1
|
Marguier A, Mathiot J, NDao B, Wespiser M, Pereira V, Lecoester B, Boullerot L, Malfroy M, Laheurte C, Aubin F, Adotevi O, Nardin C. TIE-2 expressing monocytic myeloid-derived suppressor cells are involved in resistance to anti-PD-1 therapy mediated by angiopoietin 2 in melanoma patients. J Invest Dermatol 2025:S0022-202X(25)00327-6. [PMID: 40113033 DOI: 10.1016/j.jid.2025.02.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Amélie Marguier
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Jessica Mathiot
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Babacar NDao
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Mylène Wespiser
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; University Hospital of Besançon, Department of Oncology, F-25000 Besançon, France
| | - Victor Pereira
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; University Hospital of Besançon, Department of Pediatry, F-25000 Besançon, France
| | - Benoît Lecoester
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Laura Boullerot
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Marine Malfroy
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Caroline Laheurte
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - François Aubin
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; University Hospital of Besançon, Department of Dermatology, F-25000 Besançon, France
| | - Olivier Adotevi
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; University Hospital of Besançon, Department of Oncology, F-25000 Besançon, France
| | - Charlée Nardin
- Université Marie et Louis Pasteur, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; University Hospital of Besançon, Department of Dermatology, F-25000 Besançon, France.
| |
Collapse
|
2
|
Weiss SA, Djureinovic D, Wei W, Tran T, Austin M, Markowitz J, Eroglu Z, Khushalani NI, Hegde U, Cohen J, Sznol M, Anderson G, Johnson B, Piteo C, Mahajan A, Adeniran A, Jilaveanu L, Goldberg S, Chiang V, Forsyth P, Kluger HM. Phase II Trial of Pembrolizumab in Combination With Bevacizumab for Untreated Melanoma Brain Metastases. J Clin Oncol 2025:JCO2402219. [PMID: 40048689 DOI: 10.1200/jco-24-02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
PURPOSE Anti-vascular endothelial growth factor therapy enhances PD-1 inhibitor activity in preclinical models and has been used to treat perilesional cerebral edema and radiation necrosis. METHODS We conducted a two-institution phase II trial of bevacizumab and pembrolizumab in patients with untreated melanoma brain metastasis (MBM) (ClinicalTrials.gov identifier: NCT02681549). Patients were anti-PD-(L)-1-naïve, and had ≥one asymptomatic, nonhemorrhagic 5-20 mm MBM, not requiring immediate local therapy or steroids. RESULTS Thirty-seven patients received four doses of bevacizumab and pembrolizumab every 3 weeks followed by up to 2 years of pembrolizumab. The brain metastasis response rate (primary end point) was 54.1% (95% CI, 36.9 to 70.5). The extracranial response rate was 56.3% (95% CI, 37.7 to 73.6). Median intracranial progression-free survival was 2.2 years (95% CI, 0.41 to not reached [NR]). Median overall survival (OS) was 4.3 years (95% CI, 1.6 to NR). Four-year OS rate was 51.6%. Grade 3 treatment-related adverse event rates from bevacizumab and pembrolizumab were 10.8% and 18.9%, respectively. Higher pretreatment vessel density in metastatic tumors and smaller on-therapy increases in circulating angiopoietin-2 were associated with response. CONCLUSION Pembrolizumab with bevacizumab was well tolerated and demonstrated substantial activity in patients with untreated MBM with promising OS, justifying further evaluation of this regimen.
Collapse
Affiliation(s)
- Sarah A Weiss
- Medical Oncology, Rutgers Cancer Institute, New Brunswick, NJ
| | | | - Wei Wei
- Biostatistics, Yale University School of Medicine, New Haven, CT
| | - Thuy Tran
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Matthew Austin
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| | | | - Upendra Hegde
- Medical Oncology, University of Connecticut School of Medicine, Farmington, CT
| | - Justine Cohen
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Mario Sznol
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Gail Anderson
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Barbara Johnson
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Cecily Piteo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| | - Amit Mahajan
- Radiology, Yale University School of Medicine, New Haven, CT
| | | | - Lucia Jilaveanu
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Sarah Goldberg
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Veronica Chiang
- Neurosurgery, Yale University School of Medicine, New Haven, CT
| | - Peter Forsyth
- Departments of Neuro-Oncology and Cell Biology, Moffitt Cancer Center, Tampa, FL
| | - Harriet M Kluger
- Medical Oncology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Liu L, Han F, Deng M, Han Q, Lai M, Zhang H. Crosstalk between GLTSCR1-deficient endothelial cells and tumour cells promotes colorectal cancer development by activating the Notch pathway. Cell Death Differ 2025:10.1038/s41418-025-01450-6. [PMID: 39870803 DOI: 10.1038/s41418-025-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells. In addition, GLTSCR1 inhibits JAG1 transcription by competing with acetylated p65(Lys-310) to bind to the BRD4 interaction site. Therefore, GLTSCR1 deficiency increases JAG1 expression in endothelial cells. Subsequently, increased JAG1 levels on tip cell membranes bind to Notch on CRC cell membranes, activating the Notch signalling pathway in tumour cells and increasing CRC cell stemness. Taken together, our findings highlight the roles of endothelial cells in CRC development.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Fengyan Han
- School of Basic Medical Sciences, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Mengli Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Qizheng Han
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Maode Lai
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China.
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China.
| |
Collapse
|
4
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
5
|
Izar B, Kim M. Peritumoral Venous Vessels: Autobahn and Portal for T Cells to Melanoma Brain Metastasis. Cancer Res 2025; 85:10-11. [PMID: 39514338 DOI: 10.1158/0008-5472.can-24-4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Melanoma brain metastasis is associated with high morbidity and mortality and remains a major clinical challenge. Despite recent successes with combination immune checkpoint inhibitors in the treatment of affected patients, the mechanistic underpinnings of T-cell entry and response to these drugs in brain metastasis are poorly understood. Using real-time intravital microscopy, Messmer and colleagues identified peritumoral venous vessels (PVV) as critical sites for T-cell entry into brain metastases, a process accelerated by immune checkpoint inhibitor treatment. The expression of intercellular adhesion molecule 1 on PVVs was found to be important for T-cell recruitment in preclinical models and associated with increased T-cell infiltration in human brain metastatic lesions. This study highlights PVVs as key vascular entry points for T cells into brain metastases, laying the foundation for enhancing the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Minah Kim
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
6
|
Xu X, Ying H, Wang X, Hong W, Zhang M. Identification of Angiogenesis-Related Gene Signatures and Prediction of Potential Therapeutic Targets in Ulcerative Colitis Using Integrated Bioinformatics. J Inflamm Res 2024; 17:11699-11717. [PMID: 39741751 PMCID: PMC11687120 DOI: 10.2147/jir.s478880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Objective This study aims to clarify angiogenesis mechanisms in ulcerative colitis and identify potential therapeutic targets. Methods The Gene Expression Omnibus (GEO) database was used to obtain expression profiles and clinical data for UC and healthy colon tissues. Angiogenesis-related gene sets were acquired from GeneCards. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) identified UC-associated hub genes. The CIBERSORT algorithm assessed immune cell infiltration. Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to determine biological mechanisms. External datasets were utilized to validate and characterize the angiogenesis-related genes in relation to biological agents. Additionally, an ulcerative colitis mouse model was constructed to verify the key genes' expression using real-time quantitative PCR. To predict potential therapeutic agents, we used the DGIdb database. Molecular docking modeled small molecule binding conformations to key gene targets. Results This study identified 1,247 DEGs enriched in inflammatory/immune pathways from UC and healthy colon samples. WGCNA indicated the black and light cyan modules were most relevant. Intersecting these with 89 angiogenesis genes revealed 5 UC-associated hub genes (pdgfrb, vegfc, angpt2, tnc, hgf). Validation via ROC analysis, differential expression, and a mouse model confirmed upregulation, supporting their potential as UC diagnostic biomarkers. Bioinformatics approaches like protein-protein interaction, enrichment analysis, and GSEA revealed involvement in PDGFR and PI3K-Akt signaling pathways. CIBERSORT analysis of immune cell infiltration showed positive correlations between the key genes and various immune cells, especially neutrophils, highlighting angiogenesis-inflammation interplay in UC. A ceRNA network was constructed. Drug prediction and molecular docking revealed potential UC therapies like sunitinib and imatinib targeting angiogenesis. Conclusion This study identified and validated five angiogenesis-related genes (pdgfrb, vegfc, angpt2, tnc, hgf) that may serve as diagnostic biomarkers and drug targets for UC.
Collapse
Affiliation(s)
- Xijuan Xu
- Department of Anus & Intestine Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Hongan Ying
- Department of Geriatrics, Taizhou First People’s Hospital, Taizhou, People’s Republic of China
| | - Xiaozhi Wang
- Department of Anus & Intestine Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Weiwen Hong
- Department of Anus & Intestine Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Meng Zhang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ezaki T, Tanaka T, Tamura R, Ohara K, Yamamoto Y, Takei J, Morimoto Y, Imai R, Kuranai Y, Akasaki Y, Toda M, Murayama Y, Miyake K, Sasaki H. Status of alternative angiogenic pathways in glioblastoma resected under and after bevacizumab treatment. Brain Tumor Pathol 2024; 41:61-72. [PMID: 38619734 PMCID: PMC11052834 DOI: 10.1007/s10014-024-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Glioblastoma multiforme (GBM) acquires resistance to bevacizumab (Bev) treatment. Bev affects angiogenic factors other than vascular endothelial growth factor (VEGF), which are poorly understood. We investigated changes in angiogenic factors under and after Bev therapy, including angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), placental growth factor (PLGF), fibroblast growth factor 2, and ephrin A2 (EphA2). Fifty-four GBM tissues, including 28 specimens from 14 cases as paired specimens from the same patient obtained in three settings: initial tumor resection (naïve Bev), tumors resected following Bev therapy (effective Bev), and recurrent tumors after Bev therapy (refractory Bev). Immunohistochemistry assessed their expressions in tumor vessels and its correlation with recurrent MRI patterns. PLGF expression was higher in the effective Bev group than in the naïve Bev group (p = 0.024) and remained high in the refractory Bev group. ANGPT2 and EphA2 expressions were higher in the refractory Bev group than in the naïve Bev group (p = 0.047 and 0.028, respectively). PLGF expression was higher in the refractory Bev group compared with the naïve Bev group for paired specimens (p = 0.036). PLGF was more abundant in T2 diffuse/circumscribe patterns (p = 0.046). This is the first study to evaluate angiogenic factors other than VEGF during effective and refractory Bev therapy in patient-derived specimens.
Collapse
Affiliation(s)
- Taketo Ezaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School, of Medicine Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa-shi, Chiba, 277-8567, Japan.
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University School of Medicine Daisan Hospital, 4-11-1 Izumi-Motomachi, Komae-Shi, Tokyo, 201-8601, Japan
| | - Jun Takei
- Department of Neurosurgery, The Jikei University School of Medicine Katsushika Medical Center, 6-41-2 Aoto, Katsushika-Ku, Tokyo, 125-8506, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of medicine, Kagawa University Graduate School of Medicine, 1750-1 Miki-Choho, Ikenobe, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Neurosurgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| |
Collapse
|
11
|
Femel J, Hill C, Illa Bochaca I, Booth JL, Asnaashari TG, Steele MM, Moshiri AS, Do H, Zhong J, Osman I, Leachman SA, Tsujikawa T, White KP, Chang YH, Lund AW. Quantitative multiplex immunohistochemistry reveals inter-patient lymphovascular and immune heterogeneity in primary cutaneous melanoma. Front Immunol 2024; 15:1328602. [PMID: 38361951 PMCID: PMC10867179 DOI: 10.3389/fimmu.2024.1328602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Quantitative, multiplexed imaging is revealing complex spatial relationships between phenotypically diverse tumor infiltrating leukocyte populations and their prognostic implications. The underlying mechanisms and tissue structures that determine leukocyte distribution within and around tumor nests, however, remain poorly understood. While presumed players in metastatic dissemination, new preclinical data demonstrates that blood and lymphatic vessels (lymphovasculature) also dictate leukocyte trafficking within tumor microenvironments and thereby impact anti-tumor immunity. Here we interrogate these relationships in primary human cutaneous melanoma. Methods We established a quantitative, multiplexed imaging platform to simultaneously detect immune infiltrates and tumor-associated vessels in formalin-fixed paraffin embedded patient samples. We performed a discovery, retrospective analysis of 28 treatment-naïve, primary cutaneous melanomas. Results Here we find that the lymphvasculature and immune infiltrate is heterogenous across patients in treatment naïve, primary melanoma. We categorized five lymphovascular subtypes that differ by functionality and morphology and mapped their localization in and around primary tumors. Interestingly, the localization of specific vessel subtypes, but not overall vessel density, significantly associated with the presence of lymphoid aggregates, regional progression, and intratumoral T cell infiltrates. Discussion We describe a quantitative platform to enable simultaneous lymphovascular and immune infiltrate analysis and map their spatial relationships in primary melanoma. Our data indicate that tumor-associated vessels exist in different states and that their localization may determine potential for metastasis or immune infiltration. This platform will support future efforts to map tumor-associated lymphovascular evolution across stage, assess its prognostic value, and stratify patients for adjuvant therapy.
Collapse
Affiliation(s)
- Julia Femel
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Cameron Hill
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Irineu Illa Bochaca
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Jamie L. Booth
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Tina G. Asnaashari
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Ata S. Moshiri
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Hyungrok Do
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Judy Zhong
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Sancy A. Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Takahiro Tsujikawa
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kevin P. White
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Young H. Chang
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Amanda W. Lund
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Fischer A, Alsina-Sanchis E. Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol 2024; 86:102287. [PMID: 38029706 DOI: 10.1016/j.ceb.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Growth of new blood vessels is considered requisite to cancer progression. Recent findings revealed that in addition to inducing angiogenesis, tumor-derived factors alter endothelial cell gene transcription within the tumor mass but also systemically throughout the body. This subsequently contributes to immunosuppression, altered metabolism, therapy resistance and metastasis. Clinical studies demonstrated that targeting the endothelium can increase the success rate of immunotherapy. Single-cell technologies revealed remarkable organ-specific endothelial heterogeneity that becomes altered by the presence of a tumor. In metastases, endothelial transcription differs remarkably between newly formed and co-opted vessels which may provide a basis for developing new therapies to target endothelial cells and overcome therapy resistance more effectively. This review addresses how cancers impact the endothelium to facilitate tumor progression.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| | - Elisenda Alsina-Sanchis
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany
| |
Collapse
|
13
|
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer. Immunol Rev 2023; 320:83-99. [PMID: 37491719 DOI: 10.1111/imr.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.
Collapse
Affiliation(s)
- Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| |
Collapse
|
14
|
Galsky MD, Daneshmand S, Izadmehr S, Gonzalez-Kozlova E, Chan KG, Lewis S, Achkar BE, Dorff TB, Cetnar JP, Neil BO, D'Souza A, Mamtani R, Kyriakopoulos C, Jun T, Gogerly-Moragoda M, Brody R, Xie H, Nie K, Kelly G, Horowitz A, Kinoshita Y, Ellis E, Nose Y, Ioannou G, Cabal R, Del Valle DM, Haines GK, Wang L, Mouw KW, Samstein RM, Mehrazin R, Bhardwaj N, Yu M, Zhao Q, Kim-Schulze S, Sebra R, Zhu J, Gnjatic S, Sfakianos J, Pal SK. Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: a phase 2 trial. Nat Med 2023; 29:2825-2834. [PMID: 37783966 PMCID: PMC10667093 DOI: 10.1038/s41591-023-02568-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Cystectomy is a standard treatment for muscle-invasive bladder cancer (MIBC), but it is life-altering. We initiated a phase 2 study in which patients with MIBC received four cycles of gemcitabine, cisplatin, plus nivolumab followed by clinical restaging. Patients achieving a clinical complete response (cCR) could proceed without cystectomy. The co-primary objectives were to assess the cCR rate and the positive predictive value of cCR for a composite outcome: 2-year metastasis-free survival in patients forgoing immediate cystectomy or
Collapse
Affiliation(s)
- Matthew D Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin G Chan
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sara Lewis
- Department of Radiology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bassam El Achkar
- Department of Radiology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanya B Dorff
- Department of Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jeremy Paul Cetnar
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Brock O Neil
- Department of Urology, University of Utah, Salt Lake City, UT, USA
| | - Anishka D'Souza
- Division of Hematology and Medical Oncology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ronac Mamtani
- Division of Hematology and Medical Oncology, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Christos Kyriakopoulos
- Division of Hematology and Medical Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Tomi Jun
- Genentech, South San Francisco, CA, USA
- Formerly with the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahalya Gogerly-Moragoda
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yayoi Kinoshita
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohei Nose
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael Cabal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane M Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Kenneth Haines
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Wang
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gene Dx, Stamford, CT, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Samstein
- Department of Radiation Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Qianqian Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gene Dx, Stamford, CT, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Sfakianos
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumanta K Pal
- Department of Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
15
|
Oria VO, Erler JT. Tumor Angiocrine Signaling: Novel Targeting Opportunity in Cancer. Cells 2023; 12:2510. [PMID: 37887354 PMCID: PMC10605017 DOI: 10.3390/cells12202510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium signaling will support the development of more effective treatments. Over the past two decades, the emerging consensus suggests that the role of endothelial cells in tumor development has gone beyond angiogenesis. Instead, endothelial cells are now considered active participants in the tumor microenvironment, secreting angiocrine factors such as cytokines, growth factors, and chemokines, which instruct their proximate microenvironments. The function of angiocrine signaling is being uncovered in different fields, such as tissue homeostasis, early development, organogenesis, organ regeneration post-injury, and tumorigenesis. In this review, we elucidate the intricate role of angiocrine signaling in cancer progression, including distant metastasis, tumor dormancy, pre-metastatic niche formation, immune evasion, and therapy resistance.
Collapse
Affiliation(s)
- Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | | |
Collapse
|
16
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|