1
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
2
|
Zeng B, Moi D, Tolley L, Molotkov N, Frazer IH, Perry C, Dolcetti R, Mazzieri R, Cruz JLG. Skin-Grafting and Dendritic Cell "Boosted" Humanized Mouse Models Allow the Pre-Clinical Evaluation of Therapeutic Cancer Vaccines. Cells 2023; 12:2094. [PMID: 37626903 PMCID: PMC10453599 DOI: 10.3390/cells12162094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Vaccines have been hailed as one of the most remarkable medical advancements in human history, and their potential for treating cancer by generating or expanding anti-tumor T cells has garnered significant interest in recent years. However, the limited efficacy of therapeutic cancer vaccines in clinical trials can be partially attributed to the inadequacy of current preclinical mouse models in recapitulating the complexities of the human immune system. In this study, we developed two innovative humanized mouse models to assess the immunogenicity and therapeutic effectiveness of vaccines targeting human papillomavirus (HPV16) antigens and delivering tumor antigens to human CD141+ dendritic cells (DCs). Both models were based on the transference of human peripheral blood mononuclear cells (PBMCs) into immunocompromised HLA-A*02-NSG mice (NSG-A2), where the use of fresh PBMCs boosted the engraftment of human cells up to 80%. The dynamics of immune cells in the PBMC-hu-NSG-A2 mice demonstrated that T cells constituted the vast majority of engrafted cells, which progressively expanded over time and retained their responsiveness to ex vivo stimulation. Using the PBMC-hu-NSG-A2 system, we generated a hyperplastic skin graft model expressing the HPV16-E7 oncogene. Remarkably, human cells populated the skin grafts, and upon vaccination with a DNA vaccine encoding an HPV16-E6/E7 protein, rapid rejection targeted to the E7-expressing skin was detected, underscoring the capacity of the model to mount a vaccine-specific response. To overcome the decline in DC numbers observed over time in PBMC-hu-NSG-A2 animals, we augmented the abundance of CD141+ DCs, the specific targets of our tailored nanoemulsions (TNEs), by transferring additional autologous PBMCs pre-treated in vitro with the growth factor Flt3-L. The Flt3-L treatment bolstered CD141+ DC numbers, leading to potent antigen-specific CD4+ and CD8+ T cell responses in vivo, which caused the regression of pre-established triple-negative breast cancer and melanoma tumors following CD141+ DC-targeting TNE vaccination. Notably, using HLA-A*02-matching PBMCs for humanizing NSG-A2 mice resulted in a delayed onset of graft-versus-host disease and enhanced the efficacy of the TNE vaccination compared with the parental NSG strain. In conclusion, we successfully established two humanized mouse models that exhibited strong antigen-specific responses and demonstrated tumor regression following vaccination. These models serve as valuable platforms for assessing the efficacy of therapeutic cancer vaccines targeting HPV16-dysplastic skin and diverse tumor antigens specifically delivered to CD141+ DCs.
Collapse
Affiliation(s)
- Bijun Zeng
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Davide Moi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Lynn Tolley
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Natalie Molotkov
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ian Hector Frazer
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Christopher Perry
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jazmina L. G. Cruz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Telomerase: A prominent oncological target for development of chemotherapeutic agents. Eur J Med Chem 2023; 249:115121. [PMID: 36669398 DOI: 10.1016/j.ejmech.2023.115121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Telomerase is a ribonucleoprotein (RNP) responsible for the maintenance of chromosomal integrity by stabilizing telomere length. Telomerase is a widely expressed hallmark responsible for replicative immortality in 80-90% of malignant tumors. Cancer cells produce telomerase which prevents telomere shortening by adding telomeres sequences beyond Hayflick's limit; which enables them to divide uncontrollably. The activity of telomerase is relatively low in somatic cells and absent in normal cells, but the re-activation of this RNP in normal cells suppresses p53 activity which leads to the avoidance of senescence causing malignancy. Here, we have focused explicitly on various anti-telomerase therapies and telomerase-inhibiting molecules for the treatment of cancer. We have covered molecules that are reported in developmental, preclinical, and clinical trial stages as potent telomerase inhibitors. Apart from chemotherapy, we have also included details of immunotherapy, gene therapy, G-quadruplex stabilizers, and HSP-90 inhibitors. The purpose of this work is to discuss the challenges behind the development of novel telomerase inhibitors and to identify various perspectives for designing anti-telomerase compounds.
Collapse
|
4
|
Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 2021; 1:670-686. [PMID: 22934259 PMCID: PMC3429571 DOI: 10.4161/onci.20426] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the basis of a successful clinical response after treatment with therapeutic cancer vaccines is essential for the development of more efficacious therapy. After vaccination with the single telomerase (hTERT) 16-mer peptide, GV1001, some patients experienced clinical responses and long-term survival. This study reports in-depth immunological analysis of the T-cell response against telomerase (hTERT) in clinically responding patients compared with clinical non-responders following vaccination with the single hTERT 16-mer peptide, GV1001. Extensive characterization of CD4+ T-cell clones specific for GV1001 generated from a lung cancer patient in complete remission after vaccination demonstrated a very broad immune response to this single peptide vaccine with differences in fine specificity, HLA restriction, affinity and function. Some CD4+ T-cell clones were cytotoxic against peptide-loaded target cells and also recognized processed recombinant hTERT protein. Furthermore, T-cell responses against several unrelated hTERT epitopes, some of which are novel, were detected, indicating extensive epitope spreading which was confirmed in other clinical responders. In contrast, patients responding immunologically, but not clinically, after vaccination did not display this intramolecular epitope spreading. Multifunctional CD4+ T-cell clones specific for novel hTERT epitopes were generated and shown to recognize a melanoma cell line. Pentamer analysis of T cells in peripheral blood also demonstrated the presence of an important CD8+ T-cell response recognizing an HLA-B7 epitope embedded in GV1001 not previously described. These results indicate that the highly diverse hTERT-specific T-cell response, integrating both T helper and CTL responses, is essential for tumor regression and the generation of long-term T-cell memory.
Collapse
Affiliation(s)
- Else-Marit Inderberg-Suso
- Unit for Immunotherapy; Section for Immunology; Institute for Cancer Research; Oslo University Hospital; Norwegian Radium Hospital; Oslo, Norway
| | | | | | | | | |
Collapse
|
5
|
Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G. Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr Top Med Chem 2020; 20:433-457. [PMID: 31894749 DOI: 10.2174/1568026620666200102104930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Akella P Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Long-term surviving cancer patients as a source of therapeutic TCR. Cancer Immunol Immunother 2020; 69:859-865. [PMID: 31915853 PMCID: PMC7183495 DOI: 10.1007/s00262-019-02468-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
We have established a platform for the isolation of tumour-specific TCR from T cells of patients who experienced clinical benefit from cancer vaccination. In this review we will present the rationale behind this strategy and discuss the advantages of working with “natural” wild type TCRs. Indeed, the general trend in the field has been to use various modifications to enhance the affinity of such therapeutic TCRs. This was done to obtain stronger T cell responses, often at the cost of safety. We further describe antigen targets and recent in vitro and in vivo results obtained to validate them. We finally discuss the use of MHC class II-restricted TCR in immunotherapy. Typically cellular anti-tumour immune responses have been attributed to CD8 T cells; however, we isolated mainly CD4 T cells. Importantly, these MHC class II-restricted TCRs have the potential to induce broad, long lasting immune responses that enable cancer control. The use of CD4 T cell-derived TCRs for adoptive immunotherapy has so far been limited and we will here discuss their therapeutic potential.
Collapse
|
7
|
Teixeira L, Medioni J, Garibal J, Adotevi O, Doucet L, Durey MAD, Ghrieb Z, Kiladjian JJ, Brizard M, Laheurte C, Wehbe M, Pliquet E, Escande M, Defrance R, Culine S, Oudard S, Wain-Hobson S, Doppler V, Huet T, Langlade-Demoyen P. A First-in-Human Phase I Study of INVAC-1, an Optimized Human Telomerase DNA Vaccine in Patients with Advanced Solid Tumors. Clin Cancer Res 2019; 26:588-597. [PMID: 31558479 DOI: 10.1158/1078-0432.ccr-19-1614] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Human telomerase reverse transcriptase (hTERT) is highly expressed in >85% of human tumors and is thus considered as a good tumor-associated antigen candidate for vaccine development. We conducted a phase I study to investigate the safety, tolerability, clinical response, and immunogenicity of INVAC-1, a DNA plasmid encoding a modified hTERT protein in patients with relapsed or refractory solid tumors. PATIENTS AND METHODS INVAC-1 was either administered by intradermal route followed by electroporation or by Tropis, a needle-free injection system. Safety and tolerability were monitored by clinical and laboratory assessments. Progression-free survival and overall survival were reported using Kaplan-Meier survival analysis. Immunogenicity was studied by ELISpot, Luminex, and Flow Cytometry. RESULTS Twenty-six patients were treated with INVAC-1 administered at three dose levels (100, 400, and 800 μg). Vaccination was well tolerated and no dose-limiting toxicity was reported. One treatment-related grade 3 SAE was reported. Fifty-eight percent of patients experienced disease stabilization. PFS was 2.7 months, median OS was 15 months, and 1-year survival was reached for 65% of patients. INVAC-1 vaccination stimulated specific anti-hTERT CD4 T-cell response as well as cytotoxic CD8 T-cell response. No evidence of peripheral vaccine-induced immunosuppression was observed. CONCLUSIONS INVAC-1 vaccination was safe, well tolerated, and immunogenic when administered intradermally at the three tested doses in patients with relapsed or refractory cancers. Disease stabilization was observed for the majority of patients (58%) during the treatment period and beyond.See related commentary by Slingluff Jr, p. 529.
Collapse
Affiliation(s)
- Luis Teixeira
- Breast Diseases Unit, HIPI INSERM U976, AP-HP, Saint Louis Hospital, Paris University, Paris, France
| | - Jacques Medioni
- Center for Early Clinical Trials, Medical Oncology Department (CEPEC), Georges Pompidou Hospital, Paris Descartes University, Paris, France
| | | | - Olivier Adotevi
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Biomonitoring Platform, Besançon, France
| | - Ludovic Doucet
- Breast Diseases Unit, HIPI INSERM U976, AP-HP, Saint Louis Hospital, Paris University, Paris, France
| | | | - Zineb Ghrieb
- Breast Diseases Unit, HIPI INSERM U976, AP-HP, Saint Louis Hospital, Paris University, Paris, France
| | - Jean-Jacques Kiladjian
- Breast Diseases Unit, HIPI INSERM U976, AP-HP, Saint Louis Hospital, Paris University, Paris, France
| | - Mara Brizard
- Center for Early Clinical Trials, Medical Oncology Department (CEPEC), Georges Pompidou Hospital, Paris Descartes University, Paris, France
| | - Caroline Laheurte
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Biomonitoring Platform, Besançon, France
| | | | | | | | | | - Stephane Culine
- Breast Diseases Unit, HIPI INSERM U976, AP-HP, Saint Louis Hospital, Paris University, Paris, France
| | - Stephane Oudard
- Center for Early Clinical Trials, Medical Oncology Department (CEPEC), Georges Pompidou Hospital, Paris Descartes University, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Kyte JA, Fåne A, Pule M, Gaudernack G. Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncoimmunology 2019; 8:e1565236. [PMID: 30906659 DOI: 10.1080/2162402x.2019.1565236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity. From long term survivors after cancer vaccination, we have isolated telomerase-specific T cell receptors (TCRs) from T-helper cells. Herein, we report the development of transient retargeting of T cells with mRNA-based TCRs. This strategy allows for safer clinical testing and meaningful dose escalation. DP4 is the most common HLA molecule. We cloned two telomerase-specific, DP4-restricted TCRs into the mRNA expression vector pCIpA102, together with the sorter/marker/suicide gene RQR8. Donor T cells were electroporated with mRNA encoding TCR_RQR8. The results showed that both TCR_RQR8 constructs were expressed in >90% of T cells. The transfected T cells specifically recognized the relevant peptide, as well as naturally processed epitopes from a 177aa telomerase protein fragment, and remained functional for six days. A polyfunctional and Th1-like cytokine profile was observed. The TCRs were functional in both CD4+and CD8+recipient T cells, even though DP4-restricted. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired telomerase-specificity and functionality. Preclinical experiments may provide limited information on the efficacy and toxicity of T-helper TCRs, as these mobilize the host immune system. We therefore intend to use the mRNA-based TCRs for a first-in-man trial.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Clinical Outcomes of Specific Immunotherapy in Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis. J Immunol Res 2017; 2017:8282391. [PMID: 28265583 PMCID: PMC5318641 DOI: 10.1155/2017/8282391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Specific immunotherapies, including vaccines with autologous tumor cells and tumor antigen-specific monoclonal antibodies, are important treatments for PC patients. To evaluate the clinical outcomes of PC-specific immunotherapy, we performed a systematic review and meta-analysis of the relevant published clinical trials. The effects of specific immunotherapy were compared with those of nonspecific immunotherapy and the meta-analysis was executed with results regarding the overall survival (OS), immune responses data, and serum cancer markers data. The pooled analysis was performed by using the random-effects model. We found that significantly improved OS was noted for PC patients utilizing specific immunotherapy and an improved immune response was also observed. In conclusion, specific immunotherapy was superior in prolonging the survival time and enhancing immunological responses in PC patients.
Collapse
|
10
|
Niccolai E, Cappello P, Taddei A, Ricci F, D'Elios MM, Benagiano M, Bechi P, Bencini L, Ringressi MN, Coratti A, Cianchi F, Bonello L, Di Celle PF, Prisco D, Novelli F, Amedei A. Peripheral ENO1-specific T cells mirror the intratumoral immune response and their presence is a potential prognostic factor for pancreatic adenocarcinoma. Int J Oncol 2016; 49:393-401. [PMID: 27210467 DOI: 10.3892/ijo.2016.3524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with an average survival of 4-6 months following diagnosis. Surgical resection is the only treatment with curative intent, but resectable PDAC patients are in the minority. Also, unlike other neoplasms, PDAC is resistant to conventional and targeted chemotherapy. Innovative treatments, such as immunotherapy, can be very important and the study of the immune response is fundamental. We previously demonstrated that PDAC patients show tumor-infiltrating T cells specific to α-enolase (ENO1), a glycolytic enzyme over-expressed by pancreatic tumor cells, which plays an important role in promoting cell migration and cancer metastasis. In the present study, we evaluate the functional anticancer proprieties of ENO1-specific T cells isolated from the peripheral blood of PDAC patients. Furthermore, comparing the T cell receptor repertoire of ENO1-specific peripheral and infiltrating tumor T cells from the same patient suggests that ENO1-specific T cells, despite having a different functional profile, can recirculate from the tumor to the periphery. Finally, of clinical relevance, the presence of peripheral ENO1-specific T cells has a prognostic value and significantly correlates with a longer survival.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Paola Cappello
- Centre for Experimental Research and Medical Studies (CERMS), AOU City of Health and Science of Turin, and Department of Molecular Biotechnology and Health Sciences, University of Turin, I-10126 Turin, Italy
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Federica Ricci
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Lapo Bencini
- Division of General and Oncologic Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Andrea Coratti
- Division of General and Oncologic Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Fabio Cianchi
- Department of Surgery and Translational Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Lisa Bonello
- Centre for Experimental Research and Medical Studies (CERMS), AOU City of Health and Science of Turin, and Department of Molecular Biotechnology and Health Sciences, University of Turin, I-10126 Turin, Italy
| | - Paola Francia Di Celle
- General Anatomopathology and Molecular Oncogenetics - AOU City of Health and Science of Turin, I-10126 Turin, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| | - Francesco Novelli
- Centre for Experimental Research and Medical Studies (CERMS), AOU City of Health and Science of Turin, and Department of Molecular Biotechnology and Health Sciences, University of Turin, I-10126 Turin, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, and Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), I-50134 Florence, Italy
| |
Collapse
|
11
|
Brunet LR, Hagemann T, Andrew G, Mudan S, Marabelle A. Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? Oncoimmunology 2015; 5:e1112942. [PMID: 27141395 PMCID: PMC4839322 DOI: 10.1080/2162402x.2015.1112942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is extremely resistant to chemo- and radiation-therapies due to its inherent genetic instability, the local immunosuppressive microenvironment and the remarkable desmoplastic stromal changes which characterize this cancer. Therefore, there is an urgent need for improvement on standard current therapeutic options. Immunotherapies aimed at harnessing endogenous antitumor immunity have shown promise in multiple tumor types. In this review, we give an overview of new immune-related therapeutic strategies currently being tested in clinical trials in pancreatic cancer. We propose that immunotherapeutic strategies in combination with current therapies may offer new hopes in this most deadly disease.
Collapse
Affiliation(s)
| | | | - Gayab Andrew
- Deparment of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust , London, UK
| | | | - Aurelien Marabelle
- INSERM, U1015, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France; Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
12
|
Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, Buonaguro FM, Buonaguro L. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother 2015; 64:1305-14. [PMID: 25944003 PMCID: PMC11028459 DOI: 10.1007/s00262-015-1698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and represents the third and the fifth leading cause of cancer-related death worldwide in men and women, respectively. Hepatitis B virus (HBV) and hepatitis C virus (HCV) chronic infections account for pathogenesis of more than 80 % of primary HCC. HCC prognosis greatly varies according to stage at beginning of treatment, but the overall 5-year survival rate is approximately 5-6 %. Given the limited number of effective therapeutic strategies available, immunotherapies and therapeutic cancer vaccines may help in improving the clinical outcome for HCC patients. However, the few clinical trials conducted to date have shown contrasting results, indicating the need for improvements. In the present study, a novel combinatorial strategy, based on metronomic chemotherapy plus vaccine, is evaluated in a mouse model. The chemotherapy is a multi-drug cocktail including taxanes and alkylating agents, which is administered in a metronomic-like fashion. The vaccine is a multi-peptide cocktail including HCV as well as universal tumor antigen TERT epitopes. The combinatorial strategy designed and evaluated in the present study induces an enhanced specific T cell response, when compared to vaccine alone, which correlates to a reduced Treg frequency. Such results are highly promising and may pave way to relevant improvements in immunotherapeutic strategies for HCC and beyond.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Napolitano
- Laboratory of Clinical Immunology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Claudio Arra
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | | | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Franco M. Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| |
Collapse
|
13
|
Larsen SK, Ahmad SM, Idorn M, Met Ö, Martinenaite E, Svane IM, Straten PT, Andersen MH. Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncoimmunology 2014; 3:e953411. [PMID: 25960934 DOI: 10.4161/21624011.2014.953411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8+ T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3 may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises a significant immunosuppressive mechanism, such that FOXO3 targeting by means of specific T cells is an attractive clinical therapy to boost anticancer immunity. In addition, the natural occurrence of FOXO3-specific CTLs in the periphery suggests that these T cells hold a function in the complex network of immune regulation in cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- CTL
- CTL, cytotoxic T lymphocyte
- CTLA4, cytotoxic T-lymphocyte associated protein 4
- DC, dendritic cell
- FOXO3
- FOXO3, forkhead box O3
- IDO, indoleamine-2,3-dioxygenase
- PBMC, peripheral blood mononuclear cell
- TADC, tumor-associated DCs
- TGFβ, tumor growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cell
- antigens
- immune regulation
- tumor-associated dendritic cells
Collapse
Affiliation(s)
- Stine Kiaer Larsen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| |
Collapse
|
14
|
González FE, Ramírez M, Allerbring EB, Fasching N, Lundqvist A, Poschke I, Achour A, Salazar-Onfray F. Melanocortin 1 Receptor-derived peptides are efficiently recognized by cytotoxic T lymphocytes from melanoma patients. Immunobiology 2013; 219:189-97. [PMID: 24192537 DOI: 10.1016/j.imbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/10/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Melanocortin 1 Receptor (MC1R) is expressed in a majority of melanoma biopsies and cell lines. We previously demonstrated that three hydrophobic low-affinity HLA-A2-restricted MC1R-derived peptides: MC1R291-298, MC1R244-252 and MC1R283-291 can elicit cytotoxic T-lymphocytes (CTL) responses from normal donor peripheral blood lymphocytes (PBL). Moreover, peptide-specific CTL recognized a panel of MHC-matched melanomas, demonstrating that human melanoma cell lines naturally present MC1R epitopes. However, the natural presence of MC1R-specific T cells in melanoma patient's tumour and blood remains unknown. METHODS The presence of anti-MC1R specific CD8(+) T cells was established in a population of melanoma-specific T cells derived from peripheral blood mononuclear cells (PBMC) and tumour-infiltrating lymphocytes (TIL) from HLA-A2(+) melanoma patients. RESULTS CTLs specific for the three MC1R-derived peptides that lysed allogeneic HLA-A2(+)MC1R(+) melanomas were elicited from PBMC, demonstrating the existence of an anti-MC1R T cell repertoire in melanoma patients. Moreover, TILs also recognized MC1R epitopes and HLA-A2(+) melanoma cell lines. Finally, HLA-A2/MC1R244-specific CD8(+) T cell clones derived from TILs and a subset of MC1R291 specific TILs were identified using HLA-A2/MC1R tetramers. CONCLUSION Our results demonstrate that MC1R-derived peptides are common immunogenic epitopes for melanoma-specific CTLs and TILs, and may thus be useful for the development of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Fermín E González
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Science for Life Laboratory, Centre for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Stockholm, Sweden; Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Marcos Ramírez
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Eva B Allerbring
- Science for Life Laboratory, Centre for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Nina Fasching
- Science for Life Laboratory, Centre for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Cancer Centre Karolinska (R8:01), Karolinska Institute, Stockholm, Sweden
| | - Isabel Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Adnane Achour
- Science for Life Laboratory, Centre for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile.
| |
Collapse
|
15
|
Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, Khan AS, Sardesai NY, Weiner DB. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res 2013; 1:179-189. [PMID: 24777680 DOI: 10.1158/2326-6066.cir-13-0001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High levels of human telomerase reverse transcriptase (hTERT) are detected in more than 85% of human cancers. Immunologic analysis supports that hTERT is a widely applicable target recognized by T cells and can be potentially studied as a broad cancer immunotherapeutic, or a unique line of defense against tumor recurrence. There remains an urgent need to develop more potent hTERT vaccines. Here, a synthetic highly optimized full-length hTERT DNA vaccine (phTERT) was designed and the induced immunity was examined in mice and non-human primates (NHP). When delivered by electroporation, phTERT elicited strong, broad hTERT-specific CD8 T-cell responses including induction of T cells expressing CD107a, IFN-γ, and TNF-α in mice. The ability of phTERT to overcome tolerance was evaluated in an NHP model, whose TERT is 96% homologous to that of hTERT. Immunized monkeys exhibited robust [average 1,834 spot forming unit (SFU)/10(6) peripheral blood mononuclear cells (PBMC)], diverse (multiple immunodominant epitopes) IFN-γ responses and antigen-specific perforin release (average 332 SFU/10(6) PBMCs), suggesting that phTERT breaks tolerance and induces potent cytotoxic responses in this human-relevant model. Moreover, in an HPV16-associated tumor model, vaccination of phTERT slows tumor growth and improves survival rate in both prophylactic and therapeutic studies. Finally, in vivo cytotoxicity assay confirmed that phTERT-induced CD8 T cells exhibited specific cytotoxic T lymphocyte (CTL) activity, capable of eliminating hTERT-pulsed target cells. These findings support that this synthetic electroporation-delivered DNA phTERT may have a role as a broad therapeutic cancer vaccine candidate.
Collapse
Affiliation(s)
- Jian Yan
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Building 18, Suite 400, Blue Bell, PA 19422
| | - Panyupa Pankhong
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas H Shin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nyamekye Obeng-Adjei
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew P Morrow
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Building 18, Suite 400, Blue Bell, PA 19422
| | - Jewell N Walters
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amir S Khan
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Building 18, Suite 400, Blue Bell, PA 19422
| | - Niranjan Y Sardesai
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Building 18, Suite 400, Blue Bell, PA 19422
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Adamo R, Comandini A, Aquino A, Bonmassar L, Guglielmi L, Bonmassar E, Franzese O. The antiretroviral agent saquinavir enhances hTERT expression and telomerase activity in human T leukaemia cells in vitro. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:38. [PMID: 23759068 PMCID: PMC3682913 DOI: 10.1186/1756-9966-32-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Saquinavir, a protease inhibitor utilized in HIV infection, shows antitumor activity in various experimental models. In previous studies performed in our laboratory the drug was found to induce a substantial increase of telomerase activity in normal peripheral blood mononuclear cells. Aim of the present investigation was to test whether saquinavir was able to increase telomerase activity and the expression of the catalytic subunit of telomerase, hTERT, in human malignant hematopoietic cells. METHODS Human Jurkat CD4+ T cell leukaemia cell line was used throughout the present study. The antiproliferative effect of saquinavir was tested by the MTT assay. Telomerase activity was determined according to the telomeric repeat amplification protocol. The expression of hTERT mRNA was semi-quantitative evaluated by RT-PCR amplification and quantitative Real Time PCR. The binding of the transcription factor c-Myc to its specific E-Box DNA binding-site of hTERT promoter was analyzed by Electophoretic Mobility Shift Assay (EMSA). The amount of c-Myc in cytoplasm and nucleus of leukemia cells was determined by Western Blot analysis, and c-Myc down-regulation was obtained by siRNA transfection. RESULTS Saquinavir produced a substantial increase of telomerase activity in Jurkat cells in vitro without increasing but rather reducing target cell proliferation rate. Telomerase up-regulation appeared to be the result of enhanced expression of hTERT. Saquinavir-mediated up-regulation of hTERT gene was the result of the increased binding of proteins to the E-Box sequence of the promoter. Moreover, saquinavir amplified the expression of c-Myc especially in the nuclear cell fraction. The direct influence of saquinavir on this transcription factor was also demonstrated by the antagonistic effect of the drug on siRNA induced c-Myc suppression. Since c-Myc is the main responsible for hTERT transcription, these findings suggest that the main mechanism underlying saquinavir-induced telomerase activation is mediated by c-Myc up-regulation. CONCLUSIONS Saquinavir augments hTERT expression while inhibiting leukemic cell growth. Experimental evidences show that this effect is mediated by saquinavir-influenced increase of c-Myc levels. This could have relevance in terms of enhanced hTERT-dependent tumor cell immunogenicity and suggests new paharmacological approaches interfering with c-Myc dependent pathways.
Collapse
Affiliation(s)
- Riccardo Adamo
- Department of Systems Medicine, Pharmacology Section, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Fenoglio D, Traverso P, Parodi A, Tomasello L, Negrini S, Kalli F, Battaglia F, Ferrera F, Sciallero S, Murdaca G, Setti M, Sobrero A, Boccardo F, Cittadini G, Puppo F, Criscuolo D, Carmignani G, Indiveri F, Filaci G. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol Immunother 2013; 62:1041-52. [PMID: 23591981 PMCID: PMC11029691 DOI: 10.1007/s00262-013-1415-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/07/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anti-tumor vaccination is a new frontier in cancer treatment applicable to immunogenic neoplasms such as prostate and renal cancers. GX301 is a vaccine constituted by four telomerase peptides and two adjuvants, Montanide ISA-51 and Imiquimod. OBJECTIVE The aim of this study was to analyze safety and tolerability of GX301 in an open-label, phase I/II trial. Immunological and clinical responses were also evaluated as secondary endpoints. EXPERIMENTAL DESIGN GX301 was administered by intradermally injecting 500 μg of each peptide (dissolved in Montanide ISA-51) in the skin of the abdomen. Imiquimod was applied as a cream at the injection sites. The protocol included 8 administrations at days 1, 3, 5, 7, 14, 21, 35, 63. Eligible patients were affected with stage IV prostate or renal cancer resistant to conventional treatments. Patients were clinically and immunologically monitored up to 6 months from the first immunization. RESULTS No grade 3-4 adverse events were observed. Evidence of vaccine-specific immunological responses was detected in 100 % of patients. Disease stabilization occurred in 4 patients. Prolonged progression-free survival and overall survival were observed in patients showing a full pattern of vaccine-specific immunological responses. CONCLUSION GX301 demonstrated to be safe and highly immunogenic. Further studies are needed to determine its clinical efficacy.
Collapse
Affiliation(s)
- Daniela Fenoglio
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paolo Traverso
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Surgical Sciences, University of Genoa, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Laura Tomasello
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Simone Negrini
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Francesca Kalli
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Florinda Battaglia
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Francesca Ferrera
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Stefania Sciallero
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maurizio Setti
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Alberto Sobrero
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Francesco Boccardo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Giuseppe Cittadini
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Domenico Criscuolo
- Genovax srl, Colleretto Giacosa, Italy
- Present Address: Mediolanum Farmaceutici Spa, Milan, Italy
| | | | - Francesco Indiveri
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
18
|
Niccolai E, Prisco D, D'Elios MM, Amedei A. What is recent in pancreatic cancer immunotherapy? BIOMED RESEARCH INTERNATIONAL 2012; 2013:492372. [PMID: 23509731 PMCID: PMC3591222 DOI: 10.1155/2013/492372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/06/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) represents an unresolved therapeutic challenge, due to the poor prognosis and the reduced response to currently available treatments. Pancreatic cancer is the most lethal type of digestive cancers, with a median survival of 4-6 months. Only a small proportion of PC patients is curative by surgical resection, whilst standard chemotherapy for patients in advanced disease generates only modest effects with considerable toxic damages. Thus, new therapeutic approaches, specially specific treatments such as immunotherapy, are needed. In this paper we analyze recent preclinical and clinical efforts towards immunotherapy of pancreatic cancer, including passive and active immunotherapy approaches, designed to target pancreatic-cancer-associated antigens and to elicit an antitumor response in vivo.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Internal Medicine, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Domenico Prisco
- Department of Medical and Surgical Critical Care, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Mario Milco D'Elios
- Department of Internal Medicine, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Internal Medicine, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
- Division of Immunology, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50134 Florence, Italy
| |
Collapse
|
19
|
Huang G, Geng J, Wang R, Chen L. Identification of a New Cytotoxic T-Cell Epitope p675 of Human Telomerase Reverse Transcriptase. Cancer Biother Radiopharm 2012; 27:600-5. [PMID: 22917214 DOI: 10.1089/cbr.2012.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jian Geng
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Rui Wang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Longbang Chen
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Myeloid dendritic cells loaded with dendritic tandem multiple antigenic telomerase reverse transcriptase (hTERT) epitope peptides: A potentially promising tumor vaccine. Vaccine 2012; 30:3395-404. [DOI: 10.1016/j.vaccine.2012.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/14/2012] [Accepted: 03/18/2012] [Indexed: 11/22/2022]
|
21
|
Junker N, Kvistborg P, Køllgaard T, Straten PT, Andersen MH, Svane IM. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell Immunol 2011; 273:1-9. [PMID: 22230732 DOI: 10.1016/j.cellimm.2011.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 01/19/2023]
Abstract
Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFNγ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants.
Collapse
Affiliation(s)
- Niels Junker
- Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
T cells and adoptive immunotherapy: recent developments and future prospects in gastrointestinal oncology. Clin Dev Immunol 2011; 2011:320571. [PMID: 22110523 PMCID: PMC3216375 DOI: 10.1155/2011/320571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/24/2011] [Indexed: 12/15/2022]
Abstract
Gastrointestinal oncology is one of the foremost causes of death: the gastric cancer accounts for 10.4% of cancer deaths worldwide, the pancreatic cancer for 6%, and finally, the colorectal cancer for 9% of all cancer-related deaths. For all these gastrointestinal cancers, surgical tumor resection remains the primary curative treatment, but the overall 5-year survival rate remains poor, ranging between 20-25%; the addition of combined modality strategies (pre- or postoperative chemoradiotherapy or perioperative chemotherapy) results in 5-year survival rates of only 30-35%. Therefore, many investigators believe that the potential for making significant progress lies on understanding and exploiting the molecular biology of gastrointestinal tumors to investigate new therapeutic strategies such as specific immunotherapy. In this paper we will focus on recent knowledge concerning the role of T cells and the use of T adoptive immunotherapy in the treatment of gastrointestinal cancers.
Collapse
|
23
|
Nishimoto KP, Tseng SY, Lebkowski JS, Reddy A. Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regen Med 2011; 6:303-18. [PMID: 21548736 DOI: 10.2217/rme.11.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Dendritic cell (DC)-based vaccines are designed to exploit the intrinsic capacity of these highly effective antigen presenting cells to prime and boost antigen-specific T-cell immune responses. Successful development of DC-based vaccines will be dependent on the ability to utilize and harness the full potential of these potent immune stimulatory cells. Recent advances to generate DCs derived from human embryonic stem cells (hESCs) that are suitable for clinical use represent an alternative strategy from conventional approaches of using patient-specific DCs. Although the differentiation of hESC-derived DCs in serum-free defined conditions has been established, the stimulatory potential of these hESC-derived DCs have not been fully evaluated. METHODS hESC-derived DCs were differentiated in serum-free defined culture conditions. The delivery of antigen into hESC-derived DCs was investigated using mRNA transfection and replication-deficient adenoviral vector transduction. hESC-derived DCs modified with antigen were evaluated for their capacity to stimulate antigen-specific T-cell responses with known HLA matching. Since IL-12 is a key cytokine that drives T-cell function, further enhancement of DC potency was evaluated by transfecting mRNA encoding the IL-12p70 protein into hESC-derived DCs. RESULTS The transfection of mRNA into hESC-derived DCs was effective for heterologous protein expression. The efficiency of adenoviral vector transduction into hESC-derived DCs was poor. These mRNA-transfected DCs were capable of stimulating human telomerase reverse transcriptase antigen-specific T cells composed of varying degrees of HLA matching. In addition, we observed the transfection of mRNA encoding IL-12p70 enhanced the T-cell stimulation potency of hESC-derived DCs. CONCLUSION These data provide support for the development and modification of hESC-derived DCs with mRNA as a potential strategy for the induction of T-cell-mediated immunity.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
24
|
Kotsakis A, Vetsika EK, Christou S, Hatzidaki D, Vardakis N, Aggouraki D, Konsolakis G, Georgoulias V, Christophyllakis C, Cordopatis P, Kosmatopoulos K, Mavroudis D. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Ann Oncol 2011; 23:442-9. [PMID: 21873272 DOI: 10.1093/annonc/mdr396] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND TERT (telomerase reverse transcriptase) plays a critical role in tumor cell growth and survival. In an expanded phase II study, we evaluated the immunological and clinical responses to the TERT-targeting Vx-001 vaccine in patients with advanced solid tumors. METHODS HLA-A*0201-positive patients received two subcutaneous injections of the optimized TERT(572Y) peptide followed by four injections of the native TERT(572) peptide, every 3 weeks. Peptide-specific immune responses were evaluated by enzyme-linked immunosorbent spot at baseline, and after the second and the sixth vaccinations. RESULTS Fifty-five patients were enrolled and 34 (62%) completed the six vaccinations. A TERT-specific T-cell immune response was observed in 55% and 70% of patients after the second and the sixth vaccinations, respectively. The disease control rate (DCR) was 36% [95% confidence interval (CI) 24% to 49%], including one complete and one partial response. Immunologically responding patients had a better clinical outcome than nonresponders [DCR: 44% versus 14% (P = 0.047); progression-free survival (PFS): 5.2 versus 2.2 months (P = 0.0001) and overall survival: 20 versus 10 months (P = 0.041)]. Multivariate analysis revealed that the immunological response was an independent variable associated with increased PFS (hazard ratio = 3.35; 95% CI 1.7-6.7). CONCLUSION Vx-001 vaccine was well tolerated and induced a TERT-specific immunological response, which was significantly correlated with improved clinical outcome.
Collapse
Affiliation(s)
- A Kotsakis
- Department of Medical Oncology, University Hospital of Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dodson LF, Hawkins WG, Goedegebuure P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 2011; 3:517-37. [PMID: 21463193 DOI: 10.2217/imt.11.10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic adenocarcinoma is the fourth leading cause of cancer death with an overall 5-year survival of less than 5%. As there is ample evidence that pancreatic adenocarcinomas elicit antitumor immune responses, identification of pancreatic cancer-associated antigens has spurred the development of vaccination-based strategies for treatment. While promising results have been observed in animal tumor models, most clinical studies have found only limited success. As most trials were performed in patients with advanced pancreatic cancer, the contribution of immune suppressor mechanisms should be taken into account. In this article, we detail recent work in tumor antigen vaccination and the recently identified mechanisms of immune suppression in pancreatic cancer. We offer our perspective on how to increase the clinical efficacy of vaccines for pancreatic cancer.
Collapse
Affiliation(s)
- Lindzy F Dodson
- Washington University School of Medicine, Department of Surgery, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
26
|
Buseman CM, Wright WE, Shay JW. Is telomerase a viable target in cancer? Mutat Res 2011; 730:90-7. [PMID: 21802433 DOI: 10.1016/j.mrfmmm.2011.07.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/20/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023]
Abstract
The ideal cancer treatment would specifically target cancer cells yet have minimal or no adverse effects on normal somatic cells. Telomerase, the ribonucleoprotein reverse transcriptase that maintains the ends of human chromosome, is an attractive cancer therapeutic target for exactly this reason [1]. Telomerase is expressed in more than 85% of cancer cells, making it a nearly universal cancer marker, while the majority of normal somatic cells are telomerase negative. Telomerase activity confers limitless replicative potential to cancer cells, a hallmark of cancer which must be attained for the continued growth that characterizes almost all advanced neoplasms [2]. In this review we will summarize the role of telomeres and telomerase in cancer cells, and how properties of telomerase are being exploited to create targeted cancer therapies including telomerase inhibitors, telomerase-targeted immunotherapies and telomerase-driven virotherapies. A frank and balanced assessment of the current state of telomerase inhibitors with caveats and potential limitations will be included.
Collapse
Affiliation(s)
- C M Buseman
- The University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
27
|
Matera L. The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treat Rev 2009; 36:131-41. [PMID: 19954892 DOI: 10.1016/j.ctrv.2009.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/09/2022]
Abstract
Tumor antigens (TA) are promising candidates for targeted treatment of prostate cancer (PCa). Critical issues in the preparation of dendritic cell (DC)-based TA vaccines are the DC maturation state and the appropriateness of the TA. Prostate-specific antigen (PSA) and prostate acide pshosphatase (PAP) presented by DC have produced encouraging results and PAP-loaded DCs are at late-stage development for PCa patients. TAs indispensable for tumor survival and propagation are now emerging as first choice TAs for future vaccines. The increased expression and enzymatic activity of prostate specific membrane antigen (PSMA) and prostate stem cell antigen (PSCA) by aggressive prostate tumors is indicative of a unique, selective advantage on the part of cells expressing them. Human telomerase reverse transcriptase (hTERT) and survivin are both involved in tumor cell survival and considered universal TAs. The T cell epitope potential of peptides derived from these TAs has been defined by computer-assisted prediction programs and has been tested in vitro and in vivo in terms of their ability to recruit cytotoxic T lymphocytes (CTL) and to be recognised as CTL targets. Results, reviewed here, show that anti-tumor immunity can be induced in vivo by DC loaded with both whole TAs and TA peptides. The promising, but still limited clinical success suggests further exploration of this immune therapy in the more appropriate setting of minimal disease. In advanced stages, vaccine can still be effective when combined with systemic or local cytoreductive therapies, which may overcome antigen specific tolerance and subvert the tumor immunosuppressive environment.
Collapse
Affiliation(s)
- Lina Matera
- Laboratory of Tumor Immunology, Department of Internal Medicine, University of Turin, Turin, Italy.
| |
Collapse
|
28
|
Palumbo SL, Ebbinghaus SW, Hurley LH. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J Am Chem Soc 2009; 131:10878-91. [PMID: 19601575 DOI: 10.1021/ja902281d] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hTERT core promoter contains a G-rich region of 12 consecutive G-tracts, embracing 3 Sp1 binding sites, and has the potential to form multiple G-quadruplexes. From the 12 runs of guanines, 9 putative hTERT G-quadruplex-forming sequences were selected to assay for G-quadruplex formation and stability using circular dichroism and a Taq polymerase stop assay. Results from biophysical and chemical assays demonstrate an approximate inverse correlation between total loop size and structure stability. Investigation of the full-length hTERT G-rich sequence using a Taq polymerase stop assay and dimethyl sulfate footprinting revealed the formation of a unique end-to-end stacked G-quadruplex structure from this sequence. This structure consists of an all parallel G-quadruplex, formed by four consecutive G-tracts, linked to another, atypical G-quadruplex, formed by two pairs of consecutive G-tracts separated by a 26-base loop. This 26-base loop likely forms a stable hairpin structure, which would explain the unexpected stability of this G-quadruplex. Significantly, the formation of this tandem G-quadruplex structure in the full-length sequence masks all three Sp1 binding sites, which is predicted to produce significant inhibition of hTERT promoter activity. Furthermore, our study implies that inhibition of telomerase activity by some G-quadruplex ligands is not only produced by targeting telomeric G-quadruplexes but also by stabilization of the hTERT promoter G-quadruplexes.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
29
|
Hirohashi Y, Torigoe T, Inoda S, Kobayasi JI, Nakatsugawa M, Mori T, Hara I, Sato N. The functioning antigens: beyond just as the immunological targets. Cancer Sci 2009; 100:798-806. [PMID: 19445013 PMCID: PMC11158174 DOI: 10.1111/j.1349-7006.2009.01137.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antigenic peptides derived from tumor-associated antigens (TAAs) facilitate peptide cancer vaccine therapies. With the recent progress in cancer immunity research, huge amounts of antigenic peptides have already been reported. Clinical trials using such peptides are underway now all over the world. Some reports have shown the efficacy of peptide vaccine therapies. However, others ended with unfavorable results, suggesting fundamental underlying problems. One major mechanism that negates the peptide vaccine therapy is tumor escape from immunological systems caused by loss of antigens. TAAs that are used in cancer vaccine therapies may be divided into two major groups: functioning antigens and nonfunctioning antigens. A 'functioning antigen' could be defined as a TAA that is essential for tumor growth, is expressed in several kinds of malignancies and shows homogenous expression in cancerous tissues. It is not difficult to imagine that antigen loss will occur easily with non-functioning antigens as a target of cancer vaccine therapy. Thus, it is essential to use functioning antigens for successful cancer vaccine therapy. In this review, we discuss the functioning antigens and their categorization in detail.
Collapse
Affiliation(s)
- Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West 17, Chuo-ko, Sapporo, 060-8556 Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Aloysius MM, Mc Kechnie AJ, Robins RA, Verma C, Eremin JM, Farzaneh F, Habib NA, Bhalla J, Hardwick NR, Satthaporn S, Sreenivasan T, El-Sheemy M, Eremin O. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs. J Transl Med 2009; 7:18. [PMID: 19298672 PMCID: PMC2674878 DOI: 10.1186/1479-5876-7-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/19/2009] [Indexed: 12/23/2022] Open
Abstract
Background Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i) DC activation/maturation milieu (TNF-α +/- IFN-α) and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865), (ii) CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672)-pulsed DCs, prepared without IFN-α, (iii) association between circulating T regulatory cells (Tregs) and clinical responses. Methods Autologous DCs were generated from 10 patients (HLA-0201) with advanced cancer by culturing CD14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with TNF-α [DCT] or TNF-α and IFN-α [DCTI]. The capacity of the DCs to induce functional CD8+ T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI) was pulsed with only one type of hTERT peptide (p540 or p865) and both preparations were injected into separate lymph node draining regions every 2–3 weeks. This vaccination design enabled comparison of efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and comparison of class I hTERT peptide (p540 or p865)-loaded DCT with or without class II cognate help (p766 and p672) in 6 patients. T regulatory cells were evaluated in 8 patients. Results (i) DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test) in inducing peptide-specific CD8+ T cell responses. (ii) Class II cognate help, significantly enhanced (p < 0.05, t-test) peptide-specific CD8+T cell responses, compared with class I pulsed DCs alone. (iii) Clinical responders had significantly lower (p < 0.05, Mann-Whitney U test) T regs, compared with non-responders. 4/16 patients experienced partial but transient clinical responses during vaccination. Vaccination was well tolerated with minimal toxicity. Conclusion Addition of IFN-α to ex vivo monocyte-derived DCs, did not significantly enhance peptide-specific T cell responses in vivo, compared with TNF-α alone. Class II cognate help significantly augments peptide-specific T cell responses. Clinically favourable responses were seen in patients with low levels of circulating T regs.
Collapse
Affiliation(s)
- Mark M Aloysius
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Diseases Centre, University of Nottingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beatty GL, Vonderheide RH. Telomerase as a universal tumor antigen for cancer vaccines. Expert Rev Vaccines 2008; 7:881-7. [PMID: 18767939 DOI: 10.1586/14760584.7.7.881] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T-cell immunotherapy relies on the fundamental concept that tumor antigens exist and are presented in the context of MHC molecules for recognition by specific T cells capable of cytolysis. However, heterogeneous expression of most characterized tumor antigens limits the broad applicability of cancer vaccines that target such antigens. Telomerase, on the other hand, represents a prototype of a universal tumor antigen due to both its expression by the vast majority of tumors and its inherent functional involvement in oncogenic transformation. Given these attractive features, the identification of epitopes within human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, has led to the investigation of this tumor antigen as a broadly applicable immunological target. Basic immunological analyses have revealed that hTERT is immunogenic, and initial clinical trials of multiple vaccine formulations have demonstrated that hTERT-specific immune responses can be safely induced in patients and impact on clinical outcomes. Second-generation vaccines are now addressing strategies to enhance cellular immunity against hTERT without toxicity. Findings obtained from these trials will inform the possibility of broad-spectrum cancer immunotherapy or even immunoprevention.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 551 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|