1
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. Leveraging the ROS-TME Axis for Cancer Treatment. Antioxidants (Basel) 2024; 13:1365. [PMID: 39594507 PMCID: PMC11591396 DOI: 10.3390/antiox13111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The discovery of reactive oxygen species (ROS) dates back to the early 20th century [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Bodeker KL, Smith BJ, Berg DJ, Chandrasekharan C, Sharif S, Fei N, Vollstedt S, Brown H, Chandler M, Lorack A, McMichael S, Wulfekuhle J, Wagner BA, Buettner GR, Allen BG, Caster JM, Dion B, Kamgar M, Buatti JM, Cullen JJ. A randomized trial of pharmacological ascorbate, gemcitabine, and nab-paclitaxel for metastatic pancreatic cancer. Redox Biol 2024; 77:103375. [PMID: 39369582 PMCID: PMC11491967 DOI: 10.1016/j.redox.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Patients with metastatic pancreatic ductal adenocarcinoma (PDAC) have poor 5-year survival. Pharmacological ascorbate (P-AscH-, high dose, intravenous, vitamin C) has shown promise as an adjunct to chemotherapy. We hypothesized adding P-AscH- to gemcitabine and nab-paclitaxel would increase survival in patients with metastatic PDAC. METHODS Patients diagnosed with stage IV pancreatic cancer randomized 1:1 to gemcitabine and nab-paclitaxel only (SOC, control) or to SOC with concomitant P-AscH-, 75 g three times weekly (ASC, investigational). The primary outcome was overall survival with secondary objectives of determining progression-free survival and adverse event incidence. Quality of life and patient reported outcomes for common oncologic symptoms were captured as an exploratory objective. Thirty-six participants were randomized; of this 34 received their assigned study treatment. All analyses were based on data frozen on December 11, 2023. RESULTS Intravenous P-AscH- increased serum ascorbate levels from micromolar to millimolar levels. P-AscH- added to the gemcitabine + nab-paclitaxel (ASC) increased overall survival to 16 months compared to 8.3 months with gemcitabine + nab-paclitaxel (SOC) (HR = 0.46; 90 % CI 0.23, 0.92; p = 0.030). Median progression free survival was 6.2 (ASC) vs. 3.9 months (SOC) (HR = 0.43; 90 % CI 0.20, 0.92; p = 0.029). Adding P-AscH- did not negatively impact quality of life or increase the frequency or severity of adverse events. CONCLUSIONS P-AscH- infusions of 75 g three times weekly in patients with metastatic pancreatic cancer prolongs overall and progression free survival without detriment to quality of life or added toxicity (ClinicalTrials.gov number NCT02905578).
Collapse
Affiliation(s)
- Kellie L Bodeker
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Daniel J Berg
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Chandrikha Chandrasekharan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Saima Sharif
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Naomi Fei
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Sandy Vollstedt
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Heather Brown
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Meghan Chandler
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Amanda Lorack
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Stacy McMichael
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jared Wulfekuhle
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Joseph M Caster
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Barbara Dion
- Medical College of Wisconsin Division of Hematology and Oncology, Milwaukee, WI, USA
| | - Mandana Kamgar
- Medical College of Wisconsin Division of Hematology and Oncology, Milwaukee, WI, USA
| | - John M Buatti
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Wang P, Chen LL, Xiong Y, Ye D. Metabolite regulation of epigenetics in cancer. Cell Rep 2024; 43:114815. [PMID: 39368084 DOI: 10.1016/j.celrep.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
The catalytic activity of most epigenetic enzymes requires a metabolite produced by central carbon metabolism as a cofactor or (co-)substrate. The concentrations of these metabolites undergo dynamic changes in response to nutrient levels and environmental conditions, reprogramming metabolic processes and epigenetic landscapes. Abnormal accumulations of epigenetic modulatory metabolites resulting from mutations in metabolic enzymes contribute to tumorigenesis. In this review, we first present the concept that metabolite regulation of gene expression represents an evolutionarily conserved mechanism from prokaryotes to eukaryotes. We then review how individual metabolites affect epigenetic enzymes and cancer development. Lastly, we discuss the advancement of and opportunity for therapeutic targeting of metabolite-epigenetic regulation in cancer therapy.
Collapse
Affiliation(s)
- Pu Wang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Cullgen, Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Ma L, Jin Y, Aili A, Xu L, Wang X, Xiao L, Zhao W, Yin S, Liu B, Yuan X. High-dose vitamin C attenuates radiation-induced pulmonary fibrosis by targeting S100A8 and S100A9. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167358. [PMID: 39025374 DOI: 10.1016/j.bbadis.2024.167358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.
Collapse
Affiliation(s)
- Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aifeina Aili
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Yin
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03553-x. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
6
|
Kishimoto S, Crooks DR, Yasunori O, Kota Y, Yamamoto K, Linehan WM, Levine M, Krishna MC, Brender JR. Pharmacologic ascorbate induces transient hypoxia sensitizing pancreatic ductal adenocarcinoma to a hypoxia activated prodrug. Free Radic Biol Med 2024; 222:579-587. [PMID: 38992394 DOI: 10.1016/j.freeradbiomed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Otowa Yasunori
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamashita Kota
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
8
|
Paller CJ, Zahurak ML, Mandl A, Metri NA, Lalji A, Heath E, Kelly WK, Hoimes C, Barata P, Taksey J, Garrison DA, Patra K, Milne GL, Anders NM, Nauroth JM, Durham JN, Marshall CH, Markowski MC, Eisenberger MA, Antonarakis ES, Carducci MA, Denmeade SR, Levine M. High-Dose Intravenous Vitamin C Combined with Docetaxel in Men with Metastatic Castration-Resistant Prostate Cancer: A Randomized Placebo-Controlled Phase II Trial. CANCER RESEARCH COMMUNICATIONS 2024; 4:2174-2182. [PMID: 39076107 PMCID: PMC11333993 DOI: 10.1158/2767-9764.crc-24-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
High-dose intravenous vitamin C (HDIVC) administered to produce pharmacologic concentrations shows promise in preclinical models and small clinical trials, but larger prospective randomized trials are lacking. We evaluated the clinical benefit of combining HDIVC with docetaxel in patients with progressive metastatic castration-resistant prostate cancer (mCRPC). In this double-blind, placebo-controlled phase II trial, 47 patients were randomized 2:1 to receive docetaxel (75 mg/m2 i.v.) with either HDIVC (1 g/kg) or placebo. Coprimary endpoints were PSA50 response and adverse event rates. Secondary endpoints included overall survival, radiographic progression-free survival, and quality of life measured using the Functional Assessment of Cancer Therapy-Prostate instrument. Correlative analyses included pharmacokinetics and oxidative stress markers. Eighty-nine percent of patients previously had three or more lines of therapy. The PSA50 response rate was 41% in the HDIVC group and 33% in the placebo group (P = 0.44), with comparable adverse event rates in both groups. There were no significant differences in Functional Assessment of Cancer Therapy-Prostate scores. The median radiographic progression-free survival was not significantly different between the HDIVC and placebo groups, with durations of 10.1 and 10.0 months (HR, 1.35; 95% confidence interval, 0.66-2.75; P = 0.40), respectively. The median overall survival was 15.2 months in the HDIVC group and 29.5 months in the placebo group (HR, 1.98; 95% confidence interval, 0.85-4.58; P = 0.11). HDIVC did not decrease F2-isoprostanes, indicators of oxidative stress. The study was suspended after prespecified interim analysis indicated futility in achieving primary endpoints. In this patient population, combining HDIVC with docetaxel did not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. Findings do not support the routine use of HDIVC in mCRPC treatment outside of clinical trials. SIGNIFICANCE This is the first randomized, placebo-controlled, double-blind trial to evaluate HDIVC in cancer treatment. The addition of HDIVC to docetaxel in patients with mCRPC does not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. The routine use of HDIVC in mCRPC treatment is not supported outside of clinical trials.
Collapse
Affiliation(s)
- Channing J. Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Marianna L. Zahurak
- Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Nicole A. Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Aliya Lalji
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | | | | | - Pedro Barata
- Case Western Reserve University/University Hospitals, Cleveland, Ohio.
| | - Jason Taksey
- Maryland Oncology Hematology, US Oncology, Annapolis, Maryland.
| | - Dominique A. Garrison
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Kartick Patra
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Nicole M. Anders
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Julie M. Nauroth
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Jennifer N. Durham
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Catherine H. Marshall
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark C. Markowski
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mario A. Eisenberger
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | - Michael A. Carducci
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Samuel R. Denmeade
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Drakontaeidi A, Papanotas I, Pontiki E. Multitarget Pharmacology of Sulfur-Nitrogen Heterocycles: Anticancer and Antioxidant Perspectives. Antioxidants (Basel) 2024; 13:898. [PMID: 39199144 PMCID: PMC11351258 DOI: 10.3390/antiox13080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer and oxidative stress are interrelated, with reactive oxygen species (ROS) playing crucial roles in physiological processes and oncogenesis. Excessive ROS levels can induce DNA damage, leading to cancer, and disrupt antioxidant defenses, contributing to diseases like diabetes and cardiovascular disorders. Antioxidant mechanisms include enzymes and small molecules that mitigate ROS damage. However, cancer cells often exploit oxidative conditions to evade apoptosis and promote tumor growth. Antioxidant therapy has shown mixed results, with timing and cancer-type influencing outcomes. Multifunctional drugs targeting multiple pathways offer a promising approach, reducing side effects and improving efficacy. Recent research focuses on sulfur-nitrogen heterocyclic derivatives for their dual antioxidant and anticancer properties, potentially enhancing therapeutic efficacy in oncology. The newly synthesized compounds often do not demonstrate both antioxidant and anticancer properties simultaneously. Heterocyclic rings are typically combined with phenyl groups, where hydroxy substitutions enhance antioxidant activity. On the other hand, electron-withdrawing substituents, particularly at the p-position on the phenyl ring, tend to enhance anticancer activity.
Collapse
Affiliation(s)
| | | | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.D.); (I.P.)
| |
Collapse
|
11
|
Barnhart AS, Anthony AL, Conaway KR, Sibbitt BG, Delaney E, Haluschak J, Kathula S, Chen A. Safety and efficacy of Vitamin C, Vitamin E, and selenium supplementation in the oncology setting: A systematic review. J Oncol Pharm Pract 2024; 30:678-696. [PMID: 37321210 DOI: 10.1177/10781552231182362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE With rising rates of complementary and alternative medicine (CAM) use, the exploration of CAM integration into oncology treatments is becoming increasingly prevalent. Antioxidants have been proposed as potentially beneficial to prevent or treat cancer. However, evidence summaries are limited, and the United States Preventive Services Task Force has recently recommended the use of Vitamin C and E supplementation for cancer prevention. Thus, the objective of this systematic review is to evaluate the existing literature on the safety and efficacy of antioxidant supplementation in oncology patients. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using prespecified search terms in PubMed and CINAHL. Two reviewers independently reviewed titles, abstracts, and full-text articles, with a third reviewer resolving conflicts, before the included articles underwent data extraction and quality appraisal. RESULTS Twenty-four articles met the inclusion criteria. Of the included studies, nine evaluated selenium, eight evaluated Vitamin C, four evaluated Vitamin E, and three of these studies included a combination of two or more of these agents. The most frequently evaluated cancer types included colorectal cancer (n = 4), leukemias (n = 4), breast cancer (n = 3), and genitourinary cancers (n = 3). Most of the studies focused on the antioxidants' therapeutic efficacy (n = 15) or their use in protecting against chemotherapy- or radiation-induced side effects (n = 8), and one study evaluated the role of an antioxidant in protection against cancer. Findings were generally favorable among the studies, and adverse effects of supplementation were limited. Furthermore, the average score for all the included articles on the Mixed Methods Appraisal Tool was 4.2, indicating the high quality of the studies. CONCLUSIONS Antioxidant supplements may provide benefits in reducing incidence or severity of treatment-induced side effects with limited risk for adverse effects. Large, randomized controlled trials are needed to confirm these findings among various cancer diagnoses and stages. Healthcare providers should understand the safety and efficacy of these therapies to address questions that arise in caring for those with cancer.
Collapse
Affiliation(s)
- A S Barnhart
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - A L Anthony
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - K R Conaway
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - B G Sibbitt
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | | | | | | | - Amh Chen
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| |
Collapse
|
12
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Chen GY, O’Leary BR, Du J, Carroll RS, Steers GJ, Buettner GR, Cullen JJ. Pharmacologic Ascorbate Radiosensitizes Pancreatic Cancer but Radioprotects Normal Tissue: The Role of Oxidative Stress-Induced Lipid Peroxidation. Antioxidants (Basel) 2024; 13:361. [PMID: 38539894 PMCID: PMC10967795 DOI: 10.3390/antiox13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 12/08/2024] Open
Abstract
The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.
Collapse
Affiliation(s)
- Gloria Y. Chen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Brianne R. O’Leary
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Juan Du
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rory S. Carroll
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garett J. Steers
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Joseph J. Cullen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
14
|
Najeeb HA, Sanusi T, Saldanha G, Brown K, Cooke MS, Jones GD. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radic Biol Med 2024; 213:309-321. [PMID: 38262545 DOI: 10.1016/j.freeradbiomed.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Elevated genomic instability in cancer cells suggests a possible model-scenario for their selective killing via the therapeutic delivery of well-defined levels of further DNA damage. To examine this scenario, this study investigated the potential for redox modulation of oxidatively-induced DNA damage by ascorbate in malignant melanoma (MM) cancer cells, to selectively enhance both DNA damage and MM cell killing. DNA damage was assessed by Comet and ɣH2AX assays, intracellular oxidising species by dichlorofluorescein fluorescence, a key antioxidant enzymatic defence by assessment of catalase activity and cell survival was determined by clonogenic assay. Comet revealed that MM cells had higher endogenous DNA damage levels than normal keratinocytes (HaCaT cells); this correlated MM cells having higher intracellular oxidising species and lower catalase activity, and ranked with MM cell melanin pigmentation. Comet also showed MM cells more sensitive towards the DNA damaging effects of exogenous H2O2, and that ascorbate further enhanced this H2O2-induced damage in MM cells; again, with MM cell sensitivity to induced damage ranking with degree of cell pigmentation. Furthermore, cell survival data indicated that ascorbate enhanced H2O2-induced clonogenic cell death selectively in MM cells whilst protecting HaCaT cells. Finally, we show that ascorbate serves to enhance the oxidising effects of the MM therapeutic drug Elesclomol in both established MM cells in vitro and primary cell cultures ex vivo. Together, these results suggest that ascorbate selectively enhances DNA damage and cell-killing in MM cells. This raises the option of incorporating ascorbate into clinical oxidative therapies to treat MM.
Collapse
Affiliation(s)
- Hishyar A Najeeb
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Timi Sanusi
- Leicester Medical School, University of Leicester, UK
| | - Gerald Saldanha
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK
| | - Karen Brown
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, USA.
| | - George Dd Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK.
| |
Collapse
|
15
|
Zaher A, Mapuskar KA, Sarkaria JN, Spitz DR, Petronek MS, Allen BG. Differential H 2O 2 Metabolism among Glioblastoma Subtypes Confers Variable Responses to Pharmacological Ascorbate Therapy Combined with Chemoradiation. Int J Mol Sci 2023; 24:17158. [PMID: 38138986 PMCID: PMC10743151 DOI: 10.3390/ijms242417158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH-) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity and resistance of various GBM subtypes to conventional SOC, our study assessed the response of classical, mesenchymal, and proneural GBM to P-AscH-. P-AscH- (20 pmol/cell) combined with SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following exposure to P-AscH- (20 pmol/cell), single-strand DNA damage significantly increased in classical and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially drives differential P-AscH- toxicity. Taken together, these data suggest that P-AscH- may hold promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for their resistance to SOC.
Collapse
Affiliation(s)
- Amira Zaher
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (D.R.S.)
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (D.R.S.)
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Douglas R. Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (D.R.S.)
| | - Michael S. Petronek
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (D.R.S.)
| | - Bryan G. Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (D.R.S.)
| |
Collapse
|
16
|
Solst SR, Mapuskar KA, Graham CH, King SA, Rheem R, Current K, Allen BG, Caster JM, Spitz DR, Howard ME. Rapid Peroxide Removal Limits the Radiosensitization of Diffuse Intrinsic Pontine Glioma (DIPG) Cells by Pharmacologic Ascorbate. Radiat Res 2023; 200:456-461. [PMID: 37758035 PMCID: PMC10759934 DOI: 10.1667/rade-23-00006.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Diffuse intrinsic pontine gliomas (DIPG) are an aggressive type of pediatric brain tumor with a very high mortality rate. Surgery has a limited role given the tumor's location. Palliative radiation therapy alleviates symptoms and prolongs survival, but median survival remains less than 1 year. There is no clear role for chemotherapy in DIPGs as trials adding chemotherapy to palliative radiation therapy have failed to improve survival compared to radiation alone. Thus, there is a critical need to identify tissue-specific radiosensitizers to improve clinical outcomes for patients with DIPGs. Pharmacologic (high dose) ascorbate (P-AscH-) is a promising anticancer therapy that sensitizes human tumors, including adult high-grade gliomas, to radiation by acting selectively as a generator of hydrogen peroxide (H2O2) in cancer cells. In this study we demonstrate that in contrast to adult glioma models, P-AscH- does not radiosensitize DIPG. DIPG cells were sensitive to bolus of H2O2 but have faster H2O2 removal rates than GBM models which are radiosensitized by P-AscH-. These data support the hypothesis that P-AscH- does not enhance DIPG radiosensitivity, likely due to a robust capacity to detoxify and remove hydroperoxides.
Collapse
Affiliation(s)
- Shane R. Solst
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Claire H. Graham
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Sarah A. King
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Rana Rheem
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Kyle Current
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Joseph M. Caster
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Michelle E. Howard
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
17
|
O’Leary BR, Kalen AL, Pope AN, Goswami PC, Cullen JJ. Hydrogen Peroxide Mediates Pharmacological Ascorbate Induced Radio-Sensitization of Pancreatic Cancer Cells by Enhancing G2-accumulation and Reducing Cyclin B1 Protein Levels. Radiat Res 2023; 200:444-455. [PMID: 37758045 PMCID: PMC10699322 DOI: 10.1667/rade-22-00182.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda L. Kalen
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda N. Pope
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Prabhat C. Goswami
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph J. Cullen
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
18
|
Sanookpan K, Chantaravisoot N, Kalpongnukul N, Chuenjit C, Wattanathamsan O, Shoaib S, Chanvorachote P, Buranasudja V. Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage. Antioxidants (Basel) 2023; 12:1775. [PMID: 37760080 PMCID: PMC10525775 DOI: 10.3390/antiox12091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH-; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH- on NSCLC and elucidate its underlying mechanisms. P-AscH- treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH- in NSCLC therapy. Treatments with P-AscH- increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH- on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH-. The data from this current research advance our understanding of P-AscH- in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Nabsolute Co., Ltd., Bangkok 10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchapon Chuenjit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Sara Shoaib
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Steers GJ, O’Leary BR, Du J, Wagner BA, Carroll RS, Domann FE, Goswami PC, Buettner GR, Cullen JJ. Pharmacologic Ascorbate and DNMT Inhibitors Increase DUOX Expression and Peroxide-Mediated Toxicity in Pancreatic Cancer. Antioxidants (Basel) 2023; 12:1683. [PMID: 37759986 PMCID: PMC10525653 DOI: 10.3390/antiox12091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.
Collapse
Affiliation(s)
- Garett J. Steers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianne R. O’Leary
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Rory S. Carroll
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Prabhat C. Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Joseph J. Cullen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
22
|
Xu C, Yi T, Tan S, Xu H, Hu Y, Ma J, Xu J. Association of Oral or Intravenous Vitamin C Supplementation with Mortality: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:1848. [PMID: 37111066 PMCID: PMC10146309 DOI: 10.3390/nu15081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mortality is the most clinically serious outcome, and its prevention remains a constant struggle. This study was to assess whether intravenous or oral vitamin C (Vit-C) therapy is related to reduced mortality in adults. Data from Medline, Embase, and the Cochrane Central Register databases were acquired from their inception to 26 October 2022. All randomized controlled trials (RCTs) involving intravenous or oral Vit-C against a placebo or no therapy for mortality were selected. The primary outcome was all-cause mortality. Secondary outcomes were sepsis, COVID-19, cardiac surgery, noncardiac surgery, cancer, and other mortalities. Forty-four trials with 26540 participants were selected. Although a substantial statistical difference was observed in all-cause mortality between the control and the Vit-C-supplemented groups (p = 0.009, RR 0.87, 95% CI 0.78 to 0.97, I2 = 36%), the result was not validated by sequential trial analysis. In the subgroup analysis, mortality was markedly reduced in Vit-C trials with the sepsis patients (p = 0.005, RR 0.74, 95% CI 0.59 to 0.91, I2 = 47%), and this result was confirmed by trial sequential analysis. In addition, a substantial statistical difference was revealed in COVID-19 patient mortality between the Vit-C monotherapy and the control groups (p = 0.03, RR 0.84, 95% CI 0.72 to 0.98, I2 = 0%). However, the trial sequential analysis suggested the need for more trials to confirm its efficacy. Overall, Vit-C monotherapy does decrease the risk of death by sepsis by 26%. To confirm Vit-C is associated with reduced COVID-19 mortality, additional clinical random control trials are required.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Tong Yi
- Department of Neurology, The Second People’s Hospital of Deyang City, No. 340 Minjiang West Road, Deyang 618000, China
| | - Siwen Tan
- Outpatient Department, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Hui Xu
- Department of Neurosurgery, The Second People’s Hospital of Liangshan Yi, Autonomous Prefecture, Liangshan 615000, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| |
Collapse
|
23
|
Callaghan CM, Abukhiran IM, Masaadeh A, Van Rheeden RV, Kalen AL, Rodman SN, Petronek MS, Mapuskar KA, George BN, Coleman MC, Goswami PC, Allen BG, Spitz DR, Caster JM. Manipulation of Redox Metabolism Using Pharmacologic Ascorbate Opens a Therapeutic Window for Radio-Sensitization by ATM Inhibitors in Colorectal Cancer. Int J Radiat Oncol Biol Phys 2023; 115:933-944. [PMID: 36228747 PMCID: PMC9974877 DOI: 10.1016/j.ijrobp.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Ataxia telangiectasia mutated kinase (ATM) inhibitors are potent radiosensitizers that regulate DNA damage responses and redox metabolism, but they have not been translated clinically because of the potential for excess normal tissue toxicity. Pharmacologic ascorbate (P-AscH-; intravenous administration achieving mM plasma concentrations) selectively enhances H2O2-induced oxidative stress and radiosensitization in tumors while acting as an antioxidant and mitigating radiation damage in normal tissues including the bowel. We hypothesized that P-AscH- could enhance the therapeutic index of ATM inhibitor-based chemoradiation by simultaneously enhancing the intended effects of ATM inhibitors in tumors and mitigating off-target effects in adjacent normal tissues. METHODS AND MATERIALS Clonogenic survival was assessed in human (human colon tumor [HCT]116, SW480, HT29) and murine (CT26, MC38) colorectal tumor lines and normal cells (human umbilical vein endothelial cell, FHs74) after radiation ± DNA repair inhibitors ± P-AscH-. Tumor growth delay was assessed in mice with HCT116 or MC38 tumors after fractionated radiation (5 Gy × 3) ± the ATM inhibitor KU60019 ± P-AscH-. Intestinal injury, oxidative damage, and transforming growth factor β immunoreactivity were quantified using immunohistochemistry after whole abdominal radiation (10 Gy) ± KU60019 ± P-AscH-. Cell cycle distribution and ATM subcellular localization were assessed using flow cytometry and immunohistochemistry. The role of intracellular H2O2 fluxes was assessed using a stably expressed doxycycline-inducible catalase transgene. RESULTS KU60019 with P-AscH- enhanced radiosensitization in colorectal cancer models in vitro and in vivo by H2O2-dependent oxidative damage to proteins and enhanced DNA damage, abrogation of the postradiation G2 cell cycle checkpoint, and inhibition of ATM nuclear localization. In contrast, concurrent P-AscH- markedly reduced intestinal toxicity and oxidative damage with KU60019. CONCLUSIONS We provide evidence that redox modulating drugs, such as P-AscH-, may facilitate the clinical translation of ATM inhibitors by enhancing tumor radiosensitization while simultaneously protecting normal tissues.
Collapse
Affiliation(s)
- Cameron M Callaghan
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Ibrahim M Abukhiran
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | - Amr Masaadeh
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | | | - Amanda L Kalen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Samuel N Rodman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Michael S Petronek
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Kranti A Mapuskar
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Benjamin N George
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Mitchell C Coleman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Prabhat C Goswami
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Bryan G Allen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
24
|
Are Aspects of Integrative Concepts Helpful to Improve Pancreatic Cancer Therapy? Cancers (Basel) 2023; 15:cancers15041116. [PMID: 36831465 PMCID: PMC9953994 DOI: 10.3390/cancers15041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous clinical studies have been conducted to improve the outcomes of patients suffering from pancreatic cancer. Different approaches using targeted therapeutic strategies and precision medicine methods have been investigated, and synergies and further therapeutic advances may be achieved through combinations with integrative methods. For pancreatic tumors, a particular challenge is the presence of a microenvironment and a dense stroma, which is both a physical barrier to drug penetration and a complex entity being controlled by the immune system. Therefore, the state of immunological tolerance in the tumor microenvironment must be overcome, which is a considerable challenge. Integrative approaches, such as hyperthermia, percutaneous irreversible electroporation, intra-tumoral injections, phytotherapeutics, or vitamins, in combination with standard-oncological therapies, may potentially contribute to the control of pancreatic cancer. The combined application of standard-oncological and integrative methods is currently being studied in ongoing clinical trials. An actual overview is given here.
Collapse
|
25
|
The role of mitochondria in pharmacological ascorbate-induced toxicity. Sci Rep 2022; 12:22521. [PMID: 36581766 PMCID: PMC9800562 DOI: 10.1038/s41598-022-27185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.
Collapse
|
26
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
27
|
van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022; 10:3020. [PMID: 36551776 PMCID: PMC9775864 DOI: 10.3390/biomedicines10123020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Prostate Cancer Network Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
29
|
Krejbich P, Birringer M. The Self-Administered Use of Complementary and Alternative Medicine (CAM) Supplements and Antioxidants in Cancer Therapy and the Critical Role of Nrf-2-A Systematic Review. Antioxidants (Basel) 2022; 11:2149. [PMID: 36358521 PMCID: PMC9686580 DOI: 10.3390/antiox11112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Complementary and alternative medicine (CAM) supplements are widely used by cancer patients. Dietary supplements, vitamins and minerals, herbal remedies, and antioxidants are especially popular. In a systematic literature review, 37 studies, each including more than 1000 participants, on CAM, dietary supplement, and vitamin use among cancer patients were identified. Accordingly, cancer patients use antioxidants such as vitamin C (from 2.6% (United Kingdom) to 41.6% (United States)) and vitamin E (from 2.9% (China) to 48% (United States)). Dietary supplements and vitamins are taken for different reasons, but often during conventional cancer treatment involving chemotherapy or radiotherapy and in a self-decided manner without seeking medical advice from healthcare professionals. Drug-drug interactions with dietary supplements or vitamins involving multiple signaling pathways are well described. Since most of the anticancer drugs generate reactive oxygen species (ROS), an adaptive stress response of healthy and malignant cells, mainly driven by the Nrf-2-Keap I network, can be observed. On the one hand, healthy cells should be protected from ROS-overproducing chemotherapy and radiotherapy; on the other hand, ROS production in cancer cells is a "desirable side effect" during anticancer drug treatment. We here describe the paradoxical use of antioxidants and supplements during cancer therapy, possible interactions with anticancer drugs, and the involvement of the Nrf-2 transcription factor.
Collapse
Affiliation(s)
- Paula Krejbich
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| |
Collapse
|
30
|
Montégut L, de Cabo R, Zitvogel L, Kroemer G. Science-Driven Nutritional Interventions for the Prevention and Treatment of Cancer. Cancer Discov 2022; 12:2258-2279. [PMID: 35997502 PMCID: PMC10749912 DOI: 10.1158/2159-8290.cd-22-0504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
In population studies, dietary patterns clearly influence the development, progression, and therapeutic response of cancers. Nonetheless, interventional dietary trials have had relatively little impact on the prevention and treatment of malignant disease. Standardization of nutritional interventions combined with high-level mode-of-action studies holds the promise of identifying specific entities and pathways endowed with antineoplastic properties. Here, we critically review the effects of caloric restriction and more specific interventions on macro- and micronutrients in preclinical models as well as in clinical studies. We place special emphasis on the prospect of using defined nutrition-relevant molecules to enhance the efficacy of established anticancer treatments. SIGNIFICANCE The avoidance of intrinsically hypercaloric and toxic diets contributes to the prevention and cure of cancer. In addition, specific diet-induced molecules such as ketone bodies and micronutrients, including specific vitamins, have drug-like effects that are clearly demonstrable in preclinical models, mostly in the context of immunotherapies. Multiple trials are underway to determine the clinical utility of such molecules.
Collapse
Affiliation(s)
- Léa Montégut
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Laurence Zitvogel
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, ClinicObiome, Villejuif, France
- INSERM U1015, Paris, France
- Equipe labellisée par la Ligue contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
31
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
32
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
33
|
Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022; 8:556-569. [PMID: 35525794 PMCID: PMC9233125 DOI: 10.1016/j.trecan.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its highly reactive inflammatory desmoplastic stroma with evidence of an extensive tumor stromal interaction largely mediated by inflammatory factors. KRAS mutation and inflammatory signaling promote protumorigenic events, including metabolic reprogramming with several inter-regulatory crosstalks to fulfill the high demand of energy and regulate oxidative stress for tumor growth and progression. Notably, the more aggressive molecular subtype of PDAC enhances influx of glycolytic intermediates. This review focuses on the interactive role of inflammatory signaling and metabolic reprogramming with emerging evidence of crosstalk, which supports the development, progression, and therapeutic resistance of PDAC. Understanding the emerging crosstalk between inflammation and metabolic adaptations may identify potential targets and develop novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
O’Leary BR, Ruppenkamp EK, Steers GJ, Du J, Carroll RS, Wagner BA, Buettner GR, Cullen JJ. Pharmacological Ascorbate Enhances Chemotherapies in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:684-693. [PMID: 36099493 PMCID: PMC9547864 DOI: 10.1097/mpa.0000000000002086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Elena K. Ruppenkamp
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garett J. Steers
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Rory S. Carroll
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph J. Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
35
|
Ascorbate as a Bioactive Compound in Cancer Therapy: The Old Classic Strikes Back. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123818. [PMID: 35744943 PMCID: PMC9229419 DOI: 10.3390/molecules27123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Cancer is a disease of high mortality, and its prevalence has increased steadily in the last few years. However, during the last decade, the development of modern chemotherapy schemes, new radiotherapy techniques, targeted therapies and immunotherapy has brought new hope in the treatment of these diseases. Unfortunately, cancer therapies are also associated with frequent and, sometimes, severe adverse events. Ascorbate (ascorbic acid or vitamin C) is a potent water-soluble antioxidant that is produced in most mammals but is not synthesised endogenously in humans, which lack enzymes for its synthesis. Ascorbate has antioxidant effects that correspond closely to the dose administered. Interestingly, this natural antioxidant induces oxidative stress when given intravenously at a high dose, a paradoxical effect due to its interactions with iron. Importantly, this deleterious property of ascorbate can result in increased cell death. Although, historically, ascorbate has been reported to exhibit anti-tumour properties, this effect has been questioned due to the lack of available mechanistic detail. Recently, new evidence has emerged implicating ferroptosis in several types of oxidative stress-mediated cell death, such as those associated with ischemia–reperfusion. This effect could be positively modulated by the interaction of iron and high ascorbate dosing, particularly in cell systems having a high mitotic index. In addition, it has been reported that ascorbate may behave as an adjuvant of favourable anti-tumour effects in cancer therapies such as radiotherapy, radio-chemotherapy, chemotherapy, immunotherapy, or even in monotherapy, as it facilitates tumour cell death through the generation of reactive oxygen species and ferroptosis. In this review, we provide evidence supporting the view that ascorbate should be revisited to develop novel, safe strategies in the treatment of cancer to achieve their application in human medicine.
Collapse
|
36
|
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11050971. [PMID: 35624835 PMCID: PMC9137675 DOI: 10.3390/antiox11050971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH−, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH− has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au’s effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH− and ionizing radiation in pancreatic cancer treatment. Combining P-AscH− and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.
Collapse
|
37
|
Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis. J Transl Med 2022; 102:298-311. [PMID: 34773069 DOI: 10.1038/s41374-021-00690-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer (PC) is highly resistant to chemo and radiotherapy. Radiation-induced fibrosis (RIF) is a major cause of clinical concern for various malignancies, including PC. In this study, we aimed to evaluate the radiosensitizing and anti-RIF potential of fluvastatin in PC. Short-term viability and clonogenic survival assays were used to evaluate the radiosensitizing potential of fluvastatin in multiple human and murine PC cell lines. The expression of different proteins was analyzed to understand the mechanisms of fluvastatin-mediated radiosensitization of PC cells and its anti-RIF effects in both mouse and human pancreatic stellate cells (PSCs). Finally, these effects of fluvastatin and/or radiation were assessed in an immune-competent syngeneic murine model of PC. Fluvastatin radiosensitized multiple PC cell lines, as well as radioresistant cell lines in vitro, by inhibiting radiation-induced DNA damage repair response. Nonmalignant cells, such as PSCs and NIH3T3 cells, were less sensitive to fluvastatin-mediated radiosensitization than PC cells. Interestingly, fluvastatin suppressed radiation and/or TGF-β-induced activation of PSCs, as well as the fibrogenic properties of these cells in vitro. Fluvastatin considerably augmented the antitumor effect of external radiation therapy and also suppressed intra-tumor RIF in vivo. These findings suggested that along with radiation, fluvastatin co-treatment may be a potential therapeutic approach against PC.
Collapse
|
38
|
Liu C, Yu H, Hou YH, Gao ZL, Zhang YJ. Clinical efficacy evaluation of Erlotinib Combined with Concurrent Chemoradiotherapy in the treatment of locally advanced Pancreatic Cancer. Pak J Med Sci 2022; 38:118-122. [PMID: 35035411 PMCID: PMC8713205 DOI: 10.12669/pjms.38.1.4150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Objective To evaluate the clinical effects of erlotinib combined with concurrent chemoradiotherapy in the treatment of locally advanced pancreatic cancer. Methods Eighty patients with locally advanced pancreatic cancer who attended Shijiazhuang People's Hospital or Anhui Cancer Hospital between January 2018 and January 2020 were randomly divided into two groups, with 40 cases in each group. Patients in the control group were treated with concurrent chemoradiotherapy, while those in the experimental group were treated with erlotinib tablets based on the treatment regimen of the control group. Anti-tumor efficacy evaluation was conducted for all patients in both groups, and the adverse drug reactions, improvement of performance status after treatment were compared and analyzed between the two groups. Results The overall response rate of the experimental group was 47.5%, which was significantly better than the 25% of the control group (p=0.03). The incidence of adverse drug reactions in the experimental group was 40%, while that in the control group was 30%. The incidence of adverse drug reactions in the experimental group was higher than that in the control group, but there was no statistical significance (p=0.34). Moreover, the improvement rate of performance status score in the experimental group was significantly higher than that in the control group (p=0.00). Conclusion Erlotinib combined with concurrent chemoradiotherapy has been preliminarily proved to be safe and effective in the treatment of locally advanced pancreatic cancer, which can improve the physical condition of patients to a certain extent without significantly increasing adverse reactions.
Collapse
Affiliation(s)
- Ci Liu
- Ci Liu, Department of Internal Medicine, Beijing Water Resources Hospital, Beijing, 100036, China
| | - Haobin Yu
- Haobin Yu, Dept. of Cancer Nutrition & Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, Anhui P.R. China
| | - Yue-Hong Hou
- Yue-hong Hou, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Zhen-Lin Gao
- Zhen-lin Gao, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Ya-Jing Zhang
- Ya-jing Zhang, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
39
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
40
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Utilization of Pharmacological Ascorbate to Enhance Hydrogen Peroxide-Mediated Radiosensitivity in Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910880. [PMID: 34639220 PMCID: PMC8509557 DOI: 10.3390/ijms221910880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Interest in the use of pharmacological ascorbate as a treatment for cancer has increased considerably since it was introduced by Cameron and Pauling in the 1970s. Recently, pharmacological ascorbate has been used in preclinical and early-phase clinical trials as a selective radiation sensitizer in cancer. The results of these studies are promising. This review summarizes data on pharmacological ascorbate (1) as a safe and efficacious adjuvant to cancer therapy; (2) as a selective radiosensitizer of cancer via a mechanism involving hydrogen peroxide; and (3) as a radioprotector in normal tissues. Additionally, we present new data demonstrating the ability of pharmacological ascorbate to enhance radiation-induced DNA damage in glioblastoma cells, facilitating cancer cell death. We propose that pharmacological ascorbate may be a general radiosensitizer in cancer therapy and simultaneously a radioprotector of normal tissue.
Collapse
|
42
|
Impact of EcSOD Perturbations in Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10081219. [PMID: 34439467 PMCID: PMC8388922 DOI: 10.3390/antiox10081219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
Reactive oxygen species (ROS) are a normal byproduct of cellular metabolism and are required components in cell signaling and immune responses. However, an imbalance of ROS can lead to oxidative stress in various pathological states. Increases in oxidative stress are one of the hallmarks in cancer cells, which display an altered metabolism when compared to corresponding normal cells. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide anion (O2−) in the extracellular environment. By doing so, this enzyme provides the cell with a defense against oxidative damage by contributing to redox balance. Interestingly, EcSOD expression has been found to be decreased in a variety of cancers, and this loss of expression may contribute to the development and progression of malignancies. In addition, recent compounds can increase EcSOD activity and expression, which has the potential for altering this redox signaling and cellular proliferation. This review will explore the role that EcSOD expression plays in cancer in order to better understand its potential as a tool for the detection, predicted outcomes and potential treatment of malignancies.
Collapse
|
43
|
Okazaki Y, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys 2021; 705:108901. [PMID: 33964248 DOI: 10.1016/j.abb.2021.108901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 μM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 μM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
44
|
Hamaguchi R, Narui R, Morikawa H, Wada H. Improved Chemotherapy Outcomes of Patients With Small-cell Lung Cancer Treated With Combined Alkalization Therapy and Intravenous Vitamin C. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:157-163. [PMID: 35399313 DOI: 10.21873/cdp.10021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Background/Aim This study aimed to investigate the effects of the combination of alkalization therapy (an alkaline diet and bicarbonate therapy) and intravenous vitamin C treatment on chemotherapy outcomes in patients with small-cell lung cancer (SCLC) (study registration: UMIN000043056). Patients and Methods Twelve patients with SCLC in the intervention group (receiving both alkalization therapy and vitamin C treatment together with chemotherapy) were retrospectively compared to 15 patients with SCLC in the control group (receiving chemotherapy only). Results The mean urine pH of the intervention group was significantly higher than that of the control group (7.32±0.45 vs. 6.44±0.74, respectively; p<0.005). The median overall survival for the intervention group was 44.2 months (95% confidence interval=22.0-not reached), as compared with 17.7 months for the control group (95% confidence intervaI=13.5-not reached; p<0.05). Conclusion The combination of alkalization therapy and intravenous vitamin C treatment may be associated with favorable outcomes in patients with SCLC receiving chemotherapy.
Collapse
Affiliation(s)
- Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, Kyoto, Japan
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, Kyoto, Japan
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, Kyoto, Japan
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, Kyoto, Japan
| |
Collapse
|
45
|
Wishart G, Gupta P, Nisbet A, Velliou E, Schettino G. Novel Anticancer and Treatment Sensitizing Compounds against Pancreatic Cancer. Cancers (Basel) 2021; 13:2940. [PMID: 34208295 PMCID: PMC8231164 DOI: 10.3390/cancers13122940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023] Open
Abstract
The isolation of chemical compounds from natural origins for medical application has played an important role in modern medicine with a range of novel treatments having emerged from various natural forms over the past decades. Natural compounds have been exploited for their antioxidant, antimicrobial and antitumor capabilities. Specifically, 60% of today's anticancer drugs originate from natural sources. Moreover, the combination of synthetic and natural treatments has shown applications for (i) reduced side effects, (ii) treatment sensitization and (iii) reduction in treatment resistance. This review aims to collate novel and natural compounds that are being explored for their preclinical anticancer, chemosensitizing and radiosensitizing effects on Pancreatic Ductal Adenocarcinoma (PDAC), which is a lethal disease with current treatments being inefficient and causing serve side effects. Two key points are highlighted by this work: (i) the availability of a range of natural compounds for potentially new therapeutic approaches for PDAC, (ii) potential synergetic impact of natural compounds with advanced chemo- and radio-therapeutic modalities for PDAC.
Collapse
Affiliation(s)
- Gabrielle Wishart
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
- Centre for 3D Models of Health and Disease, UCL-Division of Surgery and Interventional Science, Charles Bell House, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
- National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
46
|
Petronek MS, Stolwijk JM, Murray SD, Steinbach EJ, Zakharia Y, Buettner GR, Spitz DR, Allen BG. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol 2021; 42:101864. [PMID: 33485837 PMCID: PMC8113052 DOI: 10.1016/j.redox.2021.101864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - S D Murray
- Department of Cancer Biology, University of Iowa, Iowa City, IA, USA
| | - E J Steinbach
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Y Zakharia
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
47
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
48
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
49
|
Steers GJ, Carroll RS, O'Leary BR, Cullen JJ. Epigenetic effects of pharmacologic ascorbate. Oncotarget 2021; 12:876-877. [PMID: 33953841 PMCID: PMC8092345 DOI: 10.18632/oncotarget.27911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/25/2022] Open
|
50
|
Catalase Modulates the Radio-Sensitization of Pancreatic Cancer Cells by Pharmacological Ascorbate. Antioxidants (Basel) 2021; 10:antiox10040614. [PMID: 33923601 PMCID: PMC8073689 DOI: 10.3390/antiox10040614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Pancreatic cancer cells (PDACs) are more susceptible to an oxidative insult than normal cells, resulting in greater cytotoxicity upon exposure to agents that increase pro-oxidant levels. Pharmacological ascorbate (P-AscH-), i.e., large amounts given intravenously (IV), generates significant fluxes of hydrogen peroxide (H2O2), resulting in the killing of PDACs but not normal cells. Recent studies have demonstrated that P-AscH- radio-sensitizes PDAC but is a radioprotector to normal cells and tissues. Several mechanisms have been hypothesized to explain the dual roles of P-AscH- in radiation-induced toxicity including the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), RelB, as well as changes in bioenergetic profiles. We have found that P-AscH- in conjunction with radiation increases Nrf2 in both cancer cells and normal cells. Although P-AscH- with radiation decreases RelB in cancer cells vs. normal cells, the knockout of RelB does not radio-sensitize PDACs. Cellular bioenergetic profiles demonstrate that P-AscH- with radiation increases the ATP demand/production rate (glycolytic and oxidative phosphorylation) in both PDACs and normal cells. Knocking out catalase results in P-AscH- radio-sensitization in PDACs. In a phase I trial where P-AscH- was included as an adjuvant to the standard of care, short-term survivors had higher catalase levels in tumor tissue, compared to long-term survivors. These data suggest that P-AscH- radio-sensitizes PDACs through increased peroxide flux. Catalase levels could be a possible indicator for how tumors will respond to P-AscH-.
Collapse
|