1
|
László SB, Hutka B, Tóth AS, Hegyes T, Demeter ZO, Haghighi A, Wachtl G, Kelemen Á, Jakab A, Gyires K, Zádori ZS. Celecoxib and rofecoxib have different effects on small intestinal ischemia/reperfusion injury in rats. Front Pharmacol 2024; 15:1468579. [PMID: 39584137 PMCID: PMC11582421 DOI: 10.3389/fphar.2024.1468579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Intestinal ischemia/reperfusion (I/R) injury is associated with high mortality and there is an unmet need for novel therapies. The intestinal expression of cyclooxygenase-2 (COX-2) increases rapidly after mesenteric I/R, but it is still a question of debate whether selective COX-2 inhibitors can mitigate I/R-induced gut injury. Here we aimed to compare the effect of celecoxib and rofecoxib, two selective COX-2 inhibitors, on intestinal I/R-induced injury in rats. Methods Wistar rats were treated with celecoxib (10 and 100 mg/kg), rofecoxib (5 and 50 mg/kg), or vehicle for 8 days via gavage and then were subjected to sham operation or mesenteric I/R. Small intestinal inflammation and tissue damage were assessed by histology and quantification of inflammatory and tight junction proteins. The intestinal activity of COX enzymes was determined by a COX activity assay. Results The higher dose of celecoxib reduced the I/R-associated increase in inflammatory mediators (myeloperoxidase, pentraxin 3, COX-2, interleukin-1β) and loss of tight junction proteins (claudin-1, occludin), whereas the lower dose of celecoxib was only marginally effective. However, even high-dose celecoxib failed to prevent the histological injury of the mucosa. In contrast to celecoxib, rofecoxib did not affect intestinal inflammation and injury at any of the tested doses. Neither celecoxib nor rofecoxib affected the I/R-induced changes of HO-1 and PPAR-γ, known off-targets of COX-inhibitors, but celecoxib increased the I/R-induced elevation of Bax/Bcl-2, a marker of apoptosis, whereas rofecoxib reduced the elevation of phospho-Akt. Importantly, high-dose celecoxib, but not rofecoxib, has already reduced intestinal COX-1 activity. Conclusion Our study provides evidence for the higher anti-inflammatory efficacy of celecoxib compared to rofecoxib in mesenteric I/R injury, which is likely due to its lower selectivity for COX-2. However, even high-dose celecoxib was unable to reduce the mucosal damage. Our results suggest that selective COX-2 inhibitors have only limited therapeutic value in intestinal I/R injury.
Collapse
Affiliation(s)
- Szilvia B. László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - András S. Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Histopathology, Central Hospital of Northern Pest – Military Hospital, Budapest, Hungary
| | - Tamás Hegyes
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zsuzsanna O. Demeter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Arezoo Haghighi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Gerda Wachtl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Ágnes Kelemen
- Department of Histopathology, Central Hospital of Northern Pest – Military Hospital, Budapest, Hungary
| | - Anna Jakab
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
3
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Almehmadi MM, Ahmed OM. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2022; 145:112409. [PMID: 34781148 DOI: 10.1016/j.biopha.2021.112409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been identified as one of the most deadly malignancies with limited therapeutic efficacy worldwide. However, understanding the molecular mechanisms of crosstalk between signaling pathways in HCC and predicting cancer cell responses to targeted therapeutic interventions remain to be challenge. Thus, in this study, we aimed to evaluate the anticancerous efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally-induced HCC in rats. In vitro investigations were also performed and the anticancer effects against HCC cell lines (HepG2 and Huh7) were confirmed. Wistar rats were given diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4) and were orally treated with STE (200 mg/kg body weight (bw)), Sm (150 mg/kg bw), and Sb (5 mg/kg bw) every other day from the 1st or 16th week to the 25th week of DEN/AAF/CCl4 injection. Treatment with STE, Sm, and Sb inhibited the growth of cancerous lesions in DEN/AAF/CCl4-treated rats. This inhibition was associated with inhibition of Ki-67 expression and repression of HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. STE, Sm, and Sb improved liver function biomarkers and tumor markers (AFP, CEA, and CA19.9) and increased total protein and albumin levels in serum. STE, Sm, and Sb treatment was also noted to reduce the hepatic production of lipid peroxides, increase hepatic glutathione content, and induce the activities of hepatic antioxidant enzymes in DEN/AAF/CCl4-treated rats. These results indicate that STE, Sm, and Sb exert anti-HCC effects through multiple pathways, including suppression of Ki-67 expression and HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR pathways and enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Nour Y S Yassin
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Asmaa M El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M Ali
- Department of Physiology, College of Medicine, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen M Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines. Molecules 2021; 26:molecules26102961. [PMID: 34065773 PMCID: PMC8156061 DOI: 10.3390/molecules26102961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.
Collapse
|
5
|
Velmurugan BK, Hua CH, Tsai MH, Lee CP, Chung CM, Ko YC. Combination of celecoxib and calyculin-A inhibits epithelial-mesenchymal transition in human oral cancer cells. Biotech Histochem 2020; 95:341-348. [PMID: 31937145 DOI: 10.1080/10520295.2019.1700429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of cyclo-oxygenase-2 (COX-2) and protein phosphatase 2A (PP2A) deactivation occurs frequently in oral squamous cell carcinoma (OSCC). We initially assessed COX-2 and PP2A protein expression in OSCC specimens using immunohistochemical (IHC) staining and western blot analysis. We found strong COX-2 and phosphorylated PP2A (p-PP2A) expression in OSCC samples. No significant difference in total PP2A expression was observed between cancer and nontumor tissues. The effect of combining COX-2 inhibitor and celecoxib (CXB) with the PP2A inhibitor, calyculin-A (CLA) on the OSCC cell line, HSC3, was evaluated in vitro. We found that a combination of 1 nM CLA and 50 µM CXB significantly inhibited cell viability, and migration and invasion of HSC3 cells. Western blots for AKT, p-AKT, ERK, p-ERK, E-cadherin, vimentin and β-catenin were conducted after treatment with CXB and/or CLA. Increased E-cadherin and decreased β-catenin expression were found in CXB or CLA treated hsc-3 cells, whereas the combined CXB and CLA treatment showed no difference in E-cadherin or β-catenin expression. Our findings suggest that CLA alone was more effective than CXB alone, but not in the combined drug treatment.
Collapse
Affiliation(s)
- Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Diseases Research Centre, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Min Chung
- Environment-Omics-Diseases Research Centre, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research Centre, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Mansour DF, Abdallah HMI, Ibrahim BMM, Hegazy RR, Esmail RSE, Abdel-Salam LO. The Carcinogenic Agent Diethylnitrosamine Induces Early Oxidative Stress, Inflammation and Proliferation in Rat Liver, Stomach and Colon: Protective Effect of Ginger Extract. Asian Pac J Cancer Prev 2019; 20:2551-2561. [PMID: 31450931 PMCID: PMC6852799 DOI: 10.31557/apjcp.2019.20.8.2551] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Diethylnitrosamine (DENA), a well-known dietary carcinogen, related to cancer initiation of various organs. The present study investigated the deleterious mechanisms involved in the early destructive changes of DENA in different organs namely, liver, stomach and colon and the potential protective effect of GE against these mechanisms. Methods: Adult male albino rats were assigned into four groups. A normal control group received the vehicle, another group was injected with a single necrogenic dose of DENA (200 mg/kg, i.p) on day 21. Two groups received oral GE (108 or 216 mg/kg) daily for 28 days. Sera, liver, stomach and colon were obtained 7 days after DENA injection. Serum aspartate transaminase and alanine transaminase were detected as well as reduced glutathione (GSH), malondialdehyde, nitric oxide metabolites, interleukin 1β, tumor necrosis factor (TNF-α), alpha-fetoprotein (AFP) and nuclear factorerythroid 2-related factor2 (Nrf2) in liver, stomach and colon. Histopathological studies and immunohistochemical examination of cyclooxygenase-2 (COX2) were conducted. Results: DENA induced elevation in liver function enzymes with significant increase in oxidation and inflammation biomarkers and AFP while decreased levels of Nrf2 in liver, stomach and colon were detected. Histologically, DENA showed degenerative changes in hepatocytes and inflammatory foci. Inflammatory foci displayed increased expression of COX2 in immunohistochemical staining. GE-pretreatment improved liver function and restored normal GSH with significant mitigation of oxidative stress and inflammatory biomarkers compared to DENA-treated group. AFP was reduced by GE in both doses, while Nrf2 increased significantly. Histology and immunostaining of hepatic COX-2 were remarkably improved in GE-treated groups in a dose dependent manner. Conclusion: GE exerted a potential anti-proliferative activity against DENA in liver, stomach and colon via Nrf2 activation, whilst suppression of oxidation and inflammation.
Collapse
Affiliation(s)
- Dina F Mansour
- Pharmacology Department, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
- Department of Clinical Pharmacy and Pharmacy Practice,, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Bassant M M Ibrahim
- Pharmacology Department, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Rehab R Hegazy
- Pharmacology Department, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Reham S E Esmail
- Department of Pathology, Faculty of Medicine, Fayoum University, Egypt
| | | |
Collapse
|
7
|
Alves ADF, Baldissera VD, Chiela ECF, Cerski CTS, Fontes PRO, Fernandes MDC, Porawski M, Giovenardi M. Altered expression of COX-2 and TNF-α in patients with hepatocellular carcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2019; 111:364-370. [PMID: 30810331 DOI: 10.17235/reed.2019.5898/2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM hepatocellular carcinoma is a type of cancer related with inflammation, as 90% of cases develop in a chronic inflammation condition. Excess inflammation can affect tissue homeostasis. Cytokines and inflammatory mediators are immunological components that can influence the functioning of cells and tissues. In addition, the estrogen receptor appears to play an important role in hepatocarcinogenesis. The aim of the study was to evaluate the expression of inflammatory markers and ER in patients with hepatocellular carcinoma. METHODS data from 143 patients of ISCMPA were analyzed. Immunohistochemistry was performed of cyclooxygenase-2 enzyme (COX-2), nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and ER in paraffin-embedded hepatic tissue. The percentage of the stained area, intensity of staining and of the number of ER positive nuclei were evaluated using the ImageJ 1.50 software. RESULTS AND CONCLUSION there was a significant difference between the groups in terms of the percentage of marked area (p = 0.040) for COX-2 and the intensity of staining of TNF-α (p = 0.030). No significant differences were observed in any of other parameters evaluated. In conclusion, COX-2 and TNF-α are possible markers that should be further studied to determine their immunohistochemical profile and role in HCC development.
Collapse
|
8
|
Abdelmoneem MA, Mahmoud M, Zaky A, Helmy MW, Sallam M, Fang JY, Elkhodairy KA, Elzoghby AO. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine (Lond) 2018; 13:2377-2395. [DOI: 10.2217/nnm-2018-0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Lactoferrin (LF)-targeted gliadin nanoparticles (GL-NPs) were developed for targeted oral therapy of hepatocellular carcinoma. Materials & methods: Celecoxib and diosmin were incorporated in the hydrophobic matrix of GL-NPs whose surface was decorated with LF by electrostatic interaction for binding to asialoglycoprotein receptors overexpressed by liver cancer cells. Results: Targeted GL-NPs showed enhanced cytotoxic activity and increased cellular uptake in liver tumor cells compared with nontargeted NPs. Moreover, they demonstrated superior in vivo antitumor effects including reduction in the expression levels of tumor biomarkers and induction of caspase-mediated apoptosis. Ex vivo imaging of isolated organs exhibited extensive accumulation of NPs in livers more than other organs. Conclusion: LF-targeted GL-NPs could be considered as an efficient nanoplatform for targeted oral drug delivery for liver cancer therapy.
Collapse
Affiliation(s)
- Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mazen Mahmoud
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur 22511, Egypt
| | - Marwa Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technologies, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1399-1410. [PMID: 30155693 DOI: 10.1007/s00210-018-1557-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is still a leading cancer killer in the community. Molecular targeted therapy with celecoxib (CXB) has shown promising antitumor effects; however, its use may be limited due to serious side effects. Curcumin (CUR) has also shown beneficial effects against HCC. Then, it was aimed to investigate the effects of adding CUR to CXB on HCC HepG2 cells. HepG2 cells were treated with CXB and/or CUR at increasing concentrations to investigate synergistic drug interactions, as calculated combination index (CI). Combination treatment effects on cell viability and caspase-3 activation were assessed. The levels of Akt, nuclear factor-kappa B (NF-κB), prostaglandin E2 (PGE2), malondialdehyde (MDA), cyclin D1 (CD1), and vascular endothelial growth factor (VEGF) were also evaluated. CXB (3.13-100 μM) and/or CUR (1.25-40 μM) reduced HepG2 cell viability dose-dependently. Nevertheless, lower combined concentrations showed higher synergism (CI < 1) and higher CXB dose reduction index (DRI > 1). Also, the addition of CUR to CXB resulted in increased cytotoxicity and caspase-3 activation, as compared to CXB alone. In addition, the selected combination significantly reduced the levels of Akt, NF-κB, PGE2, MDA, CD1, and VEGF, as compared to either agent alone. In conclusion, CUR augmented the CXB-mediated antitumor effects in HepG2 cells through, at least in part, antiproliferative, antioxidant, and pro-apoptotic mechanisms. This may allow the further use of CXB at lower concentrations, combined with CUR, as a promising safer targeted strategy for HCC management.
Collapse
|
10
|
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 2018; 124:1-9. [PMID: 30118847 DOI: 10.1016/j.ejps.2018.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 μM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Natalia Pieńkowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
11
|
Hu KQ, Cui W. Persistence of Circulating Hepatitis C Virus Antigens-Specific Immune Complexes in Patients with Resolved HCV Infection. Dig Dis Sci 2018; 63:1237-1242. [PMID: 29516328 DOI: 10.1007/s10620-018-4968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/05/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND Our recent study indicated the possible presence of detectable hepatitis C virus antigens (HCV-Ags) after denaturation of sera with resolved HCV (R-HCV) infection. The present study determined and characterized persistent HCV-Ags-specific immune complexes (ICs) in these patients. METHODS Sixty-eight sera with R-HCV and 34 with viremic HCV (V-HCV) infection were tested for free and IC-bound HCV-Ags using HCV-Ags enzyme immunoassay (EIA), the presence of HCV-Ags-specific ICs by immunoprecipitation and Western blot (IP-WB), HCV ICs containing HCV virions using IP and HCV RNA RT-PCR, and correlation of HCV ICs with clinical presentation in these patients. RESULTS Using HCV-Ags EIA, we found 57.4% of sera with R-HCV infection were tested positive for bound, but not free HCV-Ags. Using pooled or individual anti-HCV E1/E2, cAg, NS3, NS4b, and/or NS5a to precipitate HCV-specific-Ags, we confirmed persistent HCV-Ags ICs specific to various HCV structural and non-structural proteins not only in V-HCV infection, but also in R-HCV infection. Using IP and HCV RNA PCR, we then confirmed the presence of HCV virions within circulating ICs in V-HCV, but not in R-HCV sera. Multivariable analysis indicated significant and independent associations of persistent circulating HCV-Ags-specific ICs with both age and the presence of cirrhosis in patients with R-HCV infection. CONCLUSIONS Various HCV-Ag-specific ICs, but not virions, persist in 57.4% of patients who had spontaneous or treatment-induced HCV clearance for 6 months to 20 years. These findings enriched our knowledge on HCV pathogenesis and support further study on its long-term clinical relevance, such as extrahepatic manifestation, transfusion medicine, and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ke-Qin Hu
- Division of GI/Hepatology, University of California, Irvine, School of Medicine, 101 The City Drive, Building 56, Ste. 237, Orange, CA, 92868, USA.
| | - Wei Cui
- Division of GI/Hepatology, University of California, Irvine, School of Medicine, 101 The City Drive, Building 56, Ste. 237, Orange, CA, 92868, USA
| |
Collapse
|
12
|
Hwang IC, Chang J, Kim K, Park SM. Aspirin Use and Risk of Hepatocellular Carcinoma in a National Cohort Study of Korean Adults. Sci Rep 2018; 8:4968. [PMID: 29563592 PMCID: PMC5862896 DOI: 10.1038/s41598-018-23343-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
The effect of aspirin on the risk of hepatocellular carcinoma (HCC) remains unclear. We investigated the association between aspirin use and HCC development in a region where viral hepatitis prevails. We conducted a population-based cohort study including a total of 460,755 participants who were tracked to identify incidents of HCC since 2007. The use of drug before the index date was assessed and standardized by the Defined Daily Dose system. We calculated the hazard ratios (HRs) and their 95% confidence intervals (CIs) for the association between aspirin use and HCC occurrence, using Cox proportional hazard regression models. There were 2,336 cases of HCC during the period of 2,965,500 person-years. Overall, aspirin users had a lower HCC risk (HR, 0.87; 95% CI, 0.77-0.98) than non-users in a dose-response manner (Ptrend = 0.002). The protective effect of aspirin was amplified when combined with those of non-aspirin non-steroidal anti-inflammatory drugs (HR, 0.65; 95% CI, 0.50-0.85). Subgroup analyses revealed a significant chemopreventive effect of aspirin in individuals who were young, were male, or had viral hepatitis, whereas no protective effect was observed in patients with liver cirrhosis. Our results, suggesting different carcinogenic pathways between viral and non-viral etiologies, may validate the design of future intervention trials of aspirin for HCC prevention in eligible populations.
Collapse
Affiliation(s)
- In Cheol Hwang
- Department of Family Medicine, Gachon University Gil Medical Center, Incheon, 405-760, Republic of Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Kyuwoong Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea. .,Department of Family Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
13
|
Boueroy P, Aukkanimart R, Boonmars T, Sriraj P, Ratanasuwan P, Juasook A, Wonkchalee N, Vaeteewoottacharn K, Wongkham S. Inhibitory Effect of Aspirin on Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2017; 18:3091-3096. [PMID: 29172284 PMCID: PMC5773796 DOI: 10.22034/apjcp.2017.18.11.3091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aspirin and other non-steroidal anti-inflammatory drugs reduce the risk of cancer due to their anti-proliferative and apoptotic effects, which are the important mechanisms for their anti-tumor activity. Here, the effect of aspirin on human cholangiocarcinoma cells (KKU-214) and the underlying mechanisms of its action were explored. Cell proliferation was measured by sulforhodamine B (SRB) assay, while cell cycle distribution and apoptosis were determined by flow cytometry. Western blotting was used to explore protein expression underlying molecular mechanisms of anti-cancer treatment of aspirin. Aspirin reduced cell proliferation in a dose- and time-dependent manner, and altered the cell cycle phase distribution of KKU-214 cells by increasing the proportion of cells in the G0/G1 phase and reducing the proportion in the S and G2/M phases. Consistent with its effect on the cell cycle, aspirin also reduced the expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk-4), which are important for G0/G1 cell cycle progression. Treatment with aspirin led to increased induction of apoptosis in a dose-dependent manner. Further analysis of the mechanism underlying the effect of this drug showed that aspirin induced the expression of the tumor-suppressor protein p53 while inhibiting the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). Correspondingly, the activation of caspase-9 and -3 was also increased. These findings suggest that aspirin causes cell cycle arrest and apoptosis, both of which could contribute to its anti-proliferative effect.
Collapse
Affiliation(s)
- Parichart Boueroy
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neglected, Zoonosis and Vector-Borne Disease Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Makhdoumi P, Zarghi A, Daraei B, Karimi G. Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line. J Pharmacopuncture 2017; 20:207-212. [PMID: 30087797 PMCID: PMC5633673 DOI: 10.3831/kpi.2017.20.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Student Research Committee, Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Teharn, Iran.,Faculty of Pharmacy, Department of Toxicology and Pharmacology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Hu KQ, Cui W. A highly specific and sensitive hepatitis C virus antigen enzyme immunoassay for One-step diagnosis of viremic hepatitis C virus infection. Hepatology 2016; 64:415-424. [PMID: 27273268 DOI: 10.1002/hep.28663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED The current standard in diagnosing hepatitis C virus (HCV) infection requires two sequential steps: anti-HCV test to screen, followed by HCV RNA reverse-transcription polymerase chain reaction to confirm viremic HCV (V-HCV) infection. HCV core antigen tests provided potential for possible one-step diagnosis. However, low sensitivity and specificity limit their clinical utility. The present study developed a novel HCV antigens enzyme immunoassay (HCV-Ags EIA) and assessed its sensitivity, specificity, and utility for one-step diagnosis of V-HCV infection using 365 serum specimens, including 176 without and 189 with V-HCV infection. First, we confirmed the presence of HCV nonstructural proteins 3, 4b, and 5a besides HCV core antigen during HCV infection and developed a novel HCV-Ags EIA through simultaneous detection of all four HCV proteins. For the first time, the present study demonstrated that serum sample denaturation decreases the test specificity due to release of HCV-Ags sequestered in HCV immune complexes and should not be used in any HCV-Ags, including all the current HCV core antigen assays. On the other hand, using sample nondenaturation, the HCV-Ags EIA results showed 98.9% specificity and 100% sensitivity compared to serum anti-HCV and HCV RNA reverse-transcription polymerase chain reaction results. Using serum sample dilution, and nondenaturation, the lowest limits of detection of the HCV-Ags EIA were equivalent to serum HCV RNA levels of approximate 150-250 IU/mL. CONCLUSIONS The highly specific and sensitive HCV-Ags EIA developed in the present study has the lowest limit of detection equivalent to serum HCV RNA levels of 150-250 IU/mL; using nondenaturation of serum samples, our HCV-Ags EIA reliably differentiated V-HCV infection from resolved HCV infection, accomplishing screening and diagnosis of V-HCV infection in one step. (Hepatology 2016;64:415-424).
Collapse
Affiliation(s)
- Ke-Qin Hu
- Division of GI/Hepatology, University of California, Irvine, School of Medicine, Orange, CA
| | - Wei Cui
- Division of GI/Hepatology, University of California, Irvine, School of Medicine, Orange, CA
| |
Collapse
|
16
|
Guo Z, Jiang JH, Zhang J, Yang HJ, Yang FQ, Qi YP, Zhong YP, Su J, Yang RR, Li LQ, Xiang BD. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells. Medicine (Baltimore) 2015; 94:e1806. [PMID: 26554780 PMCID: PMC4915881 DOI: 10.1097/md.0000000000001806] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs.
Collapse
Affiliation(s)
- Zhe Guo
- From the Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China (ZG, H-JY, F-QY, Y-PQ, L-QL, B-DX); Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, P.R. China (ZG); Department of General Surgery, The Second People's Hospital of The Second People's Hospital of Jingmen, Jingmen, P.R. China (J-HJ); Department of Ultrasound, Wuhan No. 1 Hospital, Wuhan, P.R. China (JZ); Medical Science Experimental Center, Guangxi Medical University, Nanning, P.R. China (Y-PZ, JS); Department of Immunology, School of Preclinical Medicine, Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, P.R. China (R-RY)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol 2015; 230:2552-78. [PMID: 25858032 PMCID: PMC4843173 DOI: 10.1002/jcp.25014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi‐kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug‐treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged ‘rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre‐treatment with the ‘Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. ‘Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of ‘Rafenib drugs/pazopanib restored antibiotic sensitivity in pan‐antibiotic resistant bacteria including multiple strains of blakpcKlebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. J. Cell. Physiol. 230: 2552–2578, 2015. © 2015 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Aida Nourbakhsh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | - Christopher D Doern
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Nogueira E, Mangialavori IC, Loureiro A, Azoia NG, Sárria MP, Nogueira P, Freitas J, Härmark J, Shimanovich U, Rollett A, Lacroix G, Bernardes GJL, Guebitz G, Hebert H, Moreira A, Carmo AM, Rossi JPFC, Gomes AC, Preto A, Cavaco-Paulo A. Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules 2015; 16:2904-10. [PMID: 26241560 DOI: 10.1021/acs.biomac.5b00823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol.
Collapse
Affiliation(s)
- Eugénia Nogueira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho , Braga 4710-057, Portugal.,CEB - Centre of Biological Engineering, University of Minho , Braga 4710-057, Portugal
| | - Irene C Mangialavori
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET , 1113 Buenos Aires, Argentina
| | - Ana Loureiro
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho , Braga 4710-057, Portugal.,CEB - Centre of Biological Engineering, University of Minho , Braga 4710-057, Portugal
| | - Nuno G Azoia
- CEB - Centre of Biological Engineering, University of Minho , Braga 4710-057, Portugal
| | - Marisa P Sárria
- CEB - Centre of Biological Engineering, University of Minho , Braga 4710-057, Portugal
| | - Patrícia Nogueira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular , 4150-180 Porto, Portugal
| | - Jaime Freitas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular , 4150-180 Porto, Portugal
| | - Johan Härmark
- Department of Biosciences and Nutrition, The Royal Institute of Technology, School of Technology and Health, Karolinska Institutet , S-14183 Huddinge, Sweden
| | - Ulyana Shimanovich
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Alexandra Rollett
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences , 3430 Tulln, Austria
| | - Ghislaine Lacroix
- INERIS - Institut National de l'Environnement Industriel et des Risques , 60550 Verneuil en Halatte, France
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Georg Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences , 3430 Tulln, Austria
| | - Hans Hebert
- Department of Biosciences and Nutrition, The Royal Institute of Technology, School of Technology and Health, Karolinska Institutet , S-14183 Huddinge, Sweden
| | - Alexandra Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular , 4150-180 Porto, Portugal
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular , 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , 4099-003 Porto, Portugal
| | - Juan Pablo F C Rossi
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET , 1113 Buenos Aires, Argentina
| | - Andreia C Gomes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho , Braga 4710-057, Portugal
| | - Ana Preto
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho , Braga 4710-057, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho , Braga 4710-057, Portugal
| |
Collapse
|
19
|
Booth L, Roberts JL, Tavallai M, Nourbakhsh A, Chuckalovcak J, Carter J, Poklepovic A, Dent P. OSU-03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood-Brain Barrier: Implications for Anti-Cancer Therapies. J Cell Physiol 2015; 230:1982-98. [PMID: 25736380 PMCID: PMC4835175 DOI: 10.1002/jcp.24977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
We examined the interaction between OSU‐03012 (also called AR‐12) with phosphodiesterase 5 (PDE5) inhibitors to determine the role of the chaperone glucose‐regulated protein (GRP78)/BiP/HSPA5 in the cellular response. Sildenafil (Viagra) interacted in a greater than additive fashion with OSU‐03012 to kill stem‐like GBM cells. Treatment of cells with OSU‐03012/sildenafil: abolished the expression of multiple oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused a rapid degradation of GRP78 and other HSP70 and HSP90 family chaperone proteins. Decreased expression of plasma membrane receptors and drug efflux pumps was dependent upon enhanced PERK‐eIF2α‐ATF4‐CHOP signaling and was blocked by GRP78 over‐expression. In vivo OSU‐03012/sildenafil was more efficacious than treatment with celecoxib and sildenafil at killing tumor cells without damaging normal tissues and in parallel reduced expression of ABCB1 and ABCG2 in the normal brain. The combination of OSU‐03012/sildenafil synergized with low concentrations of sorafenib to kill tumor cells, and with lapatinib to kill ERBB1 over‐expressing tumor cells. In multiplex assays on plasma and human tumor tissue from an OSU‐03012/sildenafil treated mouse, we noted a profound reduction in uPA signaling and identified FGF and JAK1/2 as response biomarkers for potentially suppressing the killing response. Inhibition of FGFR signaling and to a lesser extent JAK1/2 signaling profoundly enhanced OSU‐03012/sildenafil lethality. J. Cell. Physiol. 230: 1982–1998, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Booth L, Roberts JL, Cash DR, Tavallai S, Jean S, Fidanza A, Cruz-Luna T, Siembiba P, Cycon KA, Cornelissen CN, Dent P. GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease. J Cell Physiol 2015; 230:1661-76. [PMID: 25546329 PMCID: PMC4402027 DOI: 10.1002/jcp.24919] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola/Marburg/Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV, and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus, Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. J. Cell. Physiol. 230: 1661–1676, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen Z, Zhu J, Huang C, Lian F, Wu G, Zhao Y. The association between three cyclooxygenase-2 polymorphisms and hepatocellular carcinoma risk: a meta-analysis. PLoS One 2015; 10:e0118251. [PMID: 25730260 PMCID: PMC4346398 DOI: 10.1371/journal.pone.0118251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/10/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A quantity of case-control studies have been performed to address the association between three cyclooxygenase-2(COX-2) polymorphisms (-1195G/A, -765G/C and +8473T/C) and the risk of hepatocellular carcinoma (HCC). However, previous research results are inconsistent. We conducted this meta-analysis to clarify the correlation between these COX-2 polymorphisms and HCC risk. METHODS The authors searched in PubMed, EMBASE, Google Scholar, CNKI and WanFang database for relevant articles up to April 28, 2014. The data were extracted by two independent reviewers. Odds ratios (ORs) and 95% confidence intervals were calculated. RESULTS A total of 8 studies consisting of 2182 cases and 3324 controls were included in this meta-analysis. For COX-2 polymorphism -1195G/A, an association with increased risk was observed under the heterogeneous, homozygous, dominant model. However, COX-2 polymorphisms (-765G/C and +8473T/C) were not related to HCC risk in this study. We also found a similar result in the subgroup analysis of Chinese population that -1195G/A polymorphism, instead of -765G/C or +8473T/C polymorphism, was correlated with the risk of HCC. CONCLUSIONS Polymorphism -1195G/A of COX-2 might be associated with susceptibility to HCC, but no similar correlations were observed between polymorphisms (-765G/C and +8473T/C) and HCC risk. Further large and well-designed studies are required to validate this association.
Collapse
Affiliation(s)
- Zhigang Chen
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, P.R.China
| | - Jiye Zhu
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, P.R.China
| | - Chaoyuan Huang
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, P.R.China
| | - Fang Lian
- Physiology Department, Guangxi Medical University, Nanning, P.R.China
| | - Guobin Wu
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, P.R.China
- * E-mail: (YNZ); (GBW)
| | - Yinnong Zhao
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, P.R.China
- * E-mail: (YNZ); (GBW)
| |
Collapse
|
22
|
Bundscherer A, Malsy M, Bitzinger D, Graf BM. [Interaction of anesthetics and analgesics with tumor cells]. Anaesthesist 2014; 63:313-25. [PMID: 24584840 DOI: 10.1007/s00101-014-2310-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The results of preclinical and clinical studies indicate that the perioperative period is a vulnerable period for cancer progression and metastasis. The risk of cancer cell dissemination is enhanced by the combination of surgical manipulation and perioperative immunosuppression. Whether the oncological outcome of cancer patients can be influenced by the choice of anesthetic techniques is still a matter of debate. This review summarizes the molecular characteristics of cancer and interaction of anesthetic and analgesic drugs with cancer cells.
Collapse
Affiliation(s)
- A Bundscherer
- Klinik für Anästhesiologie, Universitätsklinikum Regensburg, Franz Josef Strauß Allee 11, 93053, Regensburg, Deutschland,
| | | | | | | |
Collapse
|
23
|
Booth L, Roberts JL, Cruickshanks N, Grant S, Poklepovic A, Dent P. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress-inducing drugs. Mol Cancer Ther 2014; 13:2384-98. [PMID: 25103559 DOI: 10.1158/1535-7163.mct-14-0172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and also determined the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knockdown of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase-9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase-8 inhibitor c-FLIP-s, or knockdown of death receptor CD95 or the death receptor caspase-8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knockdown of the autophagy regulatory proteins Beclin1 or ATG5 protected the cells from OSU-03012 and from [OSU-03012 + PDE5 inhibitor] toxicity. Knockdown of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor]-induced JNK activation, and inhibition of JNK suppressed the elevated killing caused by IRE1 knockdown. Knockdown of CD95 blunted JNK activation. Collectively, our data demonstrate that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in glioblastoma multiforme (GBM) cells.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Nichola Cruickshanks
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
24
|
Park SB, Jee BC, Kim SH, Cho YJ, Han M. Cyclooxygenase-2 inhibitor, celecoxib, inhibits leiomyoma cell proliferation through the nuclear factor κB pathway. Reprod Sci 2014; 21:1187-95. [PMID: 25001017 DOI: 10.1177/1933719114542010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our aim was to investigate whether celecoxib, a cyclooxygenase 2 (COX-2) inhibitor, decreases the in vitro proliferation of leiomyoma cells if the inflammatory pathway is blocked. Menstruation is an inflammation of uterus that produces cytokines and prostanoids, but the inflammatory mechanism underlying the growth of leiomyoma remains unexplained. Using in vitro cultures of leiomyoma cells obtained from 5 patients who underwent hysterectomy, cell proliferation, inflammatory signaling, transcription factors, growth factors, and extracellular matrix were examined by (4,5-dimethylthiaxol-2-yi)-2,5-diphenyltetraxolium bromide assay, immunoblotting, and quantitative polymerase chain reaction. Prostaglandin E2 was used to induce menstruation-like condition in the cells. We found that celecoxib inhibited COX-2 through the expression of nuclear factor κB in the cells. Celcoxib also decreased the gene expression of interleukin 6, tumor necrosis factor α, collagen A, fibronectin, platelet-derived growth factor, epidermal growth factor, and transforming growth factor β. In conclusion, the present study indicated that celecoxib could inhibit leiomyoma cell proliferation through blocking the inflammatory pathway that is probably one of the mechanisms underlying its pathogenesis.
Collapse
Affiliation(s)
- Seung Bin Park
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Jean Cho
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Korea
| | - Myoungseok Han
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Korea
| |
Collapse
|
25
|
Cheng HH, Chou CT, Lu YC, Lu T, Chi CC, Tseng LL, Liu SI, Cheng JS, Kuo CC, Liang WZ, Jan CR. Celecoxib-induced increase in cytosolic Ca(2+) levels and apoptosis in HA59T human hepatoma cells. Hum Exp Toxicol 2014; 33:1089-98. [PMID: 24972620 DOI: 10.1177/0960327112472996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Celecoxib has been shown to have antitumor effect in previous studies but the mechanisms are unclear. The effect of celecoxib on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in HA59T human hepatoma cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. Celecoxib at concentrations of 10-50 μM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced by 80% by removing Ca(2+). Celecoxib induced Mn(2+) influx, leading to quenching of fura-2 fluorescence. Celecoxib-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin nearly abolished celecoxib-induced [Ca(2+)]i rise. Incubation with celecoxib abolished thapsigargin-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 abolished celecoxib-induced [Ca(2+)]i rise. At 1-50 μM, celecoxib inhibited cell viability by less than 20%, which was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Celecoxib (10-50 μM) also induced apoptosis. In sum, in HA59T hepatoma cells, celecoxib induced a [Ca(2+)]i rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. Celecoxib also caused cell death via apoptosis.
Collapse
Affiliation(s)
- H-H Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Y-C Lu
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Chi
- Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - L-L Tseng
- Department of Dentistry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - S-I Liu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - J-S Cheng
- Department of Medicine, Yongkang Veterans Hospital, Tainan, Taiwan
| | - C-C Kuo
- Institute of Nursing and Department of Nursing, Chang Gung Institute of Technology Chiayi Campus, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Chu TH, Chan HH, Kuo HM, Liu LF, Hu TH, Sun CK, Kung ML, Lin SW, Wang EM, Ma YL, Cheng KH, Lai KH, Wen ZH, Hsu PI, Tai MH. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN. Oncotarget 2014; 5:1475-1490. [PMID: 24721996 PMCID: PMC4039225 DOI: 10.18632/oncotarget.1745] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/28/2013] [Indexed: 12/13/2022] Open
Abstract
Celecoxib, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, can prevent several types of cancer, including hepatocellular carcinoma (HCC). Here we show that celecoxib suppressed the self-renewal and drug-pumping functions in HCC cells. Besides, celecoxib depleted CD44+/CD133+ hepatic cancer stem cells (hCSC). Prostaglandin E2 (PGE2) and CD133 overexpression did not reverse the celecoxib-induced depletion of hCSC. Also, celecoxib inhibited progression of rat Novikoff hepatoma. Moreover, a 60-day celecoxib program increased the survival rate of rats with hepatoma. Histological analysis revealed that celecoxib therapy reduced the abundance of CD44+/CD133+ hCSCs in hepatoma tissues. Besides, the hCSCs depletion was associated with elevated apoptosis and blunted proliferation and angiogenesis in hepatoma. Celecoxib therapy activated peroxisome proliferator-activated receptor γ (PPARγ) and up-regulated PTEN, thereby inhibiting Akt and disrupting hCSC expansion. PTEN gene delivery by adenovirus reduced CD44/CD133 expression in vitro and hepatoma formation in vivo. This study suggests that celecoxib suppresses cancer stemness and progression of HCC via activation of PPARγ/PTEN signaling.
Collapse
Affiliation(s)
- Tian-Huei Chu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hoi-Hung Chan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- College of Pharmacy & Health Care, Tajen University, Pingtung County, Taiwan
| | - Hsiao-Mei Kuo
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Fen Liu
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Education, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Wei Lin
- Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - E-Ming Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Ling Ma
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kwan-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kwok Hung Lai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ping-I Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
27
|
Sui W, Zhang Y, Wang Z, Wang Z, Jia Q, Wu L, Zhang W. Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H₂₂ murine hepatocarcinoma model. Oncol Rep 2014; 31:2252-60. [PMID: 24647425 DOI: 10.3892/or.2014.3093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 11/06/2022] Open
Abstract
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has recently been shown to affect the development of different types of cancer. The present study utilized a murine H22 hepatocarcinoma model to investigate the molecular mechanisms involved in celecoxib-induced inhibition of tumor angiogenesis. Tumor-bearing mice were randomly divided into five groups: i) control; ii) low-dose celecoxib (50 mg/kg); iii) high-dose celecoxib (200 mg/kg); iv) 5-fluorouracil (5-FU), (20 mg/kg) and v) combination of 5-FU and celecoxib (50 mg/kg). The antitumor effect of celecoxib was determined by measuring tumor volume. Tumor angiogenesis was evaluated by microvessel density (MVD). Tumor histology and immunostaining for CD34 in endothelial cells were performed to detect MVD. The expression levels of phosphatase and tensin homologue deleted from chromosome 10 (PTEN), phosphatidylinositol 3-kinase (PI3K), phospho‑Akt (P-Akt), COX-2, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) were detected by ELISA, immunohistochemistry and western blotting, respectively. We discovered substantial growth delay in murine H22 hepatoma as a result of celecoxib treatment. The inhibition rate of tumor growth induced by high-dose and low-dose celecoxib was 49.3 and 37.0%, respectively (P<0.05). The expression of PI3K, P-Akt, COX-2, HIF-1α, VEGF-A and PTEN in tumor tissues treated with celecoxib was demonstrated by immunohistochemistry, and the MVD was decreased in a dose-dependent manner (P<0.05). Reduced PI3K and P-Akt was particularly apparent in the high-dose celecoxib group (P<0.05). ELISA and western blotting data showed that the expression of PI3K, P-Akt, COX-2, HIF-1α and VEGF-A were reduced and PTEN was increased after treatment with celecoxib. In conclusion, the impact of celecoxib-induced tumor growth delay of murine H22 hepatocarcinoma may correlate with the inhibition of angiogenesis by reducing PI3K, P-Akt, COX-2, HIF-1α and VEGF-A expression and increasing PTEN expression in tumor tissue.
Collapse
Affiliation(s)
- Wenwen Sui
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Yueying Zhang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Zhaopeng Wang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Zhaoxia Wang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Qing Jia
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Weidong Zhang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
28
|
Impact of non-steroidal anti-inflammatory drugs on gastrointestinal cancers: current state-of-the science. Cancer Lett 2013; 345:249-57. [PMID: 24021750 DOI: 10.1016/j.canlet.2013.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022]
Abstract
Growing evidence from epidemiologic and preclinical studies suggests that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of gastrointestinal (GI) cancers, including esophageal, gastric, pancreatic, colorectal cancer, and hepatocellular carcinoma. However, there is also evidence indicating the absence of this benefit. The exact mechanism of NSAIDs' action on GI tumors is not known. Although some studies have suggested inhibition of carcinogenesis by NSAIDs through suppression effect on inflammation-associated cyclooxygenase-2 (COX-2) expression, other studies have suggested COX-2-independent mechanisms. Herein, we summarize the current state of-the-science regarding NSAID benefit for patients with GI cancers.
Collapse
|
29
|
Galant LW, de Mattos AA, Menti E, Valiatti FB, de Mattos AZ, Porawski M, Hartmann A, Rhoden CR. The effect of celecoxib on the development of diethylnitrosamine-induced liver tumors in rats. Ann Hepatol 2013; 12:425-433. [PMID: 23619259 DOI: 10.1016/s1665-2681(19)31005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma is one of the most commonly diagnosed malignant tumors in the world, and it typically has a poor prognosis. Extensive studies have examined the effects of non-steroidal anti-inflammatory drugs selective to COX-2 on the chemoprevention of various tumors. The objective of this study is to observe the effect of celecoxib on the development of liver tumors in rats. MATERIAL AND METHODS Hepatocellular carcinoma was induced in a group of 75 rats with the carcinogen diethylnitrosamine. The animals were divided into 5 groups. Three groups received various doses of celecoxib, one group received indomethacin, and a control group received no non-steroidal selective anti inflammatory drugs. RESULTS The experimental model was considered to be successful because 78% of the rats in the control group developed liver tumors. The number of neoplastic lesions was similar among the celecoxib, indomethacin and control groups, although the nodule diameter of the lesions was smaller in the celecoxib group. Better results were observed in animals that received celecoxib at doses of 6 and 9 mg/kg/ day; 4 rats in these groups did not show any neoplastic histological lesions, and a greater proportion of the nodules in the other animals in these groups were benign than in the groups that did not use celecoxib. CONCLUSIONS These results suggest that celecoxib may play a role in modifying the natural history of hepatocellular carcinoma development.
Collapse
MESH Headings
- Animals
- Anticarcinogenic Agents/pharmacology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Celecoxib
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Diethylnitrosamine
- Indomethacin/pharmacology
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/enzymology
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Male
- Pyrazoles/pharmacology
- Rats
- Sulfonamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Larissa Widholzer Galant
- Serviço de Gastroenterologia da Irmandade Santa Casa de Misericórdia de Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Valle BL, D'Souza T, Becker KG, Wood WH, Zhang Y, Wersto RP, Morin PJ. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells. PLoS One 2013; 8:e61836. [PMID: 23637916 PMCID: PMC3634839 DOI: 10.1371/journal.pone.0061836] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
Epidemiological studies have shown that the regular use of non-steroidal anti-inflammatory (NSAIDs) drugs is associated with a reduced risk of various cancers. In addition, in vitro and experiments in mouse models have demonstrated that NSAIDs decrease tumor initiation and/or progression of several cancers. However, there are limited preclinical studies investigating the effects of NSAIDs in ovarian cancer. Here, we have studied the effects of two NSAIDs, diclofenac and indomethacin, in ovarian cancer cell lines and in a xenograft mouse model. Diclofenac and indomethacin treatment decreased cell growth by inducing cell cycle arrest and apoptosis. In addition, diclofenac and indomethacin reduced tumor volume in a xenograft model of ovarian cancer. To identify possible molecular pathways mediating the effects of NSAID treatment in ovarian cancer, we performed microarray analysis of ovarian cancer cells treated with indomethacin or diclofenac. Interestingly, several of the genes found downregulated following diclofenac or indomethacin treatment are transcriptional target genes of E2F1. E2F1 was downregulated at the mRNA and protein level upon treatment with diclofenac and indomethacin, and overexpression of E2F1 rescued cells from the growth inhibitory effects of diclofenac and indomethacin. In conclusion, NSAIDs diclofenac and indomethacin exert an anti-proliferative effect in ovarian cancer in vitro and in vivo and the effects of NSAIDs may be mediated, in part, by downregulation of E2F1.
Collapse
Affiliation(s)
- Blanca L. Valle
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Theresa D'Souza
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Research Resources Branch, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - William H. Wood
- Research Resources Branch, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Research Resources Branch, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - Robert P. Wersto
- Research Resources Branch, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - Patrice J. Morin
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Bai X, Wang J, Zhang L, Ma J, Zhang H, Xia S, Zhang M, Ma X, Guo Y, Rong R, Cheng S, Shu W, Wang Y, Leng J. Prostaglandin E₂ receptor EP1-mediated phosphorylation of focal adhesion kinase enhances cell adhesion and migration in hepatocellular carcinoma cells. Int J Oncol 2013; 42:1833-41. [PMID: 23525457 DOI: 10.3892/ijo.2013.1859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/04/2013] [Indexed: 12/20/2022] Open
Abstract
The prostaglandin E₂ (PGE₂) EP1 receptor has been implicated in hepatocellular carcinoma (HCC) cell invasion. However, little is known about the mechanisms of EP1 receptor-mediated cell adhesion and migration. We previously showed that PGE₂ promotes cell adhesion and migration by activating focal adhesion kinase (FAK). The present study was designed to elucidate the association between the EP1 receptor and FAK activation in HCC cells and to investigate the related signaling pathways. The effects of PGE₂, EP1 agonist 17-phenyl trinor-PGE₂ (17-PT-PGE₂), PKC and EGFR inhibitors on FAK activation were investigated by treatment of Huh-7 cells. Phosphorylation of FAK Y397 and c-Src Y416 was investigated by western blotting. Cell adhesion and migration were analyzed by WST and transwell assays, respectively. Protein kinase C (PKC) activity was measured with a PKC assay kit. The results showed that 17-PT-PGE₂ (3 µM) increased FAK Y397 phosphorylation by more than 2-fold and promoted cell adhesion and migration in Huh-7 cells. In transfected 293 cells, expression of the EP1 receptor was confirmed to upregulate FAK phosphorylation, while the EP1 receptor antagonist sc-19220 decreased PGE₂-mediated FAK activation. PKC activity and c-Src Y416 phosphorylation were enhanced after 17-PT-PGE₂ treatment. Both PKC and c-Src inhibitor suppressed the 17-PT-PGE₂-upregulated FAK phosphorylation, as well as 17-PT-PGE₂-induced cell adhesion and migration. In addition, exogenous epidermal growth factor (EGF) treatment increased FAK phosphorylation. The EGF receptor (EGFR) inhibitor also suppressed 17-PT-PGE₂-upregulated FAK phosphorylation. Our study suggests that the PGE₂ EP1 receptor regulates FAK phosphorylation by activating the PKC/c-Src and EGFR signal pathways, which may coordinately regulate adhesion and migration in HCC.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sticozzi C, Belmonte G, Cervellati F, Di Capua A, Maioli E, Cappelli A, Giordani A, Biava M, Anzini M, Valacchi G. Antiproliferative effect of two novel COX-2 inhibitors on human keratinocytes. Eur J Pharm Sci 2013; 49:133-41. [PMID: 23454135 DOI: 10.1016/j.ejps.2013.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022]
Abstract
Selective COX-2 inhibitors (COXib) belonging to the class of diaryl heterocycles (e.g., celecoxib, rofecoxib, etc.), are devoid of the undesirable effects due to their capacity to inhibit selectively inducible (COX-2), responsible for inflammatory effects but not constitutive cyclooxygenase-1 (COX-1)(COX); responsible for cytoprotective effects on gastric mucosa. In addition, several reports have identified an increased risk of cardiovascular events associated with the use of COXib. We have developed a new series of anti-inflammatory agents (1,5-diarylpyrrole-3-alkoxyethyl esters and ethers). To evaluate the effect of two 1,5-diarylpyrrole-3-alkoxyethyl ethers, VA441 and VA428 (up to 100 μM), respectively, in comparison with two well known COXib, celecoxib and rofecoxib, on HaCaT cell (keratinocytes) proliferation and toxicity. Crucial molecules in cell cycle progression, i.e. NFκB and ERK as targets/mediators and cyclin D1 and p21 Cip1/Kip as final effectors were evaluated by Western blot, immunohystochemistry and q-PCR analysis. Both compounds, VA441 and VA428, showed a strong inhibition of cell proliferation, and did not exhibit cytotoxicity. The anti-proliferative effect was accompanied by a strong activation of ERK and induction of the cell cycle inhibitor p21. In addition, there was a clear inhibition of the transcription factor NF-κB and downregulation of cyclin D1, with enforced inhibition of the HaCaT cell cycle progression. These data suggest that compounds VA441 and VA428, along with their role in inhibiting COX-2 and inflammation, could have a possible therapeutic (topical and systemic) use against skin proliferative disorders, such as psoriasis.
Collapse
Affiliation(s)
- Claudia Sticozzi
- Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Booth L, Cruickshanks N, Ridder T, Chen CS, Grant S, Dent P. OSU-03012 interacts with lapatinib to kill brain cancer cells. Cancer Biol Ther 2012; 13:1501-11. [PMID: 22990204 DOI: 10.4161/cbt.22275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have further defined mechanism(s) by which the drug OSU-03012 (OSU) kills brain cancer cells. OSU toxicity was enhanced by the HSP90 inhibitor 17-N-Allylamino-17-demethoxygeldanamycin (17AAG) that correlated with reduced expression of ERBB1 and ERBB2. Inhibition of the extrinsic apoptosis pathway blocked the interaction between 17AAG and OSU. OSU toxicity was enhanced by the inhibitor of ERBB1/2/4, lapatinib. Knock down of ERBB1/2/4 in a cell line specific fashion promoted OSU toxicity. Combined exposure of cells to lapatinib and OSU resulted in reduced AKT and ERK1/2 activity; expression of activated forms of AKT and to a lesser extent MEK1 protected cells from the lethal effects of the drug combination. Knock down of PTEN suppressed, and expression of PTEN enhanced, the lethal interaction between OSU and lapatinib. Downstream of PTEN, inhibition of mTOR recapitulated the effects of lapatinib. Knock down of CD95, NOXA, PUMA, BIK or AIF, suppressed lapatinib and OSU toxicity. Knock down of MCL-1 enhanced, and overexpression of MCL-1 suppressed, drug combination lethality. Lapatinib and OSU interacted in vivo to suppress the growth of established tumors. Collectively our data argue that the inhibition of ERBB receptor function represents a useful way to enhance OSU lethality in brain tumor cells.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ota Y, Imai T, Hasumura M, Cho YM, Takami S, Oyamada T, Hirose M, Nishikawa A, Ogawa K. Prostaglandin synthases influence thyroid follicular cell proliferation but not carcinogenesis in rats initiated with N-bis(2-hydroxypropyl)nitrosamine. Toxicol Sci 2012; 127:339-47. [PMID: 22387750 DOI: 10.1093/toxsci/kfs097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To clarify roles of prostaglandin synthases in rat thyroid follicular carcinogenesis, effects of an antithyroid agent, sulfadimethoxine (SDM), and two prostaglandin H synthase (COX) inhibitors, indomethacin and nimesulide, on prostaglandin synthase expression, follicular cell proliferation, and tumor induction in thyroids of rats with or without N-bis(2-hydroxypropyl)nitrosamine (DHPN) initiation were examined. In experiment 1, F344 male rats were allowed free access to drinking water containing SDM (0.1%), SDM + indomethacin (0.0025% in diet), or SDM + nimesulide (0.04% in diet) for 4 weeks. Both COX inhibitors suppressed goitrogenic activity of SDM, but they did not significantly affect microsomal prostaglandin E synthase-2 (mPGES-2) expression levels enhanced by SDM. In experiment 2, all rats received an injection of DHPN (2800 mg/kg body weight), and starting 1 week later, they were treated as in experiment 1 for 4 or 10 weeks. Cell proliferation was suppressed or showed a tendency for suppression by the COX inhibitors in the follicular preneoplastic/neoplastic lesions and surrounding parenchyma, and this was obviously thyroid stimulating hormone independent at least at week 4. However, neither of the COX inhibitors altered the incidence or multiplicity of preneoplastic/neoplastic lesions. Immunohistochemistry revealed significant reduction and elevation of COX-2 and mPGES-2 expression, respectively, in the lesions, but these were also not changed by the COX inhibitors. These results suggest that COX-2 and PGES, and in turn PGE(2), might play important roles in follicular cell proliferation but do not affect tumor induction in this rat thyroid carcinogenesis model. Further studies are needed to clarify the significance of the reduction of COX-2 expression in preneoplastic/neoplastic lesions.
Collapse
Affiliation(s)
- Yoshio Ota
- Division of Pathology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Khan MNA, Lee YS. Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med Res Rev 2011; 31:161-201. [PMID: 19967720 DOI: 10.1002/med.20182] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exert their effect by inhibition of cyclooxygenase-1 (COX-1) as well as COX-2 enzymes. As COX-1 is responsible for maintaining normal biological functions, the nonselective inhibition of these enzymes caused side effects including gastrointestinal (GI) problems. Recently developed selective COX-2 inhibitors could reduce these adverse effects, but the evidence of cardiovascular side effects including an increased risk of myocardial infarction began to emerge, and some of the COX-2 inhibitors were eventually withdrawn from the market and this led to the downfall of this research. So, the discovery of novel COX-2 inhibitors with their safety profile became the biggest challenge in pharmaceutical research. However, recent mechanistic and clinical studies revolutionized this area by indicating the fact that COX-2 is involved in apoptosis resistance, angiogenesis, and tumor progression. Epidemiological data suggest that selective COX-2 inhibitors might prevent the development of cancers. Moreover, COX-2 is found to be overexpressed in many cancers thus making it an attractive therapeutic target for the prevention and treatment of a number of malignancies. The purpose of this review is to focus on the medicinal chemistry aspects of COX-2 inhibitors in cancer chemotherapy and recent reports on these inhibitors as anticancer agents. We attempted to cover only the COX inhibitors that showed anticancer activity, although a number of potent COX-2 inhibitors have been reported without their anticancer effects. Furthermore, structure-activity relationships (SAR) of different classes of compounds for COX-2 inhibition as well as anticancer activity, and their future applications are discussed.
Collapse
Affiliation(s)
- Mohammed Naseer A Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea
| | | |
Collapse
|
36
|
Reed S, Li H, Li C, Lin J. Celecoxib inhibits STAT3 phosphorylation and suppresses cell migration and colony forming ability in rhabdomyosarcoma cells. Biochem Biophys Res Commun 2011; 407:450-5. [PMID: 21397587 DOI: 10.1016/j.bbrc.2011.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/26/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in the pediatric and adolescent population. Though treatments for localized disease have reasonable long-term success rates, if disease is diffuse at diagnosis, outcomes are far poorer. Additional and/or alternative therapies are critical for improved clinical outcomes. One potentially therapeutic target is the signal transducer and activator of transcription 3 (STAT3) pathway. STAT3 has been shown to have constitutive activation in human rhabdomyosarcoma cells; thus, inhibition of STAT3 signaling may be a mechanism to induce tumor cell death. Celecoxib has been shown, by computer modeling, to bind STAT3 at the SH2 domain and competitively inhibit native peptide binding necessary for phosphorylation and subsequent propagation of the STAT3 signaling cascade. We found that celecoxib inhibits IL-6-induced and persistent STAT3 phosphorylation and inhibits cell viability in human rhabdomyosarcoma cells. We found that genes downstream of STAT3 (BCL-2, survivin, cyclin D1) were downregulated with celecoxib. Celecoxib also inhibits colony formation and cell migration. Our results suggest that, though known more commonly as a cyclooxygenase-2 (COX-2) inhibitor, celecoxib could act through the STAT3 pathway as well. More importantly, its effect on cell migration and clonogenic colony forming ability make it a potentially useful therapeutic agent for rhabdomyosarcoma, especially in metastatic disease whose clinical outcome is marginal at best with current therapies.
Collapse
Affiliation(s)
- Suzanne Reed
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, The Ohio State University, College of Medicine, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
37
|
Xu Z, Zhang M, Lv X, Xiang D, Zhang X, Chen L. The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway. Biochem Cell Biol 2010; 88:603-9. [PMID: 20651831 DOI: 10.1139/o09-184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Celecoxib is a selective inhibitor of cyclooxygenase-2 (COX-2). It may reduce the risk of cancer formation by affecting the metabolism of arachidonic acid (AA), which has been implicated in the development of cancer. Accordingly, this study was designed to determine the effects of celecoxib on the AA pathway in mouse hepatoma H22 cells. Celecoxib was found to inhibit the proliferation of H22 cells in a dose- and time-dependent manner. Low doses (50 and 100 micromol.L-1) of celecoxib caused an increase in the expression of cytosolic phospholipase A2 (cPLA2), but did not affect the expression of COX-2 in terms of the mRNA and protein levels. Surprisingly, the amount of AA was elevated and the level of prostaglandin E2 (PGE2) was unaltered in the culture supernatant. At higher celecoxib doses (200 and 400 micromol.L-1), the mRNA and protein of both COX-2 and cPLA2 were inhibited. The concentration of AA was increased, and PGE2 level was depressed in H22 cells. The ratio of AA to PGE2 was increased in a dose-dependent manner. Our findings suggest that the imbalance between AA and PGE2, characterized by increased AA at a low dosage and decreased PGE2 at a high dosage of celecoxib, was an important indicator of cytotoxicity of celecoxib on H22 cells.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Pharmacology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | |
Collapse
|
38
|
Gao J, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ge YS, Yu JH, Ren WH, Liu WB, Zhang CH. Combined inhibitory effects of celecoxib and fluvastatin on the growth of human hepatocellular carcinoma xenografts in nude mice. J Int Med Res 2010; 38:1413-27. [PMID: 20926014 DOI: 10.1177/147323001003800423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was designed to investigate the in vivo growth inhibitory effects of celecoxib, a cyclo-oxygenase-2 inhibitor, and fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on the hepatocellular carcinoma (HCC) cell line, BEL-7402. Athymic nude mice implanted with BEL-7402 cells were given celecoxib and fluvastatin, either alone or in combination, and the effect of treatment on tumour growth was evaluated after 6 weeks. The combination of celecoxib and fluvastatin enhanced inhibition of tumour growth, induction of apoptosis, inhibition of tumour cell proliferation, and inhibition of tumour angiogenesis compared with either treatment alone. The combination of celecoxib and fluvastatin also increased levels of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1), decreased levels of p-Akt, myeloid cell leukaemia-1 (Mcl-1) and survivin protein, but had no effect on Akt protein levels in tumours. These results suggest that celecoxib combined with fluvastatin would be more efficacious for the treatment of HCC than either treatment alone and this combination of therapy warrants further research.
Collapse
Affiliation(s)
- J Gao
- Centre for the Study of Liver Cancer, and Department of Hepatic Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen J, Ran Y, Hong C, Chen Z, You Y. Anti-cancer effects of celecoxib on nasopharyngeal carcinoma HNE-1 cells expressing COX-2 oncoprotein. Cytotechnology 2010; 62:431-8. [PMID: 20809260 PMCID: PMC2993866 DOI: 10.1007/s10616-010-9296-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 07/29/2010] [Indexed: 02/05/2023] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor with antitumor and antiangiogenic activities. To investigate the effects of celecoxib on nasopharyngeal carcinoma (NPC), HNE-1 cells were treated with celecoxib at various concentrations. MTT assay, migration assay and invasion assay were performed to observe the inhibitory activity of celecoxib on HNE-1 cells. Additionally, VEGF-A expression and radiation survival of NPC cell were also examined after treatment with celecoxib. Celecoxib treatment presented an anti-proliferation function in a time and dose-dependent manner on HNE-1 cells which highly express COX-2 protein. Celecoxib also displayed an obvious inhibitory activity on invasive capacity of NPC cells. Moreover, the celecoxib's effects to suppress VEGF-A expression and enhance radiosensitivity were detected in HNE-1 cells. These findings implicate that application of celecoxib may be an effective strategy for NPC therapy.
Collapse
Affiliation(s)
- Jiongyu Chen
- Tumor Research Lab, Cancer Hospital of Shantou University Medical College, 515041 Shantou, People’s Republic of China
| | - Yonggang Ran
- Bethune Military Medical College of PLA, 050000 Shijiazhuang, People’s Republic of China
| | - Chaoqun Hong
- Tumor Research Lab, Cancer Hospital of Shantou University Medical College, 515041 Shantou, People’s Republic of China
| | - Zhijian Chen
- Tumor Research Lab, Cancer Hospital of Shantou University Medical College, 515041 Shantou, People’s Republic of China
| | - Yanjie You
- Tumor Research Lab, Cancer Hospital of Shantou University Medical College, 515041 Shantou, People’s Republic of China
- Cancer Research Center, Medical College of Shantou University, 515041 Shantou, People’s Republic of China
| |
Collapse
|
40
|
Park SW, Kim HS, Hah JW, Jeong WJ, Kim KH, Sung MW. Celecoxib inhibits cell proliferation through the activation of ERK and p38 MAPK in head and neck squamous cell carcinoma cell lines. Anticancer Drugs 2010; 21:823-30. [DOI: 10.1097/cad.0b013e32833dada8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Knopfová L, Smarda J. The use of Cox-2 and PPARγ signaling in anti-cancer therapies. Exp Ther Med 2010; 1:257-264. [PMID: 22993537 DOI: 10.3892/etm_00000040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023] Open
Abstract
Increased production of the pro-inflammatory enzyme cyclooxygenase-2 (Cox-2) and altered expression and activity of peroxisome proliferator-activated receptor γ (PPARγ) have been observed in many malignancies. Both the PPARγ ligands and the Cox-2 inhibitors possess anti-inflammatory and anti-neoplastic effects in vitro and have been assessed for their therapeutic potential in several pre-clinical and clinical studies. Recently, multiple interactions between PPARγ and Cox-2 signaling pathways have been revealed. Understanding of the cross-talk between PPARγ and Cox-2 might provide important novel strategies for the effective treatment and/or prevention of cancer. This article summarizes recent achievements involving the functional interactions between the PPARγ and Cox-2 signaling pathways and discusses the implications of such interplay for clinical use.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | | |
Collapse
|
42
|
Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sci 2009; 86:214-23. [PMID: 20035770 DOI: 10.1016/j.lfs.2009.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 11/30/2009] [Accepted: 12/11/2009] [Indexed: 02/07/2023]
Abstract
AIMS Cyclooxygenase-2 (COX-2)-controlled production of prostaglandin E(2) (PGE(2)) has been implicated in cell growth and metastasis in many cancers. Recent studies have found that COX-2 is co-expressed with survivin in many cancers. Survivin is a member of the inhibitor-of-apoptosis protein family. Some COX-2 inhibitors (e.g., celecoxib) can reduce the expression of survivin. However, little is known about the mechanism of PGE(2)-mediated expression of survivin. This study was designed to uncover the effect of PGE(2) on survivin expression in hepatocellular carcinoma cells. MAIN METHODS The effects of PGE(2) and EP1 agonist on survivin expression were examined in HUH-7 and HepG2 cells. Plasmid transfection and EP1 siRNA were used to regulate the expression of COX-2 and the EP1 receptor protein. KEY FINDINGS PGE(2) treatment increased survivin expression 2.3-fold. COX-2 overexpression resulted in a similar level of survivin upregulation. However, this effect was suppressed by treatment with celecoxib. EP1 receptor transfection or treatment with a selective EP1 agonist mimicked the effect of PGE(2) treatment. Conversely, the PGE(2)-induced upregulation of survivin was blocked by treatment with a selective EP1 antagonist or siRNA against the EP1 receptor. The phosphorylation of EGFR and Akt were elevated in EP1 agonist-treated cells, and both EGFR and PI3K inhibitors suppressed the upregulation of survivin induced by PGE(2) or EP1 agonist. SIGNIFICANCE PGE(2) regulates survivin expression in hepatocellular carcinoma cells through the EP1 receptor by activating the EGFR/PI3K pathway. Targeting the PGE(2)/EP1/survivin signaling pathway may aid the development of new therapeutic strategies for both the prevention and treatment of this cancer.
Collapse
|
43
|
Xie H, Gao L, Chai N, Song J, Wang J, Song Z, Chen C, Pan Y, Zhao L, Sun S, Wu K, Feitelson MA, Liu J, Fan D. Potent cell growth inhibitory effects in hepatitis B virus X protein positive hepatocellular carcinoma cells by the selective cyclooxygenase-2 inhibitor celecoxib. Mol Carcinog 2009; 48:56-65. [PMID: 18506760 DOI: 10.1002/mc.20455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) and cyclooxygenase-2 (COX-2) are all playing roles in hepatocellular carcinoma (HCC), but the reversing effects of COX-2 inhibitors on the neoplastic features caused by HBx protein is still unclear. To further evaluate the therapeutic potential of celecoxib on HBx mediated transformation, HCC cells transfected with HBx gene were treated with COX-2 selective inhibitor, celecoxib. The amount the main metabolite of COX-2, prostaglandin E2 (PGE2), was determined by using high sensitivity ELISA. Electron microscope and flow cytometry was used to analyze cell apoptosis and cell cycle distribution. RT-PCR and Western blot were used to identify the molecules involved in celecoxib induced cell apoptosis. The results showed that celecoxib inhibited cell growth more significantly and also induced more cell apoptosis in HBx over-expression cells than in control cells. Celecoxib could selectively inhibited COX-2 expression and PGE2 production. Celecoxib also inhibited p(473Ser)Akt, raf and p53 expression, and induced apoptosis by release of cytochrome c and activation of caspase 9, 3, and 6, which were more remarkably in HBx positive cells than in control cells. These results suggest that celecoxib had potent cell growth inhibitory effects on HBx positive HCC cells mainly through inducing more cell apoptosis, and these findings provide a new insight into the anticancer effects of celecoxib against HBx related HCC.
Collapse
Affiliation(s)
- Huahong Xie
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Johansson AS, Pawelzik SC, Larefalk A, Jakobsson PJ, Holmberg D, Lindskog M. Lymphoblastic T-cell lymphoma in mice is unaffected by Celecoxib as single agent or in combination with cyclophosphamide. Leuk Lymphoma 2009; 50:1198-203. [PMID: 19557641 DOI: 10.1080/10428190902946930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Celecoxib, an inhibitor of cyclooxygenase-2, is a promising novel antitumor agent with pleitropic mechanisms of action. Whereas this drug induces growth arrest and apoptosis of B-lymphoma cells, its effect against aggressive T-cell neoplasms remains to be studied. We therefore evaluated Celecoxib therapy of immunocompetent mice transplanted with lymphoblastic T-cell lymphomas. Oral Celecoxib in clinically relevant and non-toxic doses did not affect the degree of hypersplenism or the number of viable lymphoma cells. The clinical deterioration of Celecoxib-treated mice was not different from untreated controls. The impact of adding Celecoxib (60 mg/kg) to cyclophosphamide (200 mg/kg x 1, i.p.) was assessed but showed no benefit compared to cyclophosphamide alone. Thus, Celecoxib lacks effect against lymphoblastic T-cell lymphoma in mice.
Collapse
|
45
|
Cui W, Gu F, Hu KQ. Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World J Gastroenterol 2009; 15:1943-1950. [PMID: 19399925 PMCID: PMC2675083 DOI: 10.3748/wjg.15.1943] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/16/2009] [Accepted: 03/23/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the in vivo effects and mechanisms of silibinin on the growth of hepatocellular carcinoma (HCC) xenografts in nude mice. METHODS Nude mice bearing HuH7 xenografts were used to assess the anti-HCC effects and mechanisms of silibinin. RESULTS Silibinin resulted in a potent dose-dependent reduction of HuH7 xenografts in association with a significant decrease in Ki-67 and alpha-fetoprotein production, nuclear NF-kappaB content, polo-like kinase 1, Rb phosphorylation, and E2F1/DP1 complex, but increased p27/CDK4 complex and checkpoint kinase 1 expression, suggesting that the in vivo effects of silibinin are mediated by inhibiting G1-S transition of the cell cycle. Silibinin-induced apoptosis of HuH7 xenografts was associated with inhibited survivin phosphorylation. Silibinin-reduced growth of HuH7 xenografts was associated with decreased p-ERK, increased PTEN expression and the activity of silibinin was correlated with decreased p-Akt production, indicating involvement of PTEN/PI(3)K/Akt and ERK pathways in its in vivo anti-HCC effects. Silibinin-reduced growth of HuH7 xenografts was also associated with a significant increase in AC-H3 and AC-H4 expression and the production of superoxide dismutase (SOD)-1. CONCLUSION Silibinin reduces HCC xenograft growth through the inhibition of cell proliferation, cell cycle progression and PTEN/P-Akt and ERK signaling, inducing cell apoptosis, and increasing histone acetylation and SOD-1 expression.
Collapse
|
46
|
Maussang D, Langemeijer E, Fitzsimons CP, Stigter-van Walsum M, Dijkman R, Borg MK, Slinger E, Schreiber A, Michel D, Tensen CP, van Dongen GAMS, Leurs R, Smit MJ. The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 2009; 69:2861-9. [PMID: 19318580 DOI: 10.1158/0008-5472.can-08-2487] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human cytomegalovirus (HCMV), potentially associated with the development of malignancies, encodes the constitutively active chemokine receptor US28. Previously, we have shown that US28 expression induces an oncogenic phenotype both in vitro and in vivo. Microarray analysis revealed differential expression of genes involved in oncogenic signaling in US28-expressing NIH-3T3 cells. In particular, the expression of cyclooxygenase-2 (COX-2), a key mediator of inflammatory diseases and major determinant in several forms of cancer, was highly up-regulated. US28 induced increases in COX-2 expression via activation of nuclear factor-kappaB, driving the production of vascular endothelial growth factor. Also, in HCMV-infected cells, US28 contributed to the viral induction of COX-2. Finally, the involvement of COX-2 in US28-mediated tumor formation was evaluated using the COX-2 selective inhibitor Celecoxib. Targeting COX-2 in vivo with Celecoxib led to a marked delay in the onset of tumor formation in nude mice injected with US28-transfected NIH-3T3 cells and a reduction of subsequent growth by repressing the US28-induced angiogenic activity. Hence, the development of HCMV-related proliferative diseases may partially be ascribed to the ability of US28 to activate COX-2.
Collapse
Affiliation(s)
- David Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fatima N, Yi M, Ajaz S, Stephens RM, Stauffer S, Greenwald P, Munroe DJ, Ali IU. Altered gene expression profiles define pathways in colorectal cancer cell lines affected by celecoxib. Cancer Epidemiol Biomarkers Prev 2008; 17:3051-61. [PMID: 18957522 DOI: 10.1158/1055-9965.epi-08-0261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well established that celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2) and a tested chemopreventive agent, has several COX-2-independent activities. In an attempt to better understand COX-2-independent molecular mechanisms underlying the chemopreventive activity of celecoxib, we did global transcription profiling of celecoxib-treated COX-2-positive and COX-2-deficient colorectal cancer cell lines. Celecoxib treatment resulted in significantly altered expression levels of over 1,000 to 3,000 transcripts in these cell lines, respectively. A pathway/functional analysis of celecoxib-affected transcripts, using Gene Ontology and Biocarta Pathways and exploring biological association networks, revealed that celecoxib modulates expression of numerous genes involved in a variety of cellular processes, including metabolism, cell proliferation, apoptotic signaling, cell cycle check points, lymphocyte activation, and signaling pathways. Among these processes, cell proliferation and apoptotic signaling consistently ranked as the highest-scoring Gene Ontology terms and Biocarta Pathways in both COX-2 expresser and nonexpresser cell lines. Altered expression of many of the genes by celecoxib was confirmed by quantitative PCR and at the protein level by Western blotting. Many novel genes emerged from our analysis of global transcription patterns that were not previously reported to be affected by celecoxib. In the future, in-depth work on selected genes will determine if these genes may serve as potential molecular targets for more effective chemopreventive strategies.
Collapse
Affiliation(s)
- Naheed Fatima
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cui W, Hu SX, Tang ZY, Hu KQ. In-vivo effects and mechanisms of celecoxib-reduced growth of cyclooxygenase-2 (COX-2)-expressing versus COX-2-deleted human HCC xenografts in nude mice. Anticancer Drugs 2008; 19:891-897. [PMID: 18766003 DOI: 10.1097/cad.0b013e32830ef8ca] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously reported that celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, suppresses growth of human hepatocellular carcinoma (HCC) cells through both COX-2 dependence and independence. Recently, we established COX-2-deleted human HCC cells, C2D-HuH7, and C2D-HuH7-bearing nude mice. Using this novel model, we examined the pharmacological effects and mechanisms of celecoxib on in-vivo growth of HCC xenografts in relation to COX-2 expression. After treatment with celecoxib, the mice bearing HuH7 or C2D-HuH7 xenografts were assessed for the pharmacological effects and mechanisms of celecoxib on HCC xenograft growth in relation to COX-2 expression. Celecoxib resulted in an effective and comparable growth reduction of both COX-2-expressing and COX-2-deleted HuH7 xenografts in association with decreased Ki-67 expression. These results demonstrated celecoxib's COX-2-independent in-vivo anti-HCC effects. Celecoxib increased peroxisome proliferator-activated receptor gamma predominantly in HuH7 xenografts, indicating its COX-2 dependency. Celecoxib reduced p-Rb and DP1/E2F1 complex predominantly via upregulated p21/CDK4 complex in HuH7 xenograft, but p27/CDK4 complex in C2D-HuH7 xenografts. The effects of celecoxib on phosphatase and tensin homolog deleted on chromosome ten/PI3K/Akt signaling were COX-2 independent, but its effects on extracellular-regulated kinase signaling seemed COX-2 dependent. In addition, the effects of celecoxib on AC-H3, AC-H4, and histone deacetylase 2 could be both COX-2 dependent and independent. In conclusion, celecoxib suppresses growth of HuH7 xenografts regardless of COX-2 expression, which may be mediated through different signaling.
Collapse
Affiliation(s)
- Wei Cui
- Division of Gastroenterology and Hepatology, University of California, Irvine Medical Center, Orange, CA, USA
| | | | | | | |
Collapse
|
49
|
Park MA, Yacoub A, Rahmani M, Zhang G, Hart L, Hagan MP, Calderwood SK, Sherman MY, Koumenis C, Spiegel S, Chen CS, Graf M, Curiel DT, Fisher PB, Grant S, Dent P. OSU-03012 stimulates PKR-like endoplasmic reticulum-dependent increases in 70-kDa heat shock protein expression, attenuating its lethal actions in transformed cells. Mol Pharmacol 2008; 73:1168-84. [PMID: 18182481 PMCID: PMC2674576 DOI: 10.1124/mol.107.042697] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have further defined mechanism(s) by which 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide [OSU-03012 (OSU)], a derivative of the cyclooxygenase-2 (COX2) inhibitor celecoxib but lacking COX2 inhibitory activity, kills transformed cells. In cells lacking expression of protein kinase R-like endoplasmic reticulum kinase (PERK(-/-)), the lethality of OSU was attenuated. OSU enhanced the expression of Beclin 1 and ATG5 and cleavage of pro-caspase 4 in a PERK-dependent fashion and promoted the Beclin 1- and ATG5-dependent formation of vacuoles containing LC3, followed by a subsequent caspase 4-dependent cleavage of cathepsin B and a cathepsin B-dependent formation of low pH intracellular vesicles; cathepsin B was activated and released into the cytosol and genetic suppression of caspase 4, cathepsin B, or apoptosis-inducing factor function significantly suppressed cell killing. In parallel, OSU caused PERK-dependent increases in 70-kDa heat shock protein (HSP70) expression and decreases in 90-kDa heat shock protein (HSP90) and Grp78/BiP expression. Changes in HSP70 expression were post-transcriptional. Knock-down or small-molecule inhibition of HSP70 expression enhanced OSU toxicity, and overexpression of HSP70 suppressed OSU-induced low pH vesicle formation and lethality. Our data demonstrate that OSU-03012 causes cell killing that is dependent on PERK-induced activation of multiple toxic proteases. OSU-03012 also increased expression of HSP70 in a PERK-dependent fashion, providing support for the contention that OSU-03012-induced PERK signaling promotes both cell survival and cell death processes.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Biochemistry, 401 College Street, Massey Cancer Center, Room 280a, Box 980035, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Senzaki M, Ishida S, Yada A, Hanai M, Fujiwara K, Inoue SI, Kimura T, Kurakata S. CS-706, a novel cyclooxygenase-2 selective inhibitor, prolonged the survival of tumor-bearing mice when treated alone or in combination with anti-tumor chemotherapeutic agents. Int J Cancer 2008; 122:1384-90. [PMID: 18027868 DOI: 10.1002/ijc.23250] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potent chemopreventive activity of cyclooxygenase-2 (COX-2) inhibitors has been demonstrated in a number of preclinical studies, but their potency in antitumor activity is still in dispute. In this report, we demonstrate the potent antitumor activity of a novel COX-2 inhibitor, CS-706 in mouse colorectal adenocarcinoma colon 26 tumor-bearing mice treated with or without antitumor chemotherapeutic agents. Daily oral administration of CS-706 at doses of 3-100 mg/kg from the day of tumor inoculation (Day 0) inhibited tumor growth dose-dependently, and the maximal inhibition was 67% at a dose of 100 mg/kg. In contrast, celecoxib, a well-known COX-2 inhibitor, did not inhibit tumor growth at doses up to 100 mg/kg. Furthermore, CS-706 at a dose of 1 mg/kg or above markedly prolonged the survival time of tumor-bearing mice. Administration of 30 mg/kg CS-706 from Day 7 combined with a single intravenous treatment of 10 mg/kg cisplatin on Day 7 completely regressed the tumors in all tumor-bearing mice examined, whereas only in 1 of 10 mice tumor was regressed with cisplatin treatment. Similar combination effects were observed with 10 mg/kg CS-706 and 60 mg/kg 5-fluorouracil (5-FU). Moreover, 10 mg/kg CS-706 significantly inhibited angiogenesis induced by implanted chambers with colon 26 cells in a dorsal air sac assay in mice. Collectively, these results suggest that CS-706 is a potent antitumor agent, especially in combination with conventional chemotherapeutic agents, and that the anti-angiogenic activity of CS-706 may contribute at least in part to its marked antitumor activity.
Collapse
Affiliation(s)
- Michiyo Senzaki
- Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|