1
|
Chavarriaga J, Penn LZ, Khurram N, Lajkosz K, Longo J, Chen E, Fleshner N, van der Kwast T, Hamilton RJ. Statin Concentration in Prostatic Tissue is Subtype- and Dose-dependent. Urology 2024:S0090-4295(24)00760-X. [PMID: 39222671 DOI: 10.1016/j.urology.2024.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate for the first time, comparative serum and prostate tissue concentrations of lipophilic and hydrophilic statins. METHODS After reviewing all patients who underwent radical prostatectomy between 1993 and 2019, we selected 80 patients taking atorvastatin (lipophilic) or rosuvastatin (hydrophilic) for cholesterol control and with available banked fresh-frozen tissue from the prostatectomy. Primary endpoint was serum and prostate statin concentration measured by HPLC-mass spectrometry analysis. Serum/prostate statin concentrations were compared between patients on atorvastatin and rosuvastatin, and patients receiving high- and low-dose statin, using the Mann-Whitney U test. RESULTS In total, 39 patients were taking atorvastatin and 41 were taking rosuvastatin. Thirty-eight and 42 were taking high- and low-dose statin, respectively. Statin concentration was measurable in the prostatic tissue of 15 patients (38.4%) taking atorvastatin (33.3% high-dose vs 42.8% low-dose) compared to 22 (53.6%) taking rosuvastatin (55% high-dose vs 52.3% low-dose). Median tissue concentration of rosuvastatin was greater than atorvastatin (3.98 ng/g vs 0.96 ng/g, P <.001). Dose-dependency was observed: median prostate concentration was higher in those taking high-dose versus low-dose statin for both atorvastatin (1.22 ng/g vs 0.79 ng/g, P = .69) and rosuvastatin (5.21 ng/g vs 1.99 ng/g, P <.001). CONCLUSION We have shown, for the first time, that lipophilic and hydrophilic statins can be measured in the prostate of patients with prostate cancer and that the concentrations are dependent on dose. Moreover, rosuvastatin, a hydrophilic statin, achieves a 4-fold higher concentration in the prostate.
Collapse
Affiliation(s)
- Julian Chavarriaga
- Division of Urology, Department of Surgical Oncology, University Health Network & University of Toronto, Toronto, ON, Canada; Cancer Treatment and Research Centre (CTIC) Luis Carlos Sarmiento Angulo Foundation, Bogota, Colombia.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Najia Khurram
- Division of Urology, Department of Surgical Oncology, University Health Network & University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Katherine Lajkosz
- Division of Urology, Department of Surgical Oncology, University Health Network & University of Toronto, Toronto, ON, Canada
| | - Joseph Longo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Pathology, University Health Network & University of Toronto, Toronto, ON, Canada
| | - Neil Fleshner
- Division of Urology, Department of Surgical Oncology, University Health Network & University of Toronto, Toronto, ON, Canada
| | - Theodorus van der Kwast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Pathology, University Health Network & University of Toronto, Toronto, ON, Canada
| | - Robert J Hamilton
- Division of Urology, Department of Surgical Oncology, University Health Network & University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Hahn AW, Tidwell RS, Pilie PG, Yu Y, Liu J, Surasi DS, Titus M, Zhang J, Venkatesh N, Panaretakis T, Gregg JR, Zurita AJ, Siddiqui BA, Corn PG, Subudhi SK, Msaouel P, Koutroumpakis E, Huff CD, Aparicio A, McQuade JL, Frigo DE, Logothetis CJ. Body composition as a determinant of the therapeutic index with androgen signaling inhibition. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00870-8. [PMID: 39019979 DOI: 10.1038/s41391-024-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Androgen signaling is central to prostate cancer and men's health. Prior data indicates that increasing body fat is unfavorable in the localized setting yet associated with favorable outcomes in men with metastatic disease. Understanding the biological links between adiposity and prostate cancer may optimize the therapeutic index with ASI. We hypothesized that host adiposity and androgen synthesis are linked to the efficacy and toxicity of ASI for men with metastatic castration-resistant prostate cancer (mCRPC). METHODS A post-hoc analysis was done of NCT02703623 where men with mCRPC (n = 186) were treated for 8 weeks with abiraterone acetate, prednisone, and apalutamide (AAPA), and a satisfactory response was defined as a PSA decline >50%. Body composition was measured on baseline CT scans. Germline DNA WES was performed with a focus on variants in steroidogenic genes. Adipokine levels were measured in pre-treatment plasma. RESULTS Germline polymorphisms in 3 genes involved in androgen synthesis (AKR1C3 rs12529, CYP17A1 rs6162, SRD5A2 rs523349) were associated with differences in body composition at baseline on ADT alone (prior to receipt of AAPA). Elevated subcutaneous adipose tissue index (SATi, p = 0.02), visceral adipose tissue index (VATi, p = 0.03), and BMI (p = 0.04) were associated with satisfactory response to AAPA. Leptin had positive correlation with VATi (r = 0.47) and SATi (r = 0.48). CONCLUSION Inherited polymorphisms in androgen synthesis correlated with differences in body composition after exposure to ADT and warrant further investigation as candidate markers for body composition toxicity. Elevated subcutaneous and visceral adiposity were associated with improved response to ASI.
Collapse
Affiliation(s)
- Andrew W Hahn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rebecca S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick G Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Devaki Shilpa Surasi
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Venkatesh
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin R Gregg
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
3
|
Buck SAJ, Talebi Z, Drabison T, Jin Y, Gibson AA, Hu P, de Bruijn P, de Ridder CMA, Stuurman D, Hu S, van Weerden WM, Koolen SLW, de Wit R, Sparreboom A, Mathijssen RHJ, Eisenmann ED. Darolutamide does not interfere with OATP-mediated uptake of docetaxel. Int J Cancer 2024; 155:314-323. [PMID: 38491867 DOI: 10.1002/ijc.34922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug-drug interaction was identified.
Collapse
Affiliation(s)
- Stefan A J Buck
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peng Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Urology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Rajanala SH, Plym A, Vaselkiv JB, Ebot EM, Matsoukas K, Lin Z, Chakraborty G, Markt SC, Penney KL, Lee GSM, Mucci LA, Kantoff PW, Stopsack KH. SLCO1B3 and SLCO2B1 genotypes, androgen deprivation therapy, and prostate cancer outcomes: a prospective cohort study and meta-analysis. Carcinogenesis 2024; 45:35-44. [PMID: 37856781 PMCID: PMC10859730 DOI: 10.1093/carcin/bgad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
Solute carrier organic anion (SLCO) transporters (OATP transporters) are involved in cellular uptake of drugs and hormones. Germline variants in SLCO1B3 and SLCO2B1 have been implicated in prostate cancer progression and therapy response, including to androgen deprivation and statin medications, but results have appeared heterogeneous. We conducted a cohort study of five single-nucleotide polymorphisms (SNPs) in SLCO1B3 and SLCO2B1 with prior evidence among 3208 men with prostate cancer who participated in the Health Professionals Follow-up Study or the Physicians' Health Study, following participants prospectively after diagnosis over 32 years (median, 14 years) for development of metastases and cancer-specific death (lethal disease, 382 events). Results were suggestive of, but not conclusive for, associations between some SNPs and lethal disease and differences by androgen deprivation and statin use. All candidate SNPs were associated with SLCO mRNA expression in tumor-adjacent prostate tissue. We also conducted a systematic review and harmonized estimates for a dose-response meta-analysis of all available data, including 9 further studies, for a total of 5598 patients and 1473 clinical events. The A allele of the exonic SNP rs12422149 (14% prevalence), which leads to lower cellular testosterone precursor uptake via SLCO2B1, was associated with lower rates of prostate cancer progression (hazard ratio per A allele, 0.80; 95% confidence interval, 0.69-0.93), with little heterogeneity between studies (I2, 0.27). Collectively, the totality of evidence suggests a strong association between inherited genetic variation in SLCO2B1 and prostate cancer prognosis, with potential clinical use in risk stratification related to androgen deprivation therapy.
Collapse
Affiliation(s)
- Sai Harisha Rajanala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Plym
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jane B Vaselkiv
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Konstantina Matsoukas
- Technology Division, Library Services, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhike Lin
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah C Markt
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gwo-Shu M Lee
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Convergent Therapeutics Inc., Boston, MA, USA
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Lee KY, Beatson EL, Knechel MA, Sommer ER, Napoli GC, Risdon EN, Leon AF, Depaz RD, Strope JD, Price DK, Chau CH, Figg WD. Detection of Extracellular Vesicle-Derived RNA as Potential Prostate Cancer Biomarkers: Role of Cancer-type SLCO1B3 and ABCC3. J Cancer 2024; 15:615-622. [PMID: 38213719 PMCID: PMC10777027 DOI: 10.7150/jca.90836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
Extracellular vesicles (EVs) provide a minimally invasive liquid biopsy source of tumor-specific markers for patients who have already undergone prostatectomies. Our laboratory has previously demonstrated enrichment of the cancer-type solute carrier organic anion transporter family 1B3 (ct-SLCO1B3) and the ATP Binding Cassette Subfamily Member C (ABCC3) in castration-resistant cell lines (CRPC). However, their expression in EVs has yet to be explored. Our study demonstrated that ct-SLCO1B3 and ABCC3 are highly detectable in CRPC cell line-derived EVs. We also showed that ct-SLCO1B3 and ABCC3 were detectable in a CRPC xenograft mouse model, both intratumorally and in plasma-derived EVs. Our results provide evidence for EV-contained ct-SLCO1B3 and ABCC3 as novel, EV-based tumor markers for prostate cancer progression.
Collapse
Affiliation(s)
- Kristi Y. Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica L. Beatson
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina A. Knechel
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah R. Sommer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giulia C. Napoli
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily N. Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andres F. Leon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roger D. Depaz
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D. Strope
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K. Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int 2023; 23:247. [PMID: 37858151 PMCID: PMC10585889 DOI: 10.1186/s12935-023-03084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Prostate cancer (PCa) is a non-cutaneous malignancy in males with wide variation in incidence rates across the globe. It is the second most reported cause of cancer death. Its etiology may have been linked to genetic polymorphisms, which are not only dominating cause of malignancy casualties but also exerts significant effects on pharmacotherapy outcomes. Although many therapeutic options are available, but suitable candidates identified by useful biomarkers can exhibit maximum therapeutic efficacy. The single-nucleotide polymorphisms (SNPs) reported in androgen receptor signaling genes influence the effectiveness of androgen receptor pathway inhibitors and androgen deprivation therapy. Furthermore, SNPs located in genes involved in transport, drug metabolism, and efflux pumps also influence the efficacy of pharmacotherapy. Hence, SNPs biomarkers provide the basis for individualized pharmacotherapy. The pharmacotherapeutic options for PCa include hormonal therapy, chemotherapy (Docetaxel, Mitoxantrone, Cabazitaxel, and Estramustine, etc.), and radiotherapy. Here, we overview the impact of SNPs reported in various genes on the pharmacotherapy for PCa and evaluate current genetic biomarkers with an emphasis on early diagnosis and individualized treatment strategy in PCa.
Collapse
Affiliation(s)
- Khurram Rehman
- Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Deng Zhiqin
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Hina Ayub
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | - Naseem Saba
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | | | - Liang Yujie
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
7
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
8
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
9
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
10
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
11
|
Tseng HC, Kuo CY, Liao WT, Chou TS, Hsiao JK. Indocyanine green as a near-infrared theranostic agent for ferroptosis and apoptosis-based, photothermal, and photodynamic cancer therapy. Front Mol Biosci 2022; 9:1045885. [PMID: 36567945 PMCID: PMC9768228 DOI: 10.3389/fmolb.2022.1045885] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a recently discovered programmed cell death pathway initiated by reactive oxygen species (ROS). Cancer cells can escape ferroptosis, and strategies to promote cancer treatment are crucial. Indocyanine green (ICG) is a near-infrared (NIR) fluorescent molecule used in the imaging of residual tumor removal during surgery. Growing attention has been paid to the anticancer potential of ICG-NIR irradiation by inducing ROS production and theranostic effects. Organic anion transmembrane polypeptide (OATP) 1B3 is responsible for ICG metabolism. Additionally, the overexpression of OATP1B3 has been reported in several cancers. However, whether ICG combined with NIR exposure can cause ferroptosis remains unknown and the concept of treating OATP1B3-expressing cells with ICG-NIR irradiation has not been validated. We then used ICG as a theranostic molecule and an OATP1B3-transfected fibrosarcoma cell line, HT-1080 (HT-1080-OATP1B3), as a cell model. The HT-1080-OATP1B3 cell could promote the uptake of ICG into the cytoplasm. We observed that the HT-1080-OATP1B3 cells treated with ICG and exposed to 808-nm laser irradiation underwent apoptosis, as indicated by a reduction in mitochondrial membrane potential, and upregulation of cleaved Caspase-3 and Bax but downregulation of Bcl-2 expression. Moreover, lipid ROS production and consequent ferroptosis and hyperthermic effect were noted after ICG and laser administration. Finally, in vivo study findings also revealed that ICG with 808-nm laser irradiation has a significant effect on cancer suppression. ICG is a theranostic molecule that exerts synchronous apoptosis, ferroptosis, and hyperthermia effects and thus can be used in cancer treatment. Our findings may facilitate the development of treatment modalities for chemo-resistant cancers.
Collapse
Affiliation(s)
- Hsiang-Ching Tseng
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Wei-Ting Liao
- Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Te-Sen Chou
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,*Correspondence: Jong-Kai Hsiao,
| |
Collapse
|
12
|
Shiota M, Endo S, Blas L, Fujimoto N, Eto M. Steroidogenesis in castration-resistant prostate cancer. Urol Oncol 2022; 41:240-251. [PMID: 36376200 DOI: 10.1016/j.urolonc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
Castration resistance is in part attributable to aberrant activation of androgen receptor (AR) signaling by the intracrine activation of androgen precursors derived from adrenal glands. To overcome this, novel AR pathway inhibitors (ARPIs) that suppress androgen synthesis by CYP17 inhibition or AR activation by antiandrogen effects have been developed. However, primary or acquired resistance to these ARPIs occurs; in turn attributable, at least in part, to the maintained androgen milieu despite intensive suppression of AR signaling similar to castration resistance. In addition to the classical pathway to produce potent androgens such as testosterone and dihydrotestosterone, the alternative pathway and the backdoor pathway which bypasses testosterone to produce dihydrotestosterone have been shown to play a role in intratumor steroidogenesis. Furthermore, the 11β-hydroxyandrostenedione pathway to produce the potent oxygenated androgens 11-ketotestosterone and 11-ketodihydrotestosterone has been suggested to be functional in prostate cancer. These steroidogenesis pathways produce potent androgens that promote tumor resistance to endocrine therapy including novel ARPIs. Here, we overview the current evidence on the pathological androgen milieu by altered metabolism and transport in prostate cancer, leading to resistance to endocrine therapy.
Collapse
|
13
|
Haberkorn B, Oswald S, Kehl N, Gessner A, Taudte RV, Dobert JP, Zunke F, Fromm MF, König J. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) is localized in lysosomes and mediates resistance against kinase inhibitors. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000539. [PMID: 36167426 DOI: 10.1124/molpharm.122.000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a splice variant of the hepatic uptake transporter OATP1B3 (liver-type; Lt-OATP1B3), is expressed in several tumor entities including colorectal carcinoma (CRC) and breast cancer. In CRC, high OATP1B3 expression has been associated with reduced progression-free and overall survival. Several kinase inhibitors used for antitumor treatment are substrates and/or inhibitors of OATP1B3 (e.g. encorafenib, vemurafenib). The functional importance of Ct-OATP1B3 has not been elucidated so far. HEK293 cells stably overexpressing Ct-OATP1B3 protein were established and compared with control cells. Confocal laser scanning microscopy, immunoblot, and proteomics-based expression analysis demonstrated that Ct-OATP1B3 protein is intracellularly localized in lysosomes of stably-transfetced cells. Cytotoxicity experiments showed that cells recombinantly expressing the Ct-OATP1B3 protein were more resistant against the kinase inhibitor encorafenib compared to control cells [e.g. encorafenib (100 µM) survival rates: 89.5% vs. 52.8%]. In line with these findings, colorectal cancer DLD1 cells endogenously expressing Ct-OATP1B3 protein had poorer survival rates when the OATP1B3 substrate bromosulfophthalein (BSP) was coincubated with encorafenib or vemurafenib compared to the incubation with the kinase inhibitor alone. This indicates a competitive inhibition of Ct-OATP1B3-mediated uptake into lysosomes by BSP. Accordingly, mass spectrometry-based drug analysis of lysosomes showed a reduced lysosomal accumulation of encorafenib in DLD1 cells additionally exposed to BSP. These results demonstrate that Ct-OATP1B3 protein is localized in the lysosomal membrane and can mediate transport of certain kinase inhibitors into lysosomes revealing a new mechanism of resistance. Significance Statement We describe the characterization of a splice variant of the liver-type uptake transporter OATP1B3 expressed in several tumor entities. This variant is localized in lysosomes mediating resistance against kinase inhibitors which are substrates of this transport protein by transporting them into lysosomes and thereby reducing the cytoplasmic concentration of these antitumor agents. Therefore, the expression of the Ct-OATP1B3 protein is associated with a better survival of cells revealing a new mechanism of drug resistance.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Oswald
- Department of Pharmacology, Rostock University Medical Center, Germany
| | - Niklas Kehl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
14
|
Morrison G, Buckley J, Ostrow D, Varghese B, Cen SY, Werbin J, Ericson N, Cunha A, Lu YT, George T, Smith J, Quinn D, Duddalwar V, Triche T, Goldkorn A. Non-Invasive Profiling of Advanced Prostate Cancer via Multi-Parametric Liquid Biopsy and Radiomic Analysis. Int J Mol Sci 2022; 23:2571. [PMID: 35269713 PMCID: PMC8910093 DOI: 10.3390/ijms23052571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Integrating liquid biopsies of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) with other minimally invasive measures may yield more comprehensive disease profiles. We evaluated the feasibility of concurrent cellular and molecular analysis of CTCs and cfDNA combined with radiomic analysis of CT scans from patients with metastatic castration-resistant PC (mCRPC). CTCs from 22 patients were enumerated, stained for PC-relevant markers, and clustered based on morphometric and immunofluorescent features using machine learning. DNA from single CTCs, matched cfDNA, and buffy coats was sequenced using a targeted amplicon cancer hotspot panel. Radiomic analysis was performed on bone metastases identified on CT scans from the same patients. CTCs were detected in 77% of patients and clustered reproducibly. cfDNA sequencing had high sensitivity (98.8%) for germline variants compared to WBC. Shared and unique somatic variants in PC-related genes were detected in cfDNA in 45% of patients (MAF > 0.1%) and in CTCs in 92% of patients (MAF > 10%). Radiomic analysis identified a signature that strongly correlated with CTC count and plasma cfDNA level. Integration of cellular, molecular, and radiomic data in a multi-parametric approach is feasible, yielding complementary profiles that may enable more comprehensive non-invasive disease modeling and prediction.
Collapse
Affiliation(s)
- Gareth Morrison
- Division of Medical Oncology, Department of Medicine and Department of Biochemistry & Molecular Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; (G.M.); (A.C.); (Y.-T.L.); (D.Q.)
| | - Jonathan Buckley
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA;
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (D.O.); (T.T.)
| | - Dejerianne Ostrow
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (D.O.); (T.T.)
| | - Bino Varghese
- Department of Radiology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA;
| | - Steven Y. Cen
- Departments of Radiology and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Jeffrey Werbin
- RareCyte, Inc., Seattle, WA 98121, USA; (J.W.); (N.E.); (T.G.)
| | - Nolan Ericson
- RareCyte, Inc., Seattle, WA 98121, USA; (J.W.); (N.E.); (T.G.)
| | - Alexander Cunha
- Division of Medical Oncology, Department of Medicine and Department of Biochemistry & Molecular Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; (G.M.); (A.C.); (Y.-T.L.); (D.Q.)
| | - Yi-Tsung Lu
- Division of Medical Oncology, Department of Medicine and Department of Biochemistry & Molecular Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; (G.M.); (A.C.); (Y.-T.L.); (D.Q.)
| | - Thaddeus George
- RareCyte, Inc., Seattle, WA 98121, USA; (J.W.); (N.E.); (T.G.)
| | - Jeffrey Smith
- Clinical Sequencing Division, Thermo Fisher Scientific, San Francisco, CA 94080, USA;
| | - David Quinn
- Division of Medical Oncology, Department of Medicine and Department of Biochemistry & Molecular Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; (G.M.); (A.C.); (Y.-T.L.); (D.Q.)
| | - Vinay Duddalwar
- Departments of Radiology and Urology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA;
| | - Timothy Triche
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (D.O.); (T.T.)
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine and Department of Biochemistry & Molecular Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; (G.M.); (A.C.); (Y.-T.L.); (D.Q.)
| |
Collapse
|
15
|
Maekawa K, Yamamura M, Matsuki A, Ishikawa T, Hirai T, Yamaguchi Y, Saito Y, Kanda T. Impacts of SNPs on adverse events and trough concentration of imatinib in patients with gastrointestinal stromal tumors. Drug Metab Pharmacokinet 2021; 43:100441. [DOI: 10.1016/j.dmpk.2021.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
|
16
|
Laczkó-Rigó R, Bakos É, Jójárt R, Tömböly C, Mernyák E, Özvegy-Laczka C. Selective antiproliferative effect of C-2 halogenated 13α-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1). Toxicol Appl Pharmacol 2021; 429:115704. [PMID: 34474082 DOI: 10.1016/j.taap.2021.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/β-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/β-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/β-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.
Collapse
Affiliation(s)
- Réka Laczkó-Rigó
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Éva Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| |
Collapse
|
17
|
An Oatp transporter-mediated steroid sink promotes tumor-induced cachexia in Drosophila. Dev Cell 2021; 56:2741-2751.e7. [PMID: 34610327 DOI: 10.1016/j.devcel.2021.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Cancer cachexia is associated with many types of tumors and is characterized by a combination of anorexia, loss of body weight, catabolic alterations, and systemic inflammation. We developed a tumor model in Drosophila larvae that causies cachexia-like syndrome, and we found that cachectic larvae show reduced levels of the circulating steroid ecdysone (Ec). Artificially importing Ec in the tumor through the use of the EcI/Oatp74D importer aggravated cachexia, whereas feeding animals with Ec rescued cachectic defects. This suggests that a steroid sink induced by the tumor promotes catabolic alterations in healthy tissues. We found that Oatp33Eb, a member of the Oatp transporter family, is specifically induced in tumors promoting cachexia. The overexpression of Oatp33Eb in noncachectic tumors induced cachexia, whereas its inhibition in cachectic tumors restored circulating Ec and reversed cachectic alterations. Oatp transporters are induced in several types of hormone-dependent tumors, and this result suggests that a similar sink effect could modify hormonal balance in cachectic cancer patients.
Collapse
|
18
|
Organic Anion Transporting Polypeptide 1B1 Is a Potential Reporter for Dual MR and Optical Imaging. Int J Mol Sci 2021; 22:ijms22168797. [PMID: 34445497 PMCID: PMC8395777 DOI: 10.3390/ijms22168797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins responsible for transporting magnetic resonance (MR) and fluorescent contrast agents are of particular importance because they are potential reporter proteins in noninvasive molecular imaging. Gadobenate dimeglumine (Gd-BOPTA), a liver-specific MR contrast agent, has been used globally for more than 10 years. However, the corresponding molecular transportation mechanism has not been validated. We previously reported that the organic anion transporting polypeptide (OATP) 1B3 has an uptake capability for both MR agents (Gd-EOB-DTPA) and indocyanine green (ICG), a clinically available near-infrared (NIR) fluorescent dye. This study further evaluated OATP1B1, another polypeptide of the OATP family, to determine its reporter capability. In the OATP1B1 transfected 293T transient expression model, both Gd-BOPTA and Gd-EOB-DTPA uptake were confirmed through 1.5 T MR imaging. In the constant OAPT1B1 and OATP1B3 expression model in the HT-1080 cell line, both HT-1080-OAPT1B1 and HT-1080-OATP1B3 were observed to ingest Gd-BOPTA and Gd-EOB-DTPA. Lastly, we validated the ICG uptake capability of both OATP1B1 and OATP1B3. OAPT1B3 exhibited a superior ICG uptake capability to that of OAPT1B1. We conclude that OATP1B1 is a potential reporter for dual MR and NIR fluorescent molecular imaging, especially in conjunction with Gd-BOPTA.
Collapse
|
19
|
Matheux A, Gassiot M, Fromont G, Leenhardt F, Boulahtouf A, Fabbrizio E, Marchive C, Garcin A, Agherbi H, Combès E, Evrard A, Houédé N, Balaguer P, Gongora C, Mbatchi LC, Pourquier P. PXR Modulates the Prostate Cancer Cell Response to Afatinib by Regulating the Expression of the Monocarboxylate Transporter SLC16A1. Cancers (Basel) 2021; 13:cancers13143635. [PMID: 34298852 PMCID: PMC8305337 DOI: 10.3390/cancers13143635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Many kinase inhibitors have been tested as potential alternatives for the treatment of castration-resistant prostate cancers. However, none of these clinical trials led to drug approval despite interesting responses. Our study reveals that genes involved in drug metabolism and their master regulator PXR (Pregnane X Receptor) could be responsible, at least in part, for these disappointing results as they can modulate tumor cell response to specific kinase inhibitors. We found that stable expression of PXR sensitized prostate cancer cells to erlotinib, dabrafenib, and afatinib, while it rendered cells resistant to dasatinib and had no effect for other inhibitors tested. We also report for the first time that sensitization to afatinib is due to an alteration in drug transport that involves the SLC16A1 monocarboxylate transporter. Together, our results further indicate that PXR might be considered as a biomarker of response to kinase inhibitors in castration-resistant prostate cancers. Abstract Resistance to castration is a crucial issue in the treatment of metastatic prostate cancer. Kinase inhibitors (KIs) have been tested as potential alternatives, but none of them are approved yet. KIs are subject of extensive metabolism at both the hepatic and the tumor level. Here, we studied the role of PXR (Pregnane X Receptor), a master regulator of metabolism, in the resistance to KIs in a prostate cancer setting. We confirmed that PXR is expressed in prostate tumors and is more frequently detected in advanced forms of the disease. We showed that stable expression of PXR in 22Rv1 prostate cancer cells conferred a resistance to dasatinib and a higher sensitivity to erlotinib, dabrafenib, and afatinib. Higher sensitivity to afatinib was due to a ~ 2-fold increase in its intracellular accumulation and involved the SLC16A1 transporter as its pharmacological inhibition by BAY-8002 suppressed sensitization of 22Rv1 cells to afatinib and was accompanied with reduced intracellular concentration of the drug. We found that PXR could bind to the SLC16A1 promoter and induced its transcription in the presence of PXR agonists. Together, our results suggest that PXR could be a biomarker of response to kinase inhibitors in castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Alice Matheux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
| | - Matthieu Gassiot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Gaëlle Fromont
- Département de Pathologie, CHU de Tours, Université François Rabelais, Inserm UMR 1069, F-37044 Tours, France;
| | - Fanny Leenhardt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eric Fabbrizio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Candice Marchive
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Aurélie Garcin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Hanane Agherbi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eve Combès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Alexandre Evrard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Nadine Houédé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Département d’Oncologie Médicale, Institut de Cancérologie du Gard—CHU Carémeau, F-30029 Nîmes, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Litaty C. Mbatchi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Correspondence: ; Tel.: +33-4-66-68-32-31
| |
Collapse
|
20
|
Zhao H, Jiang J, Wang M, Xuan Z. Genome-Wide Identification of m6A-Associated Single-Nucleotide Polymorphisms in Colorectal Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:887-892. [PMID: 34305406 PMCID: PMC8297552 DOI: 10.2147/pgpm.s314373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Background N6-methyladenosine (m6A)-associated single-nucleotide polymorphisms (SNPs) play important roles in cancers, with previous research suggesting potential associations between m6A-SNPs and cancer. However, the relationship between the genetic determinants of m6A modification and colorectal cancer (CRC) remains unclear. Methods An integrative method combining raw data and summary statistics of genome-wide association studies with expression quantitative trait loci (eQTL) and differential expression data was applied to screen potential candidate CRC-associated m6A-SNPs. Results A total of 402 m6A-SNPs were identified as being associated with CRC (p < 0.001), with 98 showing eQTL signals. In particular, three genes were found to harbor CRC-associated m6A-SNPs: rs178184 in NOVA1, rs35782901 in HTR4, and rs60571683 in SLCO1B3. These genes were differentially expressed in at least one publicly available dataset (p < 0.05), with NOVA1 (p = 3.41×10-11) and HTR4 (p = 5.56×10-7) being significantly downregulated in CRC (dataset: GSE89076), and SLCO1B3 was significantly overexpressed (datasets: GSE32323 [p = 3.27×10-5], GSE21510 [p = 1.09×10-6], and GSE89076 [p = 7.63×10-6]). Conclusion This study identified three m6A-SNPs (rs178184, rs35782901, and rs60571683) that may be associated with CRC. However, the lack of analysis of primary CRC samples in order to further elucidate the underlying pathogenesis is a major limitation of this study. Future investigations are needed to validate these CRC-associated m6A-SNPs and explore the m6A-mediated pathogenic mechanism in CRC.
Collapse
Affiliation(s)
- Hongying Zhao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Jinying Jiang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Mingshan Wang
- Departments of Infection Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Barbier RH, McCrea EM, Lee KY, Strope JD, Risdon EN, Price DK, Chau CH, Figg WD. Abiraterone induces SLCO1B3 expression in prostate cancer via microRNA-579-3p. Sci Rep 2021; 11:10765. [PMID: 34031488 PMCID: PMC8144422 DOI: 10.1038/s41598-021-90143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding mechanisms of resistance to abiraterone, one of the primary drugs approved for the treatment of castration resistant prostate cancer, remains a priority. The organic anion polypeptide 1B3 (OATP1B3, encoded by SLCO1B3) transporter has been shown to transport androgens into prostate cancer cells. In this study we observed and investigated the mechanism of induction of SLCO1B3 by abiraterone. Prostate cancer cells (22Rv1, LNCaP, and VCAP) were treated with anti-androgens and assessed for SLCO1B3 expression by qPCR analysis. Abiraterone treatment increased SLCO1B3 expression in 22Rv1 cells in vitro and in the 22Rv1 xenograft model in vivo. MicroRNA profiling of abiraterone-treated 22Rv1 cells was performed using a NanoString nCounter miRNA panel followed by miRNA target prediction. TargetScan and miRanda prediction tools identified hsa-miR-579-3p as binding to the 3'-untranslated region (3'UTR) of the SLCO1B3. Using dual luciferase reporter assays, we verified that hsa-miR-579-3p indeed binds to the SLCO1B3 3'UTR and significantly inhibited SLCO1B3 reporter activity. Treatment with abiraterone significantly downregulated hsa-miR-579-3p, indicating its potential role in upregulating SLCO1B3 expression. In this study, we demonstrated a novel miRNA-mediated mechanism of abiraterone-induced SLCO1B3 expression, a transporter that is also responsible for driving androgen deprivation therapy resistance. Understanding mechanisms of abiraterone resistance mediated via differential miRNA expression will assist in the identification of potential miRNA biomarkers of treatment resistance and the development of future therapeutics.
Collapse
Affiliation(s)
- Roberto H Barbier
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Emily N Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA.
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Shiota M, Akamatsu S, Narita S, Terada N, Fujimoto N, Eto M. Genetic Polymorphisms and Pharmacotherapy for Prostate Cancer. JMA J 2021; 4:99-111. [PMID: 33997443 PMCID: PMC8119070 DOI: 10.31662/jmaj.2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape of pharmacotherapy for prostate cancer has dramatically evolved, and multiple therapeutic options have become available for prostate cancer patients. Therefore, useful biomarkers to identify suitable candidates for treatment are required to maximize the efficacy of pharmacotherapy. Genetic polymorphisms such as single-nucleotide polymorphisms (SNPs) and tandem repeats have been shown to influence the therapeutic effects of pharmacotherapy for prostate cancer patients. For example, genetic polymorphisms in the genes involved in androgen receptor signaling are reported to be associated with the therapeutic outcome of androgen-deprivation therapy as well as androgen receptor-pathway inhibitors. In addition, SNPs in genes involved in drug metabolism and efflux pumps are associated with therapeutic effects of taxane chemotherapy. Thus, genetic polymorphisms such as SNPs are promising biomarkers to realize personalized medicine. Here, we overview the current findings on the influence of genetic polymorphisms on the outcome of pharmacotherapy for prostate cancer and discuss current issues as well as future visions in this field.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Pilot study of gadoxetate disodium-enhanced mri for localized and metastatic prostate cancers. Sci Rep 2021; 11:5662. [PMID: 33707581 PMCID: PMC7952731 DOI: 10.1038/s41598-021-84960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
OATP1B3 is expressed de novo in primary prostate cancer tissue and to a greater degree in prostate cancer metastases. Gadoxetate disodium is a substrate of OATP1B3, and its uptake has been shown to correlate with OATP1B3 expression in other cancers. We aimed to evaluate use of gadoxetate disodium to image prostate cancer and to track its utility as a biomarker. A single center open-label non-randomized pilot study recruited men with (1) localized, and (2) metastatic castration resistant prostate cancer (mCRPC). Gadoxetate disodium-enhanced MRI was performed at four timepoints post-injection. The Wilcoxon signed rank test was used to compare MRI contrast enhancement ratio (CER) pre-injection and post-injection. OATP1B3 expression was evaluated via immunohistochemistry (IHC) and a pharmacogenomic analysis of OATP1B3, NCTP and OATP1B1 was conducted. The mCRPC subgroup (n = 9) demonstrated significant enhancement compared to pre-contrast images at 20-, 40- and 60-min timepoints (p < 0.0078). The localized cancer subgroup (n = 11) demonstrated earlier enhancement compared to the mCRPC group, but no retention over time (p > 0.05). OATP1B3 expression on IHC trended higher contrast enhancement between 20–40 min (p ≤ 0.064) and was associated with contrast enhancement at 60 min (p = 0.0422). OATP1B1 haplotype, with N130D and V174A substitutions, impacted enhancement at 40–60 min (p ≤ 0.038). mCRPC lesions demonstrate enhancement after injection of gadoxetate disodium on MRI and retention over 60 min. As inter-individual variability in OATP1B3 expression and function has both predictive and prognostic significance, gadoxetate disodium has potential as a biomarker in prostate cancer.
Collapse
|
24
|
Tang L, Zhu Q, Wang Z, Shanahan CM, Bensen JT, Fontham ETH, Smith GJ, Pop EA, Azabdaftari G, Mohler JL, Wu Y. Differential Associations of SLCO Transporters with Prostate Cancer Aggressiveness between African Americans and European Americans. Cancer Epidemiol Biomarkers Prev 2021; 30:990-999. [PMID: 33619025 DOI: 10.1158/1055-9965.epi-20-1389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Androgen receptor signaling is crucial to prostate cancer aggressiveness. Members of the solute carrier family of the organic anion transporting peptides (SLCO) are potential regulators of androgen availability in prostate tissue. It remains unknown whether genetic variations in SLCOs contribute to the differences in prostate cancer aggressiveness in African Americans (AA) and European Americans (EA). METHODS SNPs in 11 SLCO members were selected, with addition of 139 potentially functional SNPs and 128 ancestry informative markers. A total of 1,045 SNPs were genotyped and analyzed in 993 AAs and 1,057 EAs from the North Carolina-Louisiana Prostate Cancer Project. Expression and cellular localization of SLCOs were examined using qRT-PCR, IHC, and in situ RNA hybridization in independent sets of prostate cancer cases. RESULTS Significant associations with prostate cancer characteristics were found for SNPs in SLCO2A1 and SLCO5A1. The associations differed by race (P interaction < 0.05). SNPs in SLCO2A1 were associated with reduced tumor aggressiveness and low Gleason score in AAs; whereas, SNPs in SLCO5A1 were associated with high clinical stage in EAs. In prostate tissue, SLCO2A1 and SLCO5A1 were the most expressed SLCOs at the mRNA level and were expressed predominantly in prostate endothelial and epithelial cells at the protein level, respectively. CONCLUSIONS SLCO2A1 and SLCO5A1 play important but different roles in prostate cancer aggressiveness in AAs versus EAs. IMPACT The finding calls for consideration of racial differences in biomarker studies of prostate cancer and for investigations on functions of SLCO2A1 and SLCO5A1 in prostate cancer.
Collapse
Affiliation(s)
- Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Zinian Wang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Clayton M Shanahan
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elena A Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
25
|
Sutherland R, Meeson A, Lowes S. Solute transporters and malignancy: establishing the role of uptake transporters in breast cancer and breast cancer metastasis. Cancer Metastasis Rev 2021; 39:919-932. [PMID: 32388639 PMCID: PMC7497311 DOI: 10.1007/s10555-020-09879-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The solute carrier (SLC) superfamily encompasses a large variety of membrane-bound transporters required to transport a diverse array of substrates over biological membranes. Physiologically, they are essential for nutrient uptake, ion transport and waste removal. However, accumulating evidence suggest that up- and/or downregulation of SLCs may play a pivotal role in the pathogenesis of human malignancy. Endogenous substrates of SLCs include oestrogen and its conjugates, the handling of which may be of importance in hormone-dependent cancers. The SLCs play a significant role in the handling of therapeutic agents including anticancer drugs. Differential SLC expression in cancers may, therefore, impact on the efficacy of treatments. However, there is also a small body of evidence to suggest the dysregulated expression of some of these transporters may be linked to cancer metastasis. This review draws on the current knowledge of the roles of SLC transporters in human cancers in order to highlight the potential significance of these solute carriers in breast cancer pathogenesis and treatment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rachel Sutherland
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK. .,Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.
| | - Annette Meeson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK
| | - Simon Lowes
- Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.,Breast Screening and Assessment Unit, Queen Elizabeth Hospital, Gateshead Health NHS Foundation Trust, Gateshead, Sheriff Hill, UK
| |
Collapse
|
26
|
Tang T, Wang G, Liu S, Zhang Z, Liu C, Li F, Liu X, Meng L, Yang H, Li C, Sang M, Zhao L. Highly expressed SLCO1B3 inhibits the occurrence and development of breast cancer and can be used as a clinical indicator of prognosis. Sci Rep 2021; 11:631. [PMID: 33436824 PMCID: PMC7803962 DOI: 10.1038/s41598-020-80152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Tiantian Tang
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Guiying Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China. .,Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050001, Hebei Province, China.
| | - Sihua Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Zhaoxue Zhang
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Chen Liu
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Xudi Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Lingjiao Meng
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Huichai Yang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Chunxiao Li
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Meixiang Sang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| |
Collapse
|
27
|
Begemann D, Wang Y, Yang W, Kyprianou N. Androgens modify therapeutic response to cabazitaxel in models of advanced prostate cancer. Prostate 2020; 80:926-937. [PMID: 32542812 PMCID: PMC7880610 DOI: 10.1002/pros.24015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disruption of the phenotypic landscape via epithelial-mesenchymal transition (EMT) enables prostate cancer cells to metastasize and acquire therapeutic resistance. Our previous studies demonstrated that cabazitaxel (CBZ) (second-generation Food and Drug Administration-approved taxane chemotherapy), used for the treatment of castration-resistant prostate cancer (CRPC), causes reversal of EMT to mesenchymal-epithelial transition (MET) and reduces expression of kinesin motor protein KIFC1 (HSET). The present study examined the effect of sequencing CBZ chemotherapy mediated MET on prostate tumor redifferentiation overcoming therapeutic resistance in models of advanced prostate cancer. METHODS To examine the impact of androgens on the antitumor effect of CBZ, we used human prostate cancer cell lines with different sensitivity to androgens and CBZ, in vitro, and two human prostate cancer xenograft models in vivo. Tumor-bearing male mice (with either the androgen-sensitive LNCaP or the CRPC 22Rv1 xenografts) were treated with CBZ (3 mg/kg) alone, or in combination with castration-induced androgen-deprivation therapy (ADT) for 14 days. RESULTS Cell viability assays indicate that the presence of 5α-dihydrotestosterone (1 nM) confers resistance to CBZ in vitro. CBZ treatment in vivo induced MET in LNCaP-derived tumors as shown by increased E-cadherin and decreased N-cadherin levels. Sequencing CBZ after ADT improves tumor response in androgen-sensitive LNCaP, but not in CRPC 22Rv1 xenografts. Mechanistic dissection revealed a novel association between the androgen receptor and HSET in prostate cancer cells that is inhibited by CBZ in an androgen-dependent manner. CONCLUSIONS Our findings provide new insights into the phenotypic reprogramming of prostate cancer cells to resensitize tumors to CBZ action. This evidence is of translational significance in treatment sequencing (CBZ and ADT) towards improved therapeutic benefit in patients with lethal CRPC.
Collapse
Affiliation(s)
- Diane Begemann
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Yang Wang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Wei Yang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Natasha Kyprianou
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
28
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
29
|
Ali Y, Shams T, Wang K, Cheng Z, Li Y, Shu W, Bao X, Zhu L, Murray M, Zhou F. The involvement of human organic anion transporting polypeptides (OATPs) in drug-herb/food interactions. Chin Med 2020; 15:71. [PMID: 32670395 PMCID: PMC7346646 DOI: 10.1186/s13020-020-00351-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs) are important transporter proteins that are expressed at the plasma membrane of cells, where they mediate the influx of endogenous and exogenous substances including hormones, natural compounds and many clinically important drugs. OATP1A2, OATP2B1, OATP1B1 and OATP1B3 are the most important OATP isoforms and influence the pharmacokinetic performance of drugs. These OATPs are highly expressed in the kidney, intestine and liver, where they determine the distribution of drugs to these tissues. Herbal medicines are increasingly popular for their potential health benefits. Humans are also exposed to many natural compounds in fruits, vegetables and other food sources. In consequence, the consumption of herbal medicines or food sources together with a range of important drugs can result in drug-herb/food interactions via competing specific OATPs. Such interactions may lead to adverse clinical outcomes and unexpected toxicities of drug therapies. This review summarises the drug-herb/food interactions of drugs and chemicals that are present in herbal medicines and/or food in relation to human OATPs. This information can contribute to improving clinical outcomes and avoiding unexpected toxicities of drug therapies in patients.
Collapse
Affiliation(s)
- Youmna Ali
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Tahiatul Shams
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu China
| | - Zhengqi Cheng
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Yue Li
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Wenying Shu
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia.,Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW 2000 Australia
| | - Michael Murray
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| |
Collapse
|
30
|
Goldberg H, Mohsin FK, Saskin R, Kulkarni GS, Berlin A, Kenk M, Wallis CJD, Klaassen Z, Chandrasekar T, Ahmad AE, Sayyid RK, Saarela O, Penn L, Alibhai SMH, Fleshner N. The Suggested Unique Association Between the Various Statin Subgroups and Prostate Cancer. Eur Urol Focus 2020; 7:537-545. [PMID: 32620539 DOI: 10.1016/j.euf.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The chemopreventive effect of various medications in prostate cancer (PCa) has gained interest. Specifically, the potential impact of statins on PCa incidence has been studied, but solely as a "drug family" overlooking the distinctive pharmacological properties of its two main subgroups: hydrophilic and hydrophobic statins. OBJECTIVE To assess the impact of statin subgroups on PCa-specific mortality (PCSM), PCa diagnosis, and undergoing another prostate biopsy. DESIGN, SETTING, AND PARTICIPANTS This is a population-based cohort study in Ontario identifying all men aged ≥66 yr with a history of a single negative prostate biopsy (representing healthy men at risk for PCa) between 1994 and 2016, who were not on any of the analyzed medications prior to the study, with a median follow-up of 9.42 yr (interquartile range 8.03 yr). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Using multivariable cause-specific hazard models with time-dependent covariates, the association of hydrophobic and hydrophilic statins with all study outcomes was analyzed. Other putative chemopreventive medications (including alpha-blockers, 5-alpha-reductase inhibitors, and proton-pump inhibitors), age, rurality, comorbidities, and study inclusion year were included in the models. RESULTS AND LIMITATIONS Overall, 21 512 men were identified. Statins were taken by 11 401 patients (50.3%), 5184 men (24.1%) were diagnosed with PCa, and 805 (3.7%) died from it. Overall, 7556 patients (35.1%) underwent another biopsy. Any use of hydrophilic statins was associated with a 32.4% (95% confidence interval [CI] 12.9-47.5%), a 20% (95% CI 10-28%), and an 18% (95% CI 6.1-27.3%) decreased risk of PCSM, undergoing another prostate biopsy, and being diagnosed with PCa, respectively. Hydrophobic statins were associated with 17% (95% CI 2-31%) decreased PCSM. The study is limited by its retrospective nature, selection bias, and accompanying health-administrative database inaccuracies. CONCLUSIONS Use of any statin may be associated with a lower hazard of PCSM, with hydrophilic statins showing a greater association with decreased PCa diagnosis rates. Preferentially prescribing one statin subgroup over another in men needs further exploration. PATIENT SUMMARY Use of any statin may be associated with a lower probability of dying from prostate cancer. Hydrophilic statins (rosuvastatin and pravastatin) may also be more positively associated with a lower risk of undergoing an additional prostate biopsy and being diagnosed with prostate cancer in men aged ≥66 yr.
Collapse
Affiliation(s)
- Hanan Goldberg
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.
| | - Faizan K Mohsin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Refik Saskin
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Girish S Kulkarni
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Miran Kenk
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Christopher J D Wallis
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada; Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta, GA, USA
| | - Thenappan Chandrasekar
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA, USA
| | - Ardalan E Ahmad
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rashid K Sayyid
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Olli Saarela
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Linda Penn
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shabbir M H Alibhai
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Neil Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Li CY, Gupta A, Gáborik Z, Kis E, Prasad B. Organic Anion Transporting Polypeptide–Mediated Hepatic Uptake of Glucuronide Metabolites of Androgens. Mol Pharmacol 2020; 98:234-242. [DOI: 10.1124/mol.120.119891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
|
32
|
Low expression of organic anion-transporting polypeptide 1B3 predicts a poor prognosis in hepatocellular carcinoma. World J Surg Oncol 2020; 18:127. [PMID: 32534581 PMCID: PMC7293789 DOI: 10.1186/s12957-020-01891-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To detect the expression level of organic anion-transporting polypeptide 1B3 (OATP1B3) in hepatocellular carcinoma (HCC) and to determine the relationship between OATP1B3 expression, clinicopathological features, and prognosis. Methods Immunohistochemical (IHC) staining was performed to detect the expression of OATP1B3 in 131 HCC specimens and in 89 adjacent nontumorous tissues. Moreover, the expression levels of OATP1B3 in 30 pairs of tumor and matched adjacent nontumorous tissues were detected by quantitative real-time polymerase chain reaction, and 34 pairs of tumor and matched adjacent nontumorous tissues were detected by Western blotting. The χ2 test was applied to analyze the correlation between OATP1B3 expression and the clinical parameters of HCC patients. The prognostic value of OATP1B3 in HCC patients was estimated by Kaplan-Meier survival analysis and the Cox stepwise proportional hazards model. Results Compared with that in adjacent nontumorous tissues (25.8%, 23/89), OATP1B3 expression was significantly downregulated in tumor tissues (59.5%, 78/131) (P < 0.0001). Moreover, OATP1B3 expression was markedly correlated with tumor size, recurrence, tumor differentiation, and tumor node metastasis (TNM) stage (P < 0.05 for each). However, age, sex, tumor capsule status, HBsAg, cirrhosis, tumor number, vascular invasion, and serum alpha fetoprotein were not associated with OATP1B3 expression. The overall survival (OS) and disease-free survival (DFS) of HCC patients who had high expression of OATP1B3 were significantly longer than those of patients with low expression (33.0% vs 12.9%, P = 0.001; 18.8% vs 5.3%, P < 0.0001). Cox multivariate analysis showed that OATP1B3, invasion, and TNM stage (P < 0.05 for each) were independent prognostic factors of OS in HCC patients and that OATP1B3 and TNM stage (both P < 0.05) were independent prognostic factors of DFS in HCC patients. Conclusions The expression of OATP1B3 in HCC patients was significantly lower than that in adjacent nontumorous tissues. OATP1B3 expression may be a potential prognostic marker in HCC patients.
Collapse
|
33
|
Ma X, Shang X, Qin X, Lu J, Liu M, Wang X. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm Sin B 2020; 10:850-860. [PMID: 32528832 PMCID: PMC7276679 DOI: 10.1016/j.apsb.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.
Collapse
Key Words
- A/G, albumin/globulin ratio
- ADRs, adverse drug reactions
- ALB, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, the area under the time–plasma concentration curve
- BUN, blood urea nitrogen
- CL/F, clearance/bioavailability
- CR, reatinine
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9
- Chr, chromosome
- Cmax, peak concentration
- DAB, 3,3′-diaminobenzidine
- DBL, direct bilirubin
- DDI, drug–drug interaction
- DMSO, dimethyl sulfoxide
- FDA, the U.S. Food and Drug Administration
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GLB, globulin
- GLU, glucose
- HCG, human chorionic gonadotropin
- HDL-C, high density lipoprotein cholesterol
- HE, haemotoxylin and eosin
- HMG, hydroxymethylglutaryl
- HRP, horseradish peroxidase
- HZ, heterozygous
- IBIL, indirect bilirubin
- IS, internal standard solution
- KO, knockout
- LDL-C, low density lipoprotein cholesterol
- MC, methylcellulose
- MRT, mean residence time
- NC, nitrocellulose
- OATP1B1/3
- OATP1B1/3, organic anion transporting polypeptide 1B1 and 1B3
- OATP1B2
- OATPs, organic anion transporting polypeptides
- PAM, protospacer adjacent motif
- PMSG, pregnant mare serum gonadotropin
- R-GT, γ-glutamyltranspeptidase
- Rat model
- SD, Sprague–Dawley
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SLC, solute carrier
- SNPs, single nucleotide polymorphisms
- T-CH, total cholesterol
- T7E I, T7 endonuclease I
- TALEN, transcription activator-like effector nuclease
- TBA, total bile acid
- TBL, total bilirubin
- TBST, Tris-buffered saline Tween 20
- TG, triglyceride
- TP, total protein
- Tmax, peak time
- Transporter
- UA, uric acid
- Ugt1a1, UDP glucuronosyltransferase family 1 member A1
- Vd/F, the apparent volume of distribution/bioavailability
- WT, wild type
- ZFN, zinc-finger nucleases
- crRNA, mature CRISPR RNA
- p.o., peroral
- sgRNA, single guide RNA
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Corresponding author. Tel.: +86 21 24206564; fax: +86 21 5434 4922.
| |
Collapse
|
34
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
35
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
36
|
Wang Z, Zhang N, Chen C, Chen S, Xu J, Zhou Y, Zhao X, Cui Y. Influence of the OATP Polymorphism on the Population Pharmacokinetics of Methotrexate in Chinese Patients. Curr Drug Metab 2020; 20:592-600. [PMID: 31267867 PMCID: PMC6857112 DOI: 10.2174/1389200220666190701094756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Background: The Pharmacokinetics of Methotrexate (MTX) has been reported to show significant inter-subject variability. MTX is metabolized by SHMT1 and transported by OATP1B1 and OATP1B3 both of which show genetic polymorphisms. The non-genetic and genetic factors may influence the pharmacokinetics of MTX. Objective: This study aimed to determine the pharmacokinetic parameters of MTX in Chinese patients and to investigate the effect of various non-genetic factors and genetic variants of OATP1B1, OATP1B3 on MTX’s pharmacokinetics. Methods: MTX concentration and clinical characteristics data were collected from 71 rheumatoid arthritis patients. For each patient, SLC19A1, SHMT1, OATP1B1, and OATP1B3 genotyping were tested. Population pharmacokinetic analysis was performed by Nonlinear Mixed-Effect Modeling (NONMEM). MTX pharmacokinetic properties analysis was executed using the one-compartment pharmacokinetic model which incorporated first-order conditional estimation methods with interaction. Besides, the impact of genetic factors and demographic factors on MTX disposition were explored. Results: All the genotypes of steady-state plasma concentrations and OATP1B1 rs4149056, OATP1B1 rs2306283, and OATP1B3 rs7311358 were determined. The detected blood drug concentration reached the standard. Genotypes were all measured. At the same time, the population pharmacokinetic model of methotrexate was obtained CL(L•h-1) =8.25× e0.167× SNP (SNP: SLCO1B1 388A/A=3; SLCO1B1 388A/G=2; SLCO1B1 388G/G=1); V(L)= 32.8; Ka(h-1)=1.69. Conclusion: In our study, it was showed that OATP1B1-388 G>A SNP had a significant effect on CL/F. The factor should be considered when determining MTX dosing. However, prospective studies with a large number of participants are needed to validate the results of this study.
Collapse
Affiliation(s)
- Zhiqi Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Nan Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Shuqing Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Junyu Xu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Kaipainen A, Zhang A, da Costa RMG, Lucas J, Marck B, Matsumoto AM, Morrissey C, True LD, Mostaghel EA, Nelson PS. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate 2019; 79:1530-1542. [PMID: 31376206 PMCID: PMC6783279 DOI: 10.1002/pros.23874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Testosterone is a driver of prostate cancer (PC) growth via ligand-mediated activation of the androgen receptor (AR). Tumors that have escaped systemic androgen deprivation, castration-resistant prostate cancers (CRPC), have measurable intratumoral levels of testosterone, suggesting that a resistance mechanism still depends on androgen-simulated growth. However, AR activation requires an optimal intracellular concentration of androgens, a situation challenged by low circulating testosterone concentrations. Notably, PC cells may optimize their androgen levels by regulating the expression of steroid metabolism enzymes that convert androgen precursors into androgens. Here we propose that testosterone entry into the cell could be another control point. METHODS To determine whether testosterone enters cells via a transporter, we performed in vitro 3 H-testosterone uptake assays in androgen-dependent LNCaP and androgen and AR-independent PC3 cells. To determine if the uptake mechanism depended on a concentration gradient, we modified UGT2B17 levels in LNCaP cells and measured androgen levels by liquid-liquid extraction-mass spectrometry. We also analyzed CRPC metastases for expression of AKR1C3 to determine whether this enzyme that converts adrenal androgens to testosterone was present in the tumor stroma (microenvironment) in addition to its expression in the tumor epithelium. RESULTS Testosterone uptake followed a concentration gradient but unlike in passive diffusion, was saturable and temperature-dependent, thus suggesting facilitated transport. Suppression of UGT2B17 to abrogate a testosterone gradient reduced testosterone transport while overexpression of the enzyme enhanced it. The facilitated transport suggests a paracrine route of testosterone uptake for maintaining optimal intracellular levels. We found that AKR1C3 was expressed in the tumor microenvironment of CRPC metastases in addition to epithelial cells and the pattern of relative abundance of the enzyme in epithelium vs stroma varied substantially between the metastatic sites. CONCLUSIONS Our findings suggest that in addition to testosterone transport and metabolism by tumor epithelium, testosterone could also be produced by components of the tumor microenvironment. Facilitated testosterone uptake by tumor cells supports a cell nonautonomous mechanism for testosterone signaling in CRPC.
Collapse
Affiliation(s)
- Arja Kaipainen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rui M. Gil da Costa
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jared Lucas
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brett Marck
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Alvin M. Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| | - Peter S. Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| |
Collapse
|
38
|
Nie Y, Yang J, Liu S, Sun R, Chen H, Long N, Jiang R, Gui C. Genetic polymorphisms of human hepatic OATPs: functional consequences and effect on drug pharmacokinetics. Xenobiotica 2019; 50:297-317. [DOI: 10.1080/00498254.2019.1629043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingmin Nie
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjie Yang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ruiqi Sun
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huihui Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Nan Long
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rui Jiang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Windt T, Tóth S, Patik I, Sessler J, Kucsma N, Szepesi Á, Zdrazil B, Özvegy-Laczka C, Szakács G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch Toxicol 2019; 93:953-964. [PMID: 30863990 PMCID: PMC6510822 DOI: 10.1007/s00204-019-02417-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The cellular accumulation of many drugs is the result of the net function of efflux and influx transporters. Efflux transporters such as P-glycoprotein/ABCB1 have been shown to confer multidrug resistance in cancer. Although expression of uptake transporters has been confirmed in cancer cells, their role in chemotherapy response has not been systematically investigated. In the present study we have adapted a fluorescence-based cytotoxic assay to characterize the influence of key drug-transporters on the toxicity of approved anticancer drugs. Co-cultures of fluorescently labeled parental and transporter-expressing cells (expressing ABCB1, ABCG2 or OATP2B1) were screened against 101 FDA-approved anticancer drugs, using a novel, automated, triple fluorescence-based cytotoxicity assay. By measuring the survival of parental and transporter-expressing cells in co-cultures, we identify those FDA-approved anticancer drugs, whose toxicity is influenced by ABCB1, ABCG2 or OATP2B1. In addition to confirming known substrates of ABCB1 and ABCG2, the fluorescence-based cytotoxicity assays identified anticancer agents whose toxicity was increased in OATP2B1 expressing cells. Interaction of these compounds with OATP2B1 was verified in dedicated transport assays using cell-impermeant fluorescent substrates. Understanding drug-transporter interactions is needed to increase the efficacy of chemotherapeutic agents. Our results highlight the potential of the fluorescence-based HT screening system for identifying transporter substrates, opening the way for the design of therapeutic approaches based on the inhibition or even the exploitation of transporters in cancer cells.
Collapse
Affiliation(s)
- Tímea Windt
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
| | - Izabel Patik
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Judit Sessler
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Áron Szepesi
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis 2019; 22:560-568. [PMID: 30890759 PMCID: PMC6752995 DOI: 10.1038/s41391-019-0141-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Background. SLCO-encoded transporters have been associated with progression to castration resistant prostate cancer (CRPC) after initiation of androgen deprivation therapy (ADT). Although expressed at lower levels than in CRPC tissues, SLCO-encoded transporters may also play a role in response of primary prostate cancer (PCa) to ADT and biochemical recurrence. Methods. We systematically explored expression of the 11 human SLCO genes in a large sample of untreated and ADT-treated normal prostate (NP) and primary PCa tissues, including tumors treated with neoadjuvant abiraterone. Results. Transporters with the most recognized role in steroid uptake in PCa, including SLCO2B1 (DHEAS) and 1B3 (testosterone), were consistently detected in primary PCa. SLCO1B3 was nearly 5-fold higher in PCa vs NP with no difference in Gleason 3 vs 4 and no change with ADT. SLCO2B1 was detected at 3-fold lower levels in PCa than NP but was nearly 7-fold higher in Gleason 4 vs Gleason 3 and increased 3-fold following ADT (p<0.05 for all). Conclusions. We observed clear differences in SLCO expression in PCa vs NP samples, in Gleason 4 vs Gleason 3 tumors, and in ADT-treated vs untreated tissues. These findings are hypothesis generating due to small sample size, but suggest that baseline and ADT-induced changes in PCa OATP expression may influence steroid uptake and response to ADT, as well as uptake and response to drugs such as abiraterone and docetaxel which are also subject to OATP-mediated transport and are now being routinely combined with ADT in the metastatic castration sensitive setting.
Collapse
|
41
|
Schulte RR, Ho RH. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 2019; 95:490-506. [PMID: 30782852 DOI: 10.1124/mol.118.114314] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.
Collapse
Affiliation(s)
- Rachael R Schulte
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Schweizer U, Braun D, Forrest D. The Ins and Outs of Steroid Hormone Transport Across the Plasma Membrane: Insight From an Insect. Endocrinology 2019; 160:339-340. [PMID: 30576427 PMCID: PMC6339468 DOI: 10.1210/en.2018-01034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Correspondence: Ulrich Schweizer, PhD, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn, Germany. E-mail:
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Parsons TK, Pratt RN, Tang L, Wu Y. An active and selective molecular mechanism mediating the uptake of sex steroids by prostate cancer cells. Mol Cell Endocrinol 2018; 477:121-131. [PMID: 29928927 DOI: 10.1016/j.mce.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Steroid hormones play important roles in normal physiological functions and diseases. Sex steroids hormones are important in the biology and treatment of sex hormone-related cancer such as prostate cancer and breast cancer. Cells may take up steroids using multiple mechanisms. The conventionally accepted hypothesis that steroids cross cell membrane through passive diffusion has not been tested rigorously. Experimental data suggested that cells may take up sex steroid using an active uptake mechanism. 3H-testosterone uptake by prostate cancer cells showed typical transporter-mediated uptake kinetic. Cells retained testosterone taken up from the medium. The uptake of testosterone was selective for certain steroid hormones but not others. Data also indicated that the active and selective uptake mechanism resided in cholesterol-rich membrane domains, and may involve ATP and membrane transporters. In summary, the present study provided strong evidence to support the existence of an active and selective molecular mechanism for sex steroid uptake.
Collapse
Affiliation(s)
- Todd K Parsons
- Department of Urology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Rachel N Pratt
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
44
|
Murata S, Matsushima S, Sato Y, Yamaura H, Kato M, Hasegawa T, Muro K, Inaba Y. Predicting chemotherapeutic response for colorectal liver metastases using relative tumor enhancement of gadoxetic acid disodium-enhanced magnetic resonance imaging. Abdom Radiol (NY) 2018; 43:3301-3306. [PMID: 29666951 DOI: 10.1007/s00261-018-1615-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to predict the treatment response for colorectal liver metastases (CLM) using relative tumor enhancement (RTE) of the hepatobiliary phase (HBP) for patients with no history of chemotherapy. MATERIALS AND METHODS In this retrospective study, we enrolled 26 patients [14 males, 12 females; median age: 58 years (range 37-82 years)] with CLM and no history of chemotherapy between December 2011 and May 2017. Gadoxetic acid-enhanced magnetic resonance imaging was performed before starting chemotherapy and RTE of HBP. The response was evaluated using RECIST ver.1.1, and progression-free survival (PFS) was estimated. RESULTS Based on the RECIST ver.1.1, there were 15 responders and 11 non-responders. In the tumor, the mean pretreatment RTE values were significantly higher in the responders group than in the non-responders group (37.2% ± 10.9% vs. 17.9% ± 10.5%, respectively; P = 0.0006). When the threshold values of parameters for detecting responders comprised the RTE value of 24.2% (area under the curve value, 0.90), the sensitivity and specificity were 93.3% and 72.7%, respectively. The median follow-up period for 26 patients was 602 days (range 160-1971 days). Although no significant differences were observed in PFS between the groups, the high RTE group tended to take longer to progress than the low RTE group (PFS of the high RTE group did not reach the median). CONCLUSION This study suggests that the RTE value of CLM could be a potential biomarker to predict early treatment response.
Collapse
Affiliation(s)
- Shinichi Murata
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan.
| | - Shigeru Matsushima
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Yozo Sato
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Hidekazu Yamaura
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Mina Kato
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Takaaki Hasegawa
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Kei Muro
- Department of Medical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Yoshitaka Inaba
- Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| |
Collapse
|
45
|
Okamoto N, Viswanatha R, Bittar R, Li Z, Haga-Yamanaka S, Perrimon N, Yamanaka N. A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. Dev Cell 2018; 47:294-305.e7. [PMID: 30293839 PMCID: PMC6219898 DOI: 10.1016/j.devcel.2018.09.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/09/2018] [Indexed: 02/08/2023]
Abstract
Steroid hormones are a group of lipophilic hormones that are believed to enter cells by simple diffusion to regulate diverse physiological processes through intracellular nuclear receptors. Here, we challenge this model in Drosophila by demonstrating that Ecdysone Importer (EcI), a membrane transporter identified from two independent genetic screens, is involved in cellular uptake of the steroid hormone ecdysone. EcI encodes an organic anion transporting polypeptide of the evolutionarily conserved solute carrier organic anion superfamily. In vivo, EcI loss of function causes phenotypes indistinguishable from ecdysone- or ecdysone receptor (EcR)-deficient animals, and EcI knockdown inhibits cellular uptake of ecdysone. Furthermore, EcI regulates ecdysone signaling in a cell-autonomous manner and is both necessary and sufficient for inducing ecdysone-dependent gene expression in culture cells expressing EcR. Altogether, our results challenge the simple diffusion model for cellular uptake of ecdysone and may have wide implications for basic and medical aspects of steroid hormone studies.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Riyan Bittar
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhongchi Li
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
46
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
47
|
McCrea EM, Lee DK, Sissung TM, Figg WD. Precision medicine applications in prostate cancer. Ther Adv Med Oncol 2018; 10:1758835918776920. [PMID: 29977347 PMCID: PMC6024288 DOI: 10.1177/1758835918776920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/13/2018] [Indexed: 12/24/2022] Open
Abstract
Aided by developments in diagnostics and therapeutics, healthcare is increasingly moving toward precision medicine, in which treatment is customized to each individual. We discuss the relevance of precision medicine in prostate cancer, including gene targets, therapeutics and resistance mechanisms. We foresee precision medicine becoming an integral component of prostate cancer management to increase response to therapy and prolong survival.
Collapse
Affiliation(s)
- Edel M. McCrea
- Molecular Pharmacology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel K. Lee
- Medical Oncology Service, and the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tristan M. Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville Pike, Bldg 10/Room 5A01, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Bhatt DK, Basit A, Zhang H, Gaedigk A, Lee SB, Claw KG, Mehrotra A, Chaudhry AS, Pearce RE, Gaedigk R, Broeckel U, Thornton TA, Nickerson DA, Schuetz EG, Amory JK, Leeder JS, Prasad B. Hepatic Abundance and Activity of Androgen- and Drug-Metabolizing Enzyme UGT2B17 Are Associated with Genotype, Age, and Sex. Drug Metab Dispos 2018; 46:888-896. [PMID: 29602798 PMCID: PMC5938891 DOI: 10.1124/dmd.118.080952] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.
Collapse
Affiliation(s)
- Deepak Kumar Bhatt
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Abdul Basit
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Haeyoung Zhang
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Andrea Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Seung-Been Lee
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Katrina G Claw
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Aanchal Mehrotra
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Amarjit Singh Chaudhry
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Robin E Pearce
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Roger Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Ulrich Broeckel
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Timothy A Thornton
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Deborah A Nickerson
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Erin G Schuetz
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - John K Amory
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - J Steven Leeder
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Bhagwat Prasad
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| |
Collapse
|
49
|
Del Re M, Crucitta S, Restante G, Rofi E, Arrigoni E, Biasco E, Sbrana A, Coppi E, Galli L, Bracarda S, Santini D, Danesi R. Pharmacogenetics of androgen signaling in prostate cancer: Focus on castration resistance and predictive biomarkers of response to treatment. Crit Rev Oncol Hematol 2018; 125:51-59. [DOI: 10.1016/j.critrevonc.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
|
50
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|