1
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
Affiliation(s)
- Mary O Omotoso
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA
| | - Savannah E Est-Witte
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, USA; Institute for NanoBioTechnology, USA
| | - Nina M Nair
- Department of Biomedical Engineering, Whiting School of Engineering, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Si-Sim Kang
- Department of Pathology, School of Medicine, USA
| | - Stephany Y Tzeng
- Translational Tissue Engineering Center, USA; Department of Biomedical Engineering, Whiting School of Engineering, USA; Johns Hopkins Translational ImmunoEngineering Center, USA
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA; Johns Hopkins Translational ImmunoEngineering Center, USA.
| | - Jonathan P Schneck
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Johns Hopkins Translational ImmunoEngineering Center, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhou W, Qu M, Yue Y, Zhong Z, Nan K, Sun X, Wu Q, Zhang J, Chen W, Miao C. Acetylcysteine synergizes PD-1 blockers against colorectal cancer progression by promoting TCF1 +PD1 +CD8 + T cell differentiation. Cell Commun Signal 2024; 22:503. [PMID: 39420342 PMCID: PMC11484120 DOI: 10.1186/s12964-024-01848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) blockade is essential in treating progressive colorectal cancer (CRC). However, some patients with CRC do not respond well to immunotherapy, possibly due to the exhaustion of CD8+ T cells in the tumor microenvironment. N-Acetylcysteine (NAC) can reduce CD8+ T cell exhaustion in vitro and induce their differentiation into long-lasting phenotypes, thus enhancing the anti-tumor effect of adoptive T cell transfer. However, whether NAC can be combined with PD-1 blockade in CRC treatment and how NAC regulates CD8+ T cell differentiation remain unclear. Hence, in this study, we aimed to investigate whether NAC has a synergistic effect with PD-1 blockers against CRC progression. METHODS We constructed a mouse CRC model to study the effect of NAC on tumors. The effect of NAC on CD8 + T cell differentiation and its potential mechanism were explored using cell flow assay and other studies in vitro and ex vivo. RESULTS We demonstrated that NAC synergized PD-1 antibodies to inhibit CRC progression in a mouse CRC model mediated by CD8+ T cells. We further found that NAC can induce TCF1+PD1+CD8+ T cell differentiation and reduce the formation of exhausted T cells in vitro and in vivo. Moreover, NAC enhanced the expression of Glut4 in CD8+ T cells, promoting the differentiation of TCF1+PD1+CD8+ T cells. CONCLUSIONS Our study provides a novel idea for immunotherapy for clinically progressive CRC and suggests that Glut4 may be a new immunometabolic molecular target for regulating CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200438, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
3
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
4
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
5
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
7
|
Feng Z, Liao M, Bai J, Li Y, Chen Y, Zhang L, Guo X, Li L, Zhang L. Exploring the causal relationship between gut microbiota and multiple myeloma risk based on Mendelian randomization and biological annotation. Front Microbiol 2024; 15:1310444. [PMID: 38410384 PMCID: PMC10895040 DOI: 10.3389/fmicb.2024.1310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction The microbial genome-wide association studies (mbGWAS) have highlighted significant host-microbiome interactions based on microbiome heritability. However, establishing causal relationships between particular microbiota and multiple myeloma (MM) remains challenging due to limited sample sizes. Methods Gut microbiota data from a GWAS with 18,340 participants and MM summary statistics from 456,348 individuals. The inverse variance-weighted (IVW) method was used as the main bidirectional Mendelian randomization (MR) analysis. To assess the robustness of our results, we further performed supplementary analyses, including MR pleiotropy residual sum and outlier (MR-PRESSO) test, MR-Egger, Weighted median, Simple mode, and Weighted mode. Moreover, a backward MR analysis was conducted to investigate the potential for reverse causation. Finally, gene and gene-set-based analyses were then conducted to explore the common biological factors connecting gut microbiota and MM. Results We discovered that 10 gut microbial taxa were causally related to MM risk. Among them, family Acidaminococcaceae, Bacteroidales family S24-7, family Porphyromonadaceae, genus Eubacterium ruminantium group, genus Parabacteroides, and genus Turicibacter were positively correlated with MM. Conversely, class Verrucomicrobia, family Verrucomicrobiaceae, genus Akkermansia, and order Verrucomicrobiales were negatively correlated with MM. The heterogeneity test revealed no Heterogeneity. MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy. Importantly, leave-one-out analysis confirmed the robustness of MR results. In the backward MR analysis, no statistically significant associations were discovered between MM and 10 gut microbiota taxa. Lastly, we identified novel host-microbiome shared genes (AUTS2, CDK2, ERBB3, IKZF4, PMEL, SUOX, and RAB5B) that are associated with immunoregulation and prognosis in MM through biological annotation. Discussion Overall, this study provides evidence supporting a potential causal relationship between gut microbiota and MM risk, while also revealing novel host-microbiome shared genes relevant to MM immunoregulation and clinical prognosis.
Collapse
Affiliation(s)
- Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yue Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuege Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Jimenez J, Dubey P, Carter B, Koomen JM, Markowitz J. A metabolic perspective on nitric oxide function in melanoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189038. [PMID: 38061664 PMCID: PMC11380350 DOI: 10.1016/j.bbcan.2023.189038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Nitric oxide (NO) generated from nitric oxide synthase (NOS) exerts a dichotomous effect in melanoma, suppressing or promoting tumor progression. This dichotomy is thought to depend on the intracellular NO concentration and the cell type in which it is generated. Due to its central role in the metabolism of multiple critical constituents involved in signaling and stress, it is crucial to explore NO's contribution to the metabolic dysfunction of melanoma. This review will discuss many known metabolites linked to NO production in melanoma. We discuss the synthesis of these metabolites, their role in biochemical pathways, and how they alter the biological processes observed in the melanoma tumor microenvironment. The metabolic pathways altered by NO and the corresponding metabolites reinforce its dual role in melanoma and support investigating this effect for potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- John Jimenez
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA
| | - Parul Dubey
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bethany Carter
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Flow Cytometry Core Facility, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Ghezzi P, Rubartelli A. Redox regulation of defense against bacterial and viral pathogens. Curr Opin Chem Biol 2023; 76:102339. [PMID: 37295350 DOI: 10.1016/j.cbpa.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
There is considerable interest in the role of oxygen-derived oxidants (often termed generically reactive oxygen species), and the potential effect of exogenous antioxidants, in the pathogenesis of infectious disease. Most of the published research focuses on the inflammatory response and the concept that oxidants are pro-inflammatory and antioxidants are anti-inflammatory. The present review discusses the evidence that both oxidants and thiol antioxidants are important in the various processes of innate and adaptive immunity, focusing on the function of the immune system in the defense against pathogens, rather than its pathogenic role in inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Department of Biomolecular Sciences, Università di Urbino, 61029, Urbino, Italy.
| | - Anna Rubartelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20100, Milano, Italy
| |
Collapse
|
10
|
Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep 2023; 13:7254. [PMID: 37142668 PMCID: PMC10160116 DOI: 10.1038/s41598-023-34266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- CNRS, ICR, UMR 7273, Aix Marseille Univ, 13013, Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Huang R, Zhao B, Hu S, Zhang Q, Su X, Zhang W. Adoptive neoantigen-reactive T cell therapy: improvement strategies and current clinical researches. Biomark Res 2023; 11:41. [PMID: 37062844 PMCID: PMC10108522 DOI: 10.1186/s40364-023-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Neoantigens generated by non-synonymous mutations of tumor genes can induce activation of neoantigen-reactive T (NRT) cells which have the ability to resist the growth of tumors expressing specific neoantigens. Immunotherapy based on NRT cells has made preeminent achievements in melanoma and other solid tumors. The process of manufacturing NRT cells includes identification of neoantigens, preparation of neoantigen expression vectors or peptides, induction and activation of NRT cells, and analysis of functions and phenotypes. Numerous improvement strategies have been proposed to enhance the potency of NRT cells by engineering TCR, promoting infiltration of T cells and overcoming immunosuppressive factors in the tumor microenvironment. In this review, we outline the improvement of the preparation and the function assessment of NRT cells, and discuss the current status of clinical trials related to NRT cell immunotherapy.
Collapse
Affiliation(s)
- Ruichen Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bi Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
12
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Katagiri W, Yokomizo S, Ishizuka T, Yamashita K, Kopp T, Roessing M, Sato A, Iwasaki T, Sato H, Fukuda T, Monaco H, Manganiello S, Nomura S, Ng MR, Feil S, Ogawa E, Fukumura D, Atochin DN, Choi HS, Kashiwagi S. Dual near-infrared II laser modulates the cellular redox state of T cells and augments the efficacy of cancer immunotherapy. FASEB J 2022; 36:e22521. [PMID: 36052742 PMCID: PMC9574655 DOI: 10.1096/fj.202200033r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.
Collapse
Affiliation(s)
- Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Takanobu Ishizuka
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Keiko Yamashita
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Akiko Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Taizo Iwasaki
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Hideki Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Surgery, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Mei Rosa Ng
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Dai Fukumura
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, United States of America
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
14
|
Seledtsov VI, von Delwig AA. Oxygen therapy in traditional and immunotherapeutic treatment protocols of cancer patients: current reality and future prospects. Expert Rev Anticancer Ther 2022; 22:575-581. [PMID: 35468308 DOI: 10.1080/14737140.2022.2070153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The metabolic environment in ischemic and hypoxic tumors is known to contribute to cancer progression. Importantly, peculiar metabolic changes occurring in malignant cells (the increased glycolysis and the hampered Krebs cycle) may contribute to decreased antioxidant-dependent defense in ischemic and hypoxic tumors. AREAS COVERED In the clinic, oxygen saturation of tumors is usually achieved by the application of water-soluble ozone and hyperbaric oxygen therapy. Tumor oxygenation has been shown to inhibit tumor growth and potentiate anti-tumor effects of chemoradiotherapy in animal experiments and the clinical setting. Tumor oxygenation could enhance anti-tumor effects achieved by tumor blood vessel occlusion or angiostatic therapy. EXPERT OPINION Owing to a profound influence of ROS on both the innate and adaptive immunity, oxygen therapy, when combined simultaneously or sequentially with immunotherapeutic interventions (such as immune checkpoint inhibition, drug-induced immunostimulation, adoptive cell therapy, hyperthermia, etc.), could be considered as a novel highly-effective clinical biological approach to cancer treatment.
Collapse
Affiliation(s)
- Victor Ivanovich Seledtsov
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania.,Center for Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
15
|
Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022; 11:cells11030554. [PMID: 35159363 PMCID: PMC8834417 DOI: 10.3390/cells11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor metabolism plays a crucial role in sustaining tumorigenesis. There have been increasing reports regarding the role of tumor metabolism in the control of immune cell functions, generating a potent immunosuppressive contexture that can lead to immune escape. The metabolic reprogramming of tumor cells and the immune escape are two major hallmarks of cancer, with several instances of crosstalk between them. In this paper, we review the effects of tumor metabolism on immune cells, focusing on myeloid cells due to their important role in tumorigenesis and immunosuppression from the early stages of the disease. We also discuss ways to target this specific crosstalk in cancer patients.
Collapse
Affiliation(s)
- Thomas Boyer
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Céline Blaye
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
- Department of Medical Oncology, Hôpital Saint-André, 1 rue Jean Burguet, University Hospital Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
16
|
Yttrium chloride-induced cytotoxicity and DNA damage response via ROS generation and inhibition of Nrf2/PPARγ pathways in H9c2 cardiomyocytes. Arch Toxicol 2022; 96:767-781. [PMID: 35088107 DOI: 10.1007/s00204-022-03225-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Increasing exploration of rare-earth elements (REEs) has resulted in a high REEs' exposure risk. Owing to their persistence and accumulation of REEs in the environment, their adverse effects have caused widespread concern. However, limited toxicological data are available for the adverse effects of yttrium (Y) and its underlying mechanisms of action. In the present study, H9c2 cardiomyocytes were used in vitro model to investigate the cardiotoxicity of yttrium chloride (YCl3). Results show that YCl3 treatment resulted in reactive oxygen species (ROS) overproduction, decrease in ∆Ψm, and DNA damage. Mechanistically, we detected expression levels of protein in response to cellular DNA damage and antioxidative defense. Results indicated that the phosphorylation of histone H2AX remarkably increased in a dose-dependent manner. At a high YCl3-exposure concentration (120 μM), specific DNA damage sensors ATM/ATR-Chk1/Chk2 were significantly decreased. The protein levels of key antioxidant genes Nrf2/PPARγ/HO-1 were also remarkably inhabited. Additionally, the antioxidant N-acetyl-L-cysteine (NAC) pretreatment promoted the activation of antioxidative defense Nrf2/PPARγ signaling pathways, and prevented the production of cellular ROS, thus protecting the DNA from cleavage. Altogether, our findings suggest that YCl3 can induce DNA damage through causing intracellular ROS overproduction and inhibition of antioxidative defense, leading to cytotoxicity in H9c2 cardiomyocytes.
Collapse
|
17
|
Wang J, Liu N, Jiang H, Li Q, Xing D. Reactive Oxygen Species in Anticancer Immunity: A Double-Edged Sword. Front Bioeng Biotechnol 2021; 9:784612. [PMID: 34869295 PMCID: PMC8635923 DOI: 10.3389/fbioe.2021.784612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) are critical mediators in many physiological processes including innate and adaptive immunity, making the modulation of ROS level a powerful strategy to augment anticancer immunity. However, current evidences suggest the necessity of a deeper understanding of their multiple roles, which may vary with their concentration, location and the immune microenvironment they are in. Here, we have reviewed the reported effects of ROS on macrophage polarization, immune checkpoint blocking (ICB) therapy, T cell activation and expansion, as well as the induction of immunogenic cell death. A majority of reports are indicating detrimental effects of ROS, but it is unadvisable to simply scavenge them because of their pleiotropic effects in most occasions (except in T cell activation and expansion where ROS are generally undesirable). Therefore, clinical success will need a clearer illustration of their multi-faced functions, as well as more advanced technologies to tune ROS level with high spatiotemporal control and species-specificity. With such progresses, the efficacy of current immunotherapies will be greatly improved by combining with ROS-targeted therapies.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Ning Liu
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Etxebeste-Mitxeltorena M, Del Rincón-Loza I, Martín-Antonio B. Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner. Front Immunol 2021; 12:717850. [PMID: 34447383 PMCID: PMC8382692 DOI: 10.3389/fimmu.2021.717850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells and Natural Killer (NK) cells are common immune cell sources administered to treat cancer patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of hematological malignancies, responses are much more deficient in solid tumors. Moreover, NK cells have not shown remarkable results up to date. In general, immune cells present high plasticity to change their activity and phenotype depending on the stimuli they receive from molecules secreted in the tumor microenvironment (TME). Consequently, immune cells will also secrete molecules that will shape the activities of other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell phagocytosis by macrophages, which is required to remove dying tumor cells after the attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or radiotherapy treatments can induce senescence in tumor cells modifying their secretome to a known as “senescence-associated secretory phenotype” (SASP) that will also impact the immune response. Whereas the SASP initially attracts immune cells to eliminate senescent tumor cells, at high numbers of senescent cells, the SASP becomes detrimental, impacting negatively in the immune response. Last, CAR-T cells are an attractive option to overcome these events. Here, we review how molecules secreted in the TME by either tumor cells or even by immune cells impact the anti-tumor activity of surrounding immune cells.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Inés Del Rincón-Loza
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| |
Collapse
|
19
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
20
|
Sivapalan R, Liu J, Chakraborty K, Arthofer E, Choudhry M, Barie PS, Barouch DH, Henley T. Virus Induced Lymphocytes (VIL) as a novel viral antigen-specific T cell therapy for COVID-19 and potential future pandemics. Sci Rep 2021; 11:15295. [PMID: 34315945 PMCID: PMC8316478 DOI: 10.1038/s41598-021-94654-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The a priori T cell repertoire and immune response against SARS-CoV-2 viral antigens may explain the varying clinical course and prognosis of patients having a mild COVID-19 infection as opposed to those developing more fulminant multisystem organ failure and associated mortality. Using a novel SARS-Cov-2-specific artificial antigen presenting cell (aAPC), coupled with a rapid expansion protocol (REP) as practiced in tumor infiltrating lymphocytes (TIL) therapy, we generate an immune catalytic quantity of Virus Induced Lymphocytes (VIL). Using T cell receptor (TCR)-specific aAPCs carrying co-stimulatory molecules and major histocompatibility complex (MHC) class-I immunodominant SARS-CoV-2 peptide-pentamer complexes, we expand virus-specific VIL derived from peripheral blood mononuclear cells (PBMC) of convalescent COVID-19 patients up to 1000-fold. This is achieved in a clinically relevant 7-day vein-to-vein time-course as a potential adoptive cell therapy (ACT) for COVID-19. We also evaluate this approach for other viral pathogens using Cytomegalovirus (CMV)-specific VIL from donors as a control. Rapidly expanded VIL are enriched in virus antigen-specificity and show an activated, polyfunctional cytokine profile and T effector memory phenotype which may contribute to a robust immune response. Virus-specific T cells can also be delivered allogeneically via MHC-typing and patient human leukocyte antigen (HLA)-matching to provide pragmatic treatment in a large-scale therapeutic setting. These data suggest that VIL may represent a novel therapeutic option that warrants further clinical investigation in the armamentarium against COVID-19 and other possible future pandemics.
Collapse
Affiliation(s)
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Philip S Barie
- Division of Trauma, Burns, Acute and Critical Care, Department of Surgery; and Division of Medical Ethics, Department of Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| | - Tom Henley
- Intima Bioscience, Inc., New York, NY, USA.
| |
Collapse
|
21
|
Van Hoeck J, Van de Vyver T, Harizaj A, Goetgeluk G, Merckx P, Liu J, Wels M, Sauvage F, De Keersmaecker H, Vanhove C, de Jong OG, Vader P, Dewitte H, Vandekerckhove B, Braeckmans K, De Smedt SC, Raemdonck K. Hydrogel-Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membrane-Impermeable Cargo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008054. [PMID: 34106486 DOI: 10.1002/adma.202008054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Intracellular delivery of membrane-impermeable cargo offers unique opportunities for biological research and the development of cell-based therapies. Despite the breadth of available intracellular delivery tools, existing protocols are often suboptimal and alternative approaches that merge delivery efficiency with both biocompatibility, as well as applicability, remain highly sought after. Here, a comprehensive platform is presented that exploits the unique property of cationic hydrogel nanoparticles to transiently disrupt the plasma membrane of cells, allowing direct cytosolic delivery of uncomplexed membrane-impermeable cargo. Using this platform, which is termed Hydrogel-enabled nanoPoration or HyPore, the delivery of fluorescein isothiocyanate (FITC)-dextran macromolecules in various cancer cell lines and primary bovine corneal epithelial cells is convincingly demonstrated. Of note, HyPore demonstrates efficient FITC-dextran delivery in primary human T cells, outperforming state-of-the-art electroporation-mediated delivery. Moreover, the HyPore platform enables cytosolic delivery of functional proteins, including a histone-binding nanobody as well as the enzymes granzyme A and Cre-recombinase. Finally, HyPore-mediated delivery of the MRI contrast agent gadobutrol in primary human T cells significantly improves their T1 -weighted MRI signal intensities compared to electroporation. Taken together, HyPore is proposed as a straightforward, highly versatile, and cost-effective technique for high-throughput, ex vivo manipulation of primary cells and cell lines.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Aranit Harizaj
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Jing Liu
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Félix Sauvage
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Herlinde De Keersmaecker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Olivier G de Jong
- CDL Research, Division LAB, UMC Utrecht, Faculty of Medicine, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Faculty of Medicine, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| |
Collapse
|
22
|
Lancien M, Gueno L, Salle S, Merieau E, Beriou G, Nguyen TH, Abidi A, Dilek N, Solomon P, Poschmann J, Michielin O, Vuillefroy de Silly R, Vanhove B, Louvet C. Cystathionine-gamma-lyase overexpression in T cells enhances antitumor effect independently of cysteine autonomy. Cancer Sci 2021; 112:1723-1734. [PMID: 33609296 PMCID: PMC8088958 DOI: 10.1111/cas.14862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
T cells could be engineered to overcome the aberrant metabolic milieu of solid tumors and tip the balance in favor of a long‐lasting clinical response. Here, we explored the therapeutic potential of stably overexpressing cystathionine‐gamma‐lyase (CTH, CSE, or cystathionase), a pivotal enzyme of the transsulfuration pathway, in antitumor CD8+ T cells with the initial aim to boost intrinsic cysteine metabolism. Using a mouse model of adoptive cell transfer (ACT), we found that CTH‐expressing T cells showed a superior control of tumor growth compared to control T cells. However, contrary to our hypothesis, this effect was not associated with increased T cell expansion in vivo or proliferation rescue in the absence of cysteine/cystine in vitro. Rather than impacting methionine or cysteine, ACT with CTH overexpression unexpectedly reduced glycine, serine, and proline concentration within the tumor interstitial fluid. Interestingly, in vitro tumor cell growth was mostly impacted by the combination of serine/proline or serine/glycine deprivation. These results suggest that metabolic gene engineering of T cells could be further investigated to locally modulate amino acid availability within the tumor environment while avoiding systemic toxicity.
Collapse
Affiliation(s)
- Melanie Lancien
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Lucile Gueno
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Sonia Salle
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Emmanuel Merieau
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gaelle Beriou
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Tuan H Nguyen
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ahmed Abidi
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,Faculty of Sciences, Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Pierre Solomon
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Jeremie Poschmann
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland.,The Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Bernard Vanhove
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France.,Xenothera, Nantes, France
| | - Cedric Louvet
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
23
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
24
|
Jung JG, Le A. Metabolism of Immune Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:173-185. [PMID: 34014543 DOI: 10.1007/978-3-030-65768-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) is a complex biological structure surrounding tumor cells and includes blood vessels, immune cells, fibroblasts, adipocytes, and extracellular matrix (ECM) [1, 2]. These heterogeneous surrounding structures provide nutrients, metabolites, and signaling molecules to provide a cancer-friendly environment. The metabolic interplay between immune cells and cancer cells in the TME is a key feature not only for understanding tumor biology but also for discovering cancer cells' vulnerability. As cancer immunotherapy to treat cancer patients and the use of metabolomics technologies become more and more common [3], the importance of the interplay between cancer cells and immune cells in the TME is emerging with respect to not only cell-to-cell interactions but also metabolic pathways. This interaction between immune cells and cancer cells is a complex and dynamic process in which immune cells act as a determinant factor of cancer cells' fate and vice versa. In this chapter, we provide an overview of the metabolic interplay between immune cells and cancer cells and discuss the therapeutic opportunities as a result of this interplay in order to define targets for cancer treatment. It is important to understand and identify therapeutic targets that interrupt this cancerpromoting relationship between cancer cells and the surrounding immune cells, allowing for maximum efficacy of immune checkpoint inhibitors as well as other genetic and cellular therapies.
Collapse
Affiliation(s)
- Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
25
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Domvri K, Petanidis S, Zarogoulidis P, Anestakis D, Tsavlis D, Bai C, Huang H, Freitag L, Hohenforst-Schmidt W, Porpodis K, Katopodi T. Treg-dependent immunosuppression triggers effector T cell dysfunction via the STING/ILC2 axis. Clin Immunol 2020; 222:108620. [PMID: 33176208 DOI: 10.1016/j.clim.2020.108620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the leading cause of cancer-related deaths and despite extensive research, the survival rate of lung cancer patients remains significantly low. Recent data reveal that aberrant Kras signaling drives regulatory T cells (Tregs) present in lung tumor microenvironment to establish immune deregulation and immunosuppression but the exact pathogenic mechanism is still unknown. In this study, we investigate the role of oncogenic Kras in Treg-related immunosuppression and its involvement in tumor-associated metabolic reprogramming. Findings reveal Tregs to prompt GATA3/NOS2-related immunosuppression via STING inhibition which triggers a decline in CD4+ T infiltration, and a subsequent increase in lung metastatic burden. Enhanced Treg expression was also associated with low T/MDSC ratio through restriction of CD8+CD44+CD62L- T effector cells, contributing to a tumor-promoting status. Specifically, TIM3+/LAG3+ Tregs prompted Kras-related immunosuppressive chemoresistance and were associated with T cell dysfunction. This Treg-dependent immunosuppression correlated with CD8 T cell exhaustion phenotype and ILC2 augmentation in mice. Moreover, enhanced Treg expression promoted activation-induced cell death (AICD) of T lymphocytes and guided lymph node metastasis in vivo. Overall, these findings demonstrate the multifaceted roles of Tregs in sustaining lung immunosuppressive neoplasia through tumor microenvironment remodeling and provide new opportunities for effective metastasis inhibition, especially in chemoresistant tumors.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russian Federation.
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124, Greece
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
27
|
Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M. Reactive Oxygen Species and Antitumor Immunity-From Surveillance to Evasion. Cancers (Basel) 2020; 12:E1748. [PMID: 32630174 PMCID: PMC7409327 DOI: 10.3390/cancers12071748] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is a crucial regulator of tumor biology with the capacity to support or inhibit cancer development, growth, invasion and metastasis. Emerging evidence show that reactive oxygen species (ROS) are not only mediators of oxidative stress but also players of immune regulation in tumor development. This review intends to discuss the mechanism by which ROS can affect the anti-tumor immune response, with particular emphasis on their role on cancer antigenicity, immunogenicity and shaping of the tumor immune microenvironment. Given the complex role that ROS play in the dynamics of cancer-immune cell interaction, further investigation is needed for the development of effective strategies combining ROS manipulation and immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, 35128 Padua, Italy;
| | | | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
28
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Abstract
Immune checkpoint therapies aiming to enhance T cell responses have revolutionized cancer immunotherapy. However, although a small fraction of patients develops durable anti-tumor responses, the majority of patients display only transient responses, underlying the need for finding auxiliary approaches. Tumor microenvironment poses a major metabolic barrier to efficient anti-tumor T cell activity. As it is now well accepted that metabolism regulates T cell fate and function, harnessing metabolism may be a new strategy to potentiate T cell-based immunotherapies.
Collapse
|
30
|
Katagiri W, Lee G, Tanushi A, Tsukada K, Choi HS, Kashiwagi S. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-18. [PMID: 32193907 PMCID: PMC7081057 DOI: 10.1117/1.jbo.25.3.036003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE Photobiomodulation is a well-established therapeutic modality. However, the mechanism of action is poorly understood, due to lack of research in the causal relationship between the near-infrared (NIR) light irradiation and its specific biological effects, hindering broader applications of this technology. AIM Since biological chromophores typically show several absorption peaks, we determined whether specific effects of photobiomodulation are induced with a combination of two wavelengths at a certain range of irradiance only, rather than a single wavelength of NIR light. APPROACH In order to analyze a wide array of combinations of multispectral NIR light at various irradiances efficiently, we developed a new optical platform equipped with two distinct wavelengths of NIR lasers by high-throughput multiple dosing for single-cell live imaging. Two wavelengths of 1064 and 1270 nm were selected based on their photobiomodulatory effects reported in the literature. RESULTS A specific combination of wavelengths at low irradiances (250 to 400 mW / cm2 for 1064 nm and 55 to 65 mW / cm2 for 1270 nm) modulates mitochondrial retrograde signaling, including intracellular calcium and reactive oxygen species in T cells. The time-dependent density functional theory computation of binding of nitric oxide (NO) to cytochrome c oxidase indicates that the illumination with NIR light could result in the NO release, which might be involved in these changes. CONCLUSIONS This optical platform is a powerful tool to study causal relationship between a specific parameter of NIR light and its biological effects. Such a platform is useful for a further mechanistic study on not only photobiomodulation but also other modalities in photomedicine.
Collapse
Affiliation(s)
- Wataru Katagiri
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Keio University, Graduate School of Science and Technology, Yokohama, Kanagawa, Japan
| | - GeonHui Lee
- Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea
| | - Akira Tanushi
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts, United States
| | - Kosuke Tsukada
- Keio University, Graduate School of Science and Technology, Yokohama, Kanagawa, Japan
| | - Hak Soo Choi
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Satoshi Kashiwagi, E-mail: ; Hak Soo Choi, E-mail:
| | - Satoshi Kashiwagi
- Massachusetts General Hospital, Gordon Center for Medical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Satoshi Kashiwagi, E-mail: ; Hak Soo Choi, E-mail:
| |
Collapse
|
31
|
Wang Y, Hays E, Rama M, Bonavida B. Cell-mediated immune resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:232-251. [PMID: 35310881 PMCID: PMC8932590 DOI: 10.20517/cdr.2019.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
The genetic and epigenetic aberrations that underlie immune resistance lead to tumors that are refractory to clinically established and experimental immunotherapies, including monoclonal antibodies and T cell-based therapies. From various forms of cytotoxic T cells to small molecule inhibitors that revamp the tumor microenvironment, these therapies have demonstrated notable responses in cancer models and a resistant subset of cancer patients, used both alone and in combination. However, even current approaches, such as those targeting checkpoint molecules, tumor ligands, and involving gene-related therapies, present a challenge in non-responding patients. In this perspective, we discuss the most common mechanisms of immune resistance, including tumor heterogeneity, tumor ligand and major histocompatibility complex modulation, anti-apoptotic pathways, checkpoint inhibitory ligands, immunosuppressive cells and factors in the tumor microenvironment, and activation-induced cell death. In addition, we discuss the strategies designed to circumvent these resistance pathways to showcase the potential of emerging technologies in battling the rise of resistance.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Emily Hays
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Martina Rama
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
32
|
Endoplasmic Reticulum Protein Disulfide Isomerase Shapes T Cell Efficacy for Adoptive Cellular Therapy of Tumors. Cells 2019; 8:cells8121514. [PMID: 31779147 PMCID: PMC6953024 DOI: 10.3390/cells8121514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Effective cancer therapies simultaneously restrict tumor cell growth and improve anti-tumor immune responses. Targeting redox-dependent protein folding enzymes within the endoplasmic reticulum (ER) is an alternative approach to activation of the unfolded protein response (UPR) and a novel therapeutic platform to induce malignant cell death. E64FC26 is a recently identified protein disulfide isomerase (PDI) inhibitor that activates the UPR, oxidative stress, and apoptosis in tumor cells, but not normal cell types. Given that targeting cellular redox homeostasis is a strategy to augment T cell tumor control, we tested the effect of E64FC26 on healthy and oncogenic T cells. In stark contrast to the pro-UPR and pro-death effects we observed in malignant T cells, we found that E64FC26 improved viability and limited the UPR in healthy T cells. E64FC26 treatment also diminished oxidative stress and decreased global PDI expression in normal T cells. Oxidative stress and cell death are limited in memory T cells and we found that PDI inhibition promoted memory traits and reshaped T cell metabolism. Using adoptive transfer of tumor antigen-specific CD8 T cells, we demonstrate that T cells activated and expanded in the presence of E64FC26 control tumor growth better than vehicle-matched controls. Our data indicate that PDI inhibitors are a new class of drug that may dually inhibit tumor cell growth and improve T cell tumor control.
Collapse
|
33
|
Ghaffari S, Torabi‐Rahvar M, Omidkhoda A, Ahmadbeigi N. Impact of various culture conditions on
ex vivo
expansion of polyclonal T cells for adoptive immunotherapy. APMIS 2019; 127:737-745. [DOI: 10.1111/apm.12981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Sasan Ghaffari
- Cell‐Based Therapies Research Center, Digestive Disease Research InstituteTehran University of Medical Sciences TehranIran
- Student Scientific Research Center Tehran University of Medical Sciences TehranIran
| | - Monireh Torabi‐Rahvar
- Cell‐Based Therapies Research Center, Digestive Disease Research InstituteTehran University of Medical Sciences TehranIran
- SABZ Biomedicals Science‐Based Company TehranIran
| | - Azadeh Omidkhoda
- Department of Hematology, School of Allied Medical Sciences Tehran University of Medical Sciences Tehran Iran
| | - Naser Ahmadbeigi
- Cell‐Based Therapies Research Center, Digestive Disease Research InstituteTehran University of Medical Sciences TehranIran
| |
Collapse
|
34
|
Pilipow K, Scamardella E, Lugli E. Generating stem-like memory T cells with antioxidants for adoptive cell transfer immunotherapy of cancer. Methods Enzymol 2019; 631:137-158. [PMID: 31948545 DOI: 10.1016/bs.mie.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Among the multiple factors that are responsible for the success of adoptive cell transfer (ACT) immunotherapy for cancer, the differentiation status of the in vitro expanded T cell product at the time of transfer seems to play a major role. In particular, less differentiated memory CD8+ T cells endowed with self-renewing capacity and multipotency exert the most potent antitumor activity. To this aim, expansion protocols that generate sufficient numbers of tumor-specific CD8+ T cells with superior capacity to persist in vivo following ACT are needed. We describe a procedure for the differentiation of TCF-1+ stem-like CD8+ memory T cells from peripheral blood naïve precursors that takes advantage of the use of antioxidants, in particular N-acetylcysteine (NAC), in combination with T cell receptor stimulation and proinflammatory cytokines. We additionally describe how to conduct in vitro assays to test the stem-like features of the generated cells at the phenotypic, functional and metabolic level. Balancing the oxidative metabolism by the addition of antioxidants during in vitro manipulation of CD8+ T cells results in the generation of cell products with potent antitumor characteristics following ACT.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
35
|
Gerner MC, Niederstaetter L, Ziegler L, Bileck A, Slany A, Janker L, Schmidt RLJ, Gerner C, Del Favero G, Schmetterer KG. Proteome Analysis Reveals Distinct Mitochondrial Functions Linked to Interferon Response Patterns in Activated CD4+ and CD8+ T Cells. Front Pharmacol 2019; 10:727. [PMID: 31354474 PMCID: PMC6635586 DOI: 10.3389/fphar.2019.00727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
While genetic traits and epigenetic modifications mainly encode cell type-specific effector functions, the eventual outcome is also prone to modulation by post-transcriptional regulation mechanisms. T cells are a powerful model for the investigation of such modulatory effects, as common precursor cells may differentiate either to helper CD4+ T cells or cytotoxic CD8+ cells, which elicit distinct functionalities upon TCR-stimulation. Human primary CD4+ and CD8+ T cells were purified from three individual donors and activated with anti-CD3/CD28 antibodies. Associated proteome alterations were analyzed by high-resolution mass spectrometry using a label-free shotgun approach. Metabolic activation was indicated by upregulation of enzymes related to glycolysis, NADH production, fatty acid synthesis, and uptake as well as amino acid and iron uptake. Besides various inflammatory effector molecules, the mitochondrial proteins CLUH, TFAM, and TOMM34 were found specifically induced in CD4+ T cells. Investigation of overrepresented conserved transcription binding sites by the oPOSSUM software suggested interferon type I inducer IRF1 to cause many of the observed proteome alterations in CD4+ T cells. RT qPCR demonstrated the specific induction of IRF1 in CD4+ T cells only. While the interferon regulatory factor IRF4 was found induced in both T cell subtypes at protein and mRNA level, IRF9 and the type I interferon-induced proteins IFIT1, IFIT3, and MX1 were only found induced in CD4+ T cells. As oxidative stress enhances mitochondrial DNA-dependent type I interferon responses, the present data suggested that mitochondrial activities regulate those cell type-specific signaling pathways. Indeed, we detected mitochondrial superoxide formation predominantly in CD4+ T cells via FACS analysis with MitoSOX™ and confirmed this observation by live cell imaging with confocal microscopy. As interferon signaling regulates important features such as resistance regarding immune checkpoint blockade therapy, the present data may identify potential new targets for the efficient control of highly relevant immune cell properties.
Collapse
Affiliation(s)
- Marlene C Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Liesa Ziegler
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ralf L J Schmidt
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Qiao J, Liu Z, Dong C, Luan Y, Zhang A, Moore C, Fu K, Peng J, Wang Y, Ren Z, Han C, Xu T, Fu YX. Targeting Tumors with IL-10 Prevents Dendritic Cell-Mediated CD8 + T Cell Apoptosis. Cancer Cell 2019; 35:901-915.e4. [PMID: 31185213 DOI: 10.1016/j.ccell.2019.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence demonstrates that interleukin-10 (IL-10), known as an immunosuppressive cytokine, induces antitumor effects depending on CD8+ T cells. However, it remains elusive how immunosuppressive effects of IL-10 contribute to CD8+ T cell-mediated antitumor immunity. We generated Cetuximab-based IL-10 fusion protein (CmAb-(IL10)2) to prolong its half-life and allow tumor-targeted delivery of IL-10. Our results demonstrated potent antitumor effects of CmAb-(IL10)2 with reduced toxicity. Moreover, we revealed a mechanism of CmAb-(IL10)2 preventing dendritic cell (DC)-mediated CD8+ tumor-infiltrating lymphocyte apoptosis through regulating IFN-γ production. When combined with immune checkpoint blockade, CmAb-(IL10)2 significantly improves antitumor effects in mice with advanced tumors. Our findings reveal a DC-regulating role of IL-10 to potentiate CD8+ T cell-mediated antitumor immunity and provide a potential strategy to improve cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Communication
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cetuximab/pharmacokinetics
- Cetuximab/pharmacology
- Coculture Techniques
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Drug Resistance, Neoplasm
- Female
- Humans
- Interleukin-10/pharmacokinetics
- Interleukin-10/pharmacology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Molecular Targeted Therapy
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Recombinant Fusion Proteins/pharmacology
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jian Qiao
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Zhida Liu
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunbo Dong
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Luan
- Dingfu Biotarget Co. Ltd., Suzhou, Jiangsu 215125, China
| | - Anli Zhang
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Casey Moore
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kai Fu
- Dingfu Biotarget Co. Ltd., Suzhou, Jiangsu 215125, China
| | - Jianjian Peng
- Dingfu Biotarget Co. Ltd., Suzhou, Jiangsu 215125, China
| | - Yang Wang
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenhua Ren
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuanhui Han
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Xu
- Dingfu Biotarget Co. Ltd., Suzhou, Jiangsu 215125, China.
| | - Yang-Xin Fu
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Rev Rep 2019; 15:619-636. [DOI: 10.1007/s12015-019-09901-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Di S, Fan C, Ma Z, Li M, Guo K, Han D, Li X, Mu D, Yan X. PERK/eIF-2α/CHOP Pathway Dependent ROS Generation Mediates Butein-induced Non-small-cell Lung Cancer Apoptosis and G2/M Phase Arrest. Int J Biol Sci 2019; 15:1637-1653. [PMID: 31360107 PMCID: PMC6643215 DOI: 10.7150/ijbs.33790] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Butein, a member of the chalcone family, is a potent anticarcinogen against multiple cancers, but its specific anti-NSCLC mechanism remains unknown. The present study examined the effects of butein treatment on NSCLC cell lines and NSCLC xenografts. Butein markedly decreased NSCLC cell viability; inhibited cell adhesion, migration, invasion, and colony forming ability; and induced cell apoptosis and G2/M phase arrest in NSCLC cells. Moreover, butein significantly inhibited PC-9 xenograft growth. Both in vivo and in vitro studies verified that butein exerted anti-NSCLC effect through activating endoplasmic reticulum (ER) stress-dependent reactive oxygen species (ROS) generation. These pro-apoptotic effects were reversed by the use of 4- phenylbutyric acid (4-PBA), CHOP siRNA, N-acetyl-L-cysteine (NAC) and Z-VAD-FMK (z-VAD) in vitro. Moreover, inhibition of ER stress markedly reduced ROS generation. In addition, in vivo studies further confirmed that inhibition of ER stress or oxidative stress partially abolished the butein-induced inhibition of tumor growth. Therefore, butein is a potential therapeutic agent for NSCLC, and its anticarcinogenic action might be mediated by ER stress-dependent ROS generation and the apoptosis pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Mingyang Li
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
39
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
40
|
Pilipow K, Scamardella E, Puccio S, Gautam S, De Paoli F, Mazza EM, De Simone G, Polletti S, Buccilli M, Zanon V, Di Lucia P, Iannacone M, Gattinoni L, Lugli E. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 2018; 3:122299. [PMID: 30232291 DOI: 10.1172/jci.insight.122299] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Adoptive T cell transfer (ACT) immunotherapy benefits from early differentiated stem cell memory T (Tscm) cells capable of persisting in the long term and generating potent antitumor effectors. Due to their paucity ex vivo, Tscm cells can be derived from naive precursors, but the molecular signals at the basis of Tscm cell generation are ill-defined. We found that less differentiated human circulating CD8+ T cells display substantial antioxidant capacity ex vivo compared with more differentiated central and effector memory T cells. Limiting ROS metabolism with antioxidants during naive T cell activation hindered terminal differentiation, while allowing expansion and generation of Tscm cells. N-acetylcysteine (NAC), the most effective molecule in this regard, induced transcriptional and metabolic programs characteristic of self-renewing memory T cells. Upon ACT, NAC-generated Tscm cells established long-term memory in vivo and exerted more potent antitumor immunity in a xenogeneic model when redirected with CD19-specific CAR, highlighting the translational relevance of NAC as a simple and inexpensive method to improve ACT.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Federica De Paoli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emilia Mc Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Marta Buccilli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
41
|
Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD, Wong SC. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Front Immunol 2018; 9:416. [PMID: 29559973 PMCID: PMC5845585 DOI: 10.3389/fimmu.2018.00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
In the hepatitis B virus (HBV)-related hepatocellular carcinoma tumor microenvironment (TME), monocytes reportedly impede natural T cell functions via PD-L1/PD-1 signaling. However, it remains unclear if T cell receptor-redirected T cells (TCR T cells) are similarly inhibited. Hence, we developed a 3D intrahepatic TME microfluidic model to investigate the immunosuppressive potential of monocytes toward HBV-specific TCR T cells and the role of PD-L1/PD-1 signaling. Interestingly, in our 3D static microfluidic model, we observed that monocytes suppressed only retrovirally transduced (Tdx) TCR T cell cytotoxicity toward cancer cells via PD-L1/PD-1, while mRNA electroporated (EP) TCR T cell cytotoxicity was not affected by the presence of monocytes. Importantly, when co-cultured in 2D, both Tdx and EP TCR T cell cytotoxicity toward cancer cells were not suppressed by monocytes, suggesting our 3D model as a superior tool compared to standard 2D assays for predicting TCR T cell efficacy in a preclinical setting, which can thus be used to improve current immunotherapy strategies.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Erica Ceccarello
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Anthony Tanoto Tan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Bertoletti
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Roger Dale Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Siew Cheng Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| |
Collapse
|
42
|
Yarosz EL, Chang CH. The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw 2018; 18:e14. [PMID: 29503744 PMCID: PMC5833121 DOI: 10.4110/in.2018.18.e14] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Emily L Yarosz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Scheffel MJ, Scurti G, Wyatt MM, Garrett-Mayer E, Paulos CM, Nishimura MI, Voelkel-Johnson C. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol Immunother 2018; 67:691-702. [PMID: 29396710 DOI: 10.1007/s00262-018-2120-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
Abstract
Therapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves anti-tumor efficacy of Pmel-1 T cells in vivo. Here, we show that these benefits of NAC can be extended to engineered T cells and significantly increases T-cell survival within the tumor microenvironment. The addition of NAC to the expansion protocol of human TIL13838I TCR-transduced T cells that are under evaluation in a Phase I clinical trial, demonstrated that findings in murine cells extend to human cells. Expansion of TIL13838I TCR-transduced T cells in NAC also increased their ability to kill target cells in vitro. Interestingly, NAC did not affect memory subsets, but diminished up-regulation of senescence (CD57) and exhaustion (PD-1) markers and significantly decreased expression of the transcription factors EOMES and Foxo1. Pharmacological inhibition of the PI3K/Akt pathway ablates the decrease in Foxo1 induced by NAC treatment of activated T cells. This suggests a model in which NAC through PI3K/Akt activation suppresses Foxo1 expression, thereby impacting its transcriptional targets EOMES, PD-1, and granzyme B. Taken together, our results indicate that NAC exerts pleiotropic effects that impact the quality of TCR-transduced T cells and suggest that the addition of NAC to current clinical protocols should be considered.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Maywood, IL, USA
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | | | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
44
|
Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 2018; 17:7. [PMID: 29329591 PMCID: PMC5767005 DOI: 10.1186/s12943-018-0759-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
The potential for adoptive cell immunotherapy as a treatment against cancers has been demonstrated by the remarkable response in some patients with hematological malignancies using autologous T cells endowed with chimeric antigen receptors (CARs) specific for CD19. Clinical efficacy of CAR-T cell therapy for the treatment of solid tumors, however, is rare due to physical and biochemical factors. This review focuses on different aspects of multiple mechanisms of immunosuppression in solid tumors. We characterize the current state of CAR-modified T cell therapy and summarize the various strategies to combat the immunosuppressive microenvironment of solid tumors, with the aim of promoting T cell cytotoxicity and enhancing tumor cell eradication.
Collapse
Affiliation(s)
- Erhao Zhang
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jieyi Gu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
45
|
Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD, Wong SC. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Front Immunol 2018. [PMID: 29559973 DOI: 10.3389/fimmu.2018.00416/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
In the hepatitis B virus (HBV)-related hepatocellular carcinoma tumor microenvironment (TME), monocytes reportedly impede natural T cell functions via PD-L1/PD-1 signaling. However, it remains unclear if T cell receptor-redirected T cells (TCR T cells) are similarly inhibited. Hence, we developed a 3D intrahepatic TME microfluidic model to investigate the immunosuppressive potential of monocytes toward HBV-specific TCR T cells and the role of PD-L1/PD-1 signaling. Interestingly, in our 3D static microfluidic model, we observed that monocytes suppressed only retrovirally transduced (Tdx) TCR T cell cytotoxicity toward cancer cells via PD-L1/PD-1, while mRNA electroporated (EP) TCR T cell cytotoxicity was not affected by the presence of monocytes. Importantly, when co-cultured in 2D, both Tdx and EP TCR T cell cytotoxicity toward cancer cells were not suppressed by monocytes, suggesting our 3D model as a superior tool compared to standard 2D assays for predicting TCR T cell efficacy in a preclinical setting, which can thus be used to improve current immunotherapy strategies.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Erica Ceccarello
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Anthony Tanoto Tan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Bertoletti
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Roger Dale Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Siew Cheng Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| |
Collapse
|
46
|
Nosaka T, Naito T, Hiramatsu K, Ohtani M, Nemoto T, Marusawa H, Ma N, Hiraku Y, Kawanishi S, Yamashita T, Kaneko S, Nakamoto Y. Gene expression profiling of hepatocarcinogenesis in a mouse model of chronic hepatitis B. PLoS One 2017; 12:e0185442. [PMID: 28968425 PMCID: PMC5624708 DOI: 10.1371/journal.pone.0185442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common complication of chronic viral hepatitis. In support of this notion, we have reported that hepatitis B surface antigen (HBsAg)-specific CD8+ T lymphocytes critically contribute to inducing chronic liver cell injury that exerts high carcinogenic potential in a hepatitis B virus (HBV) transgenic mouse model. The dynamics of the molecular signatures responsible for hepatocellular carcinogenesis are not fully understood. The current study was designed to determine the serial changes in gene expression profiles in a model of chronic immune-mediated hepatitis. Methods Three-month-old HBV transgenic mice were immunologically reconstituted with bone marrow cells and splenocytes from syngeneic nontransgenic donors. Liver tissues were obtained every three months until 18 months at which time all mice developed multiple liver tumors. Nitrative DNA lesions and hepatocyte turnover were assessed immunohistochemically. Gene expression profiles were generated by extracting total RNA from the tissues and analyzing by microarray. Results The nitrative DNA lesions and the regenerative proliferation of hepatocytes were increased during the progression of chronic liver disease. In a gene expression profile analysis of liver samples, the chemokine- and T cell receptor (TCR)-mediated pathways were enhanced during chronic hepatitis, and the EGF- and VEGF-mediated pathways were induced in HCC. Among these molecules, the protein levels of STAT3 were greatly enhanced in all hepatocyte nuclei and further elevated in the cytoplasm in HCC tissue samples at 18 months, and the levels of phosphorylated TP53 (p-p53-Ser 6 and -Ser 15) were increased in liver tissues. Conclusions HBV-specific immune responses caused unique molecular signatures in the liver tissues of chronic hepatitis and triggered subsequent carcinogenic gene expression profiles in a mouse model. The results suggest a plausible molecular basis responsible for HBV-induced immune pathogenesis of HCC.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Tomoyuki Nemoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, Japan
| | - Ning Ma
- Faculty of Nursing Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
- * E-mail:
| |
Collapse
|
47
|
Jing R, Xi J, Leng Y, Chen W, Wang G, Jia W, Kang J, Zhu S. Motifs in the amino-terminus of CENP-A are required for its accumulation within the nucleus and at the centromere. Oncotarget 2017; 8:40654-40667. [PMID: 28489565 PMCID: PMC5522188 DOI: 10.18632/oncotarget.17204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Centromere protein A (CENP-A) is a variant of core histone H3 that marks the centromere's location on the chromosome. The mechanisms that target the protein to the nucleus and the centromere have not been defined. In this study, we found that deletion of the first 53 but not the first 29 residues of CENP-A from the amino-terminus, resulted in its cytoplasmic localization. Two motifs, R42R43R44 and K49R52K53K56, which are reported to be required for DNA contact in the centromere nucleosome, were found to be critical for CENP-A nuclear accumulation. These two motifs potentially mediated its interaction with Importin-β but were not involved in CENP-A centromeric localization. A third novel motif, L60L61I62R63K64, was found to be essential for the centromeric accumulation of CENP-A. The nonpolar hydrophobic residues L60L61I62, but not the basic residues R63K64, were found to be the most important residues. A protein interaction assay suggested that this motif is not involved in the interaction of CENP-A with its deposition factors but potentially mediates its interaction with core histone H4 and CENP-B. Our study uncovered the role of the amino-terminus of CENP-A in localization.
Collapse
Affiliation(s)
- Ruiqi Jing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Ye Leng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
48
|
Abstract
Inducible NO synthase (iNOS/NOS2) protein expression is a well-studied predictor of poor outcome in multiple cancers, and it has also been associated with inflammatory and immunosuppressive processes in the tumor microenvironment. Immunotherapies are becoming increasingly key components in cancer treatment, and iNOS is receiving more attention as a potential regulator of treatment resistance. As we have reported in pancreatic cancer, by modulation of effector T-cell activity, iNOS overexpression may allow the tumor to escape the immune response through creating a microenvironment which causes recalcitrance to immunotherapy. Based on studies describing its role in the immune environment of multiple cancers, strategies that include iNOS inhibitors as combination partners may enhance immunotherapy approaches. The expression and the function of iNOS both depend on the tumor type and microenvironment, as well as on the patient's treatment history. Thus, enhancing immunotherapies, including adoptive T-cell therapies and checkpoint blockade, will require tailored cancer-specific approaches and additional levels of microenvironment regulation.
Collapse
Affiliation(s)
- Suhendan Ekmekcioglu
- a Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Elizabeth A Grimm
- a Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jason Roszik
- a Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Genomic Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|