1
|
He W, Zheng Z, Zhao Q, Zhang R, Zheng H. Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B. Pathogens 2024; 13:1100. [PMID: 39770359 PMCID: PMC11728772 DOI: 10.3390/pathogens13121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
2
|
Ortega P, Bournique E, Li J, Sanchez A, Santiago G, Harris BR, Green AM, Buisson R. ATR safeguards replication forks against APOBEC3B-induced toxic PARP1 trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623607. [PMID: 39605722 PMCID: PMC11601322 DOI: 10.1101/2024.11.14.623607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ATR is the master safeguard of genomic integrity during DNA replication. Acute inhibition of ATR with ATR inhibitor (ATRi) triggers a surge in origin firing, leading to increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe. However, the mechanism by which unprotected ssDNA breaks remains unclear. Here, we reveal that APOBEC3B is the key enzyme targeting unprotected ssDNA at replication forks, triggering a reaction cascade that induces fork collapse and PARP1 hyperactivation. Mechanistically, we demonstrate that uracils generated by APOBEC3B at replication forks are removed by UNG2, creating abasic sites that are subsequently cleaved by APE1 endonuclease. Moreover, we demonstrate that APE1-mediated DNA cleavage is the critical enzymatic step for PARP1 trapping and hyperactivation in cells, regardless of how abasic sites are generated on DNA. Finally, we show that APOBEC3B-induced toxic PARP1 trapping in response to ATRi drives cell sensitivity to ATR inhibition, creating to a context of synthetic lethality when combined with PARP inhibitors. Together, these findings reveal the mechanisms that cause replication forks to break during replication catastrophe and explain why ATRi-treated cells are particularly sensitive to PARP inhibitors.
Collapse
Affiliation(s)
- Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Brooke R. Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Abby M. Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Duzanic FD, Penengo L. The interferon response at the intersection of genome integrity and innate immunity. DNA Repair (Amst) 2024; 145:103786. [PMID: 39577202 DOI: 10.1016/j.dnarep.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In recent years, numerous reports indicated that, besides pathogen infections, DNA replication stress and defective DNA repair can trigger the innate immune response by introducing a state of viral mimicry, due to cytosolic accumulation of the self-nucleic acid species, which culminates in the activation of type I interferon (IFN) pathway. In turn, IFN upregulates a variety of factors mutually implicated in immune- and genome-related mechanisms, shedding light on the unprecedented causality between genome stability and innate immunity. Intriguingly, in addition to being induced by replication stress, IFN-regulated factors can also promote it, pinpointing IFN signaling as both a consequence and a cause of replication stress. Here, we provide an overview of the factors and molecular mechanisms implicated in the evolutionary conserved crosstalk between genome maintenance and innate immunity, highlighting the role of the IFN-stimulated gene 15 (ISG15), which appears to be at the hub of this intersection. Moreover, we discuss the potential significance and clinical implications of the immune-mediated modulation of DNA replication and repair upon pathogen infection and in human diseases such as cancer and autoinflammatory syndromes. Finally, we discuss the relevant open questions and future directions.
Collapse
Affiliation(s)
- Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland.
| |
Collapse
|
4
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jayakrishnan R, Kwiatkowski DJ, Rose MG, Nassar AH. Topography of mutational signatures in non-small cell lung cancer: emerging concepts, clinical applications, and limitations. Oncologist 2024; 29:833-841. [PMID: 38907669 PMCID: PMC11449018 DOI: 10.1093/oncolo/oyae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024] Open
Abstract
The genome of a cell is continuously battered by a plethora of exogenous and endogenous processes that can lead to damaged DNA. Repair mechanisms correct this damage most of the time, but failure to do so leaves mutations. Mutations do not occur in random manner, but rather typically follow a more or less specific pattern due to known or imputed mutational processes. Mutational signature analysis is the process by which the predominant mutational process can be inferred for a cancer and can be used in several contexts to study both the genesis of cancer and its response to therapy. Recent pan-cancer genomic efforts such as "The Cancer Genome Atlas" have identified numerous mutational signatures that can be categorized into single base substitutions, doublet base substitutions, or small insertions/deletions. Understanding these mutational signatures as they occur in non-small lung cancer could improve efforts at prevention, predict treatment response to personalized treatments, and guide the development of therapies targeting tumor evolution. For non-small cell lung cancer, several mutational signatures have been identified that correlate with exposures such as tobacco smoking and radon and can also reflect endogenous processes such as aging, APOBEC activity, and loss of mismatch repair. Herein, we provide an overview of the current knowledge of mutational signatures in non-small lung cancer.
Collapse
Affiliation(s)
- Ritujith Jayakrishnan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David J Kwiatkowski
- Department of Pulmonary Medicine, Brigham and Women's Hospital, Boston, MA, 02115, United States
| | - Michal G Rose
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Medicine, Medical Oncology Division, Yale Cancer Center, New Haven, CT, United States
| | - Amin H Nassar
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
| |
Collapse
|
6
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Fingerman DF, O'Leary DR, Hansen AR, Tran T, Harris BR, DeWeerd RA, Hayer KE, Fan J, Chen E, Tennakoon M, Meroni A, Szeto JH, Devenport J, LaVigne D, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. EMBO J 2024; 43:3240-3255. [PMID: 38886582 PMCID: PMC11294446 DOI: 10.1038/s44318-024-00137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
Affiliation(s)
- Dylan F Fingerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Thi Tran
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brooke R Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiayi Fan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Emily Chen
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- School of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Mithila Tennakoon
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alice Meroni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julia H Szeto
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Devenport
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle LaVigne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ophir Shalem
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Lee D, Hua M, Wang D, Song L, Zhang T, Hua X, Yu K, Yang XR, Chanock SJ, Shi J, Landi MT, Zhu B. Pan-cancer mutational signature analysis of 111,711 targeted sequenced tumors using SATS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290188. [PMID: 37425683 PMCID: PMC10327246 DOI: 10.1101/2023.05.18.23290188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tumor mutational signatures are informative for cancer diagnosis and treatment. However, targeted sequencing, commonly used in clinical settings, lacks specialized analytical tools and a dedicated catalogue of mutational signatures. Here, we introduce SATS, a scalable mutational signature analyzer for targeted sequencing data. SATS leverages tumor mutational burdens to identify and quantify signatures in individual tumors, overcoming the challenges of sparse mutations and variable gene panels. Validations across simulated data, pseudo-targeted sequencing data, and matched whole-genome and targeted sequencing samples show that SATS can accurately detect common mutational signatures and estimate their burdens. Applying SATS to 111,711 tumors from the AACR Project GENIE, we created a pan-cancer mutational signature catalogue specific to targeted sequencing. We further validated signatures in lung, breast and colorectal cancers using an additional 16,774 independent samples. This signature catalogue is a valuable resource for estimating signature burdens in individual targeted sequenced tumors, facilitating the integration of mutational signatures with clinical data.
Collapse
|
9
|
Ubhi T, Zaslaver O, Quaile AT, Plenker D, Cao P, Pham NA, Békési A, Jang GH, O'Kane GM, Notta F, Moffat J, Wilson JM, Gallinger S, Vértessy BG, Tuveson DA, Röst HL, Brown GW. Cytidine deaminases APOBEC3C and APOBEC3D promote DNA replication stress resistance in pancreatic cancer cells. NATURE CANCER 2024; 5:895-915. [PMID: 38448522 DOI: 10.1038/s43018-024-00742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zaslaver
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Quaile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Plenker
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Xilis Inc., Durham, NC, USA
| | - Pinjiang Cao
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angéla Békési
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - David A Tuveson
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
KIM HYUNHO, CHO UIJU, HONG SOOKHEE, PARK HYUNGSOON, KIM INHO, AN HOJUNG, SHIM BYOUNGYONG, KANG JINHYOUNG. New insights into ATR inhibition in muscle invasive bladder cancer: The role of apolipoprotein B mRNA editing catalytic subunit 3B. Oncol Res 2024; 32:1021-1030. [PMID: 38827321 PMCID: PMC11136685 DOI: 10.32604/or.2024.048919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 06/04/2024] Open
Abstract
Background Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.
Collapse
Affiliation(s)
- HYUNHO KIM
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - UIJU CHO
- Department of Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - SOOK HEE HONG
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - HYUNG SOON PARK
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - IN-HO KIM
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - HO JUNG AN
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - BYOUNG YONG SHIM
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - JIN HYOUNG KANG
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
O'Leary DR, Hansen AR, Fingerman DF, Tran T, Harris BR, Hayer KE, Fan J, Chen E, Tennakoon M, DeWeerd RA, Meroni A, Szeto JH, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.568952. [PMID: 38077016 PMCID: PMC10705431 DOI: 10.1101/2023.11.28.568952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
|
13
|
Butt Y, Sakhtemani R, Mohamad-Ramshan R, Lawrence MS, Bhagwat AS. Distinguishing preferences of human APOBEC3A and APOBEC3B for cytosines in hairpin loops, and reflection of these preferences in APOBEC-signature cancer genome mutations. Nat Commun 2024; 15:2369. [PMID: 38499553 PMCID: PMC10948833 DOI: 10.1038/s41467-024-46231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
The APOBEC3 enzymes convert cytosines in single-stranded DNA to uracils to protect against viruses and retrotransposons but can contribute to mutations that diversify tumors. To understand the mechanism of mutagenesis, we map the uracils resulting from expression of APOBEC3B or its catalytic carboxy-terminal domain (CTD) in Escherichia coli. Like APOBEC3A, the uracilomes of A3B and A3B-CTD show a preference to deaminate cytosines near transcription start sites and the lagging-strand replication templates and in hairpin loops. Both biochemical activities of the enzymes and genomic uracil distribution show that A3A prefers 3 nt loops the best, while A3B prefers 4 nt loops. Reanalysis of hairpin loop mutations in human tumors finds intrinsic characteristics of both the enzymes, with a much stronger contribution from A3A. We apply Hairpin Signatures 1 and 2, which define A3A and A3B preferences respectively and are orthogonal to published methods, to evaluate their contribution to human tumor mutations.
Collapse
Affiliation(s)
- Yasha Butt
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Yates M, Marois I, St-Hilaire E, Ronato DA, Djerir B, Brochu C, Morin T, Hammond-Martel I, Gezzar-Dandashi S, Casimir L, Drobetsky E, Cappadocia L, Masson JY, Wurtele H, Maréchal A. SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability. PLoS Biol 2024; 22:e3002552. [PMID: 38502677 PMCID: PMC10950228 DOI: 10.1371/journal.pbio.3002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.
Collapse
Affiliation(s)
- Maïlyn Yates
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Isabelle Marois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Edlie St-Hilaire
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | - Daryl A. Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Canada
| | - Billel Djerir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Chloé Brochu
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Théo Morin
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | | | | | - Lisa Casimir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Elliot Drobetsky
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | - Laurent Cappadocia
- Faculty of Sciences, Department of Chemistry, Université du Québec à Montréal, Montréal, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Canada
| | - Hugo Wurtele
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| |
Collapse
|
16
|
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. SCIENCE ADVANCES 2024; 10:eadk2771. [PMID: 38241374 PMCID: PMC10798555 DOI: 10.1126/sciadv.adk2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.
Collapse
Affiliation(s)
- Ajinkya S. Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Parasvi S. Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
Affiliation(s)
- Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tadashi Manabe
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Martinez-Ruiz
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Beatrice Gini
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Humpton
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
- CRUK Beatson Institute, Glasgow, UK
- Glasgow Caledonian University, Glasgow, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Roberto Vendramin
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Vittorio Barbè
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Mugabo
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dora Barbosa
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Simon L Priestnall
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Caroline Zverev
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Scott Lighterness
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - James Cormack
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha Andrews
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay K Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health Palo Alto Medical Foundation, Department of Pulmonary and Critical Care, Mountain View, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, NCI, NIH, Bethesda, MD, USA
- NextCure Inc., Beltsville, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnny Yu
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Thomas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell College of Medicine, New York City, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Trever G Bivona
- Departments of Medicine and Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
18
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
19
|
Aldea M, Vasseur D, Italiano A, Nikolaev SI. WGS/WES-RNAseq compared to targeted NGS in oncology: is there something to unlock? Ann Oncol 2023; 34:1090-1093. [PMID: 37816462 DOI: 10.1016/j.annonc.2023.09.3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Affiliation(s)
- M Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif; Paris-Saclay University, Kremlin-Bicetre; Precision Medicine, Gustave Roussy, Villejuif
| | - D Vasseur
- Precision Medicine, Gustave Roussy, Villejuif; Department of Molecular Pathology, Gustave Roussy, Villejuif
| | - A Italiano
- Precision Medicine, Gustave Roussy, Villejuif; Drug Development Department, Gustave Roussy, Villejuif
| | | |
Collapse
|
20
|
Dong F, Davies KD. Mutational Signatures in Cancer: Laboratory Considerations and Emerging Applications. J Mol Diagn 2023; 25:790-795. [PMID: 37633594 DOI: 10.1016/j.jmoldx.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Patterns of somatic mutations have emerged from the broad sequencing of human cancer genomes. These mutational signatures reflect mechanisms of mutagenesis and DNA repair defects and represent an emerging class of cancer biomarkers. The appropriate interpretation of mutational signatures from sequencing assays holds implications in the reporting of molecular diagnostic results for patients with cancer. This brief review describes the scientific principles, laboratory considerations, and emerging clinical applications of mutational signature analysis from clinical cancer genomes.
Collapse
Affiliation(s)
- Fei Dong
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Kurtis D Davies
- Emerging and Evolving Biomarker Content Committee, A Working Group of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
21
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA Features Impact APOBEC3A and APOBEC3B Deaminase Activity and Shape Tumor Mutational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551499. [PMID: 37577509 PMCID: PMC10418229 DOI: 10.1101/2023.08.02.551499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets singlestranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have been fully established, and the specific influence of the DNA sequence on APOBEC3A APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B selectively targets DNA stem-loop structures, and they are distinct from those subjected deamination by APOBEC3A. We develop Oligo-seq, a novel in vitro sequencing-based to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A an APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
|
22
|
Butt Y, Sakhtemani R, Mohamad-Ramshan R, Lawrence MS, Bhagwat AS. Distinguishing preferences of human APOBEC3A and APOBEC3B for cytosines in hairpin loops, and reflection of these preferences in APOBEC-signature cancer genome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551518. [PMID: 37577595 PMCID: PMC10418155 DOI: 10.1101/2023.08.01.551518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The APOBEC3 family of enzymes convert cytosines in single-stranded DNA to uracils thereby causing mutations. These enzymes protect human cells against viruses and retrotransposons, but in many cancers they contribute to mutations that diversify the tumors and help them escape anticancer drug treatments. To understand the mechanism of mutagenesis by APOBEC3B, we expressed the complete enzyme or its catalytic carboxy-terminal domain (CTD) in repair-deficient Eschericia coli and mapped the resulting uracils using uracil pull-down and sequencing technology. The uracilomes of A3B-full and A3B-CTD showed peaks in many of the same regions where APOBEC3A also created uracilation peaks. Like A3A, the two A3B enzymes also preferred to deaminate cytosines near transcription start sites and in the lagging-strand template at replication forks. In contrast to an earlier report that A3B does not favor hairpin loops over linear DNA, we found that both A3B-full and A3B-CTD showed a strong preference for cytosines in hairpin loops. The major difference between A3A and A3B was that while the former enzyme prefers 3 nt loops the best, A3B prefers loops of 4 nt over those of other lengths. Furthermore, within 5 nt loops, A3A prefers cytosine to be in the penultimate position, while A3B prefers it to be at the 3' end of the loop. We confirmed these loop size and sequence preferences experimentally using purified A3A and A3B-CTD proteins. Reanalysis of hairpin loop mutations in human tumors using the size, sequence and position preferences of the two enzymes found that the tumors displayed mutations with intrinsic characteristics of both the enzymes with a stronger contribution from A3A.
Collapse
|
23
|
Isozaki H, Sakhtemani R, Abbasi A, Nikpour N, Stanzione M, Oh S, Langenbucher A, Monroe S, Su W, Cabanos HF, Siddiqui FM, Phan N, Jalili P, Timonina D, Bilton S, Gomez-Caraballo M, Archibald HL, Nangia V, Dionne K, Riley A, Lawlor M, Banwait MK, Cobb RG, Zou L, Dyson NJ, Ott CJ, Benes C, Getz G, Chan CS, Shaw AT, Gainor JF, Lin JJ, Sequist LV, Piotrowska Z, Yeap BY, Engelman JA, Lee JJK, Maruvka YE, Buisson R, Lawrence MS, Hata AN. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 2023; 620:393-401. [PMID: 37407818 PMCID: PMC10804446 DOI: 10.1038/s41586-023-06303-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.
Collapse
Affiliation(s)
- Hideko Isozaki
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ammal Abbasi
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Naveed Nikpour
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Sunwoo Oh
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Susanna Monroe
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Wenjia Su
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Heidie Frisco Cabanos
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Nicole Phan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Pégah Jalili
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Daria Timonina
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Samantha Bilton
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Varuna Nangia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Kristin Dionne
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Amanda Riley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Matthew Lawlor
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Rosemary G Cobb
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cyril Benes
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Chang S Chan
- Department of Medicine, Rutgers Robert Wood Johnson Medical School and Center for Systems and Computational Biology, Rutgers Cancer Institute, New Brunswick, NJ, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Justin F Gainor
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beow Y Yeap
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jake June-Koo Lee
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yosef E Maruvka
- Faculty of Biotechnology and Food Engineering, Lorey Loki Center for Life Science and Engineering, Technion, Haifa, Israel
| | - Rémi Buisson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Piazzi M, Bavelloni A, Salucci S, Faenza I, Blalock WL. Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing. Genes (Basel) 2023; 14:1386. [PMID: 37510291 PMCID: PMC10379330 DOI: 10.3390/genes14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of next generation sequencing (NGS) has fostered a shift in basic analytic strategies of a gene expression analysis in diverse pathologies for the purposes of research, pharmacology, and personalized medicine. What was once highly focused research on individual signaling pathways or pathway members has, from the time of gene expression arrays, become a global analysis of gene expression that has aided in identifying novel pathway interactions, the discovery of new therapeutic targets, and the establishment of disease-associated profiles for assessing progression, stratification, or a therapeutic response. But there are significant caveats to this analysis that do not allow for the construction of the full picture. The lack of timely updates to publicly available databases and the "hit and miss" deposition of scientific data to these databases relegate a large amount of potentially important data to "garbage", begging the question, "how much are we really missing?" This brief perspective aims to highlight some of the limitations that RNA binding/modifying proteins and RNA processing impose on our current usage of NGS technologies as relating to cancer and how not fully appreciating the limitations of current NGS technology may negatively affect therapeutic strategies in the long run.
Collapse
Affiliation(s)
- Manuela Piazzi
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - William L Blalock
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
25
|
Zong C, Zhang Z, Gao L, He J, Wang Y, Li Q, Liu X, Yang J, Chen D, Huang R, Zheng G, Jin X, Wei W, Jia R, Shen J. APOBEC3B coordinates R-loop to promote replication stress and sensitize cancer cells to ATR/Chk1 inhibitors. Cell Death Dis 2023; 14:348. [PMID: 37270643 DOI: 10.1038/s41419-023-05867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
The cytidine deaminase, Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B, herein termed A3B), is a critical mutation driver that induces genomic instability in cancer by catalyzing cytosine-to-thymine (C-to-T) conversion and promoting replication stress (RS). However, the detailed function of A3B in RS is not fully determined and it is not known whether the mechanism of A3B action can be exploited for cancer therapy. Here, we conducted an immunoprecipitation-mass spectrometry (IP-MS) study and identified A3B to be a novel binding component of R-loops, which are RNA:DNA hybrid structures. Mechanistically, overexpression of A3B exacerbated RS by promoting R-loop formation and altering the distribution of R-loops in the genome. This was rescued by the R-loop gatekeeper, Ribonuclease H1 (RNASEH1, herein termed RNH1). In addition, a high level of A3B conferred sensitivity to ATR/Chk1 inhibitors (ATRi/Chk1i) in melanoma cells, which was dependent on R-loop status. Together, our results provide novel insights into the mechanistic link between A3B and R-loops in the promotion of RS in cancer. This will inform the development of markers to predict the response of patients to ATRi/Chk1i.
Collapse
Affiliation(s)
- Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiran Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoting Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Di Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Lingang Laboratory, Shanghai, 200031, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
26
|
Long X, Lu H, Cai MC, Zang J, Zhang Z, Wu J, Liu X, Cheng L, Cheng J, Cheung LWT, Shen Z, Zhou Y, Di W, Zhuang G, Yin X. APOBEC3B stratifies ovarian clear cell carcinoma with distinct immunophenotype and prognosis. Br J Cancer 2023; 128:2054-2062. [PMID: 36997661 PMCID: PMC10206171 DOI: 10.1038/s41416-023-02239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a challenging disease due to its intrinsic chemoresistance. Immunotherapy is an emerging treatment option but currently impeded by insufficient understanding of OCCC immunophenotypes and their molecular determinants. METHODS Whole-genome sequencing on 23 pathologically confirmed patients was employed to depict the genomic profile of primary OCCCs. APOBEC3B expression and digital pathology-based Immunoscore were assessed by performing immunohistochemistry and correlated with clinical outcomes. RESULTS An APOBEC-positive (APOBEC+) subtype was identified based on the characteristic mutational signature and prevalent kataegis events. APOBEC + OCCC displayed favourable prognosis across one internal and two external patient cohorts. The improved outcome was ascribable to increased lymphocytic infiltration. Similar phenomena of APOBEC3B expression and T-cell accumulation were observed in endometriotic tissues, suggesting that APOBEC-induced mutagenesis and immunogenicity could occur early during OCCC pathogenesis. Corroborating these results, a case report was presented for an APOBEC + patient demonstrating inflamed tumour microenvironment and clinical response to immune checkpoint blockade. CONCLUSIONS Our findings implicate APOBEC3B as a novel mechanism of OCCC stratification with prognostic value and as a potential predictive biomarker that may inform immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Xiaoran Long
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaiwu Lu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuqing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoshi Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejun Cheng
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xia Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Naumann JA, Argyris PP, Carpenter MA, Gupta HB, Chen Y, Temiz NA, Zhou Y, Durfee C, Proehl J, Koniar BL, Conticello SG, Largaespada DA, Brown WL, Aihara H, Vogel RI, Harris RS. DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo. Int J Mol Sci 2023; 24:9305. [PMID: 37298259 PMCID: PMC10253583 DOI: 10.3390/ijms24119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.
Collapse
Affiliation(s)
- Jordan A. Naumann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Harshita B. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Brenda L. Koniar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, 50139 Florence, Italy;
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
28
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
29
|
Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive Analyses Reveal Effects on Tumor Immune Infiltration and Immunotherapy Response of APOBEC Mutagenesis and Its Molecular Mechanisms in Esophageal Squamous Cell Carcinoma. Int J Biol Sci 2023; 19:2551-2571. [PMID: 37215984 PMCID: PMC10197887 DOI: 10.7150/ijbs.83824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated A3A exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, A3A is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
30
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
31
|
Choudhury NJ, Marra A, Sui JSY, Flynn J, Yang SR, Falcon CJ, Selenica P, Schoenfeld AJ, Rekhtman N, Gomez D, Berger MF, Ladanyi M, Arcila M, Rudin CM, Riely GJ, Kris MG, Heller G, Reis-Filho JS, Yu HA. Molecular Biomarkers of Disease Outcomes and Mechanisms of Acquired Resistance to First-Line Osimertinib in Advanced EGFR-Mutant Lung Cancers. J Thorac Oncol 2023; 18:463-475. [PMID: 36494075 PMCID: PMC10249779 DOI: 10.1016/j.jtho.2022.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Preferred first-line treatment for patients with metastatic EGFR-mutant lung cancer is osimertinib, yet it is not known whether patient outcomes may be improved by identifying and intervening on molecular markers associated with therapeutic resistance. METHODS All patients with metastatic EGFR-mutant lung cancer treated with first-line osimertinib at the Memorial Sloan Kettering Cancer Center (n = 327) were identified. Available pretreatment and postprogression tumor samples underwent targeted gene panel sequencing and mutational signature analysis using SigMA algorithm. Progression-free survival (PFS) and overall survival were estimated using the Kaplan-Meier method. RESULTS Using multivariate analysis, baseline atypical EGFR (median PFS = 5.8 mo, p < 0.001) and concurrent TP53/RB1 alterations (median PFS = 10.5 mo, p = 0.015) were associated with shorter PFS on first-line osimertinib. Of 95 patients with postprogression biopsies, acquired resistance mechanisms were identified in 52% (off-target, n = 24; histologic transformation, n = 14; on-target, n = 12), with MET amplification (n = 9), small cell lung transformation (n = 7), and acquired EGFR amplification (n = 7), the most frequently identified mechanisms. Although there was no difference in postprogression survival on the basis of identified resistance (p = 0.07), patients with subsequent second-line therapy tailored to postprogression biopsy results had improved postprogression survival (hazard ratio = 0.09, p = 0.006). The paired postprogression tumors had higher tumor mutational burden (p = 0.008) and further dominant APOBEC mutational signatures (p = 0.07) compared with the pretreatment samples. CONCLUSIONS Patients with EGFR-mutant lung cancer treated with first-line osimertinib have improved survival with treatment adaptation on the basis of identified mechanisms of resistance at time of progression using tissue-based genomic analysis. Further survival gains may be achieved using risk-based treatment adaptation of pretreatment genomic alterations.
Collapse
Affiliation(s)
- Noura J Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Antonio Marra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jane S Y Sui
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Flynn
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina J Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
32
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Patterson A, Elbasir A, Tian B, Auslander N. Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers (Basel) 2023; 15:1958. [PMID: 37046619 PMCID: PMC10093138 DOI: 10.3390/cancers15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Since the rise of next-generation sequencing technologies, the catalogue of mutations in cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape and extract meaningful insights, numerous computational approaches have been developed over the last two decades. In this review, we survey the current leading computational methods to derive intricate mutational patterns in the context of clinical relevance. We begin with mutation signatures, explaining first how mutation signatures were developed and then examining the utility of studies using mutation signatures to correlate environmental effects on the cancer genome. Next, we examine current clinical research that employs mutation signatures and discuss the potential use cases and challenges of mutation signatures in clinical decision-making. We then examine computational studies developing tools to investigate complex patterns of mutations beyond the context of mutational signatures. We survey methods to identify cancer-driver genes, from single-driver studies to pathway and network analyses. In addition, we review methods inferring complex combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction, including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further discuss the main limitations preventing widespread clinical integration of computational tools for the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges using recent advances in machine learning.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Bin Tian
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Salguero C, Valladolid C, Robinson HMR, Smith GCM, Yap TA. Targeting ATR in Cancer Medicine. Cancer Treat Res 2023; 186:239-283. [PMID: 37978140 DOI: 10.1007/978-3-031-30065-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.
Collapse
Affiliation(s)
- Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Valladolid
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, and Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, TX, 77030, Houston, USA.
| |
Collapse
|
35
|
Selenica P, Marra A, Choudhury NJ, Gazzo A, Falcon CJ, Patel J, Pei X, Zhu Y, Ng CKY, Curry M, Heller G, Zhang YK, Berger MF, Ladanyi M, Rudin CM, Chandarlapaty S, Lovly CM, Reis-Filho JS, Yu HA. APOBEC mutagenesis, kataegis, chromothripsis in EGFR-mutant osimertinib-resistant lung adenocarcinomas. Ann Oncol 2022; 33:1284-1295. [PMID: 36089134 PMCID: PMC10360454 DOI: 10.1016/j.annonc.2022.09.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Studies of targeted therapy resistance in lung cancer have primarily focused on single-gene alterations. Based on prior work implicating apolipoprotein b mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutagenesis in histological transformation of epidermal growth factor receptor (EGFR)-mutant lung cancers, we hypothesized that mutational signature analysis may help elucidate acquired resistance to targeted therapies. PATIENTS AND METHODS APOBEC mutational signatures derived from an Food and Drug Administration-cleared multigene panel [Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)] using the Signature Multivariate Analysis (SigMA) algorithm were validated against the gold standard of mutational signatures derived from whole-exome sequencing. Mutational signatures were decomposed in 3276 unique lung adenocarcinomas (LUADs), including 93 paired osimertinib-naïve and -resistant EGFR-mutant tumors. Associations between APOBEC and mechanisms of resistance to osimertinib were investigated. Whole-genome sequencing was carried out on available EGFR-mutant lung cancer samples (10 paired, 17 unpaired) to investigate large-scale genomic alterations potentially contributing to osimertinib resistance. RESULTS APOBEC mutational signatures were more frequent in receptor tyrosine kinase (RTK)-driven lung cancers (EGFR, ALK, RET, and ROS1; 25%) compared to LUADs at large (20%, P < 0.001); across all subtypes, APOBEC mutational signatures were enriched in subclonal mutations (P < 0.001). In EGFR-mutant lung cancers, osimertinib-resistant samples more frequently displayed an APOBEC-dominant mutational signature compared to osimertinib-naïve samples (28% versus 14%, P = 0.03). Specifically, mutations detected in osimertinib-resistant tumors but not in pre-treatment samples significantly more frequently displayed an APOBEC-dominant mutational signature (44% versus 23%, P < 0.001). EGFR-mutant samples with APOBEC-dominant signatures had enrichment of large-scale genomic rearrangements (P = 0.01) and kataegis (P = 0.03) in areas of APOBEC mutagenesis. CONCLUSIONS APOBEC mutational signatures are frequent in RTK-driven LUADs and increase under the selective pressure of osimertinib in EGFR-mutant lung cancer. APOBEC mutational signature enrichment in subclonal mutations, private mutations acquired after osimertinib treatment, and areas of large-scale genomic rearrangements highlights a potentially fundamental role for APOBEC mutagenesis in the development of resistance to targeted therapies, which may be potentially exploited to overcome such resistance.
Collapse
Affiliation(s)
- P Selenica
- Memorial Sloan Kettering Cancer Center, New York City
| | - A Marra
- Memorial Sloan Kettering Cancer Center, New York City
| | - N J Choudhury
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York City
| | - A Gazzo
- Memorial Sloan Kettering Cancer Center, New York City
| | - C J Falcon
- Druckenmiller Center for Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, USA
| | - J Patel
- Memorial Sloan Kettering Cancer Center, New York City
| | - X Pei
- Memorial Sloan Kettering Cancer Center, New York City
| | - Y Zhu
- Memorial Sloan Kettering Cancer Center, New York City
| | - C K Y Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - M Curry
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City
| | - G Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City
| | - Y-K Zhang
- Department of Medicine, Division of Hematology and Oncology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville
| | - M F Berger
- Memorial Sloan Kettering Cancer Center, New York City; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City; Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York City
| | - M Ladanyi
- Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York City
| | - C M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York City; Department of Medicine, Weill Cornell Medical College, New York City, USA
| | - S Chandarlapaty
- Memorial Sloan Kettering Cancer Center, New York City; Department of Medicine, Weill Cornell Medical College, New York City, USA
| | - C M Lovly
- Department of Medicine, Division of Hematology and Oncology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville
| | | | - H A Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York City; Department of Medicine, Weill Cornell Medical College, New York City, USA.
| |
Collapse
|
36
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
37
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
38
|
Petljak M, Green AM, Maciejowski J, Weitzman MD. Addressing the benefits of inhibiting APOBEC3-dependent mutagenesis in cancer. Nat Genet 2022; 54:1599-1608. [PMID: 36280735 PMCID: PMC9700387 DOI: 10.1038/s41588-022-01196-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
39
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
40
|
Lin M, Sade-Feldman M, Wirth L, Lawrence MS, Faden DL. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance. NPJ Precis Oncol 2022; 6:71. [PMID: 36210388 PMCID: PMC9548500 DOI: 10.1038/s41698-022-00314-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive epithelial cancer with poor overall response rates to checkpoint inhibitor therapy (CPI) despite CPI being the recommended treatment for recurrent or metastatic HNSCC. Mechanisms of resistance to CPI in HNSCC are poorly understood. To identify drivers of response and resistance to CPI in a unique patient who was believed to have developed three separate HNSCCs, we performed single-cell RNA-seq (scRNA-seq) profiling of two responding lesions and one progressive lesion that developed during CPI. Our results not only suggest interferon-induced APOBEC3-mediated acquired resistance as a mechanism of CPI resistance in the progressing lesion but further, that the lesion in question was actually a metastasis as opposed to a new primary tumor, highlighting the immense power of scRNA-seq as a clinical tool for inferring tumor origin and mechanisms of therapeutic resistance.
Collapse
Affiliation(s)
- Maoxuan Lin
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA
| | - Moshe Sade-Feldman
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Lori Wirth
- grid.32224.350000 0004 0386 9924Department of Medicine, Massachusetts General Hospital, Boston, MA 02118 USA
| | - Michael S. Lawrence
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Daniel L. Faden
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
41
|
Lemay JF, St-Hilaire E, Ronato DA, Gao Y, Bélanger F, Gezzar-Dandashi S, Kimenyi Ishimwe AB, Sawchyn C, Lévesque D, McQuaid M, Boisvert FM, Mallette FA, Masson JY, Drobetsky EA, Wurtele H. A genome-wide screen identifies SCAI as a modulator of the UV-induced replicative stress response. PLoS Biol 2022; 20:e3001543. [PMID: 36215310 PMCID: PMC9584372 DOI: 10.1371/journal.pbio.3001543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 10/20/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Helix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RFs). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for recruitment/activation of critical factors that promote DNA synthesis restart. However, during periods of severe replicative stress, RPA availability may become limiting due to inordinate sequestration of this multifunctional complex on ssDNA, thereby negatively impacting multiple vital RPA-dependent processes. Here, we performed a genome-wide screen to identify factors that restrict the accumulation of RPA-ssDNA during UV-induced replicative stress. While this approach revealed some expected "hits" acting in pathways such as nucleotide excision repair, translesion DNA synthesis, and the intra-S phase checkpoint, it also identified SCAI, whose role in the replicative stress response was previously unappreciated. Upon UV exposure, SCAI knock-down caused elevated accumulation of RPA-ssDNA during S phase, accompanied by reduced cell survival and compromised RF progression. These effects were independent of the previously reported role of SCAI in 53BP1-dependent DNA double-strand break repair. We also found that SCAI is recruited to UV-damaged chromatin and that its depletion promotes nascent DNA degradation at stalled RF. Finally, we (i) provide evidence that EXO1 is the major nuclease underlying ssDNA formation and DNA replication defects in SCAI knockout cells and, consistent with this, (ii) demonstrate that SCAI inhibits EXO1 activity on a ssDNA gap in vitro. Taken together, our data establish SCAI as a novel regulator of the UV-induced replicative stress response in human cells.
Collapse
Affiliation(s)
- Jean-François Lemay
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Edlie St-Hilaire
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Daryl A. Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Yuandi Gao
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - François Bélanger
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Sari Gezzar-Dandashi
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Aimé Boris Kimenyi Ishimwe
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Christina Sawchyn
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mary McQuaid
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - Frédérick A. Mallette
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Elliot A. Drobetsky
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Wurtele
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Kim YA, Hodzic E, Amgalan B, Saslafsky A, Wojtowicz D, Przytycka TM. Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling. Biomolecules 2022; 12:biom12101384. [PMID: 36291592 PMCID: PMC9599238 DOI: 10.3390/biom12101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Smoking is a widely recognized risk factor in the emergence of cancers and other lung diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression data from both tumor and control lung tissues, and studies have used control samples to estimate the impact of smoking on gene expression. However, such analyses may be confounded by tumor-related micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore the utilization of mutational signatures to study environment-induced changes of gene expression in control lung tissues from lung adenocarcinoma samples. We show that a joint computational analysis of mutational signatures derived from sequenced tumor samples, and the gene expression obtained from control samples, can shed light on the combined impact that smoking and tumor-related micro-environments have on gene expression and cell-type composition in non-neoplastic (control) lung tissue. The results obtained through such analysis are both supported by experimental studies, including studies utilizing single-cell technology, and also suggest additional novel insights. We argue that the study provides a proof of principle of the utility of mutational signatures to be used as sensors of environmental exposures not only in the context of the mutational landscape of cancer, but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a database collected with the purpose of understanding cancer can provide valuable information for studies not directly related to the disease.
Collapse
|
43
|
Chen CH, Wei KC, Liao WC, Lin YY, Chen HC, Feng LY, Liu CH, Huang CY, Chen KT, Wu CS, Chang YS, Yu JS, Chang IYF. Prognostic value of an APOBEC3 deletion polymorphism for glioma patients in Taiwan. J Neurosurg 2022; 138:1325-1337. [PMID: 36152319 DOI: 10.3171/2022.7.jns2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The molecular pathogenesis of malignant gliomas, characterized by diverse tumor histology with differential prognosis, remains largely unelucidated. An APOBEC3 deletion polymorphism, with a deletion in APOBEC3B, has been correlated to risk and prognosis in several cancers, but its role in glioma is unclear. The authors aimed to examine the clinical relevance of the APOBEC3 deletion polymorphism to glioma risk and survival in a glioma patient cohort in Taiwan. METHODS The authors detected deletion genotypes in 403 glioma patients and 1365 healthy individuals in Taiwan and correlated the genotypes with glioma risk, clinicopathological factors, patient survival, and patient sex. APOBEC3 gene family expression was measured and correlated to the germline deletion. A nomogram model was constructed to predict patient survival in glioma. RESULTS The proportion of APOBEC3B-/- and APOBEC3B+/- genotypes was higher in glioblastoma (GBM) patients than healthy individuals and correlated with higher GBM risk in males. A higher percentage of cases with APOBEC3B- was observed in male than female glioma patients. The presence of APOBEC3B-/- was correlated with better overall survival (OS) in male astrocytic glioma patients. No significant correlation of the genotypes to glioma risk and survival was observed in the female patient cohort. Lower APOBEC3B expression was observed in astrocytic glioma patients with APOBEC3B-/- and was positively correlated with better OS. A 5-factor nomogram model was constructed based on male patients with astrocytic gliomas in the study cohort and worked efficiently for predicting patient OS. CONCLUSIONS The germline APOBEC3 deletion was associated with increased GBM risk and better OS in astrocytic glioma patients in the Taiwan male population. The APOBEC3B deletion homozygote was a potential independent prognostic factor predicting better survival in male astrocytic glioma patients.
Collapse
Affiliation(s)
| | - Kuo-Chen Wei
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Wei-Chao Liao
- 1Molecular Medicine Research Center.,4Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan
| | - You-Yu Lin
- 9Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,10Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei
| | | | - Li-Ying Feng
- 11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Chiung-Hui Liu
- 12Department of Post-Baccalaureate Medicine and.,13PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chiung-Yin Huang
- 7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Ko-Ting Chen
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and
| | - Chi-Sheng Wu
- 1Molecular Medicine Research Center.,6Department of Otolaryngology-Head & Neck Surgery
| | | | - Jau-Song Yu
- 1Molecular Medicine Research Center.,3Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan.,8Liver Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | | |
Collapse
|
44
|
Sugitani N, Vendetti FP, Cipriano AJ, Pandya P, Deppas JJ, Moiseeva TN, Schamus-Haynes S, Wang Y, Palmer D, Osmanbeyoglu HU, Bostwick A, Snyder NW, Gong YN, Aird KM, Delgoffe GM, Beumer JH, Bakkenist CJ. Thymidine rescues ATR kinase inhibitor-induced deoxyuridine contamination in genomic DNA, cell death, and interferon-α/β expression. Cell Rep 2022; 40:111371. [PMID: 36130512 PMCID: PMC9646445 DOI: 10.1016/j.celrep.2022.111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
ATR kinase is a central regulator of the DNA damage response (DDR) and cell cycle checkpoints. ATR kinase inhibitors (ATRi's) combine with radiation to generate CD8+ T cell-dependent responses in mouse models of cancer. We show that ATRi's induce cyclin-dependent kinase 1 (CDK1)-dependent origin firing across active replicons in CD8+ T cells activated ex vivo while simultaneously decreasing the activity of rate-limiting enzymes for nucleotide biosynthesis. These pleiotropic effects of ATRi induce deoxyuridine (dU) contamination in genomic DNA, R loops, RNA-DNA polymerase collisions, and interferon-α/β (IFN-α/β). Remarkably, thymidine rescues ATRi-induced dU contamination and partially rescues death and IFN-α/β expression in proliferating CD8+ T cells. Thymidine also partially rescues ATRi-induced cancer cell death. We propose that ATRi-induced dU contamination contributes to dose-limiting leukocytopenia and inflammation in the clinic and CD8+ T cell-dependent anti-tumor responses in mouse models. We conclude that ATR is essential to limit dU contamination in genomic DNA and IFN-α/β expression.
Collapse
Affiliation(s)
- Norie Sugitani
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Vendetti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Cipriano
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua J Deppas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana N Moiseeva
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | - Sandra Schamus-Haynes
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Drake Palmer
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hatice U Osmanbeyoglu
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Biomedical Informatics, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Bostwick
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Yi-Nan Gong
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology-Oncology, UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Ngoi NYL, Westin SN, Yap TA. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Curr Opin Oncol 2022; 34:559-569. [PMID: 35787597 PMCID: PMC9371461 DOI: 10.1097/cco.0000000000000867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed treatment paradigms in multiple cancer types defined by homologous recombination deficiency (HRD) and have become the archetypal example of synthetic lethal targeting within the DNA damage response (DDR). Despite this success, primary and acquired resistance to PARP inhibition inevitability threaten the efficacy and durability of response to these drugs. Beyond PARP inhibitors, recent advances in large-scale functional genomic screens have led to the identification of a steadily growing list of genetic dependencies across the DDR landscape. This has led to a wide array of novel synthetic lethal targets and corresponding inhibitors, which hold promise to widen the application of DDR inhibitors beyond HRD and potentially address PARP inhibitor resistance. RECENT FINDINGS In this review, we describe key synthetic lethal interactions that have been identified across the DDR landscape, summarize the early phase clinical development of the most promising DDR inhibitors, and highlight relevant combinations of DDR inhibitors with chemotherapy and other novel cancer therapies, which are anticipated to make an impact in rationally selected patient populations. SUMMARY The DDR landscape holds multiple opportunities for synthetic lethal targeting with multiple novel DDR inhibitors being evaluated on early phase clinical trials. Key challenges remain in optimizing the therapeutic window of ATR and WEE1 inhibitors as monotherapy and in combination approaches.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
- The Institute for Applied Cancer Science
- Khalifa Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
46
|
Verret B, Bottosso M, Hervais S, Pistilli B. The Molecular Predictive and Prognostic Biomarkers in Metastatic Breast Cancer: The Contribution of Molecular Profiling. Cancers (Basel) 2022; 14:4203. [PMID: 36077738 PMCID: PMC9454488 DOI: 10.3390/cancers14174203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
The past decade was marked by several important studies deciphering the molecular landscape of metastatic breast cancer. Although the initial goal of these studies was to find driver oncogenic events to explain cancer progression and metastatic spreading, they have also permitted the identification of several molecular alterations associated with treatment response or resistance. Herein, we review validated (PI3KCA, ESR1, MSI, NTRK translocation) and emergent molecular biomarkers (ERBB2, AKT, PTEN, HRR gene, CD274 amplification RB1, NF1, mutational process) in metastatic breast cancer, on the bases of the largest molecular profiling studies. These biomarkers will be classed according the level of evidence and, if possible, the ESCAT (ESMO) classification. Finally, we will provide some perspective on development in clinical practice for the main biomarkers.
Collapse
Affiliation(s)
- Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Michele Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Sofia Hervais
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Barbara Pistilli
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
47
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
The Role of ATR Inhibitors in Ovarian Cancer: Investigating Predictive Biomarkers of Response. Cells 2022; 11:cells11152361. [PMID: 35954206 PMCID: PMC9367423 DOI: 10.3390/cells11152361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023] Open
Abstract
Ataxia telangiectasia and Rad-3 related kinase (ATR) signals DNA lesions and replication stress (RS) to the S and G2/M checkpoints and DNA repair pathways making it a promising target to exploit the dysregulated DNA damage response in cancer. ATR inhibitors (ATRi) are under clinical investigation as monotherapy and in combination with other anticancer agents. Molecular determinants of sensitivity to ATRi are common in ovarian cancer, suggesting the therapeutic potential of ATRi. We investigated the cytotoxicity of the ATRi, VE-821, in a panel of human ovarian cancer cell lines. High grade serous (HGS) cell lines were significantly more sensitive to VE-821 than non-HGS (p ≤ 0.0001) but previously identified determinants of sensitivity (TP53, ATM and BRCA1) were not predictive. Only low RAD51 (p = 0.041), TopBP1 (p = 0.026) and APOBEC3B (p = 0.015) protein expression were associated with increased VE-821 sensitivity. HGS cells had increased levels of RS (pRPASer4/8 and γH2AX nuclear immunofluorescence), and elevated RS predicted sensitivity to VE-821 independently of the cell line subtype. These data suggest that functional assessment of RS biomarkers may be a better predictive biomarker of ATRi response than any single aberrant gene in ovarian cancer and potentially other cancers.
Collapse
|
49
|
Wang LW, Jiang S, Yuan YH, Duan J, Mao ND, Hui Z, Bai R, Xie T, Ye XY. Recent Advances in Synergistic Antitumor Effects Exploited from the Inhibition of Ataxia Telangiectasia and RAD3-Related Protein Kinase (ATR). Molecules 2022; 27:molecules27082491. [PMID: 35458687 PMCID: PMC9029554 DOI: 10.3390/molecules27082491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
As one of the key phosphatidylinositol 3-kinase-related kinases (PIKKs) family members, ataxia telangiectasia and RAD3-related protein kinase (ATR) is crucial in maintaining mammalian cell genomic integrity in DNA damage response (DDR) and repair pathways. Dysregulation of ATR has been found across different cancer types. In recent years, the inhibition of ATR has been proven to be effective in cancer therapy in preclinical and clinical studies. Importantly, tumor-specific alterations such as ATM loss and Cyclin E1 (CCNE1) amplification are more sensitive to ATR inhibition and are being exploited in synthetic lethality (SL) strategy. Besides SL, synergistic anticancer effects involving ATRi have been reported in an increasing number in recent years. This review focuses on the recent advances in different forms of synergistic antitumor effects, summarizes the pharmacological benefits and ongoing clinical trials behind the biological mechanism, and provides perspectives for future challenges and opportunities. The hope is to draw awareness to the community that targeting ATR should have great potential in developing effective anticancer medicines.
Collapse
Affiliation(s)
- Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jilong Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| |
Collapse
|
50
|
Abstract
APOBEC3A, CRISPR programmable RNA base editors, or other enzymes can edit RNA transcripts at specific locations or hotspots. Precise quantification of these RNA-editing events is crucial to determine the activity and efficiency of these enzymes in cells. We have developed a quick method to quantify RNA-editing activity using digital PCR, a sensitive and quantitative technique to detect rare mutations by micro-partitioning bulk PCR reactions. This assay allows rapid absolute quantification of RNA editing events in cell lines or patient samples. For complete details on the use and execution of this protocol, please refer to Jalili et al. (2020) and Oh et al. (2021).
Collapse
Affiliation(s)
- Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|