1
|
Luo Y, Su B, Hung V, Luo Y, Shi Y, Wang G, de Graaf D, Dinarello CA, Spaner DE. IL-1 receptor antagonism reveals a yin-yang relationship between NFκB and interferon signaling in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2024; 121:e2405644121. [PMID: 39121163 PMCID: PMC11331101 DOI: 10.1073/pnas.2405644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 08/11/2024] Open
Abstract
Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.
Collapse
Affiliation(s)
- YuXuan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - BoYang Su
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
| | - Vincent Hung
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - YuHan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - Yonghong Shi
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - Guizhi Wang
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - Dennis de Graaf
- Department of Medicine, University of Colorado Denver, Denver, CO 80045
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Denver, CO 80045
- Department of Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - David E Spaner
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
- Department of Hematology, Odette Cancer Center, Toronto M4N 3M5, Canada
- Department of Medicine, University of Toronto, Toronto M5G 2C4, Canada
| |
Collapse
|
2
|
Pozzo F, Forestieri G, Vit F, Ianna G, Tissino E, Bittolo T, Papotti R, Gaglio A, Terzi di Bergamo L, Steffan A, Polesel J, Bulian P, Laureana R, Tafuri A, Chiarenza A, Di Raimondo F, Olivieri J, Zaja F, Laurenti L, Del Principe MI, Postorino M, Del Poeta G, Bomben R, Zucchetto A, Rossi D, Gattei V. Early reappearance of intraclonal proliferative subpopulations in ibrutinib-resistant chronic lymphocytic leukemia. Leukemia 2024; 38:1712-1721. [PMID: 38914716 PMCID: PMC11286529 DOI: 10.1038/s41375-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib represents an effective strategy for treatment of chronic lymphocytic leukemia (CLL), nevertheless about 30% of patients eventually undergo disease progression. Here we investigated by flow cytometry the long-term modulation of the CLL CXCR4dim/CD5bright proliferative fraction (PF), its correlation with therapeutic outcome and emergence of ibrutinib resistance. By longitudinal tracking, the PF, initially suppressed by ibrutinib, reappeared upon early disease progression, without association with lymphocyte count or serum beta-2-microglobulin. Somatic mutations of BTK/PLCG2, detected in 57% of progressing cases, were significantly enriched in PF with a 3-fold greater allele frequency than the non-PF fraction, suggesting a BTK/PLCG2-mutated reservoir resident within the proliferative compartments. PF increase was also present in BTK/PLCG2-unmutated cases at progression, indicating that PF evaluation could represent a marker of CLL progression under ibrutinib. Furthermore, we evidence different transcriptomic profiles of PF at progression in cases with or without BTK/PLCG2 mutations, suggestive of a reactivation of B-cell receptor signaling or the emergence of bypass signaling through MYC and/or Toll-Like-Receptor-9. Clinically, longitudinal monitoring of the CXCR4dim/CD5bright PF by flow cytometry may provide a simple tool helping to intercept CLL progression under ibrutinib therapy.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Piperidines
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/genetics
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Mutation
- Cell Proliferation/drug effects
- Phospholipase C gamma/genetics
- Disease Progression
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Male
- Aged
- Female
- Middle Aged
- CD5 Antigens/metabolism
- CD5 Antigens/genetics
Collapse
Affiliation(s)
- Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| | - Gabriela Forestieri
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Robel Papotti
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | | | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, 33081, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Roberta Laureana
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Agostino Tafuri
- Hematology Unit, Azienda Ospedaliera-Universitaria Sant'Andrea, Rome, 00189, Italy
| | | | | | - Jacopo Olivieri
- Hematology Clinic, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, 33100, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Luca Laurenti
- Institute of Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | | | - Massimiliano Postorino
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Giovanni Del Poeta
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Davide Rossi
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| |
Collapse
|
3
|
Rytkönen A, Eray M, Suominen A, Mäkitie A, Haglund C, Hagström J, Laine HK. Immunoexpression pattern of TLR3 and TLR7 in minor salivary gland adenoid cystic carcinoma and its role in prognosis. Cancer Treat Res Commun 2024; 40:100822. [PMID: 38810370 DOI: 10.1016/j.ctarc.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Adenoid cystic carcinoma (ACC) of the salivary glands has poor long-term prognosis and a high metastatic rate. Toll-like receptors (TLRs), first-line immune activators, have been associated with both tumor progression and suppression. We aimed to study TLR3 and TLR7 behavior in ACC. MATERIALS AND METHODS We studied TLR3 and TLR7 immunoexpression of 46 minor salivary gland ACCs diagnosed at the Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland over the period 1974-2012. The associations of TLR3 and TLR7 immunoexpression with clinicopathological factors were evaluated by χ2-test and Fisher's exact test. RESULTS In the majority of samples, both TLR3 and TLR7 were immunoexpressed in cytoplasm. The immunoexpression was heterogeneous between individual tumors. Stronger TLR7 immunoexpression associated with recurrence rate and poorer disease-specific survival (DSS). TLR3 did not associate significantly with survival although we found an inverse correlation between TLR3 and TLR7 immunopositivity. Hence, when TLR3 immunoexpression was negative or mild, TLR7 immunoexpression was moderate to strong, and vice versa. CONCLUSIONS TLR3 and TLR7 are immunoexpressed in minor salivary gland ACC. TLR7 is potentially an independent prognostic marker for recurrence rate and DSS.
Collapse
MESH Headings
- Humans
- Toll-Like Receptor 7/metabolism
- Toll-Like Receptor 3/metabolism
- Carcinoma, Adenoid Cystic/pathology
- Carcinoma, Adenoid Cystic/mortality
- Carcinoma, Adenoid Cystic/metabolism
- Carcinoma, Adenoid Cystic/immunology
- Salivary Gland Neoplasms/mortality
- Salivary Gland Neoplasms/pathology
- Salivary Gland Neoplasms/metabolism
- Salivary Gland Neoplasms/immunology
- Female
- Prognosis
- Male
- Middle Aged
- Salivary Glands, Minor/pathology
- Salivary Glands, Minor/metabolism
- Adult
- Aged
- Biomarkers, Tumor/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Aged, 80 and over
Collapse
Affiliation(s)
- Aleksi Rytkönen
- Department of Pathology, Oulu University Hospital, Oulu, Finland; Department of Oral Pathology and Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Mine Eray
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Suominen
- Department of Community Dentistry, University of Turku, Turku, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Radiology, University of Turku and Turku University Hospital, Turku, Finland; Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Hanna K Laine
- Department of Oral Pathology and Radiology, University of Turku and Turku University Hospital, Turku, Finland; Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Mantione ME, Meloni M, Sana I, Bordini J, Del Nero M, Riba M, Ranghetti P, Perotta E, Ghia P, Scarfò L, Muzio M. Disrupting pro-survival and inflammatory pathways with dimethyl fumarate sensitizes chronic lymphocytic leukemia to cell death. Cell Death Dis 2024; 15:224. [PMID: 38494482 PMCID: PMC10944843 DOI: 10.1038/s41419-024-06602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Microenvironmental signals strongly influence chronic lymphocytic leukemia (CLL) cells through the activation of distinct membrane receptors, such as B-cell receptors, and inflammatory receptors, such as Toll-like receptors (TLRs). Inflammatory pathways downstream of these receptors lead to NF-κB activation, thus protecting leukemic cells from apoptosis. Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory drug used to treat patients with multiple sclerosis and psoriasis in which it blocks aberrant NF-κB pathways and impacts the NRF2 antioxidant circuit. Our in vitro analysis demonstrated that increasing concentrations of DMF reduce ATP levels and lead to the apoptosis of CLL cells, including cell lines, splenocytes from Eµ-TCL1-transgenic mice, and primary leukemic cells isolated from the peripheral blood of patients. DMF showed a synergistic effect in association with BTK inhibitors in CLL cells. DMF reduced glutathione levels and activated the NRF2 pathway; gene expression analysis suggested that DMF downregulated pathways related to NFKB and inflammation. In primary leukemic cells, DMF disrupted the TLR signaling pathways induced by CpG by reducing the mRNA expression of NFKBIZ, IL6, IL10 and TNFα. Our data suggest that DMF targets a vulnerability of CLL cells linked to their inflammatory pathways, without impacting healthy donor peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Meloni
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Jessica Bordini
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Martina Del Nero
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Eleonora Perotta
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Ghia
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lydia Scarfò
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
5
|
Mihoub I, Rharass T, Ouriemmi S, Oudar A, Aubard L, Gratio V, Lazarian G, Ferreira J, Dondi E, Cymbalista F, Levy V, Baran-Marszak F, Varin-Blank N, Ledoux D, Le Roy C, Gardano L. Identification of the Axis β-Catenin-BTK in the Dynamic Adhesion of Chronic Lymphocytic Leukemia Cells to Their Microenvironment. Int J Mol Sci 2023; 24:17623. [PMID: 38139452 PMCID: PMC10744074 DOI: 10.3390/ijms242417623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In the microenvironment, cell interactions are established between different cell types to regulate their migration, survival and activation. β-Catenin is a multifunctional protein that stabilizes cell-cell interactions and regulates cell survival through its transcriptional activity. We used chronic lymphocytic leukemia (CLL) cells as a cellular model to study the role of β-catenin in regulating the adhesion of tumor cells to their microenvironment, which is necessary for tumor cell survival and accumulation. When co-cultured with a stromal cell line (HS-5), a fraction of the CLL cells adhere to stromal cells in a dynamic fashion regulated by the different levels of β-catenin expression. In non-adherent cells, β-catenin is stabilized in the cytosol and translocates into the nucleus, increasing the expression of cyclin D1. In adherent cells, the level of cytosolic β-catenin is low but membrane β-catenin helps to stabilize the adhesion of CLL to stromal cells. Indeed, the overexpression of β-catenin enhances the interaction of CLL with HS-5 cells, suggesting that this protein behaves as a regulator of cell adhesion to the stromal component and of the transcriptional regulation of cell survival. Inhibitors that block the stabilization of β-catenin alter this equilibrium and effectively disrupt the support that CLL cells receive from the cross-talk with the stroma.
Collapse
Affiliation(s)
- Imane Mihoub
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Tareck Rharass
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Souhaïl Ouriemmi
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Antonin Oudar
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Laure Aubard
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Valérie Gratio
- INSERM U1149, Université Paris Cité, Hôpital Bichat, 75018 Paris, France;
| | - Gregory Lazarian
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Jordan Ferreira
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Elisabetta Dondi
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Florence Cymbalista
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Vincent Levy
- URC, AP-HP Hôpital Avicenne, 93000 Bobigny, France;
| | - Fanny Baran-Marszak
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Dominique Ledoux
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Christine Le Roy
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Laura Gardano
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| |
Collapse
|
6
|
Meloni M, Sana I, Mantione ME, Riba M, Muzio M. Toll-like receptor 9 signaling in chronic lymphocytic leukemia cell lines. FEBS Open Bio 2023; 13:2367-2374. [PMID: 37881888 PMCID: PMC10699106 DOI: 10.1002/2211-5463.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a prototypic neoplasia in which malignant cells strongly depend on microenvironmental stimulations in the lymphoid tissues where they accumulate; leukemic cells are exposed to interaction with bystander and accessory cells, as well as inflammatory soluble mediators. Cell lines are frequently used to model the pathobiology of this disease; however, they do not always recapitulate leukemic cell growth and response to stimulation, and no data are available on Toll-like receptors (TLR) signaling in CLL cell lines. To address this gap, we analyzed HG3, MEC2, and PCL12 cell lines, before and after CpG stimulation, by RNA-sequencing followed by bioinformatic analyses and validation experiments. We identified NFKBIZ mRNA and the corresponding IkBz protein as robust markers of TLR9 activation in both MEC2 and PCL12, but not in HG3 cells. Next, we compared our current results with previous results obtained with primary CLL patient samples and were able to conclude that MEC2 is most similar to the patients' cells in terms of global responsiveness to TLR stimulation; in particular, MEC2 better resembles the samples of patients, as it is characterized by high expression levels of IkBz, but with a lower number of genes regulated.
Collapse
Affiliation(s)
- Miriam Meloni
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Michela Riba
- Center for Omics SciencesSan Raffaele Hospital IRCCSMilanItaly
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| |
Collapse
|
7
|
Fernández-Garnacho EM, Nadeu F, Martín S, Mozas P, Rivero A, Delgado J, Giné E, López-Guillermo A, Duran-Ferrer M, Salaverria I, López C, Beà S, Demajo S, Jares P, Puente XS, Martín-Subero JI, Campo E, Hernández L. MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms. Sci Rep 2023; 13:16839. [PMID: 37803049 PMCID: PMC10558466 DOI: 10.1038/s41598-023-44174-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
MALAT1 long non-coding RNA has oncogenic roles but has been poorly studied in indolent B-cell neoplasms. Here, MALAT1 expression was analyzed using RNA-seq, microarrays or qRT-PCR in primary samples from clinico-biological subtypes of chronic lymphocytic leukemia (CLL, n = 266), paired Richter transformation (RT, n = 6) and follicular lymphoma (FL, n = 61). In peripheral blood (PB) CLL samples, high MALAT1 expression was associated with a significantly shorter time to treatment independently from other known prognostic factors. Coding genes expressed in association with MALAT1 in CLL were predominantly related to oncogenic pathways stimulated in the lymph node (LN) microenvironment. In RT paired samples, MALAT1 levels were lower, concordant with their acquired increased independency of external signals. Moreover, MALAT1 levels in paired PB/LN CLLs were similar, suggesting that the prognostic value of MALAT1 expression in PB is mirroring expression differences already present in LN. Similarly, high MALAT1 expression in FL predicted for a shorter progression-free survival, in association with expression pathways promoting FL pathogenesis. In summary, MALAT1 expression is related to pathophysiology and more aggressive clinical behavior of indolent B-cell neoplasms. Particularly in CLL, its levels could be a surrogate marker of the microenvironment stimulation and may contribute to refine the clinical management of these patients.
Collapse
Affiliation(s)
- Elena María Fernández-Garnacho
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Ferran Nadeu
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Martín
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pablo Mozas
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Rivero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Eva Giné
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Itziar Salaverria
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristina López
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sílvia Beà
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Santiago Demajo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pedro Jares
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- University of Oviedo, Oviedo, Spain
| | - José Ignacio Martín-Subero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Hernández
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
8
|
Sana I, Mantione ME, Meloni M, Riba M, Ranghetti P, Scarfò L, Ghia P, Muzio M. Dimethyl itaconate selectively targets inflammatory and metabolic pathways in chronic lymphocytic leukemia. Eur J Immunol 2023; 53:e2350418. [PMID: 37561992 DOI: 10.1002/eji.202350418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Chronic lymphocytic leukemia (CLL) co-evolves with its own microenvironment where inflammatory stimuli including toll-like receptors (TLR) signaling can protect CLL cells from spontaneous and drug-induced apoptosis by upregulating IκBζ, an atypical co-transcription factor. To dissect IκBζ-centered signaling pathways, we performed a gene expression profile of primary leukemic cells expressing either high or low levels of IκBζ after stimulation, highlighting that IκBζ is not only an inflammatory gene but it may control metabolic rewiring of malignant cells thus pointing to a novel potential opportunity for therapy. We exploited the capacity of the dimethyl itaconate (DI), an anti-inflammatory electrophilic synthetic derivative of the metabolite Itaconate, to target IκBζ. CLL cells, murine leukemic splenocytes, and leukocytes from healthy donors were treated in vitro with DI that abolished metabolic activation and reduced cell viability of leukemic cells only, even in the presence of robust TLR prestimulation. RNA sequencing highlighted that in addition to the expected electrophilic stress signature observed after DI treatment, novel pathways emerged including the downregulation of distinct MHC class II complex genes. In conclusion, DI not only abrogated the proinflammatory effects of TLR stimulation but also targeted a specific metabolic vulnerability in CLL cells.
Collapse
Affiliation(s)
- Ilenia Sana
- Cell signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Elena Mantione
- Cell signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Miriam Meloni
- Cell signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Pamela Ranghetti
- B-cell neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lydia Scarfò
- B-cell neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Paolo Ghia
- B-cell neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Marta Muzio
- Cell signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Haselager MV, van Driel BF, Perelaer E, de Rooij D, Lashgari D, Loos R, Kater AP, Moerland PD, Eldering E. In Vitro 3D Spheroid Culture System Displays Sustained T Cell-dependent CLL Proliferation and Survival. Hemasphere 2023; 7:e938. [PMID: 37637994 PMCID: PMC10448932 DOI: 10.1097/hs9.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental cells and signals. The lymph node (LN) is the critical site of in vivo CLL proliferation and development of resistance to both chemotherapy and targeted agents. We present a new model that incorporates key aspects of the CLL LN, which enables investigation of CLL cells in the context of a protective niche. We describe a three-dimensional (3D) in vitro culture system using ultra-low attachment plates to create spheroids of CLL cells derived from peripheral blood. Starting from CLL:T cell ratios as observed in LN samples, CLL activation was induced by either direct stimulation and/or indirectly via T cells. Compared with two-dimensional cultures, 3D cultures promoted CLL proliferation in a T cell-dependent manner, and enabled expansion for up to 7 weeks, including the formation of follicle-like structures after several weeks of culture. This model enables high-throughput drug screening, of which we describe response to Btk inhibition, venetoclax resistance, and T cell-mediated cytotoxicity as examples. In summary, we present the first LN-mimicking in vitro 3D culture for primary CLL, which enables readouts such as real-time drug screens, kinetic growth assays, and spatial localization. This is the first in vitro CLL system that allows testing of response and resistance to venetoclax and Bruton's tyrosine kinase inhibitors in the context of the tumor microenvironment, thereby opening up new possibilities for clinically useful applications.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Bianca F. van Driel
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Eduard Perelaer
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Dennis de Rooij
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Danial Lashgari
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Remco Loos
- Center for Innovation and Translational Research Europe, Bristol Myers Squibb, Sevilla, Spain
| | - Arnon P. Kater
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Perry D. Moerland
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells 2023; 12:2055. [PMID: 37626865 PMCID: PMC10453926 DOI: 10.3390/cells12162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The human immune system is a complex network of cells, tissues, and molecules that work together to defend the body against pathogens and maintain overall health. However, in some individuals, the immune system fails to function correctly, leading to immunodeficiencies. Immunodeficiencies can be classified into primary (PID) and secondary (SID) types, each with distinct underlying causes and manifestations. Toll-like receptors (TLRs), as key components of the immune system, have been implicated in the pathogenesis of both PID and SID. In this study, we aim to unravel the intricate involvement of TLR2, TLR4, TLR3, TLR7, TLR8, and TLR9 in the immunopathogenesis of common variable immunodeficiency-CVID (as PID)-and chronic lymphocytic leukemia-CLL (as SID). The obtained results indicate a significant increase in the percentage of all tested subpopulations of T lymphocytes and B lymphocytes showing positive expression of all analyzed TLRs in patients with CVID and CLL compared to healthy volunteers, constituting the control group, which is also confirmed by analysis of the concentration of soluble forms of these receptors in the plasma of patients. Furthermore, patients diagnosed with CVID are characterized by the percentage of all lymphocytes showing positive expression of the tested TLR2, TLR4, TLR3, and TLR9 and their plasma concentrations in relation to patients with CLL. By investigating the functions and interactions of TLRs within the immune system, we seek to shed light on their critical role in the development and progression of these immunodeficiencies. Through a comprehensive analysis of the literature and presented experimental data, we hope to deepen our understanding of the complex mechanisms by which TLRs contribute to the pathogenesis of PID and SID. Ultimately, our findings may provide valuable insights into developing targeted therapeutic strategies to mitigate the impact of these disorders on those affected by immunodeficiency.
Collapse
Affiliation(s)
| | | | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
11
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
12
|
Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A, Benzarti M, Pierson S, Duculty C, Marttila P, Wierz M, Gargiulo E, Pagano G, An N, El Hachem N, Perez Hernandez D, Chakraborty S, Ysebaert L, François JH, Cortez Clemente S, Berchem G, Efremov DG, Dittmar G, Szpakowska M, Chevigné A, Nazarov PV, Helleday T, Close P, Meiser J, Stamatopoulos B, Désaubry L, Paggetti J, Moussay E. Inhibition of MYC translation through targeting of the newly identified PHB-eIF4F complex as a therapeutic strategy in CLL. Blood 2023; 141:3166-3183. [PMID: 37084385 PMCID: PMC10646824 DOI: 10.1182/blood.2022017839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/08/2023] [Accepted: 03/05/2023] [Indexed: 04/23/2023] Open
Abstract
Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Eukaryotic Initiation Factor-4F/genetics
- Prohibitins
- Genes, myc
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Anne Largeot
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Vanessa Klapp
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Susanne Gonder
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Iria Fernandez Botana
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandrine Pierson
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Chloé Duculty
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Petra Marttila
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Marina Wierz
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giulia Pagano
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ning An
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Najla El Hachem
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Daniel Perez Hernandez
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Loïc Ysebaert
- Haematology Department, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Jean-Hugues François
- Laboratoire d’hématologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Susan Cortez Clemente
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Guy Berchem
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gunnar Dittmar
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Department of Cancer Research, Multiomics Data Science, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Johannes Meiser
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle de Strasbourg, INSERM-University of Strasbourg, Strasbourg, France
| | - Jérôme Paggetti
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
13
|
Kielbassa K, Haselager MV, Bax DJC, van Driel BF, Dubois J, Levin MD, Kersting S, Svanberg R, Niemann CU, Kater AP, Eldering E. Ibrutinib sensitizes CLL cells to venetoclax by interrupting TLR9-induced CD40 upregulation and protein translation. Leukemia 2023; 37:1268-1276. [PMID: 37100883 PMCID: PMC10244160 DOI: 10.1038/s41375-023-01898-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells upregulate Bcl-2 proteins within the lymph node (LN) microenvironment. Signaling via B-cell receptor, Toll-like receptors and CD40 collectively reduce sensitivity to the BCL-2 inhibitor venetoclax. Time-limited treatment with venetoclax plus the BTK-inhibitor ibrutinib results in deep remissions, but how this combination affects LN-related signaling is not yet completely clear. Therefore, samples obtained from the HOVON141/VISION phase 2 clinical trial were used to analyze this. Two cycles of lead-in ibrutinib monotherapy resulted in decreased protein expression of Bcl-2 proteins in circulating CLL cells. Strikingly, at this timepoint CD40-induced venetoclax resistance was strongly attenuated, as was expression of CD40. Since CD40 signaling occurs within the CLL LN, we tested various LN-related signals that could affect CD40 signaling. While BCR stimulation had only a minor effect, TLR9 stimulation via CpG led to significantly increased CD40 expression and importantly, reverted the effects of ibrutinib treatment on venetoclax sensitivity by inducing overall protein translation. Together, these findings identify a novel effect of ibrutinib: interruption of TLR9-induced CD40 upregulation and translation of pro-survival proteins. This mechanism may potentially further inhibit priming of CLL cells in the LN microenvironment for venetoclax resistance.
Collapse
Affiliation(s)
- Karoline Kielbassa
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Marco V Haselager
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Danique J C Bax
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bianca F van Driel
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Julie Dubois
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | | | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arnon P Kater
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
15
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
16
|
Del Padre M, Marrapodi R, Minafò YA, Piano Mortari E, Radicchio G, Bocci C, Gragnani L, Camponeschi A, Colantuono S, Stefanini L, Basili S, Carsetti R, Fiorilli M, Casato M, Visentini M. Dual stimulation by autoantigen and CpG fosters the proliferation of exhausted rheumatoid factor-specific CD21 low B cells in hepatitis C virus-cured mixed cryoglobulinemia. Front Immunol 2023; 14:1094871. [PMID: 36845129 PMCID: PMC9945227 DOI: 10.3389/fimmu.2023.1094871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Hepatitis C virus (HCV) causes mixed cryoglobulinemia (MC) by driving clonal expansion of B cells expressing B cell receptors (BCRs), often encoded by the VH1-69 variable gene, endowed with both rheumatoid factor (RF) and anti-HCV specificity. These cells display an atypical CD21low phenotype and functional exhaustion evidenced by unresponsiveness to BCR and Toll-like receptor 9 (TLR9) stimuli. Although antiviral therapy is effective on MC vasculitis, pathogenic B cell clones persist long thereafter and can cause virus-independent disease relapses. Methods Clonal B cells from patients with HCV-associated type 2 MC or healthy donors were stimulated with CpG or heath-aggregated IgG (as surrogate immune complexes) alone or in combination; proliferation and differentiation were then evaluated by flow cytometry. Phosphorylation of AKT and of the p65 NF-kB subunit were measured by flow cytometry. TLR9 was quantified by qPCR and by intracellular flow cytometry, and MyD88 isoforms were analyzed using RT-PCR. Discussion We found that dual triggering with autoantigen and CpG restored the capacity of exhausted VH1-69pos B cells to proliferate. The signaling mechanism for this BCR/TLR9 crosstalk remains elusive, since TLR9 mRNA and protein as well as MyD88 mRNA were normally expressed and CpG-induced phosphorylation of p65 NF-kB was intact in MC clonal B cells, whereas BCR-induced p65 NF-kB phosphorylation was impaired and PI3K/Akt signaling was intact. Our findings indicate that autoantigen and CpG of microbial or cellular origin may unite to foster persistence of pathogenic RF B cells in HCV-cured MC patients. BCR/TLR9 crosstalk might represent a more general mechanism enhancing systemic autoimmunity by the rescue of exhausted autoreactive CD21low B cells.
Collapse
Affiliation(s)
- Martina Del Padre
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ylenia A Minafò
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Giovanna Radicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Bocci
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefania Colantuono
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Massimo Fiorilli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Milvia Casato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
Huang R, Sun Z, Xian S, Song D, Chang Z, Yan P, Zhang J, Yin H, Zheng Z, Hu P, Li Z, Huang D, Liu Y, Jiang C, Li M, Li S, Meng T, Yang D, Huang Z. The role of toll-like receptors (TLRs) in pan-cancer. Ann Med 2022; 54:1918-1937. [PMID: 35801728 PMCID: PMC9272932 DOI: 10.1080/07853890.2022.2095664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are important components of the innate and adaptive immune systems, and abnormal TLR expression has been linked to a variety of cancers. However, there was a lack of clarity on the association of TLR stimulation with the carcinogenesis of cancer. The study's goal was to analyse the clinical importance of TLRs expression at the mRNA level in pan-cancer datasets, as well as the link between TLR expression and carcinogenesis, progression, and clinical prognosis. METHODS The expression profile of TLRs derived from UCSC pan-cancer data was analysed in multiple dimensions, including clinical analysis, immunological subtype analysis, tumour microenvironment (TME) analysis, tumour stem cell correlation analysis, and drug sensitivity analysis. Additionally, we analyse protein-protein interactions, functional enrichment, and chromatin accessibility, as well as TLR expression in single-cell sequencing data. RESULTS Our multi-omics analysis results imply that TLRs may operate as a biological marker for carcinogenesis and progression, a potential target for anti-tumour therapy, and a prognostic biomarker, laying the theoretical groundwork for future translational medicine research. CONCLUSION TLRs are involved in the formation of malignancies and can be explored in further detail as potential prognostic indicators. Key MessagesToll-like receptors (TLRs) are key factors in the process of the innate and adaptive immune response, and their aberrant expression of TLRs have been widely reported in various cancer. However, the association between TLRs stimulation and tumorigenesis of cancer has not been well clarified.In this study, in the pan-cancer data, integrated TLR family gene expression analysis, clinical correlation analysis, immune subtype correlation analysis, tumour microenvironment correlation analysis, tumour stem cell correlation analysis, and drug sensitivity correlation analysis were performed.TLRs play an important role in the development of tumours and can be studied in depth as potential prognostic markers.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zehui Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai, China
| | - Dan Huang
- Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Chenyang Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daoke Yang
- Department of Radiotherpy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
20
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Cao T, Wang Z, Zhu X. The Immunomodulatory Functions of BTK Inhibition in the Central Nervous System. J Inflamm Res 2022; 15:6427-6438. [DOI: 10.2147/jir.s389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
22
|
Liu Y, Song Y, Yin Q. Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia. Front Immunol 2022; 13:962552. [PMID: 36059445 PMCID: PMC9437578 DOI: 10.3389/fimmu.2022.962552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.
Collapse
|
23
|
Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, Dawson KJ, Kulis M, Diaz-Navarro A, Villamor N, Melero JL, Chapaprieta V, Dueso-Barroso A, Delgado J, Moia R, Ruiz-Gil S, Marchese D, Giró A, Verdaguer-Dot N, Romo M, Clot G, Rozman M, Frigola G, Rivas-Delgado A, Baumann T, Alcoceba M, González M, Climent F, Abrisqueta P, Castellví J, Bosch F, Aymerich M, Enjuanes A, Ruiz-Gaspà S, López-Guillermo A, Jares P, Beà S, Capella-Gutierrez S, Gelpí JL, López-Bigas N, Torrents D, Campbell PJ, Gut I, Rossi D, Gaidano G, Puente XS, Garcia-Roves PM, Colomer D, Heyn H, Maura F, Martín-Subero JI, Campo E. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med 2022; 28:1662-1671. [PMID: 35953718 PMCID: PMC9388377 DOI: 10.1038/s41591-022-01927-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT. Single-cell genomic and transcriptomic analyses of longitudinal samples of patients with Richter syndrome reveal the presence and dynamics of clones driving transformation from chronic lymphocytic leukemia years before clinical manifestation
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ramon Massoni-Badosa
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Sara Ruiz-Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Núria Verdaguer-Dot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mónica Romo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Rozman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Tycho Baumann
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Marcos González
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Fina Climent
- Hospital Universitari de Bellvitge-Institut d'Investigació Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Castellví
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Armando López-Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Ll Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Pablo M Garcia-Roves
- Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco Maura
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Hospital Clínic of Barcelona, Barcelona, Spain. .,Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127352. [PMID: 35873012 PMCID: PMC9293249 DOI: 10.5812/ijpr-127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Tumor-targeted therapy with small-molecule inhibitors (SMIs) has been demonstrated to be a highly effective therapeutic strategy for various cancers. However, their possible associations with immune evasion mechanisms remain unknown. This study examined the association of inhibitors of the protein kinase B (AKT), mammalian target of rapamycin (mTOR), and Bruton’s tyrosine kinase (BTK) signaling pathways with the expression of immune checkpoint ligands programmed death-ligand 1 (PD-L1), CD155, and galectin-9 (Gal-9) in a breast cancer cell line. MCF-7 cells were treated with everolimus, MK-2206, and ibrutinib. An MTT assay was used to determine the optimal dose for all drugs. A real-time polymerase chain reaction was utilized to measure the mRNA expression of PD-L1, CD155, and Gal-9. The western blot technique was also employed to evaluate the protein expression of the phosphorylated signal transducer and activator of transcription 3 (STAT3). The optimal doses of everolimus, MK-2206, and ibrutinib were observed to be 200, 320, and 2000 nM, respectively. The PD-L1 and CD155 mRNA expression was significantly decreased following the treatment with everolimus and ibrutinib, but not with MK-2206. There were no differences in Gal-9 expression between the single-treated and control groups; however, combined treatment with everolimus and ibrutinib increased its mRNA expression. Everolimus and ibrutinib both inhibited constitutive STAT3 phosphorylation in MCF-7, which was more pronounced in combination treatment. The findings regarding the modulation of PD-L1, CD155, and Gal-9 molecules by SMIs emphasize the crosstalk between the expression of these immune checkpoint molecules and AKT/mTOR/BTK signaling pathways through STAT3 as a critical transcription factor.
Collapse
Affiliation(s)
- Mohsen Soltanshahi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Noncommunicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding Author: Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Tel: +98-1133543081, Fax: +98-1133543249,
| |
Collapse
|
25
|
Alcoceba M, García-Álvarez M, Medina A, Maldonado R, González-Calle V, Chillón MC, Sarasquete ME, González M, García-Sanz R, Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci 2022; 23:5570. [PMID: 35628381 PMCID: PMC9141891 DOI: 10.3390/ijms23105570] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.A.); (M.G.-Á.); (A.M.); (R.M.); (V.G.-C.); (M.C.C.); (M.E.S.); (M.G.); (C.J.)
| | | |
Collapse
|
26
|
Ailawadhi S, Parrondo RD, Moustafa MA, LaPlant BR, Alegria V, Chapin D, Roy V, Sher T, Paulus A, Chanan-Kahn AA. Ibrutinib, Lenalidomide and Dexamethasone in Patients with Relapsed and/or Refractory Multiple Myeloma: Phase I Trial Results. Hematol Oncol 2022; 40:695-703. [PMID: 35488778 DOI: 10.1002/hon.3012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Therapeutic strategies that target novel pathways are urgently needed for patients with relapsed/refractory multiple myeloma (RRMM). Ibrutinib is an oral covalent inhibitor of Bruton tyrosine kinase, which is overexpressed in MM cells. This phase 1 dose-escalation study examined various doses of ibrutinib in combination with standard doses of lenalidomide (25mg) and dexamethasone (40mg) using a standard 3+3 design in RRMM patients. The primary objective was to determine the maximum tolerated dose (MTD) of ibrutinib in combination with lenalidomide and dexamethasone. Patients (n=15) had received a median of 4 prior regimens, 53% were triple-class exposed, 33% were penta-exposed, and 54% were lenalidomide-refractory. The MTD of ibrutinib was 840mg (n=6) and only 1 dose-limiting toxicity (DLT); a grade 3 rash possibly related to ibrutinib was noted. The most common ≥grade 3 adverse events (AEs) were rash in 2 (13%), lymphopenia in 2(13%), leukopenia, neutropenia, thrombocytopenia, and anemia all occurring in 3 (20%) patients each. One patient achieved a partial response for an overall response rate of 7%. The clinical benefit rate was 80%. The median time to progression was 3.8 months. Ibrutinib, lenalidomide and dexamethasone appears to be a safe and well-tolerated regimen with reasonable efficacy in heavily pretreated RRMM patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Mayo Clinic Cancer Center, Jacksonville, FL, United States.,Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Betsy R LaPlant
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Dustin Chapin
- Clinical Studies Unit, Mayo Clinic, Jacksonville, FL, United States
| | - Vivek Roy
- Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Taimur Sher
- Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Aneel Paulus
- Mayo Clinic Cancer Center, Jacksonville, FL, United States.,Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Asher A Chanan-Kahn
- Mayo Clinic Cancer Center, Jacksonville, FL, United States.,Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
27
|
Robak T, Witkowska M, Smolewski P. The Role of Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia: Current Status and Future Directions. Cancers (Basel) 2022; 14:771. [PMID: 35159041 PMCID: PMC8833747 DOI: 10.3390/cancers14030771] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management and clinical history of patients with chronic lymphocytic leukemia (CLL). BTK is a critical molecule that interconnects B-cell antigen receptor (BCR) signaling. BTKis are classified into two categories: irreversible (covalent) inhibitors and reversible (non-covalent) inhibitors. Ibrutinib was the first irreversible BTK inhibitor approved by the U.S. Food and Drug Administration in 2013 as a breakthrough therapy in CLL patients. Subsequently, several studies have evaluated the efficacy and safety of new agents with reduced toxicity when compared with ibrutinib. Two other irreversible, second-generation BTK inhibitors, acalabrutinib and zanubrutinib, were developed to reduce ibrutinib-mediated adverse effects. Additionally, new reversible BTK inhibitors are currently under development in early-phase studies to improve their activity and to diminish adverse effects. This review summarizes the pharmacology, clinical efficacy, safety, dosing, and drug-drug interactions associated with the treatment of CLL with BTK inhibitors and examines their further implications.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Magda Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton's tyrosine kinase in the immune system and disease. Immunology 2021; 164:722-736. [PMID: 34534359 PMCID: PMC8561098 DOI: 10.1111/imm.13416] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B-cell biology and function, highlighted by its position as a critical component of the B-cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BTK has been elucidated to be a driving factor not only in lymphoproliferative disorders but also in autoimmune diseases and response to infection. To extort this role, BTK inhibitors such as ibrutinib have been developed to target BTK in other diseases. However, due to rising levels of resistance, the urgency to develop new inhibitors with alternative modes of targeting BTK is high. To meet this demand, an expanding list of BTK inhibitors is currently being trialled. In this review, we synopsize recent discoveries regarding BTK and its role within different immune cells and pathways. Additionally, we discuss the broad significance and relevance of BTK for various diseases ranging from haematology and rheumatology to the COVID-19 pandemic. Overall, BTK signalling and its targetable nature have emerged as immensely important for a wide range of clinical applications. The development of novel, more specific and less toxic BTK inhibitors could be revolutionary for a significant number of diseases with yet unmet treatment needs.
Collapse
Affiliation(s)
- Charlotte McDonald
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Charalampos Xanthopoulos
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Efterpi Kostareli
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
31
|
Linley AJ, Karydis LI, Mondru AK, D'Avola A, Al Shmrany H, Cicconi S, Griffin R, Forconi F, Pettitt AR, Kalakonda N, Rawstron AC, Hillmen P, Steele AJ, MacEwan DJ, Packham G, Prior IA, Slupsky JR. Kinobead Profiling Reveals Reprogramming of BCR Signaling in Response to Therapy within Primary CLL Cells. Clin Cancer Res 2021; 27:5647-5659. [PMID: 34380642 PMCID: PMC9662893 DOI: 10.1158/1078-0432.ccr-21-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. EXPERIMENTAL DESIGN A kinobead/mass spectrometry-based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. RESULTS Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. CONCLUSIONS These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy.
Collapse
Affiliation(s)
- Adam J Linley
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Laura I Karydis
- School of Cancer Sciences, Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Anil K Mondru
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Annalisa D'Avola
- School of Cancer Sciences, Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Humood Al Shmrany
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Silvia Cicconi
- Cancer Research Clinical Trials Unit, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca Griffin
- Cancer Research Clinical Trials Unit, University of Liverpool, Liverpool, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew C Rawstron
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Peter Hillmen
- Faculty of Medicine and Health, School of Medicine, University of Leeds, Wellcome Trust Brenner Building, Leeds, United Kingdom
| | - Andrew J Steele
- School of Cancer Sciences, Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graham Packham
- School of Cancer Sciences, Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Ian A Prior
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Wang H, Zhang W, Yang J, Zhou K. The resistance mechanisms and treatment strategies of BTK inhibitors in B-cell lymphoma. Hematol Oncol 2021; 39:605-615. [PMID: 34651869 PMCID: PMC9293416 DOI: 10.1002/hon.2933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have revolutionized the treatment of B‐cell lymphoma (BCL). These drugs interfere with the mechanisms underlying malignant B‐cell pathophysiology, allowing better drug response as well as low toxicity. However, these multiple mechanisms also lead to drug resistance, which compromised the treatment outcome and needs to be solved urgently. This review focuses on genomic variations (such as BTK and its downstream PCLG2 mutations as well as Del 8p, 2p+, Del 6q/8p, BIRC3, TRAF2, TRAF3, CARD11, MYD88, and CCND1 mutations) and related pathways (such as PI3K/Akt/mTOR, NF‐κB, MAPK signaling pathways, overexpression of B‐cell lymphoma 6, platelet‐derived growth factor, toll‐like receptors, and microenvironment, cancer stem cells, and exosomes) involved in cancer pathophysiology to discuss the mechanisms underlying resistance to BTKi. We have also reviewed the newly reported drug resistance mechanisms and the proposed potential treatment strategies (the next‐generation BTKi, proteolysis‐targeting chimera‐BTK, XMU‐MP‐3, PI3K‐Akt‐mTOR pathway, MYC or LYN kinase inhibitor, and other small‐molecule targeted drugs) to overcome drug resistance. The findings presented in this review lay a strong foundation for further research in this field.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wentao Zhang
- Department of Urology, Armed Police Forces Hospital of Henan, Zhengzhou, China
| | - Jingyi Yang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Extrinsic interactions in the microenvironment in vivo activate an antiapoptotic multidrug-resistant phenotype in CLL. Blood Adv 2021; 5:3497-3510. [PMID: 34432864 DOI: 10.1182/bloodadvances.2020003944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The Bcl-2 inhibitor venetoclax has yielded exceptional clinical responses in chronic lymphocytic leukemia (CLL). However, de novo resistance can result in failure to achieve negative minimal residual disease and predicts poor treatment outcomes. Consequently, additional proapoptotic drugs, such as inhibitors of Mcl-1 and Bcl-xL, are in development. By profiling antiapoptotic proteins using flow cytometry, we find that leukemic B cells that recently emigrated from the lymph node (CD69+/CXCR4Low) in vivo are enriched for cell clusters simultaneously overexpressing multiple antiapoptotic proteins (Mcl-1High/Bcl-xLHigh/Bcl-2High) in both treated and treatment-naive CLL patients. These cells exhibited antiapoptotic resistance to multiple BH-domain antagonists, including inhibitors of Bcl-2, Mcl-1, and Bcl-xL, when tested as single agents in a flow cytometry-based functional assay. Antiapoptotic multidrug resistance declines ex vivo, consistent with resistance being generated in vivo by extrinsic microenvironmental interactions. Surviving "persister" cells in patients undergoing venetoclax treatment are enriched for CLL cells displaying the functional and molecular properties of microenvironmentally induced multidrug resistance. Overcoming this resistance required simultaneous inhibition of multiple antiapoptotic proteins, with potential for unwanted toxicities. Using a drug screen performed using patient peripheral blood mononuclear cells cultured in an ex vivo microenvironment model, we identify novel venetoclax drug combinations that induce selective cytotoxicity in multidrug-resistant CLL cells. Thus, we demonstrate that antiapoptotic multidrug-resistant CLL cells exist in patients de novo and show that these cells persist during proapoptotic treatment, such as venetoclax. We validate clinically actionable approaches to selectively deplete this reservoir in patients.
Collapse
|
34
|
Wu J, Zhang Q, Zhang L, Feng P, Gao M, Zhao Z, Yang L. Toll-like receptor signaling is changed in ovine lymph node during early pregnancy. Anim Sci J 2021; 92:e13541. [PMID: 33728713 DOI: 10.1111/asj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Toll-like receptors (TLRs) participate in regulation of adaptive immune responses, and lymph nodes play key roles in the initiation of immune responses. There is a tolerance to the allogenic fetus during pregnancy, but it is unclear that expression of TLR signaling is in ovine lymph node during early pregnancy. In this study, lymph nodes were sampled from day 16 of nonpregnant ewes and days 13, 16, and 25 of pregnant ewes, and the expressions of TLR family (TLR2, TLR3, TLR4, TLR5 and TLR9), adaptor proteins, including myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), and interleukin-1-receptor-associated kinase 1 (IRAK1), were analyzed through real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry analysis. The results showed that mRNA and protein levels of TLR2, TLR3, TLR4, TRAF6, and MyD88 were upregulated in the maternal lymph node, but TLR5, TLR9, and IRAK1 were downregulated during early pregnancy. In addition, MyD88 protein was located in the subcapsular sinus and lymph sinuses. Therefore, it is suggested that early pregnancy induces changes in TLR signaling in maternal lymph node, which may be involved in regulation of maternal immune responses in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhenyang Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
35
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
36
|
Yeh CT, Chen TT, Satriyo PB, Wang CH, Wu ATH, Chao TY, Lee KY, Hsiao M, Wang LS, Kuo KT. Bruton's tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis 2021; 10:56. [PMID: 34315851 PMCID: PMC8316404 DOI: 10.1038/s41389-021-00345-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are current standard of care for patients with EGFR mutation and metastatic non-small-cell lung carcinoma (NSCLC), but most patients using EGFR TKIs acquire resistance later. So, overcoming resistance of EGFR TKIs has become an important issue in the treatment of NSCLC. Previously, therapeutics targeting Bruton's tyrosine kinase (BTK) have been successful in treating several hematologic malignancies. However, the role of BTK in NSCLC is still unknown. In this study, by examining surgical specimens from 80 NSCLC patients and their clinicopathologic parameters, we found significant correlation between high BTK expression and tumor differentiation, p-stage, lymph node metastatic status, maximum tumor size, and poor prognosis of patients. Using two NSCLC cell lines A540 and PC9, we demonstrated that BTKpos cells exhibited more stemness (OCT4, SOX2) and EMT (E-Cadherin, Slug) markers than BTKneg cells. Knockdown of BTK sensitized the NSCLC cells to Gefitinib. Meanwhile, the second-generation BTK inhibitor Acalabrutinib effectively suppressed SOX2, STAT3/JAK2/Akt axis and potentiated the anti-proliferative effect of Gefitinib and Osimertinib in NSCLC cells, including the T790M H1975 cells. Furthermore, Acalabrutinib and Osimertinib combination exhibited significant tumor growth inhibition of H1975-derived tumors in vivo. Our findings suggested that BTK mediates stemness and EMT properties, and inhibition of BTK potentiates the effect of Gefitinib and Osimertinib in NSCLC cells resistant to TKI. This implies a new approach to treat the NSCLC patients with resistance to previous TKI treatment.
Collapse
Affiliation(s)
- Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pamungkas Bagus Satriyo
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Faculty of Medicine Public Health and Nursing, Department of Pharmacology and Therapy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsu-Yi Chao
- Division of Hematology & Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Shun Wang
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Edwards K, Zaitseva K, Sayed U, Volpi EV, Nathwani A, Gribben JG, Lydyard P, Krysov S, Porakishvili N. Expression patterns of CD180 in the lymph nodes of patients with chronic lymphocytic leukaemia. Br J Haematol 2021; 195:e131-e134. [PMID: 34227107 DOI: 10.1111/bjh.17680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, The University of Westminster, London, UK
| | | | - Uzma Sayed
- School of Life Sciences, The University of Westminster, London, UK
| | - Emanuela V Volpi
- School of Life Sciences, The University of Westminster, London, UK
| | - Amit Nathwani
- UCL Cancer Institute, University College London, London, UK
| | - John G Gribben
- UCL Cancer Institute, University College London, London, UK
| | - Peter Lydyard
- School of Life Sciences, The University of Westminster, London, UK.,The University of Georgia, Tbilisi, Georgia
| | - Sergey Krysov
- Barts Cancer Institute, Queen Mary University, London, UK
| | | |
Collapse
|
38
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
39
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
40
|
Pan H, Renaud L, Chaligne R, Bloehdorn J, Tausch E, Mertens D, Fink AM, Fischer K, Zhang C, Betel D, Gnirke A, Imielinski M, Moreaux J, Hallek M, Meissner A, Stilgenbauer S, Wu CJ, Elemento O, Landau DA. Discovery of Candidate DNA Methylation Cancer Driver Genes. Cancer Discov 2021; 11:2266-2281. [PMID: 33972312 DOI: 10.1158/2159-8290.cd-20-1334] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/25/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations, such as promoter hypermethylation, may drive cancer through tumor suppressor gene inactivation. However, we have limited ability to differentiate driver DNA methylation (DNAme) changes from passenger events. We developed DNAme driver inference-MethSig-accounting for the varying stochastic hypermethylation rate across the genome and between samples. We applied MethSig to bisulfite sequencing data of chronic lymphocytic leukemia (CLL), multiple myeloma, ductal carcinoma in situ, glioblastoma, and to methylation array data across 18 tumor types in TCGA. MethSig resulted in well-calibrated quantile-quantile plots and reproducible inference of likely DNAme drivers with increased sensitivity/specificity compared with benchmarked methods. CRISPR/Cas9 knockout of selected candidate CLL DNAme drivers provided a fitness advantage with and without therapeutic intervention. Notably, DNAme driver risk score was closely associated with adverse outcome in independent CLL cohorts. Collectively, MethSig represents a novel inference framework for DNAme driver discovery to chart the role of aberrant DNAme in cancer. SIGNIFICANCE: MethSig provides a novel statistical framework for the analysis of DNA methylation changes in cancer, to specifically identify candidate DNA methylation driver genes of cancer progression and relapse, empowering the discovery of epigenetic mechanisms that enhance cancer cell fitness.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Loïc Renaud
- New York Genome Center, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York.,Inserm, UMR-S 1172, Lille, France
| | - Ronan Chaligne
- New York Genome Center, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Daniel Mertens
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Maria Fink
- German CLL Study Group, and Department I of Internal Medicine, and Center of Integrated Oncology ABCD, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- German CLL Study Group, and Department I of Internal Medicine, and Center of Integrated Oncology ABCD, University of Cologne, Cologne, Germany
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Marcin Imielinski
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,New York Genome Center, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, France.,CHU Montpellier, Department of Biological Hematology, Montpellier, France.,UFR de Médecine, Univ Montpellier, Montpellier, France.,Institut Universitaire de France (IUF), France
| | - Michael Hallek
- German CLL Study Group, and Department I of Internal Medicine, and Center of Integrated Oncology ABCD, University of Cologne, Cologne, Germany
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Dan A Landau
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York. .,New York Genome Center, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
41
|
Wang Y, Gali VL, Xu-Monette ZY, Sano D, Thomas SK, Weber DM, Zhu F, Fang X, Deng M, Zhang M, Hagemeister FB, Li Y, Orlowski RZ, Lee HC, Young KH. Molecular and genetic biomarkers implemented from next-generation sequencing provide treatment insights in clinical practice for Waldenström macroglobulinemia. Neoplasia 2021; 23:361-374. [PMID: 33735664 PMCID: PMC7985670 DOI: 10.1016/j.neo.2021.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a distinct type of indolent lymphoplasmacytic lymphoma (LPL) with a high frequency of MYD88L265P mutation. Treatment for WM/LPL is highly variable in clinic and ibrutinib (a Bruton tyrosine kinase inhibitor, BTKi) has become a new treatment option for WM. To investigate the clinical impact of genetic alterations in WM, we assembled a large cohort of 219 WMs and 12 LPLs dividing into two subcohorts: a training cohort, patients sequenced by a same targeted 29-gene next-generation sequencing (NGS) panel, and a validation cohort, patients sequenced by allele specific-PCR or other targeted NGS panels. In both training and validation subcohorts, MYD88L265P and TP53 mutations showed favorable and adverse prognostic effects, respectively. CXCR4 nonsense/missense mutations (CXCR4NS/MS), cytogenetic complex karyotypes, and a family history of lymphoma/leukemia in first-degree relatives were associated with significantly worse clinical outcomes only or more in the validation subcohort. We further investigated the efficacy of various treatments and interaction with genetic factors in the entire cohort. Upfront dexamethasone usage was associated with poorer clinical outcomes in patients who received non-proteasome-containing chemotherapy as first-line treatment independent of genetic factors. Maintenance rituximab was associated with better survival. Ibrutinib/BTKi showed potential benefit in relapsed/refractory patients and patients without CXCR4NS/MS including those with TP53 mutations. In conclusion, genetic testing for MYD88L265P, TP53, and CXCR4 mutations and cytogenetic analysis provide important information for prognosis prediction and therapy selection. The findings in these study are valuable for improving treatment decisions on therapies available for WM/LPL patients with integration of NGS in clinic.
Collapse
Affiliation(s)
- Yingjun Wang
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Vasantha Lakshmi Gali
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Dahlia Sano
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donna M Weber
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Zhu
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Xiaosheng Fang
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Manman Deng
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans Chulhee Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA; Duke University Medical Center and Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
42
|
Zheng M, Li K, Chen T, Liu S, He L. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Res Bull 2021; 170:65-73. [PMID: 33561536 DOI: 10.1016/j.brainresbull.2021.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the antidepressant mechanism of GEN (geniposide) on depression mice induced by LPS. The mice were intragastrically treated with GEN (10 mg/kg/d or 40 mg/kg/d) or ibrutinib for continuous 7 days prior to LPS injection. The anxiety- and depression-like behaviors of mice were assessed via behavioral tests (sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and open-field test (OFT)). Microglial BV2 cells were treated with GEN or/and ibrutinib and stimulated with LPS. The productions of pro-inflammatory cytokines IL-6 and TNF-α in hippocampus, serum, and supernatant were detected by ELISA. The correlative proteins BTK, p-BTK, JAK2, p-JAK2, STAT1, p-STAT1, BDNF, TrkB, and p-TrkB were assessed through western blot. As a result, GEN ameliorated the anxiety- and depression-like behaviors of mice in behavioral tests. GEN treatment also regulated microglia polarization towards anti-inflammatory phenotype M2 and inhibited the production of pro-inflammatory cytokines IL-6 and TNF-α. In addition, with the application of ibrutinib, the selective inhibitor of BTK, it was proclaimed that the administration of GEN restrained the activation of JAK2/STAT1 pathway via attenuating the hyperphosphorylation of BTK both in mice and BV2 cells. Furthermore, it was also found that GEN activated BDNF/TrkB neuroprotective signaling pathway through the reduction of BTK phosphorylation. From the overall results, we suggested that GEN exerted a beneficial effect on LPS-induced depression in mice possibly through the modulation of BTK/JAK2/STAT1 signaling.
Collapse
Affiliation(s)
- Menglin Zheng
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Ke Li
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Shengnan Liu
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
43
|
Laurenti L, Efremov DG. Therapeutic Targets in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12113259. [PMID: 33158264 PMCID: PMC7694246 DOI: 10.3390/cancers12113259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Luca Laurenti
- Department of Hematology, Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: (L.L.); (D.G.E.)
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Correspondence: (L.L.); (D.G.E.)
| |
Collapse
|
44
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
45
|
Inhibition of EZH2 and immune signaling exerts synergistic antitumor effects in chronic lymphocytic leukemia. Blood Adv 2020; 3:1891-1896. [PMID: 31227476 DOI: 10.1182/bloodadvances.2018030262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/09/2019] [Indexed: 01/23/2023] Open
Abstract
Key Points
Microenvironmental stimuli affect EZH2 expression and function in CLL. Combined B-cell signaling and EZH2 inhibition showed synergistic effects on primary CLL cells.
Collapse
|
46
|
Thomas F, Holmes KB, Kreuz S, Hillmen P, Lefevre PF. DAPK3 participates in the mRNA processing of immediate early genes in chronic lymphocytic leukaemia. Mol Oncol 2020; 14:1268-1281. [PMID: 32306542 PMCID: PMC7266284 DOI: 10.1002/1878-0261.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022] Open
Abstract
Cross‐linking of the B‐cell receptor (BCR) induces transcriptional activation of immediate early genes (IEGs) including EGR1 and DUSP2 in chronic lymphocytic leukaemia (CLL). Here, we have shown that this transcriptional activation correlated with histone H3 threonine 6 and 11 phosphorylation. Both transcription and histone post‐translational modifications are repressed by ibrutinib, a small molecule inhibitor used in CLL treatment. Moreover, we have identified the death‐associated protein kinase 3 (DAPK3), as the kinase mediating these histone phosphorylation marks in response to activation of the BCR signalling pathway with this kinase being recruited to RNA polymerase II in an anti‐IgM‐dependent manner. DAPK inhibition mimics ibrutinib‐induced repression of both IEG mRNA and histone H3 phosphorylation and has anti‐proliferative effect comparable to ibrutinib in CLL in vitro. DAPK inhibitor does not repress transcription itself but impacts on mRNA processing and has a broader anti‐tumour effect than ibrutinib, by repressing both anti‐IgM‐ and CD40L‐dependent activation.
Collapse
Affiliation(s)
- Fraser Thomas
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, UK
| | - Katie B Holmes
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, UK
| | - Sarah Kreuz
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, UK
| | - Peter Hillmen
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, UK
| | - Pascal F Lefevre
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, UK
| |
Collapse
|
47
|
Delvecchio VS, Sana I, Mantione ME, Vilia MG, Ranghetti P, Rovida A, Angelillo P, Scarfò L, Ghia P, Muzio M. Interleukin‐1 receptor‐associated kinase 4 inhibitor interrupts toll‐like receptor signalling and sensitizes chronic lymphocytic leukaemia cells to apoptosis. Br J Haematol 2020; 189:475-488. [DOI: 10.1111/bjh.16386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ilenia Sana
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
- Università Vita‐Salute San Raffaele Milano Italy
| | - Maria Elena Mantione
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Maria Giovanna Vilia
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Pamela Ranghetti
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Alessandra Rovida
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Piera Angelillo
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Lydia Scarfò
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Paolo Ghia
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Marta Muzio
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| |
Collapse
|
48
|
Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia 2019; 34:100-114. [PMID: 31197259 PMCID: PMC8075947 DOI: 10.1038/s41375-019-0507-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in Toll-like receptor (TLR) signal transduction and innate immune responses. Recruitment and subsequent activation of IRAK4 upon TLR stimulation is mediated by the myeloid differentiation primary response 88 (MYD88) adaptor protein. Around 3% of chronic lymphocytic leukemia (CLL) patients have activating mutations of MYD88, a driver mutation in this disease. Here, we studied the effects of TLR activation and the pharmacological inhibition of IRAK4 with ND2158, an IRAK4 competitive inhibitor, as a therapeutic approach in CLL. Our in vitro studies demonstrated that ND2158 preferentially killed CLL cells in a dose-dependent manner. We further observed a decrease in NF-κB and STAT3 signaling, cytokine secretion, proliferation and migration of primary CLL cells from MYD88-mutated and -unmutated cases. In the Eµ-TCL1 adoptive transfer mouse model of CLL, ND2158 delayed tumor progression and modulated the activity of myeloid and T cells. Our findings show the importance of TLR signaling in CLL development and suggest IRAK4 as a therapeutic target for this disease.
Collapse
|
49
|
Gaiti F, Chaligne R, Gu H, Brand RM, Kothen-Hill S, Schulman R, Grigorev K, Risso D, Kim KT, Pastore A, Huang KY, Alonso A, Sheridan C, Omans ND, Biederstedt E, Clement K, Wang L, Felsenfeld JA, Bhavsar EB, Aryee MJ, Allan JN, Furman R, Gnirke A, Wu CJ, Meissner A, Landau DA. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 2019; 569:576-580. [PMID: 31092926 PMCID: PMC6533116 DOI: 10.1038/s41586-019-1198-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer1. Chronic lymphocytic leukaemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution after therapy2,3. The CLL epigenome is also an important disease-defining feature4,5, and growing populations of cells in CLL diversify by stochastic changes in DNA methylation known as epimutations6. However, previous studies using bulk sequencing methods to analyse the patterns of DNA methylation were unable to determine whether epimutations affect CLL populations homogeneously. Here, to measure the epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced-representation bisulfite sequencing to B cells from healthy donors and patients with CLL. We observed that the common clonal origin of CLL results in a consistently increased epimutation rate, with low variability in the cell-to-cell epimutation rate. By contrast, variable epimutation rates across healthy B cells reflect diverse evolutionary ages across the trajectory of B cell differentiation, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed us to reconstruct lineages at high-resolution with single-cell data, and to apply this directly to patient samples. The CLL lineage tree shape revealed earlier branching and longer branch lengths than in normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. Integration of single-cell bisulfite sequencing analysis with single-cell transcriptomes and genotyping confirmed that genetic subclones mapped to distinct clades, as inferred solely on the basis of epimutation information. Finally, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy.
Collapse
Affiliation(s)
- Federico Gaiti
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan Matthew Brand
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Steven Kothen-Hill
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rafael Schulman
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | | | - Davide Risso
- Weill Cornell Medicine, New York, NY, 10021, USA,Department of Statistical Sciences, University of Padova, Padova, 35121, Italy
| | - Kyu-Tae Kim
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kevin Y. Huang
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | - Nathaniel D. Omans
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Evan Biederstedt
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kendell Clement
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lili Wang
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA,Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | | | | | - Martin J. Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA,Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine J. Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA,Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA,Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Dan A. Landau
- New York Genome Center, New York, NY, 10013, USA,Weill Cornell Medicine, New York, NY, 10021, USA,Corresponding author: Dan A. Landau, MD, PhD, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021,
| |
Collapse
|