1
|
Pires LBC, Salaroli LB, Podesta OPGD, Haraguchi FK, Lopes-Júnior LC. Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients 2024; 16:4036. [PMID: 39683430 DOI: 10.3390/nu16234036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES The purpose of this study was to synthesize and evaluate the evidence regarding the effects of omega-3 supplementation on the nutritional status of pancreatic cancer patients. METHODS A systematic review of clinical trials was conducted, adhering to the PRISMA Statement. MEDLINE/PubMed, EMBASE, CENTRAL Cochrane, Scopus, and Web of Science databases were searched up to 31 December 2022 without restrictions on the publication date or language. Independent reviewers extracted data and assessed the risk of bias. The internal validity and risk of bias in randomized controlled trials (RCT) were assessed using the revised Cochrane risk of bias tool for randomized trials-RoB2, while the risk of bias in non-randomized intervention studies was evaluated using the ROBINS-I tool. RESULTS Eight studies met all the inclusion criteria and were analyzed. Five of them were RCT, with the majority (n = 4) classified as low risk of bias, and the three quasi-experiments were deemed to have a moderate risk of bias. Among the studies investigating the outcome of weight gain/maintenance, six reported statistically significant positive results (p < 0.05). CONCLUSIONS In conclusion, the presented evidence indicates that omega-3 supplementation in pancreatic cancer patients is safe, well-tolerated, and beneficial, as it contributes to the stabilization or increase in body weight, as well as a reduction in inflammatory biomarkers.
Collapse
Affiliation(s)
- Luciana Bicalho Cevolani Pires
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| | - Luciane Bresciani Salaroli
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| | - Olívia Perim Galvão de Podesta
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| | - Fabiano Kenji Haraguchi
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| | - Luís Carlos Lopes-Júnior
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| |
Collapse
|
2
|
Harrold EC, Stadler ZK. Upper Gastrointestinal Cancers and the Role of Genetic Testing. Hematol Oncol Clin North Am 2024; 38:677-691. [PMID: 38458854 DOI: 10.1016/j.hoc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Beyond the few established hereditary cancer syndromes with an upper gastrointestinal cancer component, there is increasing recognition of the contribution of novel pathogenic germline variants (gPVs) to upper gastrointestinal carcinogenesis. The detection of gPVs has potential implications for novel treatment approaches of the index cancer patient as well as long-term implications for surveillance and risk-reducing measures for cancer survivors and far-reaching implications for the patients' family. With widespread availability of multigene panel testing, new associations may be identified with germline-somatic integration being critical to determining true causality of novel gPVs. Comprehensive cancer care should incorporate both somatic and germline testing.
Collapse
Affiliation(s)
- Emily C Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland. https://twitter.com/EmilyHarrold6
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Ghosh AK, Bhushan S, Abidoye O, Robinson SS, Rynarzewska AI, Sampat D. Evaluating implementation of NCCN guideline-directed genetic screening recommendations for patients with pancreatic ductal adenocarcinoma. Cancer Causes Control 2024; 35:679-684. [PMID: 38015388 DOI: 10.1007/s10552-023-01825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE In 2019, the National Comprehensive Cancer Network (NCCN) recommended genetic testing for all patients with pancreatic ductal adenocarcinoma (PDAC). To evaluate the status of implementation of these guidelines in a loco-regional setting, we performed a retrospective, observational study among patients with newly diagnosed PDAC who received oncologic care at Northeast Georgia Medical Center in Georgia. METHODS Chart abstraction of patients with newly diagnosed PDAC from 1 January 2020 to 31 December 2021 was performed to include information on genetic testing recommendation and completion, and time from diagnosis to testing. The deidentified dataset was then analyzed using appropriate descriptive and associative statistical testing. RESULTS Of the cohort of 109 patients, 32 (29.4%) completed genetic screening; 16 (14.7%) were screened within 10 days of diagnosis. Among the 77 (70.6%) patients who did not receive genetic screening, 45 (41.3%) were not recommended genetic screening despite treatment intent with standard of care therapy. However, 32 (29.4%) were not recommended genetic screening in conjunction with a desire to pursue palliative care/hospice/or due to terminal illness. CONCLUSIONS The study highlighted the gap in implementation of NCCN guideline-directed genetic testing in PDAC patients as only a third underwent testing suggesting the need for systematic processes to facilitate testing. The test was more likely to be completed if done early in the course, especially soon after the diagnosis. Research is needed to explore discussing genetic testing for the large proportion of patients who are terminally ill at diagnosis where genetic screening would potentially benefit the family members.
Collapse
Affiliation(s)
| | | | | | | | | | - Devi Sampat
- Longstreet Clinic Cancer Center, Gainesville, GA, USA
| |
Collapse
|
4
|
Lee CL, Holter S, Borgida A, Dodd A, Ramotar S, Grant R, Wasson K, Elimova E, Jang RW, Moore M, Kim TK, Khalili K, Moulton CA, Gallinger S, O’Kane GM, Knox JJ. Germline BRCA2 variants in advanced pancreatic acinar cell carcinoma: A case report and review of literature. World J Gastroenterol 2022; 28:6421-6432. [PMID: 36533108 PMCID: PMC9753052 DOI: 10.3748/wjg.v28.i45.6421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pancreatic acinar cell carcinoma (PACC) is a rare tumor. Up to 45% of PACCs have alterations in the DNA damage repair pathway and 23% harbor rearrangements in the BRAF or RAF1 genes. We present a PACC case with a germline BRCA2 likely pathogenic variant (LPV) to highlight the impact of genomic testing on treatment decisions and patient outcomes. In our larger case series, we provide clinic-based information on additional 10 PACC patients treated in our center.
CASE SUMMARY A 70-year-old male was diagnosed with advanced PACC. At presentation, he was cachectic with severe arthralgia despite prednisolone and a skin rash that was later confirmed to be panniculitis. He was treated with modified FOLFIRINOX (mFFX) with the knowledge of the germline BRCA2 LPV. Following 11 cycles of mFFX, a computed tomography (CT) scan demonstrated significant tumor response in the pancreatic primary and hepatic metastases, totaling 70% from baseline as per Response Evaluation Criteria in Solid Tumors. Resolution of the skin panniculitis was also noted. We identified two additional PACCs with druggable targets in our case series. Our data contribute to practical evidence for the value of germline and somatic profiling in the management of rare diseases like PACC.
CONCLUSION This patient and others in our larger case series highlight the importance of genomic testing in PACC with potential utility in personalized treatment.
Collapse
Affiliation(s)
- Cha Len Lee
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Spring Holter
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Ayelet Borgida
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Anna Dodd
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Stephanie Ramotar
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Robert Grant
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Kristy Wasson
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Elena Elimova
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Raymond W Jang
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Malcolm Moore
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Tae Kyoung Kim
- Department of Medical Imaging, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Korosh Khalili
- Department of Medical Imaging, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Carol-Anne Moulton
- Hepatobiliary/Pancreatic Surgical Program, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Steven Gallinger
- Hepatobiliary/Pancreatic Surgical Program, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Grainne M O’Kane
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Jennifer J Knox
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| |
Collapse
|
5
|
Abstract
Breast cancer susceptibility gene 2 (BRCA2) is the main gene associated with hereditary breast cancers. However, a mutation in BRCA2 has also been found in other tumors, such as ovarian, pancreatic, thyroid, gastric, laryngeal, and prostate cancers. In this review, we discuss the biological functions of BRCA2 and the role of BRCA2 mutations in tumor progression and therapy.
Collapse
Affiliation(s)
- Chunbao Xie
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangrong Luo
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yangjun He
- Department of Medical Laboratory, Southwest Medical University, Luzhou, China
| | - Lingxi Jiang
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| | - Yi Shi
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| |
Collapse
|
6
|
Germline Testing for Individuals with Pancreatic Adenocarcinoma and Novel Genetic Risk Factors. Hematol Oncol Clin North Am 2022; 36:943-960. [DOI: 10.1016/j.hoc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Herreros-Villanueva M, Bujanda L, Ruiz-Rebollo L, Torremocha R, Ramos R, Martín R, Artigas MC. Circulating tumor DNA tracking in patients with pancreatic cancer using next-generation sequencing. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:637-644. [PMID: 35092761 DOI: 10.1016/j.gastrohep.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer remains one of the most devastating malignancies due to the absence of techniques for early diagnosis and the lack of target therapeutic options for advanced disease. Next Generation Sequencing (NGS) generates high throughput and valuable genetic information when evaluating circulating tumor DNA (ctDNA); however clinical utility of liquid biopsy in pancreatic cancer has not been demonstrated yet. The aim of this study was to evaluate whether results from a Next Generation Sequencing panel on plasma samples from pancreatic cancer patients could have a clinical significance. METHODS From December 2016 to January 2020, plasma samples from 27 patients with pancreatic ductal adenocarcinoma at two different tertiary Spanish Hospitals underwent ctDNA testing using a commercial NGS panel of 65 genes. Clinical data were available for these patients. VarsSome Clinical software was used to analyse NGS data and establish pathogenicity. RESULTS Evaluable NGS results were obtained in 18 out of the 27 plasma samples. Somatic pathogenic mutations were found mainly in KRAS, BRCA2, FLT3 and HNF1A, genes. Pathogenic mutations were detected in 50% of plasma samples from patient diagnosed at stages III-IV samples. FLT3 mutations were observed in 22.22% of samples which constitute a novel result in the field. CONCLUSIONS Liquid biopsy using NGS is a valuable tool but still not sensitive or specific enough to provide clinical utility in pancreatic cancer patients.
Collapse
Affiliation(s)
- Marta Herreros-Villanueva
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain.
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Lourdes Ruiz-Rebollo
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | | | | | - Rubén Martín
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
8
|
Mohindroo C, De Jesus-Acosta A, Yurgelun MB, Maitra A, Mork M, McAllister F. The Evolving Paradigm of Germline Testing in Pancreatic Ductal Adenocarcinoma and Implications for Clinical Practice. Surg Pathol Clin 2022; 15:491-502. [PMID: 36049831 DOI: 10.1016/j.path.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification of deleterious germline mutations in pancreatic ductal adenocarcinoma (PDAC) patients can have therapeutic implications for the patients and result in cascade testing and prevention in their relatives. Universal testing for germline mutations is now considered standard of care in patients with PDAC, regardless of family history, personal history, or age. Here, we highlight the commonly identified germline mutations in PDAC patients as well as the impact of multigene panel testing. We further discuss therapeutic implications of germline testing on the index cases, and the impact of cascade testing on cancer early detection and prevention in relatives.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Department of Internal Medicine, Sinai Hospital of Baltimore, 2435 W. Belvedere Ave, Ste 56, Baltimore, MD 21215, USA
| | - Ana De Jesus-Acosta
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 401 North Broadway, Baltimore, MD 21231, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX 77030, USA
| | - Maureen Mork
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Bennett C, Suguitan M, Abad J, Chawla A. Identification of high-risk germline variants for the development of pancreatic cancer: Common characteristics and potential guidance to screening guidelines. Pancreatology 2022; 22:719-729. [PMID: 35798629 DOI: 10.1016/j.pan.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a product of a variety of environmental and genetic factors. Recent work has highlighted the influence of hereditary syndromes on pancreatic cancer incidence. The purpose of this review is to identify the high-risk syndromes, common variants, and risks associated with PC. The study also elucidates common characteristics of patients with these mutations, which is used to recommend potential changes to current screening protocols for greater screening efficacy. We analyzed 8 syndromes and their respective variants: Hereditary Breast and Ovarian Cancer (BRCA1/2), Familial Atypical Multiple Mole Melanoma Syndrome (CDKN2A), Peutz-Jeghers Syndrome (STK11), Lynch Syndrome (PMS2, MLH1, MSH2, MSH6, EPCAM), Ataxia Telangiectasia (ATM), Li-Fraumeni Syndrome (TP53), Fanconi Anemia (PALB2), and Hereditary Pancreatitis (PRSS1, SPINK1, CFTR). Of 587 studies evaluated, 79 studies fit into our inclusion criteria. Information from each study was analyzed to draw conclusions on these variants as well as their association with pancreatic cancer. Information from this review is intended to improve precision medicine and improve criteria for screening.
Collapse
Affiliation(s)
- Cade Bennett
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mike Suguitan
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Abad
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022; 163:386-402.e1. [PMID: 35398344 PMCID: PMC9516440 DOI: 10.1053/j.gastro.2022.03.056] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.
Collapse
Affiliation(s)
- Laura D Wood
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Cancer Center, Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Diane M Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
11
|
Devico Marciano N, Kroening G, Dayyani F, Zell JA, Lee FC, Cho M, Valerin JG. BRCA-Mutated Pancreatic Cancer: From Discovery to Novel Treatment Paradigms. Cancers (Basel) 2022; 14:cancers14102453. [PMID: 35626055 PMCID: PMC9140002 DOI: 10.3390/cancers14102453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Approximately 10–20% of pancreatic cancer patients will have a mutation in their DNA, passed on in families, that contributes to the development of their pancreatic cancer. These mutations are important in that they effect the biology of the disease as well as contribute to sensitivity to specific treatments. We describe the critical role that these genes play in various cellular processes in the body that contribute to their role in cancer development and normal cellular function. In this review, we aim to describe the role of certain genes (BRCA1 and BRCA2) in the development of pancreatic cancer and the current and future research efforts underway to treat this subtype of disease. Abstract The discovery of BRCA1 and BRCA2 in the 1990s revolutionized the way we research and treat breast, ovarian, and pancreatic cancers. In the case of pancreatic cancers, germline mutations occur in about 10–20% of patients, with mutations in BRCA1 and BRCA2 being the most common. BRCA genes are critical in DNA repair pathways, particularly in homologous recombination, which has a serious impact on genomic stability and can contribute to cancerous cell proliferation. However, BRCA1 also plays a fundamental role in cell cycle checkpoint control, ubiquitination, control of gene expression, and chromatin remodeling, while BRCA2 also plays a role in transcription and immune system response. Therefore, mutations in these genes lead to multiple defects in cells that may be utilized when treating cancer. BRCA mutations seem to confer a prognostic benefit with an improved overall survival due to differing underlying biology. These mutations also appear to be a predictive marker, with patients showing increased sensitivity to certain treatments, such as platinum chemotherapy and PARP inhibitors. Olaparib is currently indicated for maintenance therapy in metastatic PDAC after induction with platinum-based chemotherapy. Resistance has been found to these therapies, and with a 10.8% five-year OS, novel therapies are desperately needed.
Collapse
|
12
|
Hussain A, Weimer DS, Mani N. Diagnosing Pancreatic Adenocarcinoma With Contrast-Enhanced Ultrasonography: A Literature Review of Research in Europe and Asia. Cureus 2022; 14:e22080. [PMID: 35308682 PMCID: PMC8923045 DOI: 10.7759/cureus.22080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
The National Cancer Institute names pancreatic cancer the 11th most common type of cancer in the United States. However, even with a somewhat low prevalence, in 2017, the American Cancer Society reported pancreatic cancer as the fourth leading cause of cancer-related death. With a lack of symptomology and a broad range of risk factors, pancreatic cancer is frequently diagnosed in a later phase than many other types of cancers, thus resulting in higher metastasis along with a poorer prognosis. This highlights the need for early detection and diagnosis. Currently, abdominal ultrasound or contrast-enhanced CT imaging of the abdomen are standard of care. A new technology: contrast-enhanced ultrasound (CEUS), which employs contrast agents to act as acoustic enhancers for ultrasound, has FDA approval for use in hepatic and renal lesions, but not pancreatic. By examining seven individual studies from Europe and Asia, this review aims to examine the diagnostic value of CEUS to initially diagnose pancreatic adenocarcinomas, potentially followed by a biopsy to confirm, when compared against modalities currently used such as conventional ultrasound and CT imaging. CEUS would potentially be more accurate when compared to conventional ultrasound due to the addition of contrast, and when compared against CT and MRI, CEUS would be advantageous in its low cost, similar sensitivities, and specificities, limited renal toxicity, lack of ionizing radiation, short half-life, and its safe use in both adult and pediatric patients. Due to this, additional research is warranted for further FDA approval and future clinical implementation.
Collapse
|
13
|
Epidemiology and Geographic distribution of BRCA1-2 and DNA Damage Response genes pathogenic variants in pancreatic ductal adenocarcinoma patients. Cancer Treat Rev 2022; 104:102357. [DOI: 10.1016/j.ctrv.2022.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
|
14
|
Kasuga A, Okamoto T, Udagawa S, Mori C, Mie T, Furukawa T, Yamada Y, Takeda T, Matsuyama M, Sasaki T, Ozaka M, Ueki A, Sasahira N. Molecular Features and Clinical Management of Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2022; 23:1205. [PMID: 35163129 PMCID: PMC8835700 DOI: 10.3390/ijms23031205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Hereditary pancreatic cancers are caused by several inherited genes. Familial pancreatic cancer is defined as pancreatic cancer arising in a patient with at least two first-degree relatives with pancreatic cancer in the absence of an identified genetic cause. Hereditary pancreatic cancer syndromes and familial pancreatic cancers account for about 10% of pancreatic cancer cases. Germline mutations in BRCA1, BRCA2, ATM, PALB2, CDKN2A, STK11, and TP53 and mismatch repair genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) are among the well-known inherited susceptibility genes. Currently available targeted medications include poly (ADP-ribose) polymerase inhibitors (PARP) for cases with mutant BRCA and immune checkpoint inhibitors for cases with mismatch repair deficiency. Loss of heterozygosity of hereditary pancreatic cancer susceptibility genes such as BRCA1/2 plays a key role in carcinogenesis and sensitivity to PARP inhibitors. Signature 3 identified by whole genome sequencing is also associated with homologous recombination deficiency and sensitivity to targeted therapies. In this review, we summarize molecular features and treatments of hereditary pancreatic cancer syndromes and surveillance procedures for unaffected high-risk cases. We also review transgenic murine models to gain a better understanding of carcinogenesis in hereditary pancreatic cancer.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takeshi Okamoto
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Shohei Udagawa
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Chinatsu Mori
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takafumi Mie
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takaaki Furukawa
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Yuto Yamada
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Matsuyama
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Arisa Ueki
- Department of Clinical Genetics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| |
Collapse
|
15
|
Kim K, Gaddam S, Liu Q. Pathogenesis, Epidemiology, and Prognosis of Pancreatic Adenocarcinomas. HEPATO-PANCREATO-BILIARY MALIGNANCIES 2022:461-481. [DOI: 10.1007/978-3-030-41683-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Shoucair S, Baker AR, Yu J. Germline Variants in DNA Damage Repair Genes: An Emerging Role in the Era of Precision Medicine in Pancreatic Adenocarcinoma. Ann Gastroenterol Surg 2022; 6:7-16. [PMID: 35106410 PMCID: PMC8786682 DOI: 10.1002/ags3.12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease that is projected to become the second most common cause of cancer deaths by 2030. The role of adjuvant therapy after surgical resection has been established by several clinical trials to prolong survival and improve outcomes. Multiagent chemotherapy seems to be the most promising approach to counteract early recurrence and improve survival; however, in the era of precision medicine, patient selection and individualized therapy seems to hold the key to desirable superior outcomes. Several cancer susceptibility genes have been proven to be associated with an increased risk of pancreatic cancer, both familial and sporadic cases. The role of genomic profiling for germline variants has been extensive and of limited clinical value, considering their low prevalence in pancreatic ductal adenocarcinoma (PDAC). However, an accumulating body of evidence from several studies in the past decade have successfully shown a recognizable value of germline variants in risk assessment and patient stratification. Recently, anti-PD-1 therapy (pembrolizumab) has been FDA-approved for use in solid malignancies with a Mismatch repair deficiency or high Microsatellite instability. Several trials have evaluated the role of poly (ADP-ribose) polymerase (PARP) inhibitors in patients harboring germline BRCA1/2 mutations. Finally, germline variants in DNA damage response genes and particularly deleterious ones have the potential to guide therapy after surgical resection and serve as biomarkers to predict survival. The dire need to address challenges for applying precision medicine in real-life clinical settings for PDAC patients lies in further characterizing the genetic and molecular processes through translational research.
Collapse
Affiliation(s)
- Sami Shoucair
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Andrew R. Baker
- Cellular and Molecular Medicine Graduate ProgramJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jun Yu
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
17
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
18
|
Lai E, Ziranu P, Spanu D, Dubois M, Pretta A, Tolu S, Camera S, Liscia N, Mariani S, Persano M, Migliari M, Donisi C, Demurtas L, Pusceddu V, Puzzoni M, Scartozzi M. BRCA-mutant pancreatic ductal adenocarcinoma. Br J Cancer 2021; 125:1321-1332. [PMID: 34262146 PMCID: PMC8575931 DOI: 10.1038/s41416-021-01469-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite continued research, pancreatic ductal adenocarcinoma (PDAC) remains one of the main causes of cancer death. Interest is growing in the role of the tumour suppressors breast cancer 1 (BRCA1) and BRCA2-typically associated with breast and ovarian cancer-in the pathogenesis of PDAC. Indeed, both germline and sporadic mutations in BRCA1/2 have been found to play a role in the development of PDAC. However, data regarding BRCA1/2-mutant PDAC are lacking. In this review, we aim to outline the specific landscape of BRCA-mutant PDAC, focusing on heritability, clinical features, differences between BRCA1 and 2 mutations and between germline and sporadic alterations, as well as established therapeutic strategies and those that are still under evaluation.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
- Department of Medical Oncology, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussells, Belgium
| | - Simona Tolu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Silvia Camera
- Department of Medical Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Nicole Liscia
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| |
Collapse
|
19
|
Orsi G, Di Marco M, Cavaliere A, Niger M, Bozzarelli S, Giordano G, Noventa S, Rapposelli IG, Garajova I, Tortora G, Rodriquenz MG, Bittoni A, Penzo E, De Lorenzo S, Peretti U, Paratore C, Bernardini I, Mosconi S, Spallanzani A, Macchini M, Tamburini E, Bencardino K, Giommoni E, Scartozzi M, Forti L, Valente MM, Militello AM, Cascinu S, Milella M, Reni M. Chemotherapy toxicity and activity in patients with pancreatic ductal adenocarcinoma and germline BRCA1-2 pathogenic variants (gBRCA1-2pv): a multicenter survey. ESMO Open 2021; 6:100238. [PMID: 34392104 PMCID: PMC8371213 DOI: 10.1016/j.esmoop.2021.100238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Germline BRCA1-2 pathogenic variants (gBRCA1-2pv)-related pancreatic ductal adenocarcinoma (PDAC) showed increased sensitivity to DNA cross-linking agents. This study aimed at exploring safety profile, dose intensity, and activity of different chemotherapy regimens in this setting. PATIENTS AND METHODS gBRCA1-2pv PDAC patients of any age and clinical tumor stage who completed a first course of chemotherapy were eligible. A descriptive analysis of chemotherapy toxicity, dose intensity, response, and survival outcomes was performed. RESULTS A total of 85 gBRCA1-2pv PDAC patients treated in 21 Italian centers between December 2008 and March 2021were enrolled. Seventy-four patients were assessable for toxicity and dose intensity, 83 for outcome. Dose intensity was as follows: nab-paclitaxel 72%, gemcitabine 76% (AG); cisplatin 75%, nab-paclitaxel 73%, capecitabine 73%, and gemcitabine 65% (PAXG); fluorouracil 35%, irinotecan 58%, and oxaliplatin 64% (FOLFIRINOX). When compared with the literature, grade 3-4 neutropenia, thrombocytopenia, and diarrhea were increased with PAXG, and unmodified with AG and FOLFIRINOX. RECIST responses were numerically higher with the three- (81%) or four-drug (73%) platinum-containing regimens that outperformed AG (41%) and oxaliplatin-based doublets (56%). Carbohydrate antigen 19.9 (CA19.9) reduction >89% at nadir was reported in two-third of metastatic patients treated with triplets and quadruplets, as opposed to 33% and 45% of patients receiving oxaliplatin-based doublets or AG, respectively. All patients receiving AG experienced disease progression, with a median progression-free survival (mPFS) of 6.4 months, while patients treated with platinum-containing triplets or quadruplets had an mPFS >10.8 months. Albeit still immature, data on overall survival seemed to parallel those on PFS. CONCLUSIONS Our data, as opposed to figures expected from the literature, highlighted that platinum-based regimens provoked an increased toxicity on proliferating cells, when dose intensity was maintained, or an as-expected toxicity, when dose intensity was reduced, while no change in toxicity and dose intensity was evident with AG. Furthermore, an apparently improved outcome of platinum-based triplets or quadruplets over other regimens was observed.
Collapse
Affiliation(s)
- G Orsi
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Di Marco
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi University Hospital, Bologna, Italy
| | - A Cavaliere
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - S Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy
| | - G Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - S Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - I G Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, Meldola, Italy
| | - I Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - G Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - M G Rodriquenz
- Oncology Unit, Ospedale IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - A Bittoni
- Oncology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Ancona, Italy
| | - E Penzo
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - S De Lorenzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - U Peretti
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Paratore
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - I Bernardini
- Medical Oncology Unit, Ospedale Ramazzini, Carpi (MO), Italy
| | - S Mosconi
- Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - A Spallanzani
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - M Macchini
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Tamburini
- Medical Oncology and Palliative Care Department, Azienda Ospedaliera Cardinale G. Panico, Tricase-Lecce, Italy
| | - K Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - E Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - M Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - L Forti
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - M M Valente
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A M Militello
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Cascinu
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - M Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Reni
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
20
|
Combinations of Low-Frequency Genetic Variants Might Predispose to Familial Pancreatic Cancer. J Pers Med 2021; 11:jpm11070631. [PMID: 34357098 PMCID: PMC8305658 DOI: 10.3390/jpm11070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Familial pancreatic cancer (FPC) is an established but rare inherited tumor syndrome that accounts for approximately 5% of pancreatic ductal adenocarcinoma (PDAC) cases. No major causative gene defect has yet been identified, but germline mutations in predisposition genes BRCA1/2, CDKN2A and PALB2 could be detected in 10–15% of analyzed families. Thus, the genetic basis of disease susceptibility in the majority of FPC families remains unknown. In an attempt to identify new candidate genes, we performed whole-genome sequencing on affected patients from 15 FPC families, without detecting BRCA1/2, CDKN2A or PALB2 mutations, using an Illumina based platform. Annotations from CADD, PolyPhen-2, SIFT, Mutation Taster and PROVEAN were used to assess the potential impact of a variant on the function of a gene. Variants that did not segregate with pancreatic disease in respective families were excluded. Potential predisposing candidate genes ATM, SUFU, DAB1, POLQ, FGFBP3, MAP3K3 and ACAD9 were identified in 7 of 15 families. All identified gene mutations segregated with pancreatic disease, but sometimes with incomplete penetrance. An analysis of up to 46 additional FPC families revealed that the identified gene mutations appeared to be unique in most cases, despite a potentially deleterious ACAD9 Ala326Thr germline variant, which occurred in 4 (8.7%) of 46 FPC families. Notably, affected PDAC patients within a family carried identical germline mutations in up to three different genes, e.g., DAB1, POLQ and FGFBP3. These results support the hypothesis that FPC is a highly heterogeneous polygenetic disease caused by low-frequency or rare variants.
Collapse
|
21
|
Hayashi H, Higashi T, Miyata T, Yamashita Y, Baba H. Recent advances in precision medicine for pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg 2021; 5:457-466. [PMID: 34337294 PMCID: PMC8316748 DOI: 10.1002/ags3.12436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer mortality worldwide. Although advances in systemic chemotherapy for PDAC have improved survival outcomes for patients with the disease, chemoresistance is a major treatment issue for unselected PDAC patient populations. The existence of heterogeneity caused by a mixture of tumor cells and stromal cells produces chemoresistance and limits the targeted therapy of PDAC. Advances in precision medicine for PDACs according to the genetics and molecular biology of this disease may represent the next alternative approach to overcome the heterogeneity of different patients and improve survival outcomes for this poor prognostic disease. The genetic alteration of PDAC is characterized by four genes that are frequently mutated (KRAS, TP53, CDKN2A, and SMAD4). Furthermore, several genetic and molecular profiling studies have revealed that up to 25% of PDACs harbor actionable alterations. In particular, DNA repair dysfunction, including cases with BRCA mutations, is a causal element of sensitivity to platinum-based anti-cancer agents and poly-ADP ribose polymerase (PARP) inhibitors. A deep understanding of the molecular and cellular crosstalk in the tumor microenvironment helps to establish scientifically rational treatment strategies for cancers that show specific molecular profiles. Here, we review recent advances in genetic analysis of PDACs and describe future perspectives in precision medicine according to molecular subtypes or actionable gene mutations for patients with PDAC. We believe the breakthroughs will soon emerge to fight this deadly disease.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Gastroenterological SurgeryGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Takaaki Higashi
- Department of Gastroenterological SurgeryGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsunori Miyata
- Department of Gastroenterological SurgeryGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yo‐ichi Yamashita
- Department of Gastroenterological SurgeryGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological SurgeryGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
22
|
Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021; 18:493-502. [PMID: 34002083 PMCID: PMC9265847 DOI: 10.1038/s41575-021-00457-x] [Citation(s) in RCA: 521] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a leading cause of cancer death worldwide and its global burden has more than doubled over the past 25 years. The highest incidence regions for pancreatic cancer include North America, Europe and Australia, and although much of this increase is due to ageing worldwide populations, there are key modifiable risk factors for pancreatic cancer such as cigarette smoking, obesity, diabetes and alcohol intake. The prevalence of these risk factors is increasing in many global regions, resulting in increasing age-adjusted incidence rates for pancreatic cancer, but the relative contribution from these risk factors varies globally due to variation in the underlying prevalence and prevention strategies. Inherited genetic factors, although not directly modifiable, are an important component of pancreatic cancer risk, and include pathogenic variants in hereditary cancer genes, genes associated with hereditary pancreatitis, as well as common variants identified in genome-wide association studies. Identification of the genetic changes that underlie pancreatic cancer not only provides insight into the aetiology of this cancer but also provides an opportunity to guide early detection strategies. The goal of this Review is to provide an up-to-date overview of the established modifiable and inherited risk factors for pancreatic cancer.
Collapse
|
23
|
Chi J, Chung SY, Parakrama R, Fayyaz F, Jose J, Saif MW. The role of PARP inhibitors in BRCA mutated pancreatic cancer. Therap Adv Gastroenterol 2021; 14:17562848211014818. [PMID: 34025781 PMCID: PMC8120537 DOI: 10.1177/17562848211014818] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for about 3% of all cancers in the United States and about 7% of all cancer deaths. Despite the lower prevalence relative to other solid tumors, it is one of the leading causes of cancer-related death in the US. PDAC is highly resistant to chemotherapy as well as radiation therapy. Current standard-of-care chemotherapeutic regimens provide transient disease control but eventually tumors develop chemoresistance. Tumors that are deficient in DNA damage repair mechanisms such as BRCA mutants respond better to platinum-based chemotherapies. However, these tumor cells can utilize the poly adenosine diphosphate (ADP)-ribose polymerase (PARP) as a salvage DNA repair pathway to prolong survival. Hence, in the presence of BRCA mutations, the inhibition of the PARP pathway can lead to tumor cell death. This provides the rationale for using PARP inhibitors in patients with BRCA mutated PDAC. The phase III POLO trial showed a near doubling of progression-free survival (PFS) compared with placebo in advanced PDAC when a PARP inhibitor, olaparib, was used as maintenance therapy. As a result, the US Food and Drug Administration (FDA) approved olaparib as a maintenance treatment for germline BRCA mutated advanced PDAC that has not progressed on platinum-based chemotherapy. The success of olaparib in treating advanced PDAC opened the new field for utilizing PARP inhibitors in patients with DNA damage repair (DDR) gene defects. Currently, many clinical trials with various PARP inhibitors are ongoing either as monotherapy or in combination with other agents. In addition to germline/somatic BRCA mutations, some trials are enrolling patients with defects in other DDR genes such as ATM, PALB2, and CHEK2. With many ongoing PARP inhibitor trials, it is hopeful that the management of PDAC will continuously evolve and eventually lead to improved patient outcomes.
Collapse
Affiliation(s)
- Jeffrey Chi
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Su Yun Chung
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Ruwan Parakrama
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Fatima Fayyaz
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Jyothi Jose
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Muhammad Wasif Saif
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine, Feinstein Institute of Research, Lake Success, NY 11042, USA
| |
Collapse
|
24
|
Rosen MN, Goodwin RA, Vickers MM. BRCA mutated pancreatic cancer: A change is coming. World J Gastroenterol 2021; 27:1943-1958. [PMID: 34007132 PMCID: PMC8108028 DOI: 10.3748/wjg.v27.i17.1943] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a leading cause of cancer-related death with few available therapies for advanced disease. Recently, patients with germline BRCA mutations have received increased attention due to advances in the management of BRCA mutated ovarian and breast tumors. Germline BRCA mutations significantly increase risk of developing pancreatic cancer and can be found in up to 8% of patients with sporadic pancreatic cancer. In patients with germline BRCA mutations, platinum-based chemotherapies and poly (ADP-ribose) polymerase inhibitors are effective treatment options which may offer survival benefits. This review will focus on the molecular biology, epidemiology, and management of BRCA-mutated pancreatic cancer. Furthermore, we will discuss future directions for this area of research and promising active areas of research.
Collapse
Affiliation(s)
- Michael N Rosen
- Faculty of Medicine, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| | - Rachel A Goodwin
- Faculty of Medicine, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| | - Michael M Vickers
- The Ottawa Hospital Cancer Center, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| |
Collapse
|
25
|
Pancreatic Ductal Adenocarcinoma: Epidemiology and Risk Factors. Diagnostics (Basel) 2021; 11:diagnostics11030562. [PMID: 33804776 PMCID: PMC8003883 DOI: 10.3390/diagnostics11030562] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
The number of new cases of pancreatic ductal adenocarcinoma is increasing with a cumulative total of 495,773 cases worldwide, making it the fourteenth most common malignancy. However, it accounts for 466,003 deaths per year and is the seventh leading cause of cancer deaths. Regional differences in the number of patients with pancreatic ductal adenocarcinoma appear to reflect differences in medical care, as well as racial differences. Compared to the prevalence of other organ cancers in Japan, pancreatic ductal adenocarcinoma ranks seventh based on the number of patients, eighth based on morbidity, and fourth based on the number of deaths, with a continuing increase in the mortality rate. Risk factors for developing pancreatic ductal adenocarcinoma include family history, genetic disorders, diabetes, chronic pancreatitis, and intraductal papillary mucinous neoplasms. An issue that hinders improvement in the prognosis of patients with pancreatic ductal adenocarcinoma is the development of a strategy to identify patients with these risk factors to facilitate detection of the disease at a stage when intervention will improve survival.
Collapse
|
26
|
Khan AA, Liu X, Yan X, Tahir M, Ali S, Huang H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev 2021; 40:245-272. [PMID: 33423164 DOI: 10.1007/s10555-020-09952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.
Collapse
Affiliation(s)
- Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| | - Muhammad Tahir
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Sakhawat Ali
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| |
Collapse
|
27
|
Rodríguez Gil Y, Jiménez Sánchez P, Muñoz Velasco R, García García A, Sánchez-Arévalo Lobo VJ. Molecular Alterations in Pancreatic Cancer: Transfer to the Clinic. Int J Mol Sci 2021; 22:2077. [PMID: 33669845 PMCID: PMC7923218 DOI: 10.3390/ijms22042077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the most common cancer of the exocrine pancreas and probably the tumor that has benefited the least from clinical progress in the last three decades. A consensus has been reached regarding the histologic classification of the ductal preneoplastic lesions (pancreatic intra-epithelial neoplasia-PanIN) and the molecular alterations associated with them. Mutations in KRAS and inactivation of CDKN2A, SMAD4 and TP53 are among the most prevalent alterations. Next generation sequencing studies are providing a broad picture of the enormous heterogeneity in this tumor type, describing new mutations less prevalent. These studies have also allowed the characterization of different subtypes with prognostic value. However, all this knowledge has not been translated into a clinical progress. Effective preventive and early diagnostic strategies are essential to improve the survival rates. The main challenge is, indeed, to identify new effective drugs. Despite many years of research and its limited success, gemcitabine is still the first line treatment of PDA. New drug combinations and new concepts to improve drug delivery into the tumor, as well as the development of preclinical predictive assays, are being explored and provide optimism and prospects for better therapies.
Collapse
Affiliation(s)
- Yolanda Rodríguez Gil
- Pathology Department, Hospital 12 de Octubre, Madrid, (Spain), Av. Córdoba, s/n, 28041 Madrid, Spain;
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain; (P.J.S.); (R.M.V.); (A.G.G.)
| | - Raúl Muñoz Velasco
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain; (P.J.S.); (R.M.V.); (A.G.G.)
| | - Ana García García
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain; (P.J.S.); (R.M.V.); (A.G.G.)
| | - Víctor Javier Sánchez-Arévalo Lobo
- Pathology Department, Hospital 12 de Octubre, Madrid, (Spain), Av. Córdoba, s/n, 28041 Madrid, Spain;
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain; (P.J.S.); (R.M.V.); (A.G.G.)
| |
Collapse
|
28
|
Peretti U, Cavaliere A, Niger M, Tortora G, Di Marco MC, Rodriquenz MG, Centonze F, Rapposelli IG, Giordano G, De Vita F, Stuppia L, Avallone A, Ratti M, Paratore C, Forti LG, Orsi G, Valente MM, Gaule M, Macchini M, Carrera P, Calzavara S, Simbolo M, Melisi D, De Braud F, Salvatore L, De Lorenzo S, Chiarazzo C, Falconi M, Cascinu S, Milella M, Reni M. Germinal BRCA1-2 pathogenic variants (gBRCA1-2pv) and pancreatic cancer: epidemiology of an Italian patient cohort. ESMO Open 2021; 6:100032. [PMID: 33399070 PMCID: PMC7807989 DOI: 10.1016/j.esmoop.2020.100032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Germline BRCA1-2 pathogenic variants (gBRCApv) increase the risk of pancreatic cancer and predict for response to platinating agents and poly(ADP-ribose) polymerase inhibitors. Data on worldwide gBRCApv incidence among pancreatic ductal adenocarcinoma (PDAC) patients are sparse and describe a remarkable geographic heterogeneity. The aim of this study is to analyze the epidemiology of gBRCApv in Italian patients. MATERIALS AND METHODS Patients of any age with pancreatic adenocarcinoma, screened within 3 months from diagnosis for gBRCApv in Italian oncologic centers systematically performing tests without any selection. For the purposes of our analysis, breast, ovarian, pancreas, and prostate cancer in a patient's family history was considered as potentially BRCA-associated. Patients or disease characteristics were examined using the χ2 test or Fisher's exact test for qualitative variables and the Student's t-test or Mann-Whitney test for continuous variables, as appropriate. RESULTS Between June 2015 and May 2020, 939 patients were tested by 14 Italian centers; 492 (52%) males, median age 62 years (range 28-87), 569 (61%) metastatic, 273 (29%) with a family history of potentially BRCA-associated cancers. gBRCA1-2pv were found in 76 patients (8.1%; 9.1% in metastatic; 6.4% in non-metastatic). The gBRCA2/gBRCA1 ratio was 5.4 : 1. Patients with gBRCApv were younger compared with wild-type (59 versus 62 years, P = 0.01). The gBRCApv rate was 17.1% among patients <40 years old, 10.4% among patients 41-50 years old, 9.2% among patients 51-60 years old, 6.7% among patients aged 61-70 years, and 6.2% among patients >70 years old (none out of 94 patients >73 years old). gBRCApv frequency in 845 patients <74 years old was 9%. Patients with/without a family history of potentially BRCA-associated tumors had 14%/6% mutations. CONCLUSION Based on our findings of a gBRCApv incidence higher than expected in a real-life series of Italian patients with incident PDAC, we recommend screening all PDAC patients <74 years old, regardless of family history and stage, due to the therapeutic implications and cancer risk prevention in patients' relatives.
Collapse
Affiliation(s)
- U Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - A Cavaliere
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Tortora
- Department of Medicine, Section of Medical Oncology, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - M C Di Marco
- Medical Oncology Division, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy; Medical Oncology Division, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - M G Rodriquenz
- Oncology Unit, foundation IRCCS Casa Sollievo della sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - F Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - I G Rapposelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - G Giordano
- Department of Medical Oncology, Policlinico Riuniti, Azienda Ospedaliero Universitarià, Foggia, Italy
| | - F De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, 'Luigi Vanvitelli' University of Campania, Naples, Italy
| | - L Stuppia
- Medical Genetics, Department of Psychological, Health and Territorial Sciences Center for Advanced Sciences and Technology G. d'Annunzio University Chieti-Pescara Italy, Chieti, Italy
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M Ratti
- Department of Oncology, Medical Department, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - C Paratore
- Chiara Paratore, University of Turin, Ordine Mauriziano Hospital, Largo Filippo Turati, Turin, Italy
| | - L G Forti
- SCDU Oncologia, AOU Maggiore della Carità, Novara, Italy
| | - G Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M M Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M Gaule
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - P Carrera
- Clinical Genomics - Molecular Genetics Service, Genomics for Diagnosis of Human Diseases, San Raffaele Hospital, Milan, Italy
| | - S Calzavara
- Clinical Genomics - Molecular Genetics Service, Genomics for Diagnosis of Human Diseases, San Raffaele Hospital, Milan, Italy
| | - M Simbolo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - D Melisi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - F De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - L Salvatore
- Department of Medicine, Section of Medical Oncology, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - S De Lorenzo
- Medical Oncology Division, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - C Chiarazzo
- Oncology Unit, foundation IRCCS Casa Sollievo della sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - M Falconi
- Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy; Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
29
|
Abstract
Background: Malignant transformation of heterotopic pancreatic tissue is a rare entity with only several case reports published in the scientific literature. Adjuvant chemotherapy following oncological resection for lesions with nodal metastasis has not been well described and there are no guidelines available to guide the management of these patients. Case Presentation: We present a case of gastric heterotopic pancreatic carcinoma with nodal metastasis in a young patient with breast cancer gene (BRCA) 2 mutation. He had undergone a laparoscopic wedge resection for a gastric lesion initially thought to be a gastrointestinal stroma tumor. Given the involvement of the wedge resection margins, the patient underwent a distal gastrectomy with oncological lymph nodal clearance. One out of the 33 harvested lymph nodes harboured micrometastasis while the main gastrectomy specimen did not have any residual malignancy. Following the histological diagnosis, he received an adjuvant chemotherapy regime akin to that prescribed for locally advanced pancreatic adenocarcinoma with good response. This is, to our knowledge, also the first such case report in a patient with BRCA2 mutation. Conclusions: Pre-operative diagnostic confirmation is challenging and endoscopic procedures pose significant false negatives. Reports of nodal metastasis following oncological resection are limited and there are no guidelines regarding adjuvant therapies. We would recommend a chemotherapy regimen similar to that for primary locally advanced pancreatic carcinoma in patients found to have nodal metastasis.
Collapse
|
30
|
Daly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML, Karlan BY, Khan S, Klein C, Kohlmann W, Kurian AW, Laronga C, Litton JK, Mak JS, Menendez CS, Merajver SD, Norquist BS, Offit K, Pederson HJ, Reiser G, Senter-Jamieson L, Shannon KM, Shatsky R, Visvanathan K, Weitzel JN, Wick MJ, Wisinski KB, Yurgelun MB, Darlow SD, Dwyer MA. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:77-102. [DOI: 10.6004/jnccn.2021.0001] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic focus primarily on assessment of pathogenic or likely pathogenic variants associated with increased risk of breast, ovarian, and pancreatic cancer and recommended approaches to genetic testing/counseling and management strategies in individuals with these pathogenic or likely pathogenic variants. This manuscript focuses on cancer risk and risk management for BRCA-related breast/ovarian cancer syndrome and Li-Fraumeni syndrome. Carriers of a BRCA1/2 pathogenic or likely pathogenic variant have an excessive risk for both breast and ovarian cancer that warrants consideration of more intensive screening and preventive strategies. There is also evidence that risks of prostate cancer and pancreatic cancer are elevated in these carriers. Li-Fraumeni syndrome is a highly penetrant cancer syndrome associated with a high lifetime risk for cancer, including soft tissue sarcomas, osteosarcomas, premenopausal breast cancer, colon cancer, gastric cancer, adrenocortical carcinoma, and brain tumors.
Collapse
Affiliation(s)
| | - Tuya Pal
- 2Vanderbilt-Ingram Cancer Center
| | - Michael P. Berry
- 3St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center
| | | | - Patricia Dickson
- 5Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | - Michael Goggins
- 9The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | - Seema Khan
- 12Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | | | | | | | | | | | | | - Holly J. Pederson
- 22Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Five Italian Families with Two Mutations in BRCA Genes. Genes (Basel) 2020; 11:genes11121451. [PMID: 33287145 PMCID: PMC7761639 DOI: 10.3390/genes11121451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Double heterozygosity (DH) in BRCA1 and BRCA2 genes and double mutation (DM) in BRCA1 or BRCA2 are extremely rare events in the general population, and few cases have been reported worldwide so far. Here, we describe five probands, all women, with breast and/or ovarian cancer and their families. Particularly, we identified two probands with DH in the BRCA1/2 genes with a frequency of 0.3% and three probands with DM in the BRCA2 gene with a frequency of 0.5%. The DH BRCA1 c.547+2T>A (IVS8+2T>A)/BRCA2 c.2830A>T (p.Lys944Ter) and BRCA1 c.3752_3755GTCT (p.Ser1253fs)/BRCA2 c.425+2T>C (IVS4+2T>C) have not been described together so far. The DM in BRCA2, c.631G>A (p.Val211Ile) and c.7008-2A>T (IVS13-2A>T), found in three unrelated probands, was previously reported in further unrelated patients. Due to its peculiarity, it is likely that both pathogenic variants descend from a common ancestor and, therefore, are founder mutations. Interestingly, analyzing the tumor types occurring in DH and DM families, we observed ovarian cancer only in DH families, probably due to the presence in DH patients of BRCA1 pathogenic variants, which predispose one more to ovarian cancer onset. Furthermore, male breast cancer and pancreatic cancer ensued in families with DM but not with DH. These data confirm that BRCA2 pathogenic variants have greater penetrance to develop breast cancer in men and are associated with an increased risk of pancreatic cancer.
Collapse
|
32
|
Anandakrishnan R, Carpenetti TL, Samuel P, Wasko B, Johnson C, Smith C, Kim J, Michalak P, Kang L, Kinney N, Santo A, Anstrom J, Garner HR, Varghese RT. DNA sequencing of anatomy lab cadavers to provide hands-on precision medicine introduction to medical students. BMC MEDICAL EDUCATION 2020; 20:437. [PMID: 33198737 PMCID: PMC7670733 DOI: 10.1186/s12909-020-02366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/09/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Medical treatment informed by Precision Medicine is becoming a standard practice for many diseases, and patients are curious about the consequences of genomic variants in their genome. However, most medical students' understanding of Precision Medicine derives from classroom lectures. This format does little to foster an understanding for the potential and limitations of Precision Medicine. To close this gap, we implemented a hands-on Precision Medicine training program utilizing exome sequencing to prepare a clinical genetic report of cadavers studied in the anatomy lab. The program reinforces Precision Medicine related learning objectives for the Genetics curriculum. METHODS Pre-embalmed blood samples and embalmed tissue were obtained from cadavers (donors) used in the anatomy lab. DNA was isolated and sequenced and illustrative genetic reports provided to the students. The reports were used to facilitate discussion with students on the implications of pathogenic genomic variants and the potential correlation of these variants in each "donor" with any anatomical anomalies identified during cadaver dissection. RESULTS In 75% of cases, analysis of whole exome sequencing data identified a variant associated with increased risk for a disease/abnormal condition noted in the donor's cause of death or in the students' anatomical findings. This provided students with real-world examples of the potential relationship between genomic variants and disease risk. Our students also noted that diseases associated with 92% of the pathogenic variants identified were not related to the anatomical findings, demonstrating the limitations of Precision Medicine. CONCLUSION With this study, we have established protocols and classroom procedures incorporating hands-on Precision Medicine training in the medical student curriculum and a template for other medical educators interested in enhancing their Precision Medicine training program. The program engaged students in discovering variants that were associated with the pathophysiology of the cadaver they were studying, which led to more exposure and understanding of the potential risks and benefits of genomic medicine.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Gibbs Cancer Center and Research Institute, Spartanburg, SC, 29303, USA
| | - Tiffany L Carpenetti
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Peter Samuel
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Breezy Wasko
- Virginia Department of Health, Richmond, VA, 23219, USA
| | - Craig Johnson
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Christy Smith
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Jessica Kim
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Nick Kinney
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Gibbs Cancer Center and Research Institute, Spartanburg, SC, 29303, USA
| | - Arben Santo
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - John Anstrom
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Gibbs Cancer Center and Research Institute, Spartanburg, SC, 29303, USA
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, (VCOM), VA, Biomedical Sciences, 2265 Kraft Drive, Blacksburg, VA, 24060, USA.
- Gibbs Cancer Center and Research Institute, Spartanburg, SC, 29303, USA.
| |
Collapse
|
33
|
Gheorghe G, Bungau S, Ilie M, Behl T, Vesa CM, Brisc C, Bacalbasa N, Turi V, Costache RS, Diaconu CC. Early Diagnosis of Pancreatic Cancer: The Key for Survival. Diagnostics (Basel) 2020; 10:869. [PMID: 33114412 PMCID: PMC7694042 DOI: 10.3390/diagnostics10110869] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive forms of cancer. Negative prognosis is mainly due to the late diagnosis in advanced stages, when the disease is already therapeutically overcome. Studies in recent years have focused on identifying biomarkers that could play a role in early diagnosis, leading to the improvement of morbidity and mortality. Currently, the only biomarker widely used in the diagnosis of PC is carbohydrate antigen 19-9 (CA19.9), which has, however, more of a prognostic role in the follow-up of postoperative recurrence than a diagnostic role. Other biomarkers, recently identified as the methylation status of ADAMTS1 (A disintegrin and metalloproteinase with thrombospondin motifs 1) and BNC1 (zinc finger protein basonuclin-1) in cell-free deoxyribonucleic acid (DNA), may play a role in the early detection of PC. This review focuses on the diagnosis of PC in its early stages.
Collapse
Affiliation(s)
- Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Madalina Ilie
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania;
| | - Nicolae Bacalbasa
- Department of Surgery, “Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania;
- Department 13, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Vladiana Turi
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Raluca Simona Costache
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Gastroenterology, “Carol Davila” University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
34
|
Gupta A, Shukla N, Nehra M, Gupta S, Malik B, Mishra AK, Vijay M, Batra J, Lohiya NK, Sharma D, Suravajhala P. A Pilot Study on the Whole Exome Sequencing of Prostate Cancer in the Indian Phenotype Reveals Distinct Polymorphisms. Front Genet 2020; 11:874. [PMID: 33193569 PMCID: PMC7477354 DOI: 10.3389/fgene.2020.00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the third most common cancer among men in India, and no next-generation sequencing (NGS) studies have been attempted earlier. Recent advances in NGS have heralded the discovery of biomarkers from Caucasian/European and Chinese ancestry, but not much is known about the Indian phenotype/variant of PCa. In a pilot study using the whole exome sequencing of benign/PCa patients, we identified characteristic mutations specific to the Indian sub-population. We observed a large number of mutations in DNA repair genes, viz. helicases, TP53, and BRCA besides the variants of unknown significance with a possibly damaging rare variant (rs730881069/chr19:55154172C/TR136Q) in the TNNI3 gene that has been previously reported as a semi-conservative amino acid substitution. Our pilot study attempts to bring an understanding of PCa prognosis and recurrence for the Indian phenotype.
Collapse
Affiliation(s)
- Ayam Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Mamta Nehra
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | | | | | - Jyotsna Batra
- Australian Prostate Cancer Research Centre, Queensland Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| |
Collapse
|
35
|
Park S, Lee E, Park S, Lee S, Nam SJ, Kim SW, Lee JE, Yu JH, Kim JY, Ahn JS, Im YH, Park WY, Park K, Park YH. Clinical Characteristics and Exploratory Genomic Analyses of Germline BRCA1 or BRCA2 Mutations in Breast Cancer. Mol Cancer Res 2020; 18:1315-1325. [PMID: 32554602 DOI: 10.1158/1541-7786.mcr-19-1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
gBRCA1/2 mutations increase the incidence of breast cancer by interrupting the homologous recombination repair (HRR) pathway. Although gBRCA1 and gBRCA2 breast cancer have similar clinical profiles, different molecular characteristics have been observed. In this study, we conducted comprehensive genomic analyses and compared gBRCA1/2 breast cancer. Sanger sequencing to identify gBRCA1/2 mutations was conducted in 2,720 patients, and gBRCA1 (n = 128) and gBRCA2 (n = 126) mutations were analyzed. Within this population, deep target sequencing and matched whole-transcriptome sequencing (WTS) results were available for 46 and 34 patients, respectively. An internal database of patients with breast cancer with wild-type gBRCA was used to compile a target sequencing (n = 195) and WTS (n = 137) reference dataset. Three specific mutation sites, p.Y130X (n = 14) and p.1210Afs (n = 13) in gBRCA1 and p.R294X (n = 22) in gBRCA2, were comparably frequent. IHC subtyping determined that the incidence of triple-negative breast cancer was higher among those with a gBRCA1 mutation (71.9%), and estrogen receptor-positive breast cancer was dominant in those with a gBRCA2 mutation (76.2%). gBRCA1/2 mutations were mutually exclusive with PIK3CA somatic mutations (P < 0.05), and gBRCA1 frequently cooccurred with TP53 somatic mutations (P < 0.05). The median tumor mutation burden was 6.53 per megabase (MB) in gBRCA1 and 6.44 per MB in gBRCA2. The expression of AR, ESR1, and PGR was significantly upregulated with gBRCA2 mutation compared with gBRCA1 mutation. gBRCA1 and gBRCA2 breast cancer have similar clinical characteristics, but they have different molecular subtypes, coaltered somatic mutations, and gene expression patterns. IMPLICATIONS: Even though gBRCA1 and gBRCA2 mutations both alter HRR pathways, our results suggest that they generate different molecular characteristics and different mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Eunjin Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Seri Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of South Korea
| | - Sohee Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of South Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Jong-Han Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea.
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea. .,Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of South Korea
| |
Collapse
|
36
|
Braun LM, Lagies S, Klar RFU, Hussung S, Fritsch RM, Kammerer B, Wittel UA. Metabolic Profiling of Early and Late Recurrent Pancreatic Ductal Adenocarcinoma Using Patient-Derived Organoid Cultures. Cancers (Basel) 2020; 12:cancers12061440. [PMID: 32492856 PMCID: PMC7352957 DOI: 10.3390/cancers12061440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with high mortality and will become the second most common cause of cancer-associated mortality by 2030. The poor prognosis arises from a lack of sensitive biomarkers, limited therapeutic options, and the astonishingly high recurrence rate after surgery of 60-80%. The factors driving this recurrence, however, remain enigmatic. Therefore, we generated patient-derived organoids (PDOs) from early- and late-recurrent PDAC patients. Cellular identity of PDOs was confirmed by qPCR, ddPCR, and IHC analyses. This is the first study investigating the metabolism in PDOs of different, clinically significant PDAC entities by untargeted GC/MS profiling. Partial least square discriminant analysis unveiled global alterations between the two sample groups. We identified nine metabolites to be increased in early recurrent PDOs in comparison to late recurrent PDOs. More than four-times increased were fumarate, malate, glutamate, aspartate, and glutamine. Hence, α-keto acids were elevated in PDO-conditioned medium derived from early recurrent patients. We therefore speculate that an increased anaplerotic metabolism fuels the Krebs-cycle and a corresponding higher accessibility to energy fastens the recurrence in PDAC patients. Therein, a therapeutic intervention could delay PDAC recurrence and prolong survival of affected patients or could serve as biomarker to predict recurrence in the future.
Collapse
Affiliation(s)
- Lukas M. Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Department of General and Visceral Surgery, University of Freiburg, Medical Center Faculty of Medicine, 79106 Freiburg, Germany
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Rhena F. U. Klar
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- SFB/Collaborative Research Center 850 (CRC 850)—Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis, University of Freiburg, 79104 Freiburg, Germany
| | - Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- German Cancer Consortium, 79104 Freiburg, Germany
| | - Ralph M. Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- SFB/Collaborative Research Center 850 (CRC 850)—Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, 79104 Freiburg, Germany
- Comprehensive Cancer Center Freiburg, 79104 Freiburg, Germany
- Department of Medical Oncology and Hematology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (B.K.); (U.A.W.)
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, University of Freiburg, Medical Center Faculty of Medicine, 79106 Freiburg, Germany
- Correspondence: (B.K.); (U.A.W.)
| |
Collapse
|
37
|
Wong W, Raufi AG, Safyan RA, Bates SE, Manji GA. BRCA Mutations in Pancreas Cancer: Spectrum, Current Management, Challenges and Future Prospects. Cancer Manag Res 2020; 12:2731-2742. [PMID: 32368150 PMCID: PMC7185320 DOI: 10.2147/cmar.s211151] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging disease to treat. Despite advances in surgical techniques, radiation, and medical therapies, the 5-year survival rate remains below 9%. Over the past decade, the genomic landscape of PDAC has been well studied and BRCA mutations have emerged as a target for the development of more effective therapies. Alterations in germline BRCA and PALB2 are detected in approximately 5-9% of patients with PDAC and can lead to homologous repair deficiency (HRD). PDAC with HRD is more susceptible to cytotoxic agents, such as platinum salts and topoisomerase inhibitors, that cause DNA damage. Furthermore, PARP inhibitors have emerged as an effective non-cytotoxic approach to treating HRD-PDAC. In addition to BRCA and PALB2, germline mutations in other genes involved in the homologous DNA repair pathway - such as ATM and RAD51 - are potential targets, as are patients with the "BRCAness" phenotype and somatic mutations in the DNA repair pathway. Given the clinical implications of germline mutation related HRD in PDAC, universal germline testing is now recommended. In this review, we will discuss current and emerging biomarkers for HRD in PDAC, treatments, and the challenges associated with them.
Collapse
Affiliation(s)
- Winston Wong
- Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
| | - Alexander G Raufi
- Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
- Division of Hematology-Oncology, Lifespan Cancer Institute, Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Rachael A Safyan
- Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
| | - Susan E Bates
- Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
- Division of Hematology and Oncology, James J. Peters Veterans Affairs Medical Center, The Bronx, NY10468, USA
| | - Gulam A Manji
- Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center and New York Presbyterian Hospital Herbert Irving Pavilion, New York, NY10032, USA
| |
Collapse
|
38
|
Zhu H, Wei M, Xu J, Hua J, Liang C, Meng Q, Zhang Y, Liu J, Zhang B, Yu X, Shi S. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Mol Cancer 2020; 19:49. [PMID: 32122376 PMCID: PMC7053129 DOI: 10.1186/s12943-020-01167-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| |
Collapse
|
39
|
The Use of Genetically Engineered Mouse Models for Studying the Function of Mutated Driver Genes in Pancreatic Cancer. J Clin Med 2019; 8:jcm8091369. [PMID: 31480737 PMCID: PMC6780401 DOI: 10.3390/jcm8091369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.
Collapse
|
40
|
Samadder NJ, Giridhar KV, Baffy N, Riegert-Johnson D, Couch FJ. Hereditary Cancer Syndromes-A Primer on Diagnosis and Management: Part 1: Breast-Ovarian Cancer Syndromes. Mayo Clin Proc 2019; 94:1084-1098. [PMID: 31171119 DOI: 10.1016/j.mayocp.2019.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death in both men and women in the United States, with colorectal cancer and breast cancer being two of the most frequent cancer types. Hereditary causes occurring due to pathogenic sequence variants and defects in certain genes makes up roughly 5% of all colorectal cancers and breast-ovarian cancers. High-risk hereditary predisposition syndromes have been associated with a substantially increased lifetime risk for the development of colorectal cancers and breast-ovarian cancers depending on the genetic syndrome, and many people also carry an increased risk of several other cancers compared with the general population. The aim of this review was to provide comprehensive literature on the most commonly encountered hereditary predisposition syndromes, including Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, hamartomatous polyposis, and breast-ovarian cancer conditions. This will be presented as a 2-part series: the first part will cover the breast-ovarian cancer syndromes, and the second will focus on the inherited colorectal cancer and polyposis conditions.
Collapse
Affiliation(s)
- N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL.
| | | | - Noemi Baffy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ
| | - Douglas Riegert-Johnson
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL
| | - Fergus J Couch
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Pilarski R. The Role of BRCA Testing in Hereditary Pancreatic and Prostate Cancer Families. Am Soc Clin Oncol Educ Book 2019; 39:79-86. [PMID: 31099688 DOI: 10.1200/edbk_238977] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beyond breast and ovarian cancers, mutations in the BRCA1 and BRCA2 genes increase risks for pancreatic and prostate cancers and contribute to the prevalence of these cancers. Mutations in a number of other genes have also been shown to increase the risk for these cancers as well. Genetic testing is playing an increasingly important role in the treatment of patients with pancreatic and prostate cancer and is now recommended for all patients with pancreatic or metastatic prostate cancer, as well as patients with high Gleason grade prostate cancer and a remarkable family history. Identification of an inherited mutation can direct evaluation of the patient for other cancer risks as well as identification and management of disease in at-risk relatives. Growing evidence suggests improved responses to PARP inhibitors and other therapies in patients with mutations in the BRCA and other DNA repair genes. Although more work must be done to clarify the prevalence and penetrance of mutations in genes other than BRCA1 and BRCA2 in patients with pancreatic and prostate cancer, in most cases, testing is now being done with a panel of multiple genes. Because of the complexities in panel testing and the increased likelihood of finding variants of uncertain significance, pre- and post-test genetic counseling are essential.
Collapse
Affiliation(s)
- Robert Pilarski
- 1 Division of Human Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
42
|
Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer 2019; 18:48. [PMID: 30925924 PMCID: PMC6441154 DOI: 10.1186/s12943-019-0966-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Among all the deadly cancers, pancreatic cancer ranks seventh in mortality. The absence of any grave symptoms coupled with the unavailability of early prognostic and diagnostic markers make the disease incurable in most of the cases. This leads to a late diagnosis, where the disease would have aggravated and thus, incurable. Only around 20% of the cases present the early disease diagnosis. Surgical resection is the prime option available for curative local disease but in the case of advanced cancer, chemotherapy is the standard treatment modality although the patients end up with drug resistance and severe side effects. Desmoplasia plays a very important role in chemoresistance associated with pancreatic cancer and consists of a thick scar tissue around the tumor comprised of different cell populations. The interplay between this heterogenous population in the tumor microenvironment results in sustained tumor growth and metastasis. Accumulating evidences expose the crucial role played by the tumor-associated macrophages in pancreatic cancer and this review briefly presents the origin from their parent lineage and the importance in maintaining tumor hallmarks. Finally we have tried to address their role in imparting chemoresistance and the therapeutic interventions leading to reduced tumor burden.
Collapse
Affiliation(s)
- Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Pramiti Mukhopadhyay
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Present address: Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.
| |
Collapse
|
43
|
Gentles L, Goranov B, Matheson E, Herriott A, Kaufmann A, Hall S, Mukhopadhyay A, Drew Y, Curtin NJ, O'Donnell RL. Exploring the Frequency of Homologous Recombination DNA Repair Dysfunction in Multiple Cancer Types. Cancers (Basel) 2019; 11:cancers11030354. [PMID: 30871186 PMCID: PMC6468835 DOI: 10.3390/cancers11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Dysfunctional homologous recombination DNA repair (HRR), frequently due to BRCA mutations, is a determinant of sensitivity to platinum chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi). In cultures of ovarian cancer cells, we have previously shown that HRR function, based upon RAD51 foci quantification, correlated with growth inhibition ex vivo induced by rucaparib (a PARPi) and 12-month survival following platinum chemotherapy. The aim of this study was to determine the feasibility of measuring HRR dysfunction (HRD) in other tumours, in order to estimate the frequency and hence wider potential of PARPi. A total of 24 cultures were established from ascites sampled from 27 patients with colorectal, upper gastrointestinal, pancreatic, hepatobiliary, breast, mesothelioma, and non-epithelial ovarian cancers; 8 were HRD. Cell growth following continuous exposure to 10 μM of rucaparib was lower in HRD cultures compared to HRR-competent (HRC) cultures. Overall survival in the 10 patients who received platinum-based therapy was marginally higher in the 3 with HRD ascites (median overall survival of 17 months, range 10 to 90) compared to the 7 patients with HRC ascites (nine months, range 1 to 55). HRR functional assessment in primary cultures, from several tumour types, revealed that a third are HRD, justifying the further exploration of PARPi therapy in a broader range of tumours.
Collapse
Affiliation(s)
- Lucy Gentles
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Bojidar Goranov
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Elizabeth Matheson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ashleigh Herriott
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK.
| | - Sally Hall
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Asima Mukhopadhyay
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata 700 160, India.
| | - Yvette Drew
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. rachel.o'
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK. rachel.o'
| |
Collapse
|
44
|
Rawla P, Sunkara T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol 2019; 10:10-27. [PMID: 30834048 PMCID: PMC6396775 DOI: 10.14740/wjon1166] [Citation(s) in RCA: 1403] [Impact Index Per Article: 233.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide. However, its toll is higher in more developed countries. Reasons for vast differences in mortality rates of pancreatic cancer are not completely clear yet, but it may be due to lack of appropriate diagnosis, treatment and cataloging of cancer cases. Because patients seldom exhibit symptoms until an advanced stage of the disease, pancreatic cancer remains one of the most lethal malignant neoplasms that caused 432,242 new deaths in 2018 (GLOBOCAN 2018 estimates). Globally, 458,918 new cases of pancreatic cancer have been reported in 2018, and 355,317 new cases are estimated to occur until 2040. Despite advancements in the detection and management of pancreatic cancer, the 5-year survival rate still stands at 9% only. To date, the causes of pancreatic carcinoma are still insufficiently known, although certain risk factors have been identified, such as tobacco smoking, diabetes mellitus, obesity, dietary factors, alcohol abuse, age, ethnicity, family history and genetic factors, Helicobacter pylori infection, non-O blood group and chronic pancreatitis. In general population, screening of large groups is not considered useful to detect the disease at its early stage, although newer techniques and the screening of tightly targeted groups (especially of those with family history), are being evaluated. Primary prevention is considered of utmost importance. Up-to-date statistics on pancreatic cancer occurrence and outcome along with a better understanding of the etiology and identifying the causative risk factors are essential for the primary prevention of this disease.
Collapse
Affiliation(s)
- Prashanth Rawla
- Department of Internal Medicine, SOVAH Health, Martinsville, VA 24112, USA
| | - Tagore Sunkara
- Department of Gastroenterology and Hepatology, Mercy Medical Center, Des Moines, IA 50314, USA
| | - Vinaya Gaduputi
- Division of Gastroenterology, SBH Health System, Bronx, NY, USA
| |
Collapse
|
45
|
Fulton AJP, Lamarca A, Nuttall C, McCallum L, Pihlak R, O’Reilly D, Lalloo F, McNamara MG, Hubner RA, Clancy T, Valle JW. Identification of patients with pancreatic adenocarcinoma due to inheritable mutation: Challenges of daily clinical practice. World J Gastrointest Oncol 2019; 11:102-116. [PMID: 30788038 PMCID: PMC6379756 DOI: 10.4251/wjgo.v11.i2.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Identification of germ-line mutations in pancreatic ductal adenocarcinoma (PDAC) could impact on patient/family.
AIM To assess the referral pathways for genetic consultations in PDAC.
METHODS Electronic records of PDAC patients were reviewed retrospectively. Patients eligible for genetic consultation referral were identified following the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer (EUROPAC) criteria.
RESULTS Four-hundred patients were eligible. Of 113 patients (28.3%) meeting EUROPAC criteria, 8.8% were referred for genetic opinion. Germ-line mutations were identified in 0.75% of the whole population.
CONCLUSION Earlier referrals and increased awareness may be able to overcome the low rate of successful genetic appointments.
Collapse
Affiliation(s)
- Alexander JP Fulton
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Christina Nuttall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Lynne McCallum
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Rille Pihlak
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Derek O’Reilly
- Hepato-pancreato-biliary Surgical Department, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Richard A Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| | - Tara Clancy
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M204BX, United Kingdom
| |
Collapse
|
46
|
Hasan S, Jacob R, Manne U, Paluri R. Advances in pancreatic cancer biomarkers. Oncol Rev 2019; 13:410. [PMID: 31044028 PMCID: PMC6478006 DOI: 10.4081/oncol.2019.410] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Biomarkers play an essential role in the management of patients with invasive cancers. Pancreatic ductal adenocarcinoma (PDC) associated with poor prognosis due to advanced presentation and limited therapeutic options. This is further complicated by absence of validated screening and predictive biomarkers for early diagnosis and precision treatments respectively. There is emerging data on biomarkers in pancreatic cancer in past two decades. So far, the CA 19-9 remains the only approved biomarker for diagnosis and response assessment but limited by low sensitivity and specificity. In this article, we aim to review current and future biomarkers that has potential serve as critical tools for early diagnostic, predictive and prognostic indications in pancreatic cancer.
Collapse
Affiliation(s)
- Syed Hasan
- University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
47
|
Roch AM, Schneider J, Carr RA, Lancaster WP, House MG, Zyromski NJ, Nakeeb A, Schmidt CM, Ceppa EP. Are BRCA1 and BRCA2 gene mutation patients underscreened for pancreatic adenocarcinoma? J Surg Oncol 2019; 119:777-783. [PMID: 30636051 DOI: 10.1002/jso.25376] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Breast cancer (BRCA) mutations account for the highest proportion of hereditary causes of pancreatic ductal adenocarcinoma (PDAC). Screening is currently recommended only for patients with one first-degree relative or two family members with PDAC. We hypothesized that screening all BRCA1/2 patients would identify a higher rate of pancreatic abnormalities. METHODS All BRCA1/2 patients at a single academic center were retrospectively reviewed (2005-2015). Pancreatic abnormalities were defined on cross-sectional imaging as pancreatic neoplasm (cystic/solid) or main-duct dilation. RESULTS Two hundred and four patients were identified with BRCA mutations. Forty-seven (40%) had abdominal imaging (20 computerized tomography and 27 magnetic resonance imaging). Twenty-one percent had pancreatic abnormalities (PDAC [n = 2] and intraductal papillary mucinous neoplasm [IPMN; n = 8]). The prevalence of pancreatic abnormalities and IPMN was higher in BRCA2 patients than in the general population (21% vs 8% and 17% vs 1%; P = 0.0007 and P < 0.0001, respectively), with no influence of family history. Similarly, BRCA1 patients had an increased prevalence of IPMN (8.3% vs 1%; P < 0.0001). CONCLUSIONS In this series, 4% and 17% of BRCA2 patients developed PDAC and IPMN, respectively. Eight percent of BRCA1 patients developed IPMN. Under current recommended screening, 60% of BRCA1/2 patients had incompletely pancreatic assessment. With no influence of family history, this study suggests all BRCA1/2 patients should undergo a high-risk screening protocol that will identify a higher rate of precancerous pancreatic neoplasms amenable to curative resection.
Collapse
Affiliation(s)
- Alexandra M Roch
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Justine Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rosalie A Carr
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - William P Lancaster
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael G House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicholas J Zyromski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Attila Nakeeb
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugene P Ceppa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
48
|
Abstract
Introduction: Both breast and pancreatic cancers have high mortality rates. Breast cancer is the second leading cause of cancer death in females, while pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death. Almost 4-16 % of individuals with pancreatic cancer have a family history of the disease. Intra-ductal papillary mucinous neoplasms (IPMNs) are cystic lesions that received more attention lately due to their associations with PDAC and other solid organ tumors, such as breast cancer. Aim: The purpose of this article is to discuss the association of the familiar pancreatic cancer (FPC), sporadic pancreatic cancer, and IPMNs with the breast cancer. Results: Mutations in BRCA2, BRCA1, p16 and PALB2 play a major role in the genetic etiologies of familial pancreatic cancer. In familial and sporadic pancreatic cancers, mutations in BRCA2 are associated with a high incidence of PDAC, while mutations in BRCA1have shown inconsistent results. Data is insufficient to prove an association between IPMNs and breast cancer. Conclusion: The familial clustering of PDAC is not well understood. Further studies are required for greater comprehension of the genetic basis of PDAC and the association between IPMNs and breast cancer.
Collapse
Affiliation(s)
- Mary Barbara
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Adrianne Tsen
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Laura Tenner
- Department of Hematology and Oncology, UT Health San Antonio, San Antonio, Tx, USA
| | - Laura Rosenkranz
- Department of Gastroenterology, UT Health San Antonio San Antonio, TX, USA
| |
Collapse
|
49
|
New Horizons in the Treatment of Metastatic Pancreatic Cancer: A Review of the Key Biology Features and the Most Recent Advances to Treat Metastatic Pancreatic Cancer. Target Oncol 2018; 13:691-704. [DOI: 10.1007/s11523-018-0609-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Zhan W, Shelton CA, Greer PJ, Brand RE, Whitcomb DC. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas 2018; 47:924-936. [PMID: 30113427 PMCID: PMC6097243 DOI: 10.1097/mpa.0000000000001136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer requires many genetic mutations. Combinations of underlying germline variants and environmental factors may increase the risk of cancer and accelerate the oncogenic process. We systematically reviewed, annotated, and classified previously reported pancreatic cancer-associated germline variants in established risk genes. Variants were scored using multiple criteria and binned by evidence for pathogenicity, then annotated with published functional studies and associated biological systems/pathways. Twenty-two previously identified pancreatic cancer risk genes and 337 germline variants were identified from 97 informative studies that met our inclusion criteria. Fifteen of these genes contained 66 variants predicted to be pathogenic (APC, ATM, BRCA1, BRCA2, CDKN2A, CFTR, CHEK2, MLH1, MSH2, NBN, PALB2, PALLD, PRSS1, SPINK1, TP53). Pancreatic cancer risk genes were organized into key biological mechanisms that promote pancreatic oncogenesis within an oncogenic model. Development of precision medicine approaches requires updated variant information within the framework of an oncogenic progression model. Complex risk modeling may improve interpretation of early biomarkers and guide pathway-specific treatment for pancreatic cancer in the future. Precision medicine is within reach.
Collapse
Affiliation(s)
- Wei Zhan
- School of Medicine, Tsinghua University, Beijing, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Celeste A. Shelton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Phil J. Greer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|