1
|
Chien MH, Yang YC, Ho KH, Ding YF, Chen LH, Chiu WK, Chen JQ, Tung MC, Hsiao M, Lee WJ. Cyclic increase in the ADAMTS1-L1CAM-EGFR axis promotes the EMT and cervical lymph node metastasis of oral squamous cell carcinoma. Cell Death Dis 2024; 15:82. [PMID: 38263290 PMCID: PMC10805752 DOI: 10.1038/s41419-024-06452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Seo E, Jang H, Kwon S, Kwon Y, Kim S, Lee S, Jeong AJ, Shin HM, Kim Y, Ma S, Kim H, Lee Y, Suh P, Ye S. Loss of phospholipase Cγ1 suppresses hepatocellular carcinogenesis through blockade of STAT3-mediated cancer development. Hepatol Commun 2022; 6:3234-3246. [PMID: 36153805 PMCID: PMC9592768 DOI: 10.1002/hep4.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Phospholipase C gamma 1 (PLCγ1) plays an oncogenic role in several cancers, alongside its usual physiological roles. Despite studies aimed at identifying the effect of PLCγ1 on tumors, the pathogenic role of PLCγ1 in the tumorigenesis and development of hepatocellular carcinoma (HCC) remains unknown. To investigate the function of PLCγ1 in HCC, we generated hepatocyte-specific PLCγ1 conditional knockout (PLCγ1f/f ; Alb-Cre) mice and induced HCC with diethylnitrosamine (DEN). Here, we identified that hepatocyte-specific PLCγ1 deletion effectively prevented DEN-induced HCC in mice. PLCγ1f/f ; Alb-Cre mice showed reduced tumor burden and tumor progression, as well as a decreased incidence of HCC and less marked proliferative and inflammatory responses. We also showed that oncogenic phenotypes such as repressed apoptosis, and promoted proliferation, cell cycle progression and migration, were induced by PLCγ1. In terms of molecular mechanism, PLCγ1 regulated the activation of signal transducer and activator of transcription 3 (STAT3) signaling. Moreover, PLCγ1 expression is elevated in human HCC and correlates with a poor prognosis in patients with HCC. Our results suggest that PLCγ1 promotes the pathogenic progression of HCC, and PLCγ1/STAT3 axis was identified as a potential therapeutic target pathway for HCC.
Collapse
Affiliation(s)
- Eun‐Bi Seo
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun‐Jun Jang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Sun‐Ho Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yong‐Jin Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Seul‐Ki Kim
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Song‐Hee Lee
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun Mu Shin
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer CenterGoyangRepublic of Korea
| | - Stephanie Ma
- State Key Laboratory of Liver ResearchLi Ka Shing Faculty of Medicine, The University of Hong KongHong Kong
| | - Haeryoung Kim
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Yun‐Han Lee
- Department of Molecular MedicineKeimyung University School of MedicineDaeguRepublic of Korea
| | - Pann‐Ghill Suh
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Korea Brain Research Institute (KBRI)DaeguRepublic of Korea
| | - Sang‐Kyu Ye
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
3
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
5
|
Liu C, Zhu X, Jia Y, Chi F, Qin K, Pei J, Zhang C, Mu X, Zhang H, Dong X, Xu J, Yu B. Dasatinib inhibits proliferation of liver cancer cells, but activation of Akt/mTOR compromises dasatinib as a cancer drug. Acta Biochim Biophys Sin (Shanghai) 2021; 53:823-836. [PMID: 33961012 DOI: 10.1093/abbs/gmab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Dasatinib is a multi-target protein tyrosine kinase inhibitor. Due to its potent inhibition of Src, Abl, the platelet-derived growth factor receptor (PDGFR) family kinases, and other oncogenic kinases, it has been investigated as a targeted therapy for a broad spectrum of cancer types. However, its efficacy has not been significantly extended beyond leukemia. The mechanism of resistance to dasatinib in a wide array of cancers is not clear. In the present study, we investigated the effect of dasatinib on hepatocellular carcinoma cell growth and explored the underlying mechanisms. Our results showed that dasatinib potently inhibited the proliferation of SNU-449 cells, but not that of other cell lines, such as SK-Hep-1, even though it inhibited the phosphorylation of Src on both negative and positive regulation sites in all these cells. Dasatinib activated the phosphoinositide-dependent protein kinase1 (PDK1)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in SK-Hep-1 cells, but not in SNU-449 cells. Blocking the Akt/mTOR signaling pathway strongly promoted the efficacy of dasatinib in SK-Hep-1 cells. In SNU-449 cells, dasatinib promoted apoptosis and the cleavage of caspase-3 and caspase-7, induced cell cycle arrest in the G1 phase, and inhibited the expression of Cyclin-dependent kinase (CDK4)/6/CyclinD1 complex. These findings demonstrate that dasatinib exerts its anti-proliferative effect on hepatocellular cell proliferation by blocking the Src family kinases; however, it causes Akt activation, which compromises dasatinib as an anti-cancer drug.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi 046000, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoxia Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqi Jia
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Fenqing Chi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Keru Qin
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Jinhong Pei
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi 046000, China
| | - Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiuli Mu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Zhang
- Department of Hematology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan 030013, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Jun Xu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Toyoma S, Suzuki S, Kawasaki Y, Yamada T. SDF-1/CXCR4 induces cell invasion through CD147 in squamous cell carcinoma of the hypopharynx. Oncol Lett 2020; 20:1817-1823. [PMID: 32724425 PMCID: PMC7377101 DOI: 10.3892/ol.2020.11744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/08/2020] [Indexed: 12/01/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (SCC) has a poor prognosis due to local invasion and metastasis. The chemokine receptor CXC chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor 1 (SDF-1), play roles in tumor progression through unclear mechanisms. For the present study, we used a hypopharyngeal SCC cell line, FaDu, expressing CXCR4. We found that SDF-1 promotes migration and invasion of the FaDu cells. In addition, AMD3100, a specific antagonist of CXCR4, inhibited the binding of SDF-1 to CXCR4, resulting in a significant decrease in the FaDu cell migration induced by SDF-1. Stimulation of CXCR4 with SDF-1 induced an increase in the expression of CD147, a cell membrane protein; and this CD147 upregulation was abrogated by AMD3100. CD147 function-blocking antibodies also abolished the SDF-1-induced FaDu invasiveness. Our results suggested that SDF-1/CXCR4 mediate hypopharyngeal SCC cell migration and that CD147 is involved in the SDF-1/CXCR4-related tumor progression.
Collapse
Affiliation(s)
- Satoshi Toyoma
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
7
|
Owusu Obeng E, Rusciano I, Marvi MV, Fazio A, Ratti S, Follo MY, Xian J, Manzoli L, Billi AM, Mongiorgi S, Ramazzotti G, Cocco L. Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. Int J Mol Sci 2020; 21:ijms21072581. [PMID: 32276377 PMCID: PMC7177890 DOI: 10.3390/ijms21072581] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCβ, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.
Collapse
|
8
|
Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma. Oncotarget 2016; 7:8043-54. [PMID: 26811493 PMCID: PMC4884974 DOI: 10.18632/oncotarget.6976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma.
Collapse
|
9
|
Ausoni S, Boscolo-Rizzo P, Singh B, Da Mosto MC, Spinato G, Tirelli G, Spinato R, Azzarello G. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev 2016; 35:413-26. [PMID: 27194534 PMCID: PMC5524458 DOI: 10.1007/s10555-016-9625-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in functional outcomes attributable to advances in radiotherapy, chemotherapy, surgical techniques, and imaging techniques, survival in head and neck squamous cell carcinoma (HNSCC) patients has improved only marginally during the last couple of decades, and optimal therapy has yet to be devised. Genomic complexity and intratumoral genetic heterogeneity may contribute to treatment resistance and the propensity for locoregional recurrence. Countering this, it demands a significant effort from both basic and clinical scientists in the search for more effective targeted therapies. Recent genomewide studies have provided valuable insights into the genetic basis of HNSCC, uncovering potential new therapeutic opportunities. In addition, several studies have elucidated how inflammatory, immune, and stromal cells contribute to the particular properties of these neoplasms. In the present review, we introduce recent findings on genomic aberrations resulting from whole-genome sequencing of HNSCC, we discuss how the particular microenvironment affects the pathogenesis of this disease, and we describe clinical trials exploring new perspectives on the use of combined genetic and cellular targeted therapies.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, University of Padua, Treviso Regional Hospital, Treviso, Italy
| | - Bhuvanesh Singh
- Laboratory of Epithelial Cancer Biology, Head and Neck Service, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Maria Cristina Da Mosto
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, University of Padua, Treviso Regional Hospital, Treviso, Italy
| | - Giacomo Spinato
- Department of Otorhinolaryngology, Head and Neck Surgery, Cattinara Hospital, Trieste, Italy
| | - Giancarlo Tirelli
- Department of Otorhinolaryngology, Head and Neck Surgery, Cattinara Hospital, Trieste, Italy
| | - Roberto Spinato
- Department of Otorhinolaryngology, Head and Neck Surgery, Dell'Angelo Hospital, Mestre, Venezia, Italy
| | - Giuseppe Azzarello
- Department of Medical Oncology, Mirano Hospital, Local Health Unit 13, Mirano, Venezia, Italy.
| |
Collapse
|
10
|
WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways. Br J Cancer 2015; 113:921-33. [PMID: 26291058 PMCID: PMC4578084 DOI: 10.1038/bjc.2015.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. METHODS The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. RESULTS Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. CONCLUSIONS Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.
Collapse
|
11
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
12
|
Markwell SM, Weed SA. Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers (Basel) 2015; 7:382-406. [PMID: 25734659 PMCID: PMC4381264 DOI: 10.3390/cancers7010382] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| | - Scott A Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
13
|
Yang J, Song X, Chen Y, Lu XA, Fu Y, Luo Y. PLCγ1-PKCγ signaling-mediated Hsp90α plasma membrane translocation facilitates tumor metastasis. Traffic 2014; 15:861-78. [PMID: 24899266 DOI: 10.1111/tra.12179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/29/2022]
Abstract
The 90-kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF-mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca(2+) and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell-surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ-induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1-PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.
Collapse
Affiliation(s)
- Jian Yang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Phospholipases are enzymes that use phospholipids as substrate and are classified in three major classes A, C and D based on the reaction they catalyse. Phosphatidylinositol-specific Phospholipase C enzymes utilize phosphatidylinositol 4,5-bisphosphate as substrate and cleave the bond between the glycerol and the phosphate to produce important second messenger such as inositol trisphosphate and diacylglycerol. The Phospholipase C members are the most well-known phospholipases for their role in lipid signalling and cell proliferation and comprise 13 isoforms classified in 6 distinct sub-families. In particular, signalling activated by Phospholipase C γ, mostly activated by receptor and non-receptor tyrosine kinases, is well characterized in different cell systems. Increasing evidence suggest that Phospholipase C γ plays a key role in cell migration and invasion. Because of its role in cell growth and invasion, aberrant Phospholipase C γ signalling can contribute to carcinogenesis. A major challenge facing investigators who seek to target Phospholipase C γ directly is the fact that it is considered an "undruggable" protein. Indeed, isoform specificity and toxicity represents a big hurdle in the development of Phospholipase C γ small molecule inhibitors. Therefore, a future development in the field could be the identification of interacting partners as therapeutic targets that could be more druggable than Phospholipase C γ.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Aging Research Centre, G. d'Annunzio University Foundation, 66013 Chieti, Italy.
| | | | | |
Collapse
|
15
|
Zhou Q, Lv H, Mazloom AR, Xu H, Ma'ayan A, Gallo JM. Activation of alternate prosurvival pathways accounts for acquired sunitinib resistance in U87MG glioma xenografts. J Pharmacol Exp Ther 2012; 343:509-19. [PMID: 22869928 DOI: 10.1124/jpet.112.196097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acquired drug resistance represents a major obstacle to using sunitinib for the treatment of solid tumors. Here, we examined the cellular and molecular alterations in tumors that are associated with acquired brain tumor resistance to sunitinib by using an in vivo model. U87MG tumors obtained from nude mice that received sunitinib (40 mg/kg/day) for 30 days were classified into sunitinib-sensitive and -resistant groups based on tumor volume and underwent targeted gene microarray and protein array analyses. The expression of several angiogenesis-associated genes was significantly modulated in sunitinib-treated tumors compared with those in control tumors (p<0.05), whereas no significant differences were observed between sunitinib-sensitive and -resistant tumors (p>0.05). Tumor vasculature based on microvessel density, neurogenin 2 chondroitin sulfate proteoglycan density, and α-smooth muscle actin density was also similar in sunitinib-treatment groups (p>0.05). The moderate increase in unbound sunitinib tumor-to-plasma area-under-the-curve ratio in sunitinib-resistant mice was accompanied by up-regulated ATP-binding cassette G2 expression in tumor. The most profound difference between the sunitinib-sensitive and -resistant groups was found in the expression of several phosphorylated proteins involved in intracellular signaling. In particular, phospholipase C-γ1 phosphorylation in sunitinib-resistant tumors was up-regulated by 2.6-fold compared with that in sunitinib-sensitive tumors (p<0.05). In conclusion, acquired sunitinib resistance in U87MG tumors is not associated with revascularization in tumors, but rather with the activation of alternate prosurvival pathways involved in an escape mechanism facilitating tumor growth and possibly insufficient drug uptake in tumor cells caused by an up-regulated membrane efflux transporter.
Collapse
Affiliation(s)
- Qingyu Zhou
- Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Ma LW, Zhou ZT, He QB, Jiang WW. Phospholipase C-γ1 expression correlated with cancer progression of potentially malignant oral lesions. J Oral Pathol Med 2012; 42:47-52. [DOI: 10.1111/j.1600-0714.2012.01179.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Mehra R, Serebriiskii IG, Dunbrack RL, Robinson MK, Burtness B, Golemis EA. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer. Drug Resist Updat 2011; 14:260-79. [PMID: 21920801 PMCID: PMC3195944 DOI: 10.1016/j.drup.2011.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023]
Abstract
Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors.
Collapse
Affiliation(s)
- Ranee Mehra
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Matthew K. Robinson
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Barbara Burtness
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
18
|
Inoue H, Miyazaki Y, Kikuchi K, Yoshida N, Ide F, Ohmori Y, Tomomura A, Sakashita H, Kusama K. Podoplanin expression during dysplasia–carcinoma sequence in the oral cavity. Tumour Biol 2011; 33:183-94. [DOI: 10.1007/s13277-011-0261-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 01/22/2023] Open
|
19
|
PLCγ is required for RhoGDI2-mediated cisplatin resistance in gastric cancer. Biochem Biophys Res Commun 2011; 414:575-80. [PMID: 21986528 DOI: 10.1016/j.bbrc.2011.09.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/23/2023]
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) is a regulator of the Rho family GTPases. Recent work from our laboratory suggests that RhoGDI2 expression potentially enhances resistance to cisplatin as well as promotes tumor growth and malignant progression in gastric cancer. In this study, we demonstrate that phospholipase C-gamma (PLCγ) is required for RhoGDI2-mediated cisplatin resistance and cancer cell invasion in gastric cancer. The levels of phosphorylated PLCγ are markedly enhanced in RhoGDI2-overexpressing SNU-484 cells and, by contrast, repressed in RhoGDI2-depleted MKN-28 cells. Depletion of PLCγ expression or inhibition of its activity not only significantly increases cisplatin-induced apoptosis but also suppresses the invasive ability of RhoGDI2-overexpressing SNU-484 cells. Taken together, our results suggest that PLCγ plays a key role in RhoGDI2-mediated cisplatin resistance and cell invasion in gastric cancer cells.
Collapse
|
20
|
Mizrachy-Schwartz S, Cohen N, Klein S, Kravchenko-Balasha N, Levitzki A. Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation. J Biol Chem 2011; 286:15268-77. [PMID: 21245141 PMCID: PMC3083231 DOI: 10.1074/jbc.m110.211813] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Indexed: 01/01/2023] Open
Abstract
We report that the activation level of AMP-dependent protein kinase AMPK is elevated in cancer cell lines as a hallmark of their transformed state. In OVCAR3 and A431 cells, c-Src signals through protein kinase Cα, phospholipase Cγ, and LKB1 to AMPK. AMPK controls internal ribosome entry site (IRES) dependent translation in these cells. We suggest that AMPK activation via PKC might be a general mechanism to regulate IRES-dependent translation in cancer cells.
Collapse
Affiliation(s)
- Sarit Mizrachy-Schwartz
- From the Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noam Cohen
- From the Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shoshana Klein
- From the Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nataly Kravchenko-Balasha
- From the Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander Levitzki
- From the Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Abstract
Metastasis remains a major cause of mortality in patients with head and neck squamous cell carcinoma (HNSCC). HNSCC patients with metastatic disease have extremely poor prognoses, with an average survival rate of less than a year. Metastasis is an intricate sequential process that requires a discrete population of tumor cells to possess the capacity to intravasate from the primary tumor into systemic circulation, survive in circulation, extravasate at a distant site, and proliferate in a foreign, hostile environment. Literature has accumulated to provide mechanistic insight into several signal transduction pathways, receptor tyrosine kinases (RTKs), signal transducer and activator of transcription 3 (Stat3), Rho GTPases, protein kinase Cε (PKCsε), and nuclear factor-κB (NF-κB), that are involved in mediating a metastatic tumor cell phenotype in HN-SCC. Herein we highlight accrued information regarding the key molecular parameters of HNSCC metastasis.
Collapse
Affiliation(s)
- Sanjay L Bhave
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus OH 43210, USA
| | | | | |
Collapse
|
22
|
Arellano-Garcia ME, Li R, Liu X, Xie Y, Yan X, Loo JA, Hu S. Identification of tetranectin as a potential biomarker for metastatic oral cancer. Int J Mol Sci 2010; 11:3106-21. [PMID: 20957082 PMCID: PMC2956083 DOI: 10.3390/ijms11093106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 12/20/2022] Open
Abstract
Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC). A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B). We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.
Collapse
Affiliation(s)
- Martha E. Arellano-Garcia
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
| | - Roger Li
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
| | - Xiaojun Liu
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
| | - Yongming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
| | - Xiaofei Yan
- Department of Statistics, University of California Los Angeles, Los Angeles, CA, USA; E-Mail:
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shen Hu
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-310-206-8834; Fax: +1-310-794-7109
| |
Collapse
|
23
|
Abstract
IMPORTANCE OF THE FIELD Head and neck squamous cell carcinoma (HNSCC) is the eighth leading cause of cancer death worldwide. Despite advances in surgery and chemoradiation therapy, there has been little improvement in survival rates over the past 4 decades. Additionally, surgery and chemoradiotherapy have serious side effects. The development of agents with greater efficacy and tolerability is needed. AREAS COVERED IN THIS REVIEW EGFR is the only proven molecular target for HNSCC therapy. Cetuximab, the sole FDA-approved molecular targeted HNSCC therapy, and other potential targeted therapies are being evaluated in preclinical, clinical and post-marketing studies. Here, we review the emerging targets for biological agents in HNSCC and the rationale for their selection. WHAT THE READER WILL GAIN Key information in the development of new drug targets and the emergence of new biomarkers are discussed. Readers will gain insight regarding the limitations of current therapies, the impact of recently approved targeted therapies and the influence that predictive biomarkers will have on drug development. TAKE HOME MESSAGE The head and neck cancer drug market is rapidly evolving. Coordination between drug and biomarker development efforts may soon yield targeted therapies that can achieve the promise of personalized cancer medicine.
Collapse
Affiliation(s)
- Christopher Fung
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Otolaryngology, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Physician-Scientist Training Program, Pittsburgh, Pennsylvania, USA
- Howard Hughes Medical Institute, Medical Fellows Program, Chevy Chase, Maryland, USA
| | - Jennifer R Grandis
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Otolaryngology, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Pharmacology, Pittsburgh, Pennsylvania, USA
- Eye and Ear Institute, 200 Lothrop St., Suite 500, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Lee JH, Pyon JK, Kim DW, Lee SH, Nam HS, Kim CH, Kang SG, Lee YJ, Park MY, Jeong DJ, Cho MK. Elevated c-Src and c-Yes expression in malignant skin cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:116. [PMID: 20796316 PMCID: PMC2936336 DOI: 10.1186/1756-9966-29-116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Src family kinases (SFKs) play an important role in cancer proliferation, survival, motility, invasiveness, metastasis, and angiogenesis. Among the SFKs, c-Src and c-Yes are particularly over-expressed or hyper-activated in many human epithelial cancers. However, only a few studies have attempted to define the expression and role of c-Src and c-Yes in cutaneous carcinomas. OBJECTIVES To investigate the expression of c-Src and c-Yes in cutaneous carcinomas to include malignant melanoma (MM), squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). METHODS We examined 6 normal skin tissues and 18 malignant skin tumor tissues using western blotting for the expression of c-Src and c-Yes. In another set, 16 specimens of MM, 16 SCCs and 16 BCCs were analyzed for the expression of c-Src and c-Yes using immunohistochemical staining. RESULTS Western blotting showed that c-Src was expressed in all malignant skin tumors, but not in normal skin, while c-Yes was expressed in MM and SCC, but not in BCC and normal skin. Immunohistochemical staining results of c-Src and c-Yes in MM, SCC, and BCC mirrored those of the western blot analysis. CONCLUSIONS c-Src, rather than c-Yes, plays a key role in the proliferation and progression of malignant skin cancers.
Collapse
Affiliation(s)
- Jang Hyun Lee
- Molecular Cancer Research Center, College of Medicine, Soonchunhyang University, Chunan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie Z, Peng J, Pennypacker SD, Chen Y. Critical role for the catalytic activity of phospholipase C-gamma1 in epidermal growth factor-induced cell migration. Biochem Biophys Res Commun 2010; 399:425-8. [PMID: 20674545 DOI: 10.1016/j.bbrc.2010.07.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-gamma1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-gamma1 is required for EGFR-induced cell migration. We found that overexpression of PLC-gamma1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-gamma1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-gamma1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP(3) receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-gamma1 and the subsequent IP(3) generation and intracellular calcium mobilization.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
26
|
Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, Eccles SA. Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Mol Cancer Ther 2009; 8:1305-11. [PMID: 19417158 DOI: 10.1158/1535-7163.mct-09-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide-specific phospholipase Cγ1 (PLCγ1) is activated downstream of many receptor tyrosine kinases to promote cell motility. Inhibition of this protein is being explored as a therapeutic strategy for blocking cancer cell invasion and metastasis. The clinical development of such cytostatic therapies requires the implementation of pharmacodynamic biomarkers of target modulation. In this study, we use magnetic resonance spectroscopy to explore metabolic biomarkers of PLCγ1 down-regulation in PC3LN3 prostate cancer cells. We show that inhibition of PLCγ1 via an inducible short hairpin RNA system causes a reduction in phosphocholine levels by up to 50% relative to the control as detected by (1)H and (31)P magnetic resonance spectroscopy analyses. This correlated with a rounded-up morphology and reduced cell migration. Interestingly, the fall in phosphocholine levels was not recorded in cells with constitutive PLCγ1 knockdown where the rounded-up phenotype was no longer apparent. This study reveals alterations in metabolism that accompany the cellular effects of PLCγ1 knockdown and highlights phosphocholine as a potential pharmacodynamic biomarker for monitoring the action of inhibitors targeting PLCγ1 signaling.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Ammer AG, Kelley LC, Hayes KE, Evans JV, Lopez-Skinner LA, Martin KH, Frederick B, Rothschild BL, Raben D, Elvin P, Green TP, Weed SA. Saracatinib Impairs Head and Neck Squamous Cell Carcinoma Invasion by Disrupting Invadopodia Function. ACTA ACUST UNITED AC 2009; 1:52-61. [PMID: 20505783 DOI: 10.4172/1948-5956.1000009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|