor recurrence and worse progression-free survival compared to all other EGFR and combined IL-1α/EGFR expression profiles. Altogether, nuclear IL-1α expression may enhance the prognostic value of EGFR in OSCC and warrants further study as a prognostic biomarker for recurrence.
Collapse
|
12
|
Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. FISH & SHELLFISH IMMUNOLOGY 2019; 89:158-169. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.
Collapse
Affiliation(s)
- Younes Bouallegui
- University of Carthage, Faculty of Sciences Bizerte, LR01ES14 Laboratory of Environmental Biomonitoring, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
13
|
Espinosa-Cotton M, Rodman Iii SN, Ross KA, Jensen IJ, Sangodeyi-Miller K, McLaren AJ, Dahl RA, Gibson-Corley KN, Koch AT, Fu YX, Badovinac VP, Laux D, Narasimhan B, Simons AL. Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma. J Immunother Cancer 2019; 7:79. [PMID: 30890189 PMCID: PMC6425573 DOI: 10.1186/s40425-019-0550-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the high prevalence of epidermal growth factor receptor (EGFR) overexpression in head and neck squamous cell carcinomas (HNSCCs), incorporation of the EGFR inhibitor cetuximab into the clinical management of HNSCC has not led to significant changes in long-term survival outcomes. Therefore, the identification of novel therapeutic approaches to enhance the clinical efficacy of cetuximab could lead to improved long-term survival for HNSCC patients. Our previous work suggests that EGFR inhibition activates the interleukin-1 (IL-1) pathway via tumor release of IL-1 alpha (IL-1α), although the clinical implications of activating this pathway are unclear in the context of cetuximab therapy. Given the role of IL-1 signaling in anti-tumor immune response, we hypothesized that increases in IL-1α levels would enhance tumor response to cetuximab. METHODS Parental and stable myeloid differentiation primary response gene 88 (MyD88) and IL-1 receptor 1 (IL-1R1) knockdown HNSCC cell lines, an IL-1R antagonist (IL-1RA), neutralizing antibodies to IL-1α and IL-1β, and recombinant IL-1α and IL-1β were used to determine cytokine production (using ELISA) in response to cetuximab in vitro. IL-1 pathway modulation in mouse models was accomplished by administration of IL-1RA, stable overexpression of IL-1α in SQ20B cells, administration of rIL-1α, and administration of a polyanhydride nanoparticle formulation of IL-1α. CD4+ and CD8+ T cell-depleting antibodies were used to understand the contribution of T cell-dependent anti-tumor immune responses. Baseline serum levels of IL-1α were measured using ELISA from HNSCC patients treated with cetuximab-based therapy and analyzed for association with progression free survival (PFS). RESULTS Cetuximab induced pro-inflammatory cytokine secretion from HNSCC cells in vitro which was mediated by an IL-1α/IL-1R1/MyD88-dependent signaling pathway. IL-1 signaling blockade did not affect the anti-tumor efficacy of cetuximab, while increased IL-1α expression using polyanhydride nanoparticles in combination with cetuximab safely and effectively induced a T cell-dependent anti-tumor immune response. Detectable baseline serum levels of IL-1α were associated with a favorable PFS in cetuximab-based therapy-treated HNSCC patients compared to HNSCC patients with undetectable levels. CONCLUSIONS Altogether, these results suggest that IL-1α in combination with cetuximab can induce a T cell-dependent anti-tumor immune response and may represent a novel immunotherapeutic strategy for EGFR-positive HNSCCs.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Samuel N Rodman Iii
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Isaac J Jensen
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | | | | | - Rachel A Dahl
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Katherine N Gibson-Corley
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Adam T Koch
- Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vladimir P Badovinac
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas Laux
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Internal Medicine - Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Andrean L Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA. .,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA. .,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Recombinant EGFR/MMP-2 bi-targeted fusion protein markedly binding to non-small-cell lung carcinoma and exerting potent therapeutic efficacy. Pharmacol Res 2017; 126:66-76. [DOI: 10.1016/j.phrs.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
|
15
|
Bouallegui Y, Ben Younes R, Bellamine H, Oueslati R. Histopathology and analyses of inflammation intensity in the gills of mussels exposed to silver nanoparticles: role of nanoparticle size, exposure time, and uptake pathways. Toxicol Mech Methods 2017; 27:582-591. [DOI: 10.1080/15376516.2017.1337258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Younes Bouallegui
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| | - Ridha Ben Younes
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| | - Houda Bellamine
- Department of Pathological Anatomy, Regional Hospital of Menzel Bourguiba, Bizerte, Tunisia
| | - Ridha Oueslati
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| |
Collapse
|
16
|
Stanam A, Gibson-Corley KN, Love-Homan L, Ihejirika N, Simons AL. Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma. Oncotarget 2016; 7:76087-76100. [PMID: 27738319 PMCID: PMC5342798 DOI: 10.18632/oncotarget.12590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/24/2016] [Indexed: 12/02/2022] Open
Abstract
Erlotinib has demonstrated poor clinical response rates for head and neck squamous cell carcinoma (HNSCC) to date and the majority of respondents acquire resistance to erlotinib relatively quickly. To elucidate novel pathways involved in erlotinib resistance, we compared the gene expression profiles of erlotinib-resistant (ER) vs. erlotinib-sensitive (ES) HNSCC cell lines. Enrichment analysis of microarray data revealed a deregulation of the IL-1 signaling pathway in ER versus ES-HNSCC cells. Gene expression of interleukin-1 alpha (IL1A) and interleukin-1 beta (IL1B) were significantly upregulated by > 2 fold in ER-SQ20B and ER-CAL 27 cells compared to their respective ES-cells. Secretion of the IL-1 receptor antagonist (IL-1RA) was significantly reduced in ER-cells compared to ES-cells. Blockade of IL-1 signaling using a recombinant IL-1R antagonist (anakinra) was able to inhibit the growth of ER-SQ20B and ER-CAL 27 but not ES-SQ20B and ES-CAL 27 xenografts as a single agent and in combination with erlotinib. ER-SQ20B xenografts treated with anakinra ± erlotinib were found to be less vascularized than ER-SQ20B xenografts treated with water or erlotinib. Mice bearing ER-SQ20B xenografts had significantly lesser circulating levels of G-CSF and IL-1β when treated with anakinra ± erlotinib compared to those treated with water or erlotinib alone. Furthermore, augmented mRNA levels of IL1A or interleukin-1 receptor accessory protein (IL1RAP) were associated with shortened survival in HNSCC patients. Altogether, blockade of the IL-1 pathway using anakinra overcame erlotinib resistance in HNSCC xenografts and may represent a novel strategy to overcome EGFR inhibitor resistance for treatment of HNSCC patients.
Collapse
Affiliation(s)
- Aditya Stanam
- Interdisciplinary Human Toxicology Program, The University of Iowa, Iowa City, IA, USA
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | - Nnamdi Ihejirika
- Lincoln University of the Commonwealth of Pennsylvania, Lincoln, PA, USA
| | - Andrean L. Simons
- Interdisciplinary Human Toxicology Program, The University of Iowa, Iowa City, IA, USA
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Mascia F, Schloemann DT, Cataisson C, McKinnon KM, Krymskaya L, Wolcott KM, Yuspa SH. Cell autonomous or systemic EGFR blockade alters the immune-environment in squamous cell carcinomas. Int J Cancer 2016; 139:2593-7. [PMID: 27509256 DOI: 10.1002/ijc.30376] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/29/2016] [Indexed: 01/05/2023]
Abstract
Targeting mutations and amplifications in the EGFR has been successful precision therapy for cancers of the lung, oral cavity and gastrointestinal track. However, a systemic immune reaction manifested by dose-limiting inflammation in the skin and gut has been a consistent adverse effect. To address the possibility that intra-tumoral immune changes contribute to the anti-cancer activity of EGFR inhibition, squamous cancers were produced by syngeneic orthografts of either EGFR null or wildtype mouse primary keratinocytes transduced with an oncogenic H-ras retrovirus. Flow cytometric, RNA and Bioplex immunoassay analyses of the tumor immune milieu were performed. Cancers forming from keratinocytes genetically depleted of EGFR were smaller than wildtype cancers and had fewer infiltrating FoxP3 Treg cells, lower Foxp3 RNA and a lower percentage of CD4 PD1 positive cells indicating a tumor cell autonomous regulation of its microenvironment. Hosts bearing wildtype cancers treated with gefitinib for 1 week showed a trend for smaller tumors. In this short term pharmacological model, there was also a trend to reduced FoxP3 cells and FoxP3 RNA in the tumors of treated mice as well as a substantial increase in the ratio of IL-1A/IL-1RA transcripts. These results suggest that relatively brief systemic inhibition of EGFR signaling alters the immune environment of the targeted cancer. Together these data imply that an EGFR dependent Treg function supports the growth of squamous cancers and is a target for the therapeutic activity of EGFR inhibition.
Collapse
Affiliation(s)
- Francesca Mascia
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD.,Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, White Oak, Silver Spring, MD
| | - Derek T Schloemann
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Katherine M McKinnon
- FACS Core Facility, Vaccine Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Ludmila Krymskaya
- FACS Core Facility, Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD
| | - Karen M Wolcott
- FACS Core Facility, Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD.
| |
Collapse
|
18
|
Sonis ST, Hashemi S, Epstein JB, Nair RG, Raber-Durlacher JE. Could the biological robustness of low level laser therapy (Photobiomodulation) impact its use in the management of mucositis in head and neck cancer patients. Oral Oncol 2016; 54:7-14. [DOI: 10.1016/j.oraloncology.2016.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
19
|
Adams AK, Bolanos LC, Dexheimer PJ, Karns RA, Aronow BJ, Komurov K, Jegga AG, Casper KA, Patil YJ, Wilson KM, Starczynowski DT, Wells SI. IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival. Oncotarget 2015; 6:43395-407. [PMID: 26527316 PMCID: PMC4791239 DOI: 10.18632/oncotarget.6028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
The chromatin-binding DEK protein was recently reported to promote the growth of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs). Relevant cellular and molecular mechanism(s) controlled by DEK in HNSCC remain poorly understood. While DEK is known to regulate specific transcriptional targets, global DEK-dependent gene networks in HNSCC are unknown. To identify DEK transcriptional signatures we performed RNA-Sequencing (RNA-Seq) in HNSCC cell lines that were either proficient or deficient for DEK. Bioinformatic analyses and subsequent validation revealed that IRAK1, a regulator of inflammatory signaling, and IRAK1-dependent regulatory networks were significantly repressed upon DEK knockdown in HNSCC. According to TCGA data, 14% of HNSCC specimens overexpressed IRAK1, thus supporting possible oncogenic functions. Furthermore, genetic or pharmacologic inhibition of IRAK1 in HNSCC cell lines was sufficient to attenuate downstream signaling such as ERK1/2 and to induce HNSCC cell death by apoptosis. Finally, targeting DEK and IRAK1 simultaneously enhanced cell death as compared to targeting either alone. Our findings reveal that IRAK1 promotes cell survival and is an attractive therapeutic target in HNSCC cells. Thus, we propose a model wherein IRAK1 stimulates tumor signaling and phenotypes both independently and in conjunction with DEK.
Collapse
Affiliation(s)
- Allie K. Adams
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey C. Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Phillip J. Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebekah A. Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Keith A. Casper
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Yash J. Patil
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Keith M. Wilson
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|