1
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk in Black Participants. CANCER RESEARCH COMMUNICATIONS 2024; 4:2714-2723. [PMID: 39324671 PMCID: PMC11484294 DOI: 10.1158/2767-9764.crc-24-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
SIGNIFICANCE This study describes associations between immune cell types and cancer risk in a Black population; elevated regulatory T-cell proportions that were associated with increased overall cancer and lung cancer risk, and elevated memory B-cell proportions that were associated with increased prostate and all cancer risk.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas.
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Rachel J. Buchsbaum
- Division of Hematology and Oncology, Tufts Medical Center, Boston, Massachusetts.
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
- Department of Epidemiology, Brown University, Providence, Rhode Island.
| |
Collapse
|
2
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk, Including Lung Cancer, in Black Participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307118. [PMID: 38766207 PMCID: PMC11100922 DOI: 10.1101/2024.05.09.24307118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with statistically significantly higher lung cancer risk (hazard ratio = 1.22, 95% confidence interval = 1.06-1.41 per percent increase). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer (1.17, 1.04-1.33) and all cancers (1.13, 1.05-1.22). Increased CD8+ naïve cell proportions were associated with significantly lower risk of all cancers in participants ≥55 years (0.91, 0.83-0.98). Other immune cell subtypes did not display statistically significant associations with cancer risk. These results in Black participants align closely with prior findings in largely White populations. Findings from this study could help identify those at high cancer risk and outline risk stratifying to target patients for cancer screening, prevention, and other interventions. Further studies should assess these relationships in other cancer types, better elucidate the interplay of B cells in cancer risk, and identify biomarkers for personalized risk stratification.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
3
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang Z, Lu Y, Fornage M, Jiao L, Shen J, Li D, Wei P. Identification of novel susceptibility methylation loci for pancreatic cancer in a two-phase epigenome-wide association study. Epigenetics 2022; 17:1357-1372. [PMID: 35030986 PMCID: PMC9586592 DOI: 10.1080/15592294.2022.2026591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
The role of DNA methylation and its interplay with gene expression in the susceptibility to pancreatic cancer (PanC) remains largely unexplored. To fill in this gap, we conducted an integrative two-phase epigenome-wide association study (EWAS) of PanC using genomic DNA from 44 cases and 556 controls (20 local controls and 536 public controls in the Framingham Heart Study) in phase 1 and 23 cases and 22 controls in phase 2. We validated the findings using pre-diagnostic blood samples from 13 cases and 26 controls in the Women's Health Initiative (WHI) Study. We further examined gene expression in peripheral leukocytes of 47 cases and 31 controls involved in the methylation study using RNA sequencing and performed bidirectional Mendelian randomization (MR) analysis using existing single nucleotide polymorphism (SNP) data. In phase 1, we identified 2776 significantly differentially methylated CpG sites (DMPs) and 154 significantly differentially methylated regions (DMRs). In phase 2, we validated six DMPs (in or near AIM2, DGKA, STK39, and TNFSF8) and three DMRs (in or near nc886, LY6G5C, and HLA-DPB1). The DMR near nc886 was further validated in the WHI samples (P = 6.69 × 10-5). MR analysis suggested that the CpG sites cg00308130 and cg16684184 for nc886 and cg16875057 for STK39 were causally related to PanC susceptibility and that PanC influenced methylation of cg15354065 for DGKA. This first integrative EWAS of PanC provides novel insights into the role of DNA methylation and its interplay with SNPs and gene expression in the disease susceptibility.
Collapse
Affiliation(s)
- Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Research Center at the University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Myriam Fornage
- IBrown Foundation Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Research Center at the University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Identification of Prognostic DNA Methylation Signatures in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8802303. [PMID: 35814273 PMCID: PMC9259289 DOI: 10.1155/2022/8802303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/04/2022] [Indexed: 12/03/2022]
Abstract
Background Increasing evidence exists of a link between DNA methylation and tumor immunotherapy. However, the impact of DNA methylation on the characteristics of the lung adenocarcinoma microenvironment and its effect on immunotherapy remain unclear. Method This study collected TCGA-LUAD related data sets (LUAD) to explore the characteristics and regulation of 20 DNA methylation-related genes. We further identified two DNA methylation subtypes by analysing the expression profiles of these 20 DNA methylation-related genes. Subsequently, the differences in immune cell infiltration (ICI) and the expression of immune-related signaling factors among different DNA methylation subtypes were explored, and the differentially expressed genes (DEGs) among different LUAD DNA methylation subtypes were identified. Using univariate Cox to screen differentially expressed genes meaningful for survival, a DNA methylation score (DMS) was constructed based on the weight of the first and second dimensions after dimensionality reduction by principal component analysis (PCA). Our study found that DMS can better evaluate the prognosis of lung adenocarcinoma. Results Based on DMS, LUAD samples were divided into two groups with high and low scores. The differences in clinical characteristics, tumor mutation load, and tumor immune cell infiltration between different DMS groups of LUAD were deeply explored, and the prediction ability of DMS for the benefit of immunotherapy was evaluated. Conclusions DMS is a valuable tool for predicting survival, clinicopathological features, and immunotherapeutic efficacy, which may help to promote personalized LUAD immunotherapy in the future.
Collapse
|
6
|
Xiao M, Liang X, Yan Z, Chen J, Zhu Y, Xie Y, Li Y, Li X, Gao Q, Feng F, Fu G, Gao Y. A DNA-Methylation-Driven Genes Based Prognostic Signature Reveals Immune Microenvironment in Pancreatic Cancer. Front Immunol 2022; 13:803962. [PMID: 35222383 PMCID: PMC8866195 DOI: 10.3389/fimmu.2022.803962] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PACA), which is characterized by an immunosuppressive nature, remains one of the deadliest malignancies worldwide. Aberrant DNA methylation (DNAm) reportedly influences tumor immune microenvironment. Here, we evaluated the role of DNA methylation driven genes (MDGs) in PACA through integrative analyses of epigenomic, transcriptomic, genomic and clinicopathological data obtained from TCGA, ICGC, ArrayExpress and GEO databases. Thereafter, we established a four-MDG signature, comprising GPRC5A, SOWAHC, S100A14, and ARNTL2. High signature risk-scores were associated with poor histologic grades and late TNM stages. Survival analyses showed the signature had a significant predictive effect on OS. WGCNA revealed that the signature may be associated with immune system, while high risk-scores might reflect immune dysregulation. Furthermore, GSEA and GSVA revealed significant enrichment of p53 pathway and mismatch repair pathways in high risk-score subgroups. Immune infiltration analysis showed that CD8+ T cells were more abundant in low score subgroups, while M0 macrophages exhibited an opposite trend. Moreover, negative regulatory genes of cancer-immunity cycle (CIC) illustrated that immunosuppressors TGFB1, VEGFA, and CD274 (PDL1) were all positively correlated with risk-scores. Furthermore, the four signature genes were negatively correlated with CD8+ lymphocytes, but positively associated with myeloid derived suppressor cells (MDSC). Conversely, specimens with high risk-scores exhibited heavier tumor mutation burdens (TMB) and might show better responses to some chemotherapy and targeted drugs, which would benefit stratification of PACA patients. On the other hand, we investigated the corresponding proteins of the four MDGs using paraffin-embedded PACA samples collected from patients who underwent radical surgery in our center and found that all these four proteins were elevated in cancerous tissues and might serve as prognostic markers for PACA patients, high expression levels indicated poor prognosis. In conclusion, we successfully established a four-MDG-based prognostic signature for PACA patients. We envisage that this signature will help in evaluation of intratumoral immune texture and enable identification of novel stratification biomarkers for precision therapies.
Collapse
Affiliation(s)
- Mingjia Xiao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangjing Liang
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhengming Yan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyang Chen
- First College of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yaru Zhu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Xie
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxiang Gao
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Feiling Feng
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Gongbo Fu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Zhao N, Ruan M, Koestler DC, Lu J, Salas LA, Kelsey KT, Platz EA, Michaud DS. Methylation-derived inflammatory measures and lung cancer risk and survival. Clin Epigenetics 2021; 13:222. [PMID: 34915912 PMCID: PMC8680033 DOI: 10.1186/s13148-021-01214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Examining immunity-related DNA methylation alterations in blood could help elucidate the role of the immune response in lung cancer etiology and aid in discovering factors that are key to lung cancer development and progression. In a nested, matched case-control study, we estimated methylation-derived NLR (mdNLR) and quantified DNA methylation levels at loci previously linked with circulating concentrations of C-reactive protein (CRP). We examined associations between these measures and lung cancer risk and survival. RESULTS Using conditional logistic regression and further adjusting for BMI, batch effects, and a smoking-based methylation score, we observed a 47% increased risk of non-small cell lung cancer (NSCLC) for one standard deviation (SD) increase in mdNLR (n = 150 pairs; OR: 1.47, 95% CI 1.08, 2.02). Using a similar model, the estimated CRP Scores were inversely associated with risk of NSCLC (e.g., Score 1 OR: 0.57, 95% CI: 0.40, 0.81). Using Cox proportional hazards models adjusting for age, sex, smoking status, methylation-predicted pack-years, BMI, batch effect, and stage, we observed a 28% increased risk of dying from lung cancer (n = 145 deaths in 205 cases; HR: 1.28, 95% CI: 1.09, 1.50) for one SD increase in mdNLR. CONCLUSIONS Our study demonstrates that immunity status measured with DNA methylation markers is associated with lung cancer a decade or more prior to cancer diagnosis. A better understanding of immunity-associated methylation-based biomarkers in lung cancer development could provide insight into critical pathways.
Collapse
Affiliation(s)
- Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Mengyuan Ruan
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, Medical Center, University of Kansas, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA.
- Department of Epidemiology, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Michaud DS, Kelsey KT. DNA Methylation in Peripheral Blood: Providing Novel Biomarkers of Exposure and Immunity to Examine Cancer Risk. Cancer Epidemiol Biomarkers Prev 2021; 30:2176-2178. [PMID: 34862269 DOI: 10.1158/1055-9965.epi-21-0866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
DNA methylation is an epigenetic phenomenon that can alter and control gene expression. Because methylation plays a key role in cell differentiation, methylation markers have been identified that are unique to a given cell type; these markers are stable and can be measured in tissue or whole blood. The article by Katzke and colleagues, published in this issue, uses methylation markers to estimate proportions of immune cell subtypes in peripheral blood samples that were collected prior to diagnosis, thus allowing them to directly examine associations with pancreatic cancer risk. Given that immune-cell counts cannot be measured from archived blood, and that retrospective case-control studies rely on blood that is collected after cancer diagnosis, few studies have been able to examine the role of the systemic immune response in cancer risk. Measurement of DNA methylation in peripheral blood, primarily through development of whole-genome approaches, has also opened new doors to examining cancer etiology.See related article by Katzke et al., p. 2179.
Collapse
Affiliation(s)
- Dominique S Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
10
|
Katzke VA, Le Cornet C, Mahfouz R, Brauer B, Johnson T, Canzian F, Rebours V, Boutron-Ruault MC, Severi G, Schulze MB, Olsen A, Tjønneland A, Overvad K, Crous-Bou M, Molina-Montes E, Amiano P, Huerta JM, Ardanaz E, Perez-Cornago A, Masala G, Pala V, Tumino R, Sacerdote C, Panico S, Bueno-de-Mesquita B, Vermeulen R, Sund M, Franklin O, Christakoudi S, Dossus L, Weiderpass E, Olek S, Kaaks R. Are Circulating Immune Cells a Determinant of Pancreatic Cancer Risk? A Prospective Study Using Epigenetic Cell Count Measures. Cancer Epidemiol Biomarkers Prev 2021; 30:2179-2187. [PMID: 34548327 DOI: 10.1158/1055-9965.epi-21-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence is accumulating that immune cells play a prominent role in pancreatic cancer etiology but prospective investigations are missing. METHODS We conducted a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) study with 502 pairs of incident pancreatic cancer cases and matched controls. Relative counts of circulating immune cells (neutrophils and lymphocyte sublineages: total CD3+, CD8+, CD4+, and FOXP3+ regulatory T cells (Tregs) relative to nucleated cells, (white blood cells) were measured by qRT-PCR. ORs with 95% confidence intervals were estimated using logistic regressions, modeling relative counts of immune cells on a continuous scale. RESULTS Neither relative counts of immune cell types taken individually, nor mutually adjusted for each other were associated with pancreatic cancer risks. However, in subgroup analyses by strata of lag-time, higher relative counts of Tregs and lower relative counts of CD8+ were significantly associated with an increased pancreatic cancer risks in participants diagnosed within the first 5 years of follow-up. CONCLUSIONS These results might reflect reverse causation, due to higher relative counts of Tregs and lower counts of CD8+ cells among individuals with more advanced stages of latent pancreatic cancer, who are closer to the point of developing clinical manifest disease. IMPACT We have shown, for the first time, that increased relative counts of regulatory T cells and lower relative counts of CD8+, cytotoxic T cells may be associated with pancreatic cancer risk or relatively late-stage tumor development.See related commentary by Michaud and Kelsey, p. 2176.
Collapse
Affiliation(s)
- Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rayaan Mahfouz
- Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, Berlin, Germany, Precision for Medicine Group
| | - Bianca Brauer
- Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, Berlin, Germany, Precision for Medicine Group
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vinciane Rebours
- Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, France
- Inserm UMR1149, DHU Unit, Paris-Diderot University, Paris, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, F-94805, Villejuif, France
- Department of Statistics, Computer Science and Applications "G. Parenti," University of Florence, Florence, Italy
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Århus, Århus, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, University of Århus, Århus, Denmark
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona 08908, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Esther Molina-Montes
- Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
- CIBERESP, Madrid, Spain
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, Spain
| | - Pilar Amiano
- CIBERESP, Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - José María Huerta
- CIBERESP, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBERESP, Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford UK
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7) Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Bas Bueno-de-Mesquita
- Former senior scientist, Dept. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- School of Public Health, Imperial College London, London, UK
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Sweden
| | - Oskar Franklin
- Department of Surgical and Perioperative Sciences, Umeå University, Sweden
| | - Sofia Christakoudi
- School of Public Health, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, St Mary's Campus, London, United Kingdom
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London, United Kingdom
| | - Laure Dossus
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elisabete Weiderpass
- Director, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sven Olek
- Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, Berlin, Germany, Precision for Medicine Group
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|