1
|
Zhang W, Wang S, Liu Z, Qian P, Li Y, Wu J. Legumain-deficient macrophages regulate inflammation and lipid metabolism in adipose tissues to protect against diet-induced obesity. Mol Cell Endocrinol 2024; 592:112283. [PMID: 38815795 DOI: 10.1016/j.mce.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.
Collapse
Affiliation(s)
- Wanyu Zhang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ping Qian
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Guerrero-Barberà G, Burday N, Costell M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front Cell Dev Biol 2024; 12:1363004. [PMID: 38660622 PMCID: PMC11039881 DOI: 10.3389/fcell.2024.1363004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.
Collapse
Affiliation(s)
| | | | - Mercedes Costell
- Departament of Biochemistry and Molecular Biology, Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|
4
|
Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022; 29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Collapse
Affiliation(s)
- Elisa Cesare
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Institute of Pediatric Research IRP, Corso Stati Uniti, Padova 35127, Italy; Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Hannah T Stuart
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Erika Torchio
- Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Alessia Gesualdo
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, UK
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Graziano Martello
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35131, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
5
|
Egorova EA, Nikitin MP. Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding Peptides. Int J Mol Sci 2022; 23:ijms232213735. [PMID: 36430214 PMCID: PMC9696485 DOI: 10.3390/ijms232213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Active targeting of tumors is believed to be the key to efficient cancer therapy and accurate, early-stage diagnostics. Active targeting implies minimized off-targeting and associated cytotoxicity towards healthy tissue. One way to acquire active targeting is to employ conjugates of therapeutic agents with ligands known to bind receptors overexpressed onto cancer cells. The integrin receptor family has been studied as a target for cancer treatment for almost fifty years. However, systematic knowledge on their effects on cancer cells, is yet lacking, especially when utilized as an active targeting ligand for particulate formulations. Decoration with various integrin-targeting peptides has been reported to increase nanoparticle accumulation in tumors ≥ 3-fold when compared to passively targeted delivery. In recent years, many newly discovered or rationally designed integrin-binding peptides with excellent specificity towards a single integrin receptor have emerged. Here, we show a comprehensive analysis of previously unreviewed integrin-binding peptides, provide diverse modification routes for nanoparticle conjugation, and showcase the most notable examples of their use for tumor and metastases visualization and eradication to date, as well as possibilities for combined cancer therapies for a synergetic effect. This review aims to highlight the latest advancements in integrin-binding peptide development and is directed to aid transition to the development of novel nanoparticle-based theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Elena A. Egorova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 1 Meditsinskaya Str., 603081 Nizhny Novgorod, Russia
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
6
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
7
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
8
|
Darvishi B, Eisavand MR, Majidzadeh-A K, Farahmand L. Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. Br J Cancer 2022; 126:1253-1263. [PMID: 35124704 PMCID: PMC9043195 DOI: 10.1038/s41416-021-01680-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) refers to the non-cellular components of the tumour microenvironment, fundamentally providing a supportive scaffold for cellular anchorage and transducing signaling cues that orchestrate cellular behaviour and function. The ECM integrity is abrogated in several cases of cancer, ending in aberrant activation of a number of mechanotransduction pathways and induction of multiple tumorigenic events such as extended proliferation, cell death resistance, epithelial-mesenchymal transition and most importantly the development of chemoresistance. In this regard, the present study mainly aims to elucidate how the ECM-stiffening process may contribute to the development of chemoresistance during cancer progression and what pharmacological approaches are required for tackling this issue. Hence, the first section of this review explains the process of ECM stiffening and the ways it may affect biochemical pathways to induce chemoresistance in a clinic. In addition, the second part focuses on describing some of the most important pharmacological agents capable of targeting ECM components and underlying pathways for overcoming ECM-induced chemoresistance. Finally, the third part discusses the obtained results from the application of these agents in the clinic for overcoming chemoresistance.
Collapse
Affiliation(s)
- Behrad Darvishi
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Eisavand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17:473-487. [PMID: 35255763 PMCID: PMC8935455 DOI: 10.1080/17460441.2022.2050693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), which emerged as a major public health threat, has affected >400 million people globally leading to >5 million mortalities to date. Treatments of COVID-19 are still to be developed as the available therapeutic approaches are not able to combat the virus causing the disease (severe acute respiratory syndrome coronavirus-2; SARS-CoV-2) satisfactorily. However, antiviral peptides (AVPs) have demonstrated prophylactic and therapeutic effects against many coronaviruses (CoVs). AREAS COVERED This review critically discusses various types of AVPs evaluated for the treatment of COVID-19 along with their mechanisms of action. Furthermore, the peptides inhibiting the entry of the virus by targeting its binding to angiotensin-converting enzyme 2 (ACE2) or integrins, fusion mechanism as well as activation of proteolytic enzymes (cathepsin L, transmembrane serine protease 2 (TMPRSS2), or furin) are also discussed. EXPERT OPINION Although extensively investigated, successful treatment of COVID-19 is still a challenge due to emergence of virus mutants. Antiviral peptides are anticipated to be blockbuster drugs for the management of this serious infection because of their formulation and therapeutic advantages. Although they may act on different pathways, AVPs having a multi-targeted approach are considered to have the upper hand in the management of this infection.
Collapse
Affiliation(s)
- Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville, Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
10
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Dhaliwal D, Shepherd TG. Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metastasis 2021; 39:291-301. [PMID: 34822024 PMCID: PMC8971148 DOI: 10.1007/s10585-021-10136-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell–cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell–cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.
Collapse
Affiliation(s)
- Dolly Dhaliwal
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd E, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
12
|
Amruta N, Engler-Chiurazzi EB, Murray-Brown IC, Gressett TE, Biose IJ, Chastain WH, Befeler JB, Bix G. In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sci 2021; 284:119881. [PMID: 34389403 PMCID: PMC8352850 DOI: 10.1016/j.lfs.2021.119881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5β1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5β1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ifechukwude J Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA.
| |
Collapse
|
13
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
14
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B 2021; 11:2726-2737. [PMID: 34589393 PMCID: PMC8463276 DOI: 10.1016/j.apsb.2021.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell–extracellular matrix and cell–cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.
Collapse
Key Words
- ADAMs, adisintegrin and metalloproteases
- AJ, adherens junctions
- Antagonists
- CAFs, cancer-associated fibroblasts
- CAR, chimeric antigen receptor
- CRC, colorectal cancer
- CSC, cancer stem cell
- Clinical trial
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- ERK, extracellular regulated kinase
- Extracellular matrix
- FAK, focal adhesion kinase
- FDA, U.S. Food and Drug Administration
- HIF-1α, hypoxia-inducible factor-1α
- HUVECs, human umbilical vein endothelial cells
- ICAMs, intercellular adhesion molecules
- IGFR, insulin-like growth factor receptor
- IMD, integrin-mediated death
- Integrins
- JNK, c-Jun N-terminal kinase 16
- MAPK, mitogen-activated protein kinase
- MMP2, matrix metalloprotease 2
- NF-κB, nuclear factor-κB
- NSCLC, non-small cell lung cancer
- PDGFR, platelet-derived growth factor receptor
- PI3K, phosphatidylinositol 3-kinase
- RGD, Arg-Gly-Asp
- RTKs, receptor tyrosine kinases
- SAPKs, stress-activated MAP kinases
- SDF-1, stromal cell-derived factor-1
- SH2, Src homology 2
- STAT3, signal transducer and activator of transcription 3
- TCGA, The Cancer Genome Atlas
- TICs, tumor initiating cells
- TNF, tumor necrosis factor
- Targeted drug
- Tumor progression
- VCAMs, vascular cell adhesion molecules
- VEGFR, vascular endothelial growth factor receptor
- mAb, monoclonal antibodies
- sdCAR-T, switchable dual-receptor CAR-engineered T
- siRNA, small interference RNA
- uPA, urokinase-type plasminogen activator
Collapse
|
15
|
Amruta N, Bix G. ATN-161 Ameliorates Ischemia/Reperfusion-induced Oxidative Stress, Fibro-inflammation, Mitochondrial damage, and Apoptosis-mediated Tight Junction Disruption in bEnd.3 Cells. Inflammation 2021; 44:2377-2394. [PMID: 34420157 PMCID: PMC8380192 DOI: 10.1007/s10753-021-01509-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated the significance of endothelial cell-expressed α5β1 integrin in ischemic stroke, having shown that α5β1 integrin endothelial cell-selective knockout mice are significantly resistance to ischemic stroke injury via preservation of the tight junction protein claudin-5 and subsequent stabilization of the blood–brain barrier (BBB). In addition, inhibition of α5β1 by the small peptide noncompetitive integrin α5 inhibitor, ATN-161, is beneficial in a mouse model of ischemic stroke through reduction of infarct volume, edema, stabilization of the BBB, and reduced inflammation and immune cell infiltration into the brain. In continuation with our previous findings, we have further evaluated the mechanistic role of ATN-161 in vitro and found that oxygen and glucose deprivation and reperfusion (OGD/R)-induced inflammation, oxidative stress, apoptosis, mitochondrial depolarization, and fibrosis attenuate tight junction integrity via induction of α5, NLRP3, p-FAK, and p-AKT signaling in mouse brain endothelial cells. ATN-161 treatment (10 µM) effectively inhibited OGD/R-induced extracellular matrix (ECM) deposition by reducing integrin α5, MMP-9, and fibronectin expression, as well as reducing oxidative stress by reducing mitochondrial superoxide radicals, intracellular ROS, inflammation by reducing NLRP3 inflammasome, tight junction loss by reducing claudin-5 and ZO-1 expression levels, mitochondrial damage by inhibiting mitochondrial depolarization, and apoptosis via regulation of p-FAK and p-AKT levels. Taken together, our results further support therapeutically targeting α5 integrin with ATN-161, a safe, well-tolerated, and clinically validated peptide, in ischemic stroke.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA. .,Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA. .,Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
17
|
Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, Gressett TE, Longo MT, Engler-Chiurazzi EB, Bix G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev 2021; 58:1-15. [PMID: 33674185 PMCID: PMC7894219 DOI: 10.1016/j.cytogfr.2021.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson's disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5β1 and α5β1/hACE2.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Meshi Paz
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Rebecca J Solch
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Michele T Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
18
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
19
|
Beddingfield BJ, Iwanaga N, Chapagain PP, Zheng W, Roy CJ, Hu TY, Kolls JK, Bix GJ. The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. ACTA ACUST UNITED AC 2020; 6:1-8. [PMID: 33102950 PMCID: PMC7566794 DOI: 10.1016/j.jacbts.2020.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5β1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5β1 integrin (+/- ACE2) and the interaction between α5β1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.
Collapse
Key Words
- ACE2
- ACE2, angiotensin-converting enzyme 2
- ATN-161
- CO2, carbon dioxide
- COVID-19
- COVID-19, coronavirus disease-2019
- DMEM, Dulbecco’s modified eagle media
- ELISA, enzyme-linked immunosorbent assay
- IC50, half-maximal inhibitory concentration
- RBD, receptor binding domain
- RGD, arginine-glycine-aspartate
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- alpha5beta1 integrin
- hACE2, human angiotensin-converting enzyme 2
- host-cell entry
- qPCR, quantitative polymerase chain reaction
- receptor binding domain
- therapeutic
- viral spike protein
Collapse
Affiliation(s)
- Brandon J. Beddingfield
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Naoki Iwanaga
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Wenshu Zheng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chad J. Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tony Y. Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jay K. Kolls
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Address for correspondence: Dr. Gregory J. Bix, Tulane University School of Medicine, Clinical Neuroscience Research Center, 131 South Robertson, Suite 1300, Room 1349, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
20
|
Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1695-1708. [PMID: 31575337 PMCID: PMC7370357 DOI: 10.1177/0271678x19880161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell β1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by β1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5β1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5β1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1β and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.
Collapse
Affiliation(s)
| | - Kathleen Salmeron
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Physiology, University of Kentucky, Lexington, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Radiology, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
21
|
Beddingfield B, Iwanaga N, Chapagain P, Zheng W, Roy CJ, Hu TY, Kolls J, Bix G. The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32587959 DOI: 10.1101/2020.06.15.153387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many efforts to design and screen therapeutics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) have focused on inhibiting viral cell entry by disrupting ACE2 binding with the SARS-CoV-2 spike protein. This work focuses on inhibiting SARS-CoV-2 entry through a hypothesized α5β1 integrin-based mechanism, and indicates that inhibiting the spike protein interaction with α5β1 integrin (+/- ACE2), and the interaction between α5β1 integrin and ACE2 using a molecule ATN-161 represents a promising approach to treat COVID-19.
Collapse
|
22
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
23
|
Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat Commun 2020; 11:2980. [PMID: 32532986 PMCID: PMC7293240 DOI: 10.1038/s41467-020-16795-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Proper storage of excessive dietary fat into subcutaneous adipose tissue (SAT) prevents ectopic lipid deposition-induced insulin resistance, yet the underlying mechanism remains unclear. Here, we identify angiopoietin-2 (Angpt2)–integrin α5β1 signaling as an inducer of fat uptake specifically in SAT. Adipocyte-specific deletion of Angpt2 markedly reduced fatty acid uptake and storage in SAT, leading to ectopic lipid accumulation in glucose-consuming organs including skeletal muscle and liver and to systemic insulin resistance. Mechanistically, Angpt2 activated integrin α5β1 signaling in the endothelium and triggered fatty acid transport via CD36 and FATP3 into SAT. Genetic or pharmacological inhibition of the endothelial integrin α5β1 recapitulated adipocyte-specific Angpt2 knockout phenotypes. Our findings demonstrate the critical roles of Angpt2–integrin α5β1 signaling in SAT endothelium in regulating whole-body fat distribution for metabolic health and highlight adipocyte–endothelial crosstalk as a potential target for prevention of ectopic lipid deposition-induced lipotoxicity and insulin resistance. Fat uptake and storage in subcutaneous adipose tissue (SAT) prevents ectopic fat accumulation and associated metabolic complications, however, the underlying mechanisms are incompletely understood. Here, the authors show that adipose angiopoietin-2 (Angpt2) enhances SAT size via increased endothelial fatty acid transport.
Collapse
|
24
|
Wei L, Chen Q, Zheng Y, Nan L, Liao N, Mo S. Potential Role of Integrin α₅β₁/Focal Adhesion Kinase (FAK) and Actin Cytoskeleton in the Mechanotransduction and Response of Human Gingival Fibroblasts Cultured on a 3-Dimension Lactide-Co-Glycolide (3D PLGA) Scaffold. Med Sci Monit 2020; 26:e921626. [PMID: 32034900 PMCID: PMC7027369 DOI: 10.12659/msm.921626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The stability of orthodontic treatment is thought to be significantly affected by the compression and retraction of gingival tissues, but the underlying molecular mechanism is not fully elucidated. The objectives of our study were to explore the effects of mechanical force on the ECM-integrin-cytoskeleton linkage response in human gingival fibroblasts (HGFs) cultured on 3-dimension (3D) lactide-co-glycolide (PLGA) biological scaffold and to further study the mechanotransduction pathways that could be involved. MATERIAL AND METHODS A compressive force of 25 g/m² was applied to the HGFs-PLGA 3D co-cultured model. Rhodamine-phalloidin staining was used to evaluate the filamentous actin (F-actin) cytoskeleton. The expression level of type I collagen (COL-1) and the activation of the integrin alpha₅ß₁/focal adhesion kinase (FAK) signaling pathway were determined by using real-time PCR and Western blotting analysis. The impacts of the applied force on the expression levels of FAK, phosphorylated focal adhesion kinase (p-FAK), and COL-1 were also measured in cells treated with integrin alpha₅ß₁ inhibitor (Ac-PHSCN-NH 2, ATN-161). RESULTS Mechanical force increased the expression of integrin alpha₅ß₁, FAK (p-FAK), and COL-1 in HGFs, and induced the formation of stress fibers. Blocking integrin alpha₅ß₁ reduced the expression of FAK (p-FAK), while the expression of COL-1 was not fully inhibited. CONCLUSIONS The integrin alpha₅ß₁/FAK signaling pathway and actin cytoskeleton appear to be involved in the mechanotransduction of HGFs. There could be other mechanisms involved in the promotion effect of mechanical force on collagen synthesis in addition to the integrin alpha₅ß₁ pathway.
Collapse
Affiliation(s)
- Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qun Chen
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi Zheng
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ni Liao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
25
|
Edgar R, Tarrio ML, Maislin G, Chiguang F, Kaempfer R, Cross A, Opal SM, Shirvan A. Treatment with One Dose of Reltecimod is Superior to Two Doses in Mouse Models of Lethal Infection. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
27
|
Guidotti G, Brambilla L, Rossi D. Peptides in clinical development for the treatment of brain tumors. Curr Opin Pharmacol 2019; 47:102-109. [DOI: 10.1016/j.coph.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
|
28
|
Vaniotis G, Moffett S, Sulea T, Wang N, Elahi SM, Lessard E, Baardsnes J, Perrino S, Durocher Y, Frystyk J, Massie B, Brodt P. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties. Sci Rep 2018; 8:17361. [PMID: 30478273 PMCID: PMC6255772 DOI: 10.1038/s41598-018-35407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
The insulin-like growth factor (IGF) axis has been implicated in the progression of malignant disease and identified as a clinically important therapeutic target. Several IGF-1 receptor (IGF-1R) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signalling. We previously reported on the production of a soluble fusion protein consisting of the extracellular domain of human IGF-1R fused to the Fc portion of human IgG1 (first generation IGF-TRAP) that bound human IGF-1 and IGF-2 with a 3 log higher affinity than insulin. We showed that the IGF-TRAP had potent anti-cancer activity in several pre-clinical models of aggressive carcinomas. Here we report on the re-engineering of the IGF-TRAP with the aim of improving physicochemical properties and suitability for clinical applications. We show that cysteine-serine substitutions in the Fc hinge region of IGF-TRAP eliminated high-molecular-weight oligomerized species, while a further addition of a flexible linker, not only improved the pharmacokinetic profile, but also enhanced the therapeutic profile of the IGF-TRAP, as evaluated in an experimental colon carcinoma metastasis model. Dose-response profiles of the modified IGF-TRAPs correlated with their bio-availability profiles, as measured by the IGF kinase-receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. This study provides a compelling example of structure-based re-engineering of Fc-fusion-based biologics for better manufacturability that also significantly improved pharmacological parameters. It identifies the re-engineered IGF-TRAP as a potent anti-cancer therapeutic.
Collapse
Affiliation(s)
- George Vaniotis
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Serge Moffett
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University, Montreal Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Ni Wang
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - S Mehdy Elahi
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Etienne Lessard
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernard Massie
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal Quebec, Canada.
- Department of Medicine, McGill University, Montreal Quebec, Canada.
- Department of Oncology, McGill University, Montreal Quebec, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Center, Montreal Quebec, Canada.
| |
Collapse
|
29
|
Yan D, Wages NA, Dressler EV. Improved adaptive randomization strategies for a seamless Phase I/II dose-finding design. J Biopharm Stat 2018; 29:333-347. [DOI: 10.1080/10543406.2018.1535496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Donglin Yan
- Department of biostatistics, College of Public Health, University of Kentucky, KY, USA
| | - Nolan A. Wages
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Emily V. Dressler
- Division of Biostatistics,Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
30
|
Sui A, Zhong Y, Demetriades AM, Shen J, Su T, Yao Y, Gao Y, Zhu Y, Shen X, Xie B. ATN-161 as an Integrin α5β1 Antagonist Depresses Ocular Neovascularization by Promoting New Vascular Endothelial Cell Apoptosis. Med Sci Monit 2018; 24:5860-5873. [PMID: 30133427 PMCID: PMC6116638 DOI: 10.12659/msm.907446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND ATN-161 (Ac-PHSCN-NH2), an antagonist of integrin α5β1, has shown an important influence in inhibiting tumor angiogenesis and metastasis of other tumor types. However, the mechanism of action of ATN-161 and whether it can inhibit ocular neovascularization (NV) are unclear. This study investigated the role of ATN-161 in regulating ocular angiogenesis in mouse models and explored the underlying signaling pathway. MATERIAL AND METHODS An oxygen-induced retinopathy (OIR) mouse model and a laser-induced choroidal neovascularization (CNV) mouse model were used to test integrin a5b1 expression and the effect of ATN-161 on ocular NV by immunofluorescence staining, Western blot analysis, and flat-mount analysis. The activation of nuclear factor-κB (NF-κB), matrix metalloproteinase-2/9 (MMP-2/9), and cell apoptosis were detected by immunofluorescence staining, Western blot, real-time RT-PCR, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). The cell proliferation was detected by BrdU labeling. RESULTS In OIR and CNV mice, the protein expression level of integrin α5β1 increased compared with that in age-matched controls. The mice given ATN-161 had significantly reduced retinal neovascularization (RNV) and CNV. Blocking integrin a5b1 by ATN-161 strongly inhibited nuclear factor-κB (NF-κB) activation and matrix metalloproteinase-2/9 (MMP-2/9) expression and promoted cell apoptosis, but the effect of ATN-161 on proliferation in CNV mice was indirect and required the inhibition of neovascularization. Inhibiting NF-κB activation by ammonium pyrrolidinedithiocarbamate (PDTC) reduced RNV and promoted cell apoptosis in ocular NV. CONCLUSIONS Blocking integrin α5β1 by ATN-161 reduced ocular NV by inhibiting MMP-2/MMP-9 expression and promoting the cell apoptosis of ocular NV.
Collapse
Affiliation(s)
- Ailing Sui
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Anna M. Demetriades
- Department of Ophthalmology, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, U.S.A
| | - Jikui Shen
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Ting Su
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yiyun Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yushuo Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
31
|
Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. An αv-RGD Integrin Inhibitor Toolbox: Drug Discovery Insight, Challenges and Opportunities. Angew Chem Int Ed Engl 2018; 57:3298-3321. [DOI: 10.1002/anie.201707948] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Richard J. D. Hatley
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Simon J. F. Macdonald
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Robert J. Slack
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Joelle Le
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Steven B. Ludbrook
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Pauline T. Lukey
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
32
|
Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. Ein Instrumentarium von αv-RGD-Integrin-Inhibitoren: Wirkstoffsuche, Herausforderungen und Möglichkeiten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard J. D. Hatley
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Simon J. F. Macdonald
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Robert J. Slack
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Joelle Le
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Steven B. Ludbrook
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Pauline T. Lukey
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| |
Collapse
|
33
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
First plasma and tissue pharmacokinetic study of the YSNSG cyclopeptide, a new integrin antagonist, using microdialysis. Eur J Pharm Sci 2017; 105:178-187. [DOI: 10.1016/j.ejps.2017.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
|
35
|
Zhang N, Xia Y, Zou Y, Yang W, Zhang J, Zhong Z, Meng F. ATN-161 Peptide Functionalized Reversibly Cross-Linked Polymersomes Mediate Targeted Doxorubicin Delivery into Melanoma-Bearing C57BL/6 Mice. Mol Pharm 2017; 14:2538-2547. [PMID: 28005375 DOI: 10.1021/acs.molpharmaceut.6b00800] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PHSCN peptide (licensed as ATN-161) is an effective α5β1 integrin inhibitor that has advanced to phase II clinical trials to treat solid tumors. Here we developed ATN-161 functionalized self-cross-linkable and intracellularly de-cross-linkable polymersomes (ATN/SCID-Ps) for highly efficient and targeted delivery of doxorubicin hydrochloride (DOX·HCl) into B16F10 melanoma-bearing C57BL/6 mice. ATN/SCID-Ps exhibited a high loading capacity of DOX·HCl. The size of DOX-loaded ATN/SCID-Ps (DOX-ATN/SCID-Ps) decreased from 150 to 88 nm with increasing ATN surface densities from 0 to 100% (mol/mol). DOX-ATN/SCID-Ps were robust with low drug leakage under physiological conditions while quickly releasing DOX with the addition of 10 mM glutathione. MTT assay results displayed that DOX-ATN/SCID-Ps induced ATN density-dependent antitumor activity to α5β1 integrin overexpressing B16F10 melanoma cells, in which 56% ATN-161 was optimal. Flow cytometry and CLSM studies revealed significantly more efficient internalization and cytoplasmic DOX release in B16F10 cells for DOX-ATN/SCID-Ps than for DOX-SCID-Ps (nontargeting control) as well as clinically used pegylated liposomal doxorubicin (DOX-LPs). DOX-ATN/SCID-Ps displayed a long blood circulation time (elimination half-life = 4.13 h) and 4 times higher DOX accumulation in B16F10 bearing C57BL/6 mice than DOX-LPs. Interestingly, DOX-ATN/SCID-Ps exhibited a superior maximum-tolerated dose of over 100 mg DOX·HCl/kg, 10 times higher than DOX-LPs. Remarkably, DOX-ATN/SCID-Ps could significantly inhibit the growth of aggressive B16F10 melanoma with little adverse effects via either multiple or single injection of total dosage of 100 mg DOX·HCl/kg, resulting in greatly improved survival rates as compared to DOX-LPs. ATN/SCID-Ps are appealing nanovehicles for targeted chemotherapy of α5β1 integrin positive solid tumors.
Collapse
Affiliation(s)
- Ning Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Yifeng Xia
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Yan Zou
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Weijing Yang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, P. R. China
| |
Collapse
|
36
|
Webb DR. Soluble Immune Response Suppressor (SIRS): Reassessing the immunosuppressant potential of an elusive peptide. Biochem Pharmacol 2016; 117:1-9. [PMID: 27038657 DOI: 10.1016/j.bcp.2016.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
A previously studied immunosuppressive cytokine, Soluble Immune Response Suppressor (SIRS), may have relevance to current studies of immune suppression in a variety of human disease states. Despite extensive efforts using experimental models, mainly in mice, much remains to be discovered as to how autoimmune cells in mice and humans escape normal regulation and, conversely, how tumor cells evade evoking an immune response. It is the contention of this commentary that the literature pre-2000 contain results that might inform current studies. The broadly immunosuppressive protein, SIRS, was studied extensively from the 1970s to 1990s and culminated in the determination of the n-terminal 21mer sequence of this 15kDa protein which had high homology to the short neurotoxins from sea snakes, that are canonical members of the three finger neurotoxin superfamily (3FTx). It was not until 2007 that the prophylactic administration of the synthetic N-terminal peptide of the SIRS 21mer, identical to the published sequence, was reported to inhibit or delay the development of two autoimmune diseases in mice: experimental allergic encephalomyelitis (EAE) and type I diabetes (T1D). These findings were consistent with other studies of the 3FTx superfamily as important probes in the study of mammalian pharmacology. It is the perspective of this commentary that SIRS, SIRS peptide and the anti-peptide mAb, represent useful, pharmacologically-active probes for the study of the immune response as well as in the potential treatment of autoimmune, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- David R Webb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| |
Collapse
|
37
|
Gu L, Li X, Ran Q, Kang C, Lee C, Shen J. Antimetastatic activity of novel ruthenium (III) pyridine complexes. Cancer Med 2016; 5:2850-2860. [PMID: 27605356 PMCID: PMC5083739 DOI: 10.1002/cam4.826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
Ruthenium‐based complexes have emerged as promising anticancer, especially antimetastatic agents. Among them, NAMI‐A (trans‐[Ru(III)Cl4 (DMSO)(Im)][ImH], Im = imidazole, DMSO = dimethyl sulfoxide) was well studied. In this study, we studied the antimetastatic activities of two novel NAMI‐A derivatives containing pyridine, G26b and G94a, using cultured cells and tumor‐bearing mice. Same to NAMI‐A, these two complexes displayed little direct cytotoxicity to the cancer cells in vitro and in vivo, but they, especially G26b, significantly reduced the occurrence and development of lung metastases in mice bearing the 4T1 mammary carcinoma. In vitro, these two complexes displayed significant suppressive effect on invasion and migration of cells and tube formation of human umbilical vein endothelial cell, to the same extent of NAMI‐A. The transcription of important molecules involved in metastasis, matrix metalloproteinase 2 and 9 (MMP‐2 and ‐9), and vascular endothelial growth factor, was suppressed by the two complexes, as well as NAMI‐A. Plasma atomic emission spectrometer showed G26b had a longer Ru‐elimination time in lung, which may be a reason for better antimetastatic effect of G26b than NAMI‐A. Our results have demonstrated that G26b is a more effective antimetastatic agent than NAMI‐A.
Collapse
Affiliation(s)
- Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Kang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Canghai Lee
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianying Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
38
|
Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat 2016; 157:489-501. [PMID: 27255534 DOI: 10.1007/s10549-016-3844-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
At diagnosis, 10 % of breast cancer patients already have locally advanced or metastatic disease; moreover, metastasis eventually develops in at least 40 % of early breast cancer patients. Osteolytic bone colonization occurs in 80-85 % of metastatic breast cancer patients and is thought to be an early step in metastatic progression. Thus, breast cancer displays a strong preference for metastasis to bone, and most metastatic breast cancer patients will experience its complications. Our prior research has shown that the α5β1 integrin fibronectin receptor mediates both metastatic and angiogenic invasion. We invented a targeted peptide inhibitor of activated α5β1, Ac-PHSCN-NH2 (PHSCN), as a validated lead compound to impede both metastatic invasion and neovascularization. Systemic PHSCN monotherapy prevented disease progression for up to 14 months in Phase I clinical trial. Here, we report that the next-generation construct, Ac-PhScN-NH2 (PhScN), which contains D-isomers of histidine (h) and cysteine (c), is greater than 100,000-fold more potent than PHSCN at blocking basement membrane invasion. Moreover, PhScN is also up to 10,000-fold more potent than PHSCN at inhibiting lung extravasation and colonization in athymic mice for both MDA-MB-231 metastatic and SUM149PT inflammatory breast cancer cells. Furthermore, we show that systemic treatment with 50 mg/kg PhScN monotherapy reduces established intratibial MDA-MB-231 bone colony progression by 80 %. Thus, PhScN is a highly potent, well-tolerated inhibitor of both lung colonization and bone colony progression.
Collapse
|
39
|
Wang WQ, Wang FH, Qin WX, Liu HY, Lu B, Chung C, Zhu J, Gu Q, Shi W, Wen C, Wu F, Zhang K, Sun XD. Joint Antiangiogenic Effect of ATN-161 and Anti-VEGF Antibody in a Rat Model of Early Wet Age-Related Macular Degeneration. Mol Pharm 2016; 13:2881-90. [PMID: 27089240 DOI: 10.1021/acs.molpharmaceut.6b00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The wet form of age-related macular degeneration (AMD) is a leading cause of blindness among elderly Americans and is characterized by abnormal vessel growth, termed choroidal neovascularization (CNV). Integrin α5β1 is a transmembrane receptor that binds matrix macromolecules and proteinases to stimulate angiogenesis. We recently demonstrated that integrin α5β1 plays a critical role in the development of choroidal neovascularization. In this study, we determined the role and underlying mechanisms of integrin α5β1 in angiogenesis in human choroidal endothelial cells and evaluated the antiangiogenic effects of delivering a combination therapy of ATN-161, an integrin α5β1 inhibitor, and an anti-VEGF monoclonal antibody to rats with laser-induced CNV. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates vasculogenesis and angiogenesis through a pathway that is distinct from the integrin α5β1 signaling pathway. Our results indicate that fibronectin binds to integrin α5β1 and synergizes VEGF-induced angiogenesis via two independent signaling pathways, FN/integrin α5β1/FAK/ERK1/2 and FN/integrin α5β1/FAK/AKT. Integrin α5 knockdown by shRNA inhibits endothelial cell migration, tube formation, and proliferation, while ATN-161 only partially decreases integrin α5 function. Treatment with ATN-161 combined with anti-VEGF antibody showed joint effects in attenuating angiogenesis. In summary, our results provide the first evidence for the mechanisms by which integrin α5β1 is involved in ocular pathological neovascularization in vivo, suggesting that dual inhibition of integrin α5β1 and VEGF may be a promising novel therapeutic strategy for CNV in wet AMD.
Collapse
Affiliation(s)
- Wen-Qiu Wang
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai, 20080, China.,Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Feng-Hua Wang
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai, 20080, China
| | - Wen-Xin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, 200032, China
| | - Hai-Yun Liu
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai, 20080, China
| | - Bing Lu
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai, 20080, China
| | - Christopher Chung
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Jie Zhu
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Qing Gu
- Shanghai Key Laboratory of Fundus Disease and Eye Research Institute, Shanghai JiaoTong University , Shanghai 200080, China
| | - William Shi
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States.,Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Sichuan 610041, China
| | - Cindy Wen
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States.,Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Sichuan 610041, China
| | - Frances Wu
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Kang Zhang
- Department of Ophthalmology, Biomaterial and Tissue Engineering Center, Institute of Engineering in Medicine and Institute for Genomic Medicine, University of California, San Diego , La Jolla, California 92093, United States.,Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Sichuan 610041, China.,Veterans Administration Healthcare System , San Diego, California 92161, United States
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai, 20080, China.,Shanghai Key Laboratory of Fundus Disease and Eye Research Institute, Shanghai JiaoTong University , Shanghai 200080, China
| |
Collapse
|
40
|
Holle AW, Young JL, Spatz JP. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 2016; 97:270-9. [PMID: 26485156 DOI: 10.1016/j.addr.2015.10.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improved methods for culturing cancer cells in biomimetic scaffolds have been developed; along the way, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro.
Collapse
|
41
|
Liu GF, Chang H, Li BT, Zhang Y, Li DD, Liu Y, Yang Y. Effect of recombinant human endostatin onradiotherapy for esophagus cancer. ASIAN PAC J TROP MED 2015; 9:86-90. [PMID: 26851794 DOI: 10.1016/j.apjtm.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the effect of radiotherapy plus recombinant human endostatin (RH-endostatin) on esophageal cancer and its mechanism. METHODS A total of 50 nudemice were equally randomized into control group, radiotherapy group, and combined therapy group I, II, and III after inoculating with Eca109 cell suspension (1 × 10(7) cells/mL). On the day of grouping, control group and radiotherapy group were injected normal saline, while radiotherapy group and 3 combined therapy groups received radiotherapy; besides, combined therapy group I, II, and III was injected RH-endostatin of 2.5, 5, 10 mg/kg respectively. After 3-week therapy, the tumors of each group were collected and microvessel density and VEGF expression in tumors were determined. In vitro, Eca109 cells were divided into control group, radiotherapy group, and combined therapy group. Forty-eight hours after treatment, cell cycle distribution and apoptosis rate were detected, and the activity of VEGF signal paths was semiquantitatively analyzed. RESULTS Since the 6th day of treatment, the relative tumor proliferation rate of combined therapy group II was lower than radiotherapy group (P < 0.05) and ≤40% since the 15th day. Average microvessel density and EGFR expression in combined therapy group II were lower than radiotherapy group (P < 0.05). In vitro, the cell percentage in S and G2/M phase of combined therapy group cells was lower than that in radiotherapy group cells, while the apoptosis rate and the expression of VEGF, AKT, p-AKT, ERK1/2 and p-ERK1/2 in combined group were higher than that in radiotherapy group (P < 0.05). CONCLUSIONS RH-endostatin promotes the efficacy of radiotherapy on esophageal cancer, which may be partly realized by inhibiting the activity of VEGF related signal paths.
Collapse
Affiliation(s)
- Gao-Feng Liu
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Hui Chang
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Bao-Tian Li
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Yong Zhang
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Dan-Dan Li
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Yan Liu
- Department of Thoracic Surgery, No. 153 Hospital of Liberation Army, Zhengzhou, China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central-South University, Changsha, China.
| |
Collapse
|
42
|
Hormesis: Decoding Two Sides of the Same Coin. Pharmaceuticals (Basel) 2015; 8:865-83. [PMID: 26694419 PMCID: PMC4695814 DOI: 10.3390/ph8040865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
In the paradigm of drug administration, determining the correct dosage of a therapeutic is often a challenge. Several drugs have been noted to demonstrate contradictory effects per se at high and low doses. This duality in function of a drug at different concentrations is known as hormesis. Therefore, it becomes necessary to study these biphasic functions in order to understand the mechanistic basis of their effects. In this article, we focus on different molecules and pathways associated with diseases that possess a duality in their function and thus prove to be the seat of hormesis. In particular, we have highlighted the pathways and factors involved in the progression of cancer and how the biphasic behavior of the molecules involved can alter the manifestations of cancer. Because of the pragmatic role that it exhibits, the imminent need is to draw attention to the concept of hormesis. Herein, we also discuss different stressors that trigger hormesis and how stress-mediated responses increase the overall adaptive response of an individual to stress stimulus. We talk about common pathways through which cancer progresses (such as nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), sirtuin-forkhead box O (SIRT-FOXO) and others), analyzing how diverse molecules associated with these pathways conform to hormesis.
Collapse
|
43
|
Villegas-Pineda JC, Garibay-Cerdenares OL, Hernández-Ramírez VI, Gallardo-Rincón D, Cantú de León D, Pérez-Montiel-Gómez MD, Talamás-Rohana P. Integrins and haptoglobin: Molecules overexpressed in ovarian cancer. Pathol Res Pract 2015; 211:973-81. [DOI: 10.1016/j.prp.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
44
|
Yurdagul A, Green J, Albert P, McInnis MC, Mazar AP, Orr AW. α5β1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:1362-73. [PMID: 24833794 DOI: 10.1161/atvbaha.114.303863] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Endothelial cell activation drives early atherosclerotic plaque formation. Both fibronectin deposition and accumulation of oxidized low-density lipoprotein (oxLDL) occur early during atherogenesis, and both are implicated in enhanced endothelial cell activation. However, interplay between these responses has not been established. The objective of our study was to determine whether endothelial matrix composition modulates the inflammatory properties of oxLDL. APPROACH AND RESULTS We now show that oxLDL-induced nuclear factor-κB activation, proinflammatory gene expression, and monocyte binding are significantly enhanced when endothelial cells are attached to fibronectin compared with basement membrane proteins. This enhanced response does not result from altered oxLDL receptor expression, oxLDL uptake, or reactive oxygen species production, but results from oxLDL-induced activation of the fibronectin-binding integrin α5β1. Preventing α5β1 signaling (blocking antibodies, knockout cells) inhibits oxLDL-induced nuclear factor-κB activation and vascular cell adhesion molecule-1 expression. Furthermore, oxLDL drives α5β1-dependent integrin signaling through the focal adhesion kinase pathway, and focal adhesion kinase inhibition (PF-573228, small interfering RNA) blunts oxLDL-induced nuclear factor-κB activation, vascular cell adhesion molecule-1 expression, and monocyte adhesion. Last, treatment with the α5β1 signaling inhibitor, ATN-161, significantly blunts atherosclerotic plaque development in apolipoprotein E-deficient mice, characterized by reduced vascular cell adhesion molecule-1 expression and macrophage accumulation without affecting fibrous cap size. CONCLUSIONS Our data suggest that α5β1-mediated cross-talk between fibronectin and oxLDL regulates inflammation in early atherogenesis and that therapeutics that inhibit α5 integrins may reduce inflammation without adversely affecting plaque structure.
Collapse
Affiliation(s)
- Arif Yurdagul
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Jonette Green
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Patrick Albert
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Marshall C McInnis
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Andrew P Mazar
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - A Wayne Orr
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.).
| |
Collapse
|
45
|
Jafaar ZMT, Litchfield LM, Ivanova MM, Radde BN, Al-Rayyan N, Klinge CM. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. Int J Oncol 2014; 44:1365-75. [PMID: 24534923 PMCID: PMC3977804 DOI: 10.3892/ijo.2014.2294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022] Open
Abstract
Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation.
Collapse
Affiliation(s)
- Zainab M T Jafaar
- Center of Biotechnology, Agricultural Research Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | - Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Brandie N Radde
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
46
|
Veine DM, Yao H, Stafford DR, Fay KS, Livant DL. A D-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis 2014; 31:379-93. [PMID: 24464034 DOI: 10.1007/s10585-013-9634-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/28/2013] [Indexed: 01/09/2023]
Abstract
Primary tumors often give rise to disseminated tumor cells (DTC's), which acquire full malignancy after invading distant site(s). Thus, DTC's may be a productive target for preventing prostate cancer metastasis progression. Our prior research showed that PHSCN peptide (Ac-PHSCN-NH2) targets activated α5β1 integrin to prevent invasion and metastasis in preclinical adenocarcinoma models, and disease progression in Phase I clinical trial. Here, we report that D-stereoisomer replacement of histidine and cysteine in PHSCN produces a highly potent derivative, Ac-PhScN-NH2 (PhScN). PhScN was 27,000- to 150,000-fold more potent as an inhibitor of basement membrane invasion by DU 145 and PC-3 prostate cancer cells. A large increase in invasion-inhibitory potency occurred after covalent modification of the sulfhydryl group in PHSCN to prevent disulfide bond formation; while the potency of covalently modified PhScN was not significantly increased. Thus PhScN and PHSCN invasion inhibition occurs by a noncovalent mechanism. These peptides also displayed similar cell surface binding dissociation constants (Kd), and competed for the same site. Consistent with its increased invasion-inhibitory potency, PhScN was also a highly potent inhibitor of lung extravasation and colonization in athymic nude mice: it was several hundred- or several thousand-fold more potent than PHSCN at blocking extravasation by PC-3 or DU 145 cells, and 111,000- or 379,000-fold more potent at inhibiting lung colonization, respectively. Furthermore, systemic 5 mg/kg PhScN monotherapy was sufficient to cause complete regression of established, intramuscular DU 145 tumors. PhScN thus represents a potent new family of therapeutic agents targeting metastasis by DTC's to prevent parallel progression in prostate cancer.
Collapse
Affiliation(s)
- Donna M Veine
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Hongren Yao
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Daniel R Stafford
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Kevin S Fay
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Donna L Livant
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA.
| |
Collapse
|
47
|
Patel H, Chuckowree I, Coxhead P, Guille M, Wang M, Zuckermann A, Williams RSB, Librizzi M, Paranal RM, Bradner JE, Spencer J. Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00211c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HDAC, kinase inhibitor hybrid, (Z)-N1-(3-((1H-pyrrol-2-yl)methylene)-2-oxoindolin-5-yl)-N8-hydroxyoctanediamide, 6, showed impressive anticancer action in a number of biochemical and cell-based assays.
Collapse
Affiliation(s)
- Hiren Patel
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
| | - Irina Chuckowree
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
- Department of Chemistry
| | - Peter Coxhead
- School of Biological Sciences
- University of Portsmouth
- Portsmouth
- UK
| | - Matthew Guille
- School of Biological Sciences
- University of Portsmouth
- Portsmouth
- UK
| | - Minghua Wang
- Terrence Donnelly Center for Cellular and Biomolecular Research
- University of Toronto
- Toronto
- Canada
| | - Alexandra Zuckermann
- Centre for Biomedical Sciences
- School of Biological Sciences
- Royal Holloway University of London
- Egham
- UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences
- School of Biological Sciences
- Royal Holloway University of London
- Egham
- UK
| | | | | | | | - John Spencer
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
- Department of Chemistry
| |
Collapse
|
48
|
Kraicheva I, Vodenicharova E, Shivachev B, Nikolova R, Kril A, Topashka-Ancheva M, Iliev I, Georgieva A, Gerasimova T, Tosheva T, Tashev E, Tsacheva I, Troev K. Anthracene-Derived Bis-Aminophosphonates: Crystal Structure, In Vitro Antitumor Activity, and Genotoxicity In Vivo. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.761986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- I. Kraicheva
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - E. Vodenicharova
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - B. Shivachev
- b Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - R. Nikolova
- b Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - A. Kril
- c Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - M. Topashka-Ancheva
- d Institute of Biodiversity and Ecosystems Research, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - I. Iliev
- c Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - A. Georgieva
- c Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - Ts. Gerasimova
- d Institute of Biodiversity and Ecosystems Research, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - T. Tosheva
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - E. Tashev
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - I. Tsacheva
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| | - K. Troev
- a Institute of Polymers, Bulgarian Academy of Sciences , 1113 , Sofia , Bulgaria
| |
Collapse
|
49
|
Zhang C, Wu X, Zhang M, Zhu L, Zhao R, Xu D, Lin Z, Liang C, Chen T, Chen L, Ren Y, Zhang J, Qin N, Zhang X. Small molecule R1498 as a well-tolerated and orally active kinase inhibitor for hepatocellular carcinoma and gastric cancer treatment via targeting angiogenesis and mitosis pathways. PLoS One 2013; 8:e65264. [PMID: 23755206 PMCID: PMC3673949 DOI: 10.1371/journal.pone.0065264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022] Open
Abstract
Protein kinases play important roles in tumor development and progression. Lots of kinase inhibitors have entered into market and show promising clinical benefits. Here we report the discovery of a novel small molecule, well-tolerated, orally active kinase inhibitor, R1498, majorly targeting both angiogenic and mitotic pathways for the treatment of hepatocellular carcinoma (HCC) and gastric cancer (GC). A series of biochemical and cell-based assays indicated that the target kinase cluster of R1498 included Aurora kinases and VEGFR2 et al. R1498 showed moderate in vitro growth inhibition on a panel of tumor cells with IC50 of micromole range. The in vivo anti-tumor efficacy of R1498 was evaluated on a panel of GC and HCC xenografts in a parallel comparison with another multikinase inhibitor sorafenib. R1498 demonstrated superior efficacy and toxicity profile over sorafenib in all test models with >80% tumor growth inhibition and tumor regression in some xenogratfts. The therapeutic potential of R1498 was also highlighted by its efficacy on three human GC primary tumor derived xenograft models with 10–30% tumor regression rate. R1498 was shown to actively inhibit the Aurora A activity in vivo, and decrease the vascularization in tumors. Furthermore, R1498 presented good in vivo exposure and therapeutic window in the pharmacokinetic and dose range finding studies. Theses evidences indicate that R1498 is a potent, well-tolerated, orally active multitarget kinase inhibitor with a unique antiangiogenic and antiproliferative profile, and provide strong confidence for further development for HCC and GC therapy.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Aurora Kinase A/antagonists & inhibitors
- Aurora Kinase A/metabolism
- Benzodiazepines/administration & dosage
- Benzodiazepines/pharmacokinetics
- Benzodiazepines/pharmacology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dogs
- Female
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/physiology
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitosis/drug effects
- Neovascularization, Pathologic/drug therapy
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacokinetics
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Signal Transduction
- Stomach Neoplasms/blood supply
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/pathology
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/physiology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chao Zhang
- Roche Research and Early Development China, Shanghai, China
| | - Xihan Wu
- Roche Research and Early Development China, Shanghai, China
| | - Meifang Zhang
- Roche Research and Early Development China, Shanghai, China
| | - Liangcheng Zhu
- Roche Research and Early Development China, Shanghai, China
| | - Rong Zhao
- Roche Research and Early Development China, Shanghai, China
| | - Danqing Xu
- Roche Research and Early Development China, Shanghai, China
| | - Zhaohu Lin
- Roche Research and Early Development China, Shanghai, China
| | - Chungen Liang
- Roche Research and Early Development China, Shanghai, China
| | | | - Li Chen
- Roche Research and Early Development China, Shanghai, China
| | - Yi Ren
- Roche Research and Early Development China, Shanghai, China
| | - Joe Zhang
- Roche Research and Early Development China, Shanghai, China
| | - Ning Qin
- Roche Research and Early Development China, Shanghai, China
| | - Xiongwen Zhang
- Roche Research and Early Development China, Shanghai, China
- * E-mail:
| |
Collapse
|
50
|
Yu J, Drisko J, Chen Q. Inhibition of pancreatic cancer and potentiation of gemcitabine effects by the extract of Pao Pereira. Oncol Rep 2013; 30:149-56. [PMID: 23674070 DOI: 10.3892/or.2013.2461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/19/2013] [Indexed: 11/06/2022] Open
Abstract
Lack of effective therapy is a major problem in the treatment of pancreatic cancer. In the present study, we investigated a natural product, the extract of Pao Pereira (Pao), for its anti-pancreatic cancer effect in vitro and in vivo, either alone or in combination with the first-line chemotherapeutic drug gemcitabine (Gem). Pao induced dose-dependent apoptosis to all five tested pancreatic cancer cell lines. The combination of Pao and Gem had a synergistic effect in the inhibition of cell growth, with combination indices (CIs) <1 by Chou-Talalay's median effect analysis based on the isobologram principle. Adding Pao to Gem treatment reduced the concentration of Gem to produce an equitoxic effect on pancreatic cancer cells. In an orthotopic pancreatic xenograft mouse model, mice bearing PACN-1 tumors were treated with Pao and Gem, either alone or in combination. The progression of tumors was monitored longitudinally by imaging of live animals. While Gem did not provide significant inhibition, Pao treatment significantly suppressed tumor growth by 70-72%. Combined Pao and Gem treatment further enhanced the tumor inhibitory effect compared to Gem alone, and markedly reduced metastatic lesions in the peritoneum. Collectively, these data suggest that the extract of Pao possesses anti-pancreatic cancer activity and can enhance the effects of Gem in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|