1
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Stopsack KH, Su XA, Vaselkiv JB, Graff RE, Ebot EM, Pettersson A, Lis RT, Fiorentino M, Loda M, Penney KL, Lotan TL, Mucci LA. Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions. Mol Cancer Res 2023; 21:14-23. [PMID: 36125519 PMCID: PMC9812892 DOI: 10.1158/1541-7786.mcr-22-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
The most common somatic event in primary prostate cancer is a fusion between the androgen-related TMPRSS2 gene and the ERG oncogene. Tumors with these fusions, which occur early in carcinogenesis, have a distinctive etiology. A smaller subset of other tumors harbor fusions between TMPRSS2 and members of the ETS transcription factor family other than ERG. To assess the genomic similarity of tumors with non-ERG ETS fusions and those with fusions involving ERG, this study derived a transcriptomic signature of non-ERG ETS fusions and assessed this signature and ERG-related gene expression in 1,050 men with primary prostate cancer from three independent population-based and hospital-based studies. Although non-ERG ETS fusions involving ETV1, ETV4, ETV5, or FLI1 were individually rare, they jointly accounted for one in seven prostate tumors. Genes differentially regulated between non-ERG ETS tumors and tumors without ETS fusions showed similar differential expression when ERG tumors and tumors without ETS fusions were compared (differences explained: R2 = 69-77%), including ETS-related androgen receptor (AR) target genes. Differences appeared to result from similarities among ETS tumors rather than similarities among non-ETS tumors. Gene sets associated with ERG fusions were consistent with gene sets associated with non-ERG ETS fusions, including fatty acid and amino acid metabolism, an observation that was robust across cohorts. IMPLICATIONS Considering ETS fusions jointly may be useful for etiologic studies on prostate cancer, given that the transcriptome is profoundly impacted by ERG and non-ERG ETS fusions in a largely similar fashion, most notably genes regulating metabolic pathways.
Collapse
Affiliation(s)
- Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - J. Bailey Vaselkiv
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA., Division of Research, Kaiser Permanente Northern California, Oakland, CA, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Ericka M. Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rosina T. Lis
- Department of Pathology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Pathology Unit, Addarii Institute, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Massimo Loda
- Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
3
|
Metin Mahmutoglu A, Hurre Dirie S, Hekim N, Gunes S, Asci R, Henkel R. Polymorphisms of androgens-related genes and idiopathic male infertility in Turkish men. Andrologia 2021; 54:e14270. [PMID: 34632603 DOI: 10.1111/and.14270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Androgens, testosterone and dihydrotestosterone (DHT) are endocrine regulators of spermatogenesis and act via androgen receptor (AR). The aim of this study was to investigate the association(s) of AR (CAG repeat length), SRD5A2 (rs523349, V89L) and TNF-α (rs1800629, -308G/A) polymorphisms with idiopathic male infertility in Turkish men. This case-control study consisted of 312 men with idiopathic infertility and 113 fertile men. Polyacrylamide gel electrophoresis (PAGE) or PCR-restriction fragment length polymorphism methods were used for genotyping. The mean AR CAG repeat length was significantly longer in infertile men than in fertile men (p = 0.015). However, there was no significant association between the SRD5A2 genotypes (VV, VL and LL) and the risk of infertility (p = 0.516). The genotype frequency and allele distribution of TNF-α -308G/A polymorphism (GG, GA, AA genotypes and G, A alleles) were not associated with male infertility (p = 0.779 and p = 0.743 respectively). AR CAG repeat expansion might be one of the risk factors for idiopathic male infertility in Turkish men. Further studies investigating the association of male infertility with AR CAG, V89L and -308G/A polymorphisms are warranted to understand the possible associations among them.
Collapse
Affiliation(s)
- Asli Metin Mahmutoglu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Saadiq Hurre Dirie
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Hekim
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
4
|
Brady L, Carlsson J, Baird AM, Casey O, Vlajnic T, Murchan P, Cormican D, Costigan D, Gray S, Sheils O, O'Neill A, Watson RW, Andren O, Finn S. Correlation of integrated ERG/PTEN assessment with biochemical recurrence in prostate cancer. Cancer Treat Res Commun 2021; 29:100451. [PMID: 34507017 DOI: 10.1016/j.ctarc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Prostate cancer is a heterogeneous disease, with a complex molecular landscape that evolves throughout disease progression. Common alterations in genes such as ERG and PTEN have been attributed to worse prognosis. This study aimed to further examine the clinical relevance of PTEN and ERG expression in a cohort of patients with prostate cancer post radical prostatectomy. METHODS Tissue microarrays were constructed from 132 patients with prostate cancer from the Irish Prostate Cancer Research Consortium and University Hospital of Orebro, Sweden. Patients were divided into three groups - Group 1: biochemical recurrence, Group 2: no biochemical recurrence and Group 3: immediate progression after surgery. PTEN and ERG immunohistochemical analysis was performed and the association between expression levels and clinical parameters were compared. RESULTS Pathological stage pT3 tumours were more common at borderline significantly higher levels amongst patients who biochemically recurred when compared to patients who did not recur after radical prostatectomy (p = 0.05). ERG and PTEN expression levels were compared separately and concurrently across all three patient groups. Lack of ERG expression was strongly associated with immediate progression after surgery (p = 0.029). Loss of/low PTEN trended towards an association with immediate progression, however this was not statistically significant (p = 0.066). CONCLUSION In this study, negative ERG expression was strongly associated with immediate biochemical progression after radical prostatectomy. Moreover, a trend towards a relationship between aberrant PTEN expression and progression was observed. Additional studies with long-term follow up data may provide further clinical insight into the genomic heterogeneity in this population.
Collapse
Affiliation(s)
- Lauren Brady
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Casey
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Tatjana Vlajnic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - David Cormican
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Danielle Costigan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Steven Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Department of Histopathology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20:76. [PMID: 34001144 PMCID: PMC8126512 DOI: 10.1186/s12943-021-01363-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhi Zong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021; 10:272. [PMID: 33578849 PMCID: PMC7916604 DOI: 10.3390/antiox10020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complications. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit NRF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflammasome inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2 replication, the inflammatory response, and transmembrane protease serine 2 activation, which for the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor. Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna M. Fratta Pasini
- Section of General Medicine and Atherothrombotic and Degenerative Diseases, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (L.C.); (C.M.)
| | | | | | | |
Collapse
|
7
|
Angelides PK, Jindal I, Karaviti L, Geffner ME. It's X-Related: Biological Bases of Increased COVID-19 Morbidity and Mortality in Men. J Endocr Soc 2020; 4:bvaa133. [PMID: 33117953 PMCID: PMC7499636 DOI: 10.1210/jendso/bvaa133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/04/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Philip K Angelides
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ishita Jindal
- Division of Pediatric Endocrinology and Diabetes, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Lefkothea Karaviti
- Division of Pediatric Endocrinology and Diabetes, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mitchell E Geffner
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Hashim D, Gonzalez-Feliciano AG, Ahearn TU, Pettersson A, Barber L, Pernar CH, Ebot EM, Isikbay M, Finn SP, Giovannucci EL, Lis RT, Loda M, Parmigiani G, Lotan T, Kantoff PW, Mucci LA, Graff RE. Family history of prostate cancer and the incidence of ERG- and phosphatase and tensin homolog-defined prostate cancer. Int J Cancer 2020; 146:2694-2702. [PMID: 31318977 DOI: 10.1002/ijc.32577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Family history is among the strongest known risk factors for prostate cancer (PCa). Emerging data suggest molecular subtypes of PCa, including two somatic genetic aberrations: fusions of androgen-regulated promoters with ERG and, separately, phosphatase and tensin homolog (PTEN) loss. We examined associations between family history and incidence of these subtypes in 44,126 men from the prospective Health Professionals Follow-up Study. ERG and PTEN status were assessed by immunohistochemistry. Multivariable competing risks models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations between self-reported family history of PCa and molecular subtypes of disease. Thirteen percent of men had a positive family history of PCa at baseline. During a median follow-up of 18.5 years, 5,511 PCa cases were diagnosed. Among them, 888 were assayed for ERG status (47% ERG-positive) and 715 were assayed for PTEN loss (14% PTEN null). Family history was more strongly associated with risk of ERG-negative (HR: 2.15; 95% CI: 1.71-2.70) than ERG-positive (HR: 1.49; 95% CI: 1.13-1.95) disease (pheterogeneity : 0.04). The strongest difference was among men with an affected father (HRERG-negative : 2.09; 95% CI: 1.64-2.66; HRERG-positive : 1.30; 95% CI: 0.96-1.76; pheterogeneity : 0.01). Family history of PCa was positively associated with both PTEN null (HR: 2.10; 95% CI: 1.26-3.49) and PTEN intact (HR: 1.72; 95% CI: 1.39-2.13) PCa (pheterogeneity : 0.47). Our results indicate that PCa family history may be positively associated with PCa in all ERG and PTEN subtypes, suggesting a role of genetic susceptibility in their development. It is possible that ERG-negative disease could be especially associated with positive family history.
Collapse
Affiliation(s)
- Dana Hashim
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | | | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lauren Barber
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masis Isikbay
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Stephen P Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin Medical School, Dublin, Ireland
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rosina T Lis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Giovanni Parmigiani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins Bayview Medical Center, Baltimore, MD
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Tamás F, Tibor S, Anita C, Boris H, Péter N. COVID-19 research: promising tracks leading to uro-oncology. Int Urol Nephrol 2020; 52:995-997. [PMID: 32394243 PMCID: PMC7211911 DOI: 10.1007/s11255-020-02490-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Fazekas Tamás
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Szarvas Tibor
- Department of Urology, Semmelweis University, Budapest, Hungary
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Csizmarik Anita
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Hadaschik Boris
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Nyirády Péter
- Department of Urology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Association of germline genetic variants with TMPRSS2-ERG fusion status in prostate cancer. Oncotarget 2020; 11:1321-1333. [PMID: 32341752 PMCID: PMC7170497 DOI: 10.18632/oncotarget.27534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Oncogenic activation of ERG resulting from TMPRSS2-ERG gene fusion is a key molecular genetic alteration in prostate cancer (CaP). The frequency of ERG fusion is variable by race; however, there are limited data available on germline polymorphisms associating with ERG fusion status. The goal of this study is to identify the inherited risk variants associating with ERG status of CaP. Materials and Methods: SNP genotyping was performed on the Illumina platform using Infinium Oncoarray SNP chip on blood derived genomic DNA samples from 400 patients treated by radical prostatectomy at a single military institution. ERG status was determined in whole mounted prostate specimens by immuno-histochemistry (IHC) for ERG protein expression. Data analysis approaches included association analyses based on EMMAX and imputation by IMPUTE2. Imputed SNPs were validated by ddPCR. Results: SNP genotyping analysis using imputation identified rs34349373 (p 4.68 × 10-8) and rs2055272 (p 5.62 × 10-8) in TBC1D22B to be significantly associated with ERG fusion status in index tumor and non-index tumor foci. Imputed SNP rs2055272 was further experimentally validated by ddPCR with 98.04% (100/102) concordance. Initial discovery analysis based on SNPs on Oncoarray SNP chip, showed significant (p 10-5) association for SNPs (rs6698333, rs1889877, rs3798999, rs10215144, rs3818136, rs9380660 and rs1792695) with ERG fusion status. The study also replicated two previously known ERG fusion associated SNPs (rs11704416 in chromsome 22; rs16901979 in chromosome 8). Conclusions: This study identified SNPs associated with ERG status of CaP. Impact: The findings may contribute towards defining the underlying genetics of ERG positive and ERG negative CaP patients.
Collapse
|
11
|
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov 2020; 10:779-782. [PMID: 32276929 DOI: 10.1158/2159-8290.cd-20-0451] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TMPRSS2 is both the most frequently altered gene in primary prostate cancer and a critical factor enabling cellular infection by coronaviruses, including SARS-CoV-2. The modulation of its expression by sex steroids could contribute to the male predominance of severe infections, and given that TMPRSS2 has no known indispensable functions, and inhibitors are available, it is an appealing target for prevention or treatment of respiratory viral infections.
Collapse
Affiliation(s)
- Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
12
|
Caglar N, Gambaro A, Xhyheri B, Rustamova Y. Female sex seems to be a favorable factor in COVID-19 era. INTERNATIONAL JOURNAL OF THE CARDIOVASCULAR ACADEMY 2020. [DOI: 10.4103/ijca.ijca_32_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Campbell PT, Ambrosone CB, Nishihara R, Aerts HJWL, Bondy M, Chatterjee N, Garcia-Closas M, Giannakis M, Golden JA, Heng YJ, Kip NS, Koshiol J, Liu XS, Lopes-Ramos CM, Mucci LA, Nowak JA, Phipps AI, Quackenbush J, Schoen RE, Sholl LM, Tamimi RM, Wang M, Weijenberg MP, Wu CJ, Wu K, Yao S, Yu KH, Zhang X, Rebbeck TR, Ogino S. Proceedings of the fourth international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 2019; 30:799-811. [PMID: 31069578 PMCID: PMC6614001 DOI: 10.1007/s10552-019-01177-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
Abstract
An important premise of epidemiology is that individuals with the same disease share similar underlying etiologies and clinical outcomes. In the past few decades, our knowledge of disease pathogenesis has improved, and disease classification systems have evolved to the point where no complex disease processes are considered homogenous. As a result, pathology and epidemiology have been integrated into the single, unified field of molecular pathological epidemiology (MPE). Advancing integrative molecular and population-level health sciences and addressing the unique research challenges specific to the field of MPE necessitates assembling experts in diverse fields, including epidemiology, pathology, biostatistics, computational biology, bioinformatics, genomics, immunology, and nutritional and environmental sciences. Integrating these seemingly divergent fields can lead to a greater understanding of pathogenic processes. The International MPE Meeting Series fosters discussion that addresses the specific research questions and challenges in this emerging field. The purpose of the meeting series is to: discuss novel methods to integrate pathology and epidemiology; discuss studies that provide pathogenic insights into population impact; and educate next-generation scientists. Herein, we share the proceedings of the Fourth International MPE Meeting, held in Boston, MA, USA, on 30 May-1 June, 2018. Major themes of this meeting included 'integrated genetic and molecular pathologic epidemiology', 'immunology-MPE', and 'novel disease phenotyping'. The key priority areas for future research identified by meeting attendees included integration of tumor immunology and cancer disparities into epidemiologic studies, further collaboration between computational and population-level scientists to gain new insight on exposure-disease associations, and future pooling projects of studies with comparable data.
Collapse
Affiliation(s)
- Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hugo J W L Aerts
- Departments of Radiation Oncology and Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Bondy
- Cancer Prevention and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - N Sertac Kip
- Sema4, Mount Sinai Icahn School of Medicine, Genetics & Genomic Sciences and Pathology, Branford, CT, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matty P Weijenberg
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kun-Hsing Yu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
14
|
Graff RE, Ahearn TU, Pettersson A, Ebot EM, Gerke T, Penney KL, Wilson KM, Markt SC, Pernar CH, Gonzalez-Feliciano AG, Song M, Lis RT, Schmidt DR, Vander Heiden MG, Fiorentino M, Giovannucci EL, Loda M, Mucci LA. Height, Obesity, and the Risk of TMPRSS2:ERG-Defined Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2017; 27:193-200. [PMID: 29167279 DOI: 10.1158/1055-9965.epi-17-0547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: The largest molecular subtype of primary prostate cancer is defined by the TMPRSS2:ERG gene fusion. Few studies, however, have investigated etiologic differences by TMPRSS2:ERG status. Because the fusion is hormone-regulated and a man's hormonal milieu varies by height and obesity status, we hypothesized that both may be differentially associated with risk of TMPRSS2:ERG-defined disease.Methods: Our study included 49,372 men from the prospective Health Professionals Follow-up Study. Participants reported height and weight at baseline in 1986 and updated weight biennially thereafter through 2009. Tumor ERG protein expression (a TMPRSS2:ERG marker) was immunohistochemically assessed. We used multivariable competing risks models to calculate HRs and 95% confidence intervals (CIs) for the risk of ERG-positive and ERG-negative prostate cancer.Results: During 23 years of follow-up, we identified 5,847 incident prostate cancers, among which 913 were ERG-assayed. Taller height was associated with an increased risk of ERG-positive disease only [per 5 inches HR 1.24; 95% confidence interval (CI), 1.03-1.50; Pheterogeneity = 0.07]. Higher body mass index (BMI) at baseline (per 5 kg/m2 HR 0.75; 95% CI, 0.61-0.91; Pheterogeneity = 0.02) and updated BMI over time (per 5 kg/m2 HR 0.86; 95% CI, 0.74-1.00; Pheterogeneity = 0.07) were associated with a reduced risk of ERG-positive disease only.Conclusions: Our results indicate that anthropometrics may be uniquely associated with TMPRSS2:ERG-positive prostate cancer; taller height may be associated with greater risk, whereas obesity may be associated with lower risk.Impact: Our study provides strong rationale for further investigations of other prostate cancer risk factors that may be distinctly associated with subtypes. Cancer Epidemiol Biomarkers Prev; 27(2); 193-200. ©2017 AACR.
Collapse
Affiliation(s)
- Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah C Markt
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Mingyang Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel R Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Qin Z, Li X, Han P, Zheng Y, Liu H, Tang J, Yang C, Zhang J, Wang K, Qi X, Tang M, Wang W, Zhang W. Association between polymorphic CAG repeat lengths in the androgen receptor gene and susceptibility to prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7258. [PMID: 28640128 PMCID: PMC5484236 DOI: 10.1097/md.0000000000007258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have been conducted to reveal the relationship between androgen receptor CAG polymorphism and risk of prostate cancer, yet the results were elusive and controversial. Thus, this meta-analysis was performed to clarify this association. METHODS To obtain the relevant available studies, online databases PubMed, Embase, and Web of science were searched until September 1st, 2016. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of such association. Subgroup analyses were conducted based on ethnicity and source of controls. Moreover, Begg's funnel plots and Egger's linear regression test were conducted to test the publication bias. RESULTS Overall, our results enrolled 51 studies indicated that significant increased risk of prostate cancer was associated with androgen receptor CAG polymorphism (OR = 0.77, 95% CI: 0.67-0.89). In addition, compared with CAG repeat <20, 22, carriers of ≧20, 22 repeats had decreased risk of prostate cancer (cut-off point = 20: OR = 0.27, 95% CI: 0.13-0.52; cut-off point = 22: OR = 0.82, 95% CI: 0.70-0.97). However, when cut-off point = 23, no significant result was detected in such association (pooled OR = 0.88, 95% CI: 0.63-1.24). When cut-off point is 22, the results were positive only in Asian population (OR = 0.53, 95% CI: 0.32-0.89) in the subgroup analysis by ethnicity. Besides, when the studies were stratified by source of controls, the results were not significant in both the subgroup of population-based controls and hospital-based controls. CONCLUSIONS This meta-analysis suggested the carriers of short polymorphic CAG repeats might increase susceptibility to prostate cancer, which held potential as a detecting marker of the risk of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Xiao Li
- Department of Urologic Surgery, The affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Yuxiao Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Hanyu Liu
- First Clinical Medical College of Nanjing Medical University, Nanjing
| | - Jingyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Chengdi Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Kunpeng Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
- Department of Urology, The First People's Hospital of Lianyungang City, Lianyungang
| | - Xiaokang Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
- Department of Urology, Subei People's Hospital, Yangzhou, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
16
|
Weng H, Li S, Huang JY, He ZQ, Meng XY, Cao Y, Fang C, Zeng XT. Androgen receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Sci Rep 2017; 7:40554. [PMID: 28091563 PMCID: PMC5238402 DOI: 10.1038/srep40554] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Although the association between CAG and GGN repeats in the androgen receptor gene and prostate cancer risk has been widely studied, it remains controversial from previous meta-analyses and narrative reviews. Therefore, we performed this meta-analysis to provide more precise estimates with sufficient power. A total of 51 publications with 61 studies for CAG repeats and 14 publications with 16 studies for GGN repeats were identified in the meta-analysis. The results showed that short CAG repeats (<22 repeats) carriers presented an elevated risk of prostate cancer than long CAG repeats (≥22) carriers (OR = 1.31, 95% CI 1.16 to 1.47). Prostate cancer cases presented an average fewer CAG repeats (MD = −0.85, 95% CI −1.28 to −0.42) than controls. Short GGN repeats (≤16) carriers presented an increased risk of prostate cancer than long GGN repeats (>16) carriers (OR = 1.38, 95% CI 1.05 to 1.82). In subgroup analyses, the abovementioned significant association was predominantly observed in Caucasian populations. The meta-analysis showed that short CAG and GGN repeats in androgen receptor gene were associated with increased risk of prostate cancer, especially in Caucasians.
Collapse
Affiliation(s)
- Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Sheng Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jing-Yu Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zi-Qi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Xiang-Yu Meng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Yue Cao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan 430071, P.R. China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
17
|
Androgen receptor CAG and GGN repeat length variation contributes more to the tumorigenesis of osteosarcoma. Oncotarget 2016; 7:68151-68155. [PMID: 27626686 PMCID: PMC5356545 DOI: 10.18632/oncotarget.11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/13/2016] [Indexed: 12/05/2022] Open
Abstract
The androgen receptor (AR) is involved in the differentiation and growth of many cancers. We hypothesized that two microsatellite polymorphic variants, AR (CAG)n and (GGN)n repeats, were also associated with the development of Papillary thyroid cancer (PTC) and Osteosarcoma. In current study, we conducted two case-control studies in a Chinese population to investigate the possible relationship between these two AR repeat polymorphisms and the risk of PTC and Osteosarcoma. The AR CAG repeat length was significantly associated with both risk of PTC and Osteosarcoma. Subjects with shorter AR CAG repeats had a higher risk of developing PTC (OR = 1.47, 95% CI: 1.17–1.85, P = 0.001) and Osteosarcoma (OR = 1.53, 95% CI: 1.19–1.97, P = 9.2 × 10–4). Specifically, shorter GGN repeats also contribute a significant increased risk of Osteosarcoma (OR = 1.35, 95% CI: 1.03–1.77, P = 0.030). Our results contribute to a better understanding of the complex hormone related mechanisms underlying PTC and Osteosarcoma.
Collapse
|
18
|
Pre-diagnostic circulating sex hormone levels and risk of prostate cancer by ERG tumour protein expression. Br J Cancer 2016; 114:939-44. [PMID: 26986253 PMCID: PMC4984801 DOI: 10.1038/bjc.2016.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/31/2016] [Accepted: 02/17/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Experimental studies have shown androgen receptor stimulation to facilitate formation of the TMPRSS2:ERG gene fusion in prostate cell lines. No study has tested whether higher pre-diagnostic circulating sex hormone levels in men increase risk of developing TMPRSS2:ERG-positive prostate cancer specifically. METHODS We conducted a nested case-control study of 200 prostate cancer cases and 1057 controls from the Physicians' Health Study and Health Professionals Follow-up Study. We examined associations between pre-diagnostic circulating levels of total testosterone, free testosterone, DHT, androstanediol glucuronide, estradiol, and SHBG and risk of prostate cancer by TMPRSS2:ERG status. TMPRSS2:ERG was estimated by ERG immunohistochemistry. We used multivariable unconditional polytomous logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for risk of ERG-positive (n=94) and, separately, ERG-negative (n=106) disease. RESULTS Free testosterone was significantly associated with the risk of ERG-positive prostate cancer (OR: 1.37, 95% CI: 1.05-1.77), but not ERG-negative prostate cancer (OR: 1.09, 95% CI: 0.86-1.38) (Pdiff=0.17). None of the remaining hormones evaluated showed clear differential associations with ERG-positive vs ERG-negative disease. CONCLUSIONS These findings provide some suggestive evidence that higher pre-diagnostic free testosterone levels are associated with an increased risk of developing TMPRSS2:ERG-positive prostate cancer.
Collapse
|
19
|
Penney KL, Pettersson A, Shui IM, Graff RE, Kraft P, Lis RT, Sesso HD, Loda M, Mucci LA. Association of Prostate Cancer Risk Variants with TMPRSS2:ERG Status: Evidence for Distinct Molecular Subtypes. Cancer Epidemiol Biomarkers Prev 2016; 25:745-9. [PMID: 26941365 DOI: 10.1158/1055-9965.epi-15-1078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Numerous genetic variants have been confirmed as prostate cancer risk factors. These variants may confer susceptibility to the development of specific molecular alterations during tumor initiation and progression. The TMPRSS2:ERG gene fusion occurs in roughly 50% of prostate cancers. Genetic risk variants may influence the development of this fusion. We sought to determine whether prostate cancer risk variants are differentially associated with TMPRSS2:ERG fusion-positive and negative cancer. METHODS In the Health Professionals Follow-up Study and Physicians' Health Study Tumor Cohort, we evaluated the associations of 39 prostate cancer risk SNPs with TMPRSS2:ERG fusion status, measured by ERG protein expression. Logistic regression was performed to generate OR and 95% confidence intervals. The primary outcome was ERG(+) (n = 227) versus ERG(-) (n = 260) prostate cancer. A secondary outcome was ERG(+) or ERG(-) cancer versus controls without cancer. RESULTS Six of 39 SNPs were significantly associated (P < 0.05) with ERG(+) versus ERG(-) disease. Three SNPs were exclusively associated with the risk of ERG(+), one with risk of ERG(-), and two with associations trending in opposite directions for ERG(+) and ERG(-) Only two significant SNPs would be expected by chance. CONCLUSIONS Prostate cancer genetic risk variants are differentially associated with the development of ERG(+) and ERG(-) prostate cancer. IMPACT Our findings suggest the molecular process of prostate carcinogenesis may be distinct for men with different underlying genetic predisposition. When examining risk factors for prostate cancer, the integration of molecular subtypes may enhance understanding of the etiology of this disease. Cancer Epidemiol Biomarkers Prev; 25(5); 745-9. ©2016 AACR.
Collapse
Affiliation(s)
- Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Irene M Shui
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
20
|
Zorzan E, Hanssens K, Giantin M, Dacasto M, Dubreuil P. Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors. PLoS One 2015; 10:e0142450. [PMID: 26562302 PMCID: PMC4643045 DOI: 10.1371/journal.pone.0142450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10–30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs. Methods Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the “human-like” hot spot mutations of listed genes. Results No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples. Conclusion Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM.
Collapse
Affiliation(s)
- Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Katia Hanssens
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hematopoiesis and Mechanisms of Oncogenesis, Centre de référence des mastocytoses, Institut Paoli Calmettes, CNRS, Aix Marseille Université, Marseille, France
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Patrice Dubreuil
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hematopoiesis and Mechanisms of Oncogenesis, Centre de référence des mastocytoses, Institut Paoli Calmettes, CNRS, Aix Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
21
|
Higgins J, Brogley M, Palanisamy N, Mehra R, Ittmann MM, Li JZ, Tomlins SA, Robins DM. Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression. Discov Oncol 2015; 6:67-86. [PMID: 25631336 DOI: 10.1007/s12672-014-0215-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
To examine the impact of common somatic mutations in prostate cancer (PCa) on androgen receptor (AR) signaling, mouse models were designed to perturb sequentially the AR, ETV1, and PTEN pathways. Mice with "humanized" AR (hAR) alleles that modified AR transcriptional strength by varying polyglutamine tract (Q-tract) length were crossed with mice expressing a prostate-specific, AR-responsive ETV1 transgene (ETV1(Tg)). While hAR allele did not grossly affect ETV1-induced neoplasia, ETV1 strongly antagonized global AR regulation and repressed critical androgen-induced differentiation and tumor suppressor genes, such as Nkx3-1 and Hoxb13. When Pten was varied to determine its impact on disease progression, mice lacking one Pten allele (Pten(+/-) ) developed more frequent prostatic intraepithelial neoplasia (PIN). Yet, only those with the ETV1 transgene progressed to invasive adenocarcinoma. Furthermore, progression was more frequent with the short Q-tract (stronger) AR, suggesting that the AR, ETV1, and PTEN pathways cooperate in aggressive disease. On the Pten(+/-) background, ETV1 had markedly less effect on AR target genes. However, a strong inflammatory gene expression signature, notably upregulation of Cxcl16, was induced by ETV1. Comparison of mouse and human patient data stratified by the presence of E26 transformation-specific ETS fusion genes highlighted additional factors, some not previously associated with prostate cancer but for which targeted therapies are in development for other diseases. In sum, concerted use of these mouse models illuminates the complex interplay of AR, ETV1, and PTEN pathways in pre-cancerous neoplasia and early tumorigenesis, disease stages difficult to analyze in man.
Collapse
Affiliation(s)
- Jake Higgins
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Correction: Androgen Receptor CAG Repeat Polymorphism and Risk of TMPRSS2:ERG–Positive Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2015; 24:318. [DOI: 10.1158/1055-9965.epi-14-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Tirabassi G, Cignarelli A, Perrini S, delli Muti N, Furlani G, Gallo M, Pallotti F, Paoli D, Giorgino F, Lombardo F, Gandini L, Lenzi A, Balercia G. Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action. Int J Endocrinol 2015; 2015:298107. [PMID: 26421011 PMCID: PMC4572434 DOI: 10.1155/2015/298107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/09/2015] [Indexed: 01/11/2023] Open
Abstract
In the last decade, ample evidence has demonstrated the growing importance of androgen receptor (AR) CAG repeat polymorphism in andrology. This genetic parameter is able to condition the peripheral effects of testosterone and therefore to influence male sexual function and fertility, cardiovascular risk, body composition, bone metabolism, the risk of prostate and testicular cancer, the psychiatric status, and the onset of neurodegenerative disorders. In this review, we extensively discuss the literature data and identify a role for AR CAG repeat polymorphism in conditioning the systemic testosterone effects. In particular, our main purpose was to provide an updated text able to shed light on the many and often contradictory findings reporting an influence of CAG repeat polymorphism on the targets of testosterone action.
Collapse
Affiliation(s)
- Giacomo Tirabassi
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola delli Muti
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Giorgio Furlani
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Mariagrazia Gallo
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Lombardo
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Loredana Gandini
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy
- *Giancarlo Balercia:
| |
Collapse
|
24
|
Mao X, Li J, Xu X, Boyd LK, He W, Stankiewicz E, Kudahetti SC, Cao G, Berney D, Ren G, Gou X, Zhang H, Lu YJ. Involvement of different mechanisms for the association of CAG repeat length polymorphism in androgen receptor gene with prostate cancer. Am J Cancer Res 2014; 4:886-896. [PMID: 25520876 PMCID: PMC4266720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023] Open
Abstract
While androgen and androgen receptor (AR) activity have been strongly implicated in prostate cancer development and therapy, the influence of the CAG repeat, which is found within the first exon of the AR gene, on prostate carcinogenesis is still unclear. We investigated the differences in the length of the CAG repeat between prostate cancer patients and controls in the Chinese population as well as between TMPRSS2:ERG fusion positive and negative samples. A general association between prostate cancer and either longer or shorter AR CAG repeat length was not observed in the Chinese population. However, our data suggest that certain CAG repeat lengths may increase or decrease prostate cancer risk. Shorter CAG repeat length was also not shown to be associated with a higher induction rate of TMPRSS2 and ERG proximity, an essential step for TMPRSS2:ERG fusion formation. However, samples with a CAG repeat of 17 were found more frequently in the TMPRSS2:ERG fusion positive than negative prostate cancer cases and mediated a higher rate of androgen-induced TMPRSS2 and ERG co-localisation than AR with longer (24) and shorter (15) CAG repeats. This suggests that 17 CAG repeats may be associated with TMPRSS2:ERG fusion positive prostate cancer, but may have a preventive role for prostate cancer in the Chinese population, which has a low TMPRSS2:ERG fusion frequency. This study suggests that different mechanisms for the association of CAG repeat length polymorphism and prostate cancer exist in different ethnic populations.
Collapse
Affiliation(s)
- Xueying Mao
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xingxing Xu
- Department of Epidemiology, Second Military Medical UniversityShanghai, China
| | - Lara K Boyd
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Elzbieta Stankiewicz
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Sakunthala C Kudahetti
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical UniversityShanghai, China
| | - Daniel Berney
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital, Chongqing Medical University of ChongqingChina
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical UniversityShanghai, China
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| |
Collapse
|
25
|
Rosenbaum J, Drew S, Huang W. Significantly higher expression levels of androgen receptor are associated with erythroblastosis virus E26 oncogene related gene positive prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:249-257. [PMID: 25374927 PMCID: PMC4219307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Erythroblastosis virus E26 related gene (ERG) overexpression is correlated with the TMPRSS2-ERG fusion gene, a rearrangement known to be present in about 50% of cases of prostate cancer. Androgen receptor (AR) is a known regulator of the TMPRSS2 gene. Despite knowledge of this relationship, limited data is available on the specific relationship of AR expression to TMPRSS2-ERG fusion (ERG) status in prostate cancer (PCa). We used multiplexed immunohistochemistry, multispectral imaging technology and tissue microarray (TMA) to elucidate this relationship. Two prostate tissue microarrays were created from two cohorts of hormonal naïve patients' prostatectomy specimens: progression TMA (pTMA, from 95 PCa patients) and outcome TMA (oTMA, from 183 PCa patients with at least 5-year follow-up information). Each of the two TMAs were triple-stained with ERG, AR and E-cadherin antibodies and visualized with a different chromogen. We found marked difference in AR expression levels between ERG positive (ERG(+)) and ERG negative (ERG(-)) prostate cancer. The difference was significant in localized (pT2) prostate cancer. We also found that AR expression levels were significantly higher in PCa tissue compared to benign prostate tissue, with the highest expression levels in ERG(+) metastatic cancer. Neither AR nor ERG expression was associated with clinical outcome. Our findings confirm that TMPRSS2-ERG fusion is AR-dependent and is associated with increased AR expression. Our data suggest that the AR pathway may play an important role in the development of ERG(+) PCa and ERG status may be useful in stratifying PCa patients for hormonal therapy.
Collapse
Affiliation(s)
- Jason Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Madison, WI 53705
| | - Sally Drew
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Madison, WI 53705
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Madison, WI 53705
| |
Collapse
|