1
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
2
|
Lefebvre C, Pellizzari S, Bhat V, Jurcic K, Litchfield DW, Allan AL. Involvement of the AKT Pathway in Resistance to Erlotinib and Cabozantinib in Triple-Negative Breast Cancer Cell Lines. Biomedicines 2023; 11:2406. [PMID: 37760847 PMCID: PMC10525382 DOI: 10.3390/biomedicines11092406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.
Collapse
Affiliation(s)
- Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Sierra Pellizzari
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
| | - David W. Litchfield
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
3
|
Zhang J, Zhang R, Li W, Ma XC, Qiu F, Sun CP. IκB kinase β (IKKβ): Structure, transduction mechanism, biological function, and discovery of its inhibitors. Int J Biol Sci 2023; 19:4181-4203. [PMID: 37705738 PMCID: PMC10496512 DOI: 10.7150/ijbs.85158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
The effective approach to discover innovative drugs will ask natural products for answers because of their complex and changeable structures and multiple biological activities. Inhibitory kappa B kinase beta (IKKβ), known as IKK2, is a key regulatory kinase responsible for the activation of NF-κB through its phosphorylation at Ser177 and Ser181 to promote the phosphorylation of inhibitors of kappa B (IκBs), triggering their ubiquitination and degradation to active the nuclear factor kappa-B (NF-κB) cascade. Chemical inhibition of IKKβ or its genetic knockout has become an effective method to block NF-κB-mediated proliferation and migration of tumor cells and inflammatory response. In this review, we summarized the structural feature and transduction mechanism of IKKβ and the discovery of inhibitors from natural resources (e.g. sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, and alkaloids) and chemical synthesis (e.g. pyrimidines, pyridines, pyrazines, quinoxalines, thiophenes, and thiazolidines). In addition, the biosynthetic pathway of novel natural IKKβ inhibitors and their biological potentials were discussed. This review will provide inspiration for the structural modification of IKKβ inhibitors based on the skeleton of natural products or chemical synthesis and further phytochemistry investigations.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Rui Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Bhanu1 P, Setlur AS, K C, Niranjan V, Hemandhar Kumar N, Buchke S, Kumar J, Rani A, Tiwari SM, Mishra V. Repurposing of known drugs for COVID-19 using molecular docking and simulation analysis. Bioinformation 2023; 19:149-159. [PMID: 37814677 PMCID: PMC10560309 DOI: 10.6026/97320630019149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023] Open
Abstract
We selected fifty one drugs already known for their potential disease treatment roles in various studies and subjected to docking and molecular docking simulation (MDS) analyses. Five of them showed promising features that are discussed and suggested as potential candidates for repurposing for COVID-19. These top five compounds were boswellic acid, pimecrolimus, GYY-4137, BMS-345541 and triamcinolone hexacetonide that interacted with the chosen receptors 1R42, 4G3D, 6VW1, 6VXX and 7MEQ, respectively with binding energies of -9.2 kcal/mol, -9.1 kcal/mol, -10.3 kcal/mol, -10.1 kcal/mol and -8.7 kcal/mol, respectively. The MDS studies for the top 5 best complexes revealed binding features for the chosen receptor, human NF-kappa B transcription factor as an important drug target in COVID-19-based drug development strategies.
Collapse
Affiliation(s)
- Piyush Bhanu1
- Xome Life Sciences, Bangalore Bio Innovation Centre (BBC), Helix Biotech Park, Bengaluru, Karnataka- 560100, India
| | - Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, RV Vidyanikethan Post, Mysuru Road, Bengaluru 560059, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, RV Vidyanikethan Post, Mysuru Road, Bengaluru 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, RV Vidyanikethan Post, Mysuru Road, Bengaluru 560059, India
| | - Nisha Hemandhar Kumar
- Institute of Neuro and Sensory Physiology, University Medical Centre, Goettiengen - 37075, Germany
| | - Sakshi Buchke
- Xome Life Sciences, Bangalore Bio Innovation Centre (BBC), Helix Biotech Park, Bengaluru, Karnataka- 560100, India
| | - Jitendra Kumar
- Bangalore Bio Innovation Centre (BBC), Helix Biotech Park, Electronics City Phase- 1, Bengaluru-560100, Karnataka, India
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Sushil M Tiwari
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Vachaspati Mishra
- Department of Botany, Deen Dayal Upadhyay College, University of Delhi, Delhi 110078, India
| |
Collapse
|
5
|
Yang X, Shen Z, Tian M, Lin Y, Li L, Chai T, Zhang P, Kang M, Lin J. LncRNA C9orf139 can regulate the progression of esophageal squamous carcinoma by mediating the miR-661/HDAC11 axis. Transl Oncol 2022; 24:101487. [PMID: 35917643 PMCID: PMC9352544 DOI: 10.1016/j.tranon.2022.101487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
LncRNA C9orf139 was highly expressed in ESCC. LncRNA C9orf139 could negatively regulate miR-661 expression. HDAC11 expression was negatively regulated by miR-661. LncRNA C9orf139 regulates the progression of ESCC through the miR-661/HDAC11 axis.
Increasing evidence has indicated that long non-coding RNAs (LncRNAs) play multiple functions in the development of cancer and function as indicators of diagnosis and prognosis. This aim of this study was to investigate the roles LncRNA C9orF139 had in the progression of esophageal squamous carcinoma (ESCC). We found C9orf139 was highly expressed in ESCC and knock down the expression of C9orf139 significantly suppressed cell proliferation, promoted apoptosis, and inhibited migration and invasion. C9orf139 was able to negatively regulate miR-661 expression. At the same time, HDAC11 expression was negatively regulated by miR-661. The C9orf139/miR-661/HDAC11 axis was further involved in regulating the expression of the NF-κB signaling pathway. The association between the C9orf139 knockdown and the reduced tumor growth and size was observed during in vivo study. C9orf139 is highly expressed in ESCC, and is thus qualified to be used as a potential diagnostic and prognostic marker for ESCC. Its promotion of ESCC progression is achieved by mediating the miR-661/HDAC11 axis.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yukang Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Tianci Chai
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Sun Y, Tang H, Wang X, Feng F, Fan T, Zhao D, Xiong B, Xie H, Liu T. Identification of 1 H-pyrazolo[3,4-b]pyridine derivatives as novel and potent TBK1 inhibitors: design, synthesis, biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem 2022; 37:1411-1425. [PMID: 35587686 PMCID: PMC9132415 DOI: 10.1080/14756366.2022.2076674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in coordinating the signalling pathways of innate immunity, involving in the process of neuroinflammation, autophagy, and oncogenesis. In current study, based on rational drug design strategy, we discovered a series of 1H-pyrazolo[3,4-b]pyridine derivatives as potent TBK1 inhibitors and dissected the structure–activity relationships (SARs). Through the several rounds of optimisation, compound 15y stood out as a potent inhibitor on TBK1 with an IC50 value of 0.2 nM and also displayed good selectivity. The mRNA detection of TBK1 downstream genes showed that compound 15y effectively inhibited TBK1 downstream IFN signalling in stimulated THP-1 and RAW264.7 cells. Meanwhile, compound 15y exhibited a micromolar antiproliferation effect on A172, U87MG, A375, A2058, and Panc0504 cell lines. Together, current results provided a promising TBK1 inhibitor 15y as lead compound for immune- and cancer-related drug discovery.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haotian Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Fang Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tiantian Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tongchao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
7
|
IKK β mediates homeostatic function in inflammation via competitively phosphorylating AMPK and I κB α. Acta Pharm Sin B 2022; 12:651-664. [PMID: 35256937 PMCID: PMC8897026 DOI: 10.1016/j.apsb.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is one of important kinases in inflammation to phosphorylate inhibitor of nuclear factor kappa-B (IκBα) and then activate nuclear factor kappa-B (NF-κB). Inhibition of IKKβ has been a therapeutic strategy for inflammatory and autoimmune diseases. Here we report that IKKβ is constitutively activated in healthy donors and healthy IkkβC46A (cysteine 46 mutated to alanine) knock-in mice although they possess intensive IKKβ–IκBα–NF-κB signaling activation. These indicate that IKKβ activation probably plays homeostatic role instead of causing inflammation. Compared to IkkβWT littermates, lipopolysaccharides (LPS) could induce high mortality rate in IkkβC46A mice which is correlated to breaking the homeostasis by intensively activating p-IκBα–NF-κB signaling and inhibiting phosphorylation of 5ʹ adenosine monophosphate-activated protein kinase (p-AMPK) expression. We then demonstrated that IKKβ kinase domain (KD) phosphorylates AMPKα1 via interacting with residues Thr183, Ser184, and Thr388, while IKKβ helix–loop–helix motifs is essential to phosphorylate IκBα according to the previous reports. Kinase assay further demonstrated that IKKβ simultaneously catalyzes phosphorylation of AMPK and IκBα to mediate homeostasis. Accordingly, activation of AMPK rather than inhibition of IKKβ could substantially rescue LPS-induced mortality in IkkβC46A mice by rebuilding the homeostasis. We conclude that IKKβ activates AMPK to restrict inflammation and IKKβ mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα.
Collapse
|
8
|
Maiques O, Sanz-Moreno V. Location, location, location: Melanoma cells "living at the edge". Exp Dermatol 2021; 31:82-88. [PMID: 34185923 DOI: 10.1111/exd.14423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
Abnormal cell migration and invasion underlie metastatic dissemination, one of the major challenges for cancer treatment. Melanoma is one of the deadliest and most aggressive forms of skin cancer due in part to its migratory and metastatic potential. Cancer cells use a variety of migratory strategies regulated by cytoskeletal remodelling. In particular, we discuss the importance of amoeboid invasive melanoma strategies, since they have been identified at the edge of human melanomas. We hypothesize that the presence of amoeboid melanoma cells will favour tumor progression since they are invasive and metastatic; they support immunosuppression; they harbour cancer stem cell properties and they are involved in therapy resistance. The Rho-ROCK-Myosin II pathway is key to maintain amoeboid melanoma invasion but this pathway is further regulated by pro-tumorigenic/pro-metastatic/pro-survival signalling pathways such as JAK-STAT3, TGFβ-SMAD, NF-κB, Wnt11/5-FDZ7 and BRAFV600E -MEK-ERK. These pathways support amoeboid behaviour and are actionable in the clinic. After melanoma wide surgical margin removal, we propose that possible remaining melanoma cells should be eradicated using anti-amoeboid therapies.
Collapse
Affiliation(s)
- Oscar Maiques
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Adu-Amankwaah J, Adzika GK, Adekunle AO, Ndzie Noah ML, Mprah R, Bushi A, Akhter N, Xu Y, Huang F, Chatambarara B, Sun H. The Synergy of ADAM17-Induced Myocardial Inflammation and Metabolic Lipids Dysregulation During Acute Stress: New Pathophysiologic Insights Into Takotsubo Cardiomyopathy. Front Cardiovasc Med 2021; 8:696413. [PMID: 34150874 PMCID: PMC8212952 DOI: 10.3389/fcvm.2021.696413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Due to its reversible nature, Takotsubo cardiomyopathy (TTC) is considered an intriguing and fascinating cardiovascular disease characterized by a transient wall motion abnormality of the left ventricle, affecting more than one coronary artery territory, often in a circumferential apical distribution. Takotsubo cardiomyopathy was discovered by a Japanese cardiovascular expert and classified as acquired primary cardiomyopathy by the American Heart Association (AHA) in 1990 and 2006, respectively. Regardless of the extensive research efforts, its pathophysiology is still unclear; therefore, there are no well-established guidelines specifically for treating and managing TTC patients. Increasing evidence suggests that sympatho-adrenergic stimulation is strongly associated with the pathogenesis of this disease. Under acute stressful conditions, the hyperstimulation of beta-adrenergic receptors (β-ARs) resulting from excessive release of catecholamines induces intracellular kinases capable of phosphorylating and activating “A Disintegrin and Metalloprotease 17” (ADAM17), a type-I transmembrane protease that plays a central role in acute myocardial inflammation and metabolic lipids dysregulation which are the main hallmarks of TTC. However, our understanding of this is limited; hence this concise review provides a comprehensive insight into the key role of ADAM17 in acute myocardial inflammation and metabolic lipids dysregulation during acute stress. Also, how the synergy of ADAM17-induced acute inflammation and lipids dysregulation causes TTC is explained. Finally, potential therapeutic targets for TTC are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Aisha Bushi
- Department of Medicine, Xuzhou Medical University, Xuzhou, China
| | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Fei Huang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Singh A, Srivastava N, Yadav A, Ateeq B. Targeting AGTR1/NF-κB/CXCR4 axis by miR-155 attenuates oncogenesis in glioblastoma. Neoplasia 2020; 22:497-510. [PMID: 32896760 PMCID: PMC7481885 DOI: 10.1016/j.neo.2020.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) represents the most aggressive malignancy of the central nervous system. Increased expression of Angiotensin II Receptor Type 1 (AGTR1) has been associated with proliferative and infiltrative properties of glioma cells. However, the underlying mechanism of AGTR1 upregulation in GBM is still unexplored. To understand the post-transcriptional regulation of AGTR1 in GBM, we screened 3'untranslated region (3'UTR) of AGTR1 for putative miRNA binding by using prediction algorithms. Interestingly, miR-155 showed conserved binding on the 3'UTR of AGTR1, subsequently confirmed by luciferase reporter assay. Furthermore, miR-155 overexpressing GBM cells show decrease in AGTR1 expression accompanied with reduced cell proliferation, invasion, foci formation and anchorage-independent growth. Strikingly, immunodeficient mice implanted with stable miR-155 overexpressing SNB19 cells show negligible tumor growth. Notably, miR-155 attenuates NF-κB signaling downstream of AGTR1 leading to reduced CXCR4 as well as AGTR1 levels. Mechanistically, miR-155 mitigates AGTR1-mediated angiogenesis, epithelial-to-mesenchymal transition, stemness, and MAPK signaling. Similar effects were observed by using pharmacological inhibitor of IκB Kinase (IKK) complex in multiple cell-based assays. Taken together, we established that miRNA-155 post-transcriptionally regulates AGTR1 expression, abrogates AGTR1/NF-κB/CXCR4 signaling axis and elicits pleiotropic anticancer effects in GBM. This study opens new avenues for using IKK inhibitors and miRNA-155 replacement therapies for the treatment of AGTR1-positive malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Anukriti Singh
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India; Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Nidhi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anjali Yadav
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India.
| |
Collapse
|
11
|
Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2019; 2:2937-2946. [PMID: 30401751 DOI: 10.1182/bloodadvances.2018022962] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
Activating MYD88 mutations are present in 95% of Waldenström macroglobulinemia (WM) patients, and trigger NF-κB through BTK and IRAK. The BTK inhibitor ibrutinib is active in MYD88-mutated (MYD88 MUT ) WM patients, but shows lower activity in MYD88 wild-type (MYD88 WT ) disease. MYD88 WT patients also show shorter overall survival, and increased risk of disease transformation in some series. The genomic basis for these findings remains to be clarified. We performed whole exome and transcriptome sequencing of sorted tumor samples from 18 MYD88 WT patients and compared findings with WM patients with MYD88 MUT disease. We identified somatic mutations predicted to activate NF-κB (TBL1XR1, PTPN13, MALT1, BCL10, NFKB2, NFKBIB, NFKBIZ, and UDRL1F), impart epigenomic dysregulation (KMT2D, KMT2C, and KDM6A), or impair DNA damage repair (TP53, ATM, and TRRAP). Predicted NF-κB activating mutations were downstream of BTK and IRAK, and many overlapped with somatic mutations found in diffuse large B-cell lymphoma. A distinctive transcriptional profile in MYD88 WT WM was identified, although most differentially expressed genes overlapped with MYD88 MUT WM consistent with the many clinical and morphological characteristics that are shared by these WM subgroups. Overall survival was adversely affected by mutations in DNA damage response in MYD88 WT WM patients. The findings depict genomic and transcriptional events associated with MYD88 WT WM and provide mechanistic insights for disease transformation, decreased ibrutinib activity, and novel drug approaches for this population.
Collapse
|
12
|
Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF- κB Signaling Pathway in Human Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9241769. [PMID: 31341911 PMCID: PMC6612400 DOI: 10.1155/2019/9241769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Oroxylin A is a natural extract and has been reported to have a remarkable anticancer function. However, the mechanism of its anticancer activity remains not quite clear. In this study, we examined the inhibiting effects of Oroxylin A on breast cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT) and its possible molecular mechanism. The cytoactive and inflammatory factors were analyzed via Cell Counting Kit-8 assay and ELISA assay, respectively. Flow cytometry and western blotting were used to assess the cell proliferation. In addition, a wound healing assay and transwell assay were used to detect cell invasion and migration. qRT-PCR and western blot were employed to determine the effect of Oroxylin A on the EMT formation. Moreover, expression level of protein related to NF-κB signaling pathway was determined by western blot. The results revealed that Oroxylin A attenuated the cytoactivity of MDA-MB-231 cells in a dose- and a time-dependent manner. Moreover, cell proliferation, invasion, and migration of breast cancer cells were inhibited by Oroxylin A compared to the control. The mRNA and protein expression levels of E-cadherin were remarkably increased while N-cadherin and Vimentin remarkably decreased. Besides, Oroxylin A suppressed the expression of inflammatory factors and NF-κB activation. Furthermore, we also found that supplement of TNF-α reversed the effects of Oroxylin A on the cell proliferation, invasion, migration, and EMT in breast cancer cells. Taken together, our results suggested that Oroxylin A inhibited the cell proliferation, invasion, migration, and EMT through inactivating NF-κB signaling pathway in human breast cancer cells. These findings strongly suggest that Oroxylin A could be a therapeutic potential candidate for the treatment of breast cancer.
Collapse
|
13
|
Wang W, Cheng H, Gu X, Yin X. The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma. Onco Targets Ther 2019; 12:4461-4468. [PMID: 31239714 PMCID: PMC6556475 DOI: 10.2147/ott.s210077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background and objectives: Vitexin is a natural flavonoid glycoside mainly extracted from the leaves of vitex, which has a variety of physiological activities. For example, vitexin has antitumor and anti-inflammation activities, and it can also promote blood circulation in the body. However, the function and mechanism of vitexin in nasopharyngeal carcinoma (NPC) are still unclear. Materials and methods: Cell Counting Kit-8 assay and cell cycle analysis were performed to examine cell survival in response to vitexin. Immunoblotting was used to analyze relative proteins’ expression. NPC xenograft models were established to assess the effect of vitexin in vivo. The luciferase activity of pNFκB-Luc was analyzed by using Dual-Luciferase Reporter Assay System. Quantitative real-time polymerase chain reaction was performed to detect relative genes’ expression. Kinase activity of IKKβ was analyzed in a cell-free system. Results: In this study, vitexin was found to display significant antitumor activity in NPC in vitro and in vivo. In NPC cells, vitexin inhibited cell cycle progression in NPC cells and induced the cleavages of PARP and inhibited antiapoptotic proteins’ expression, including Bcl-2 and Mcl1. Further studies indicated that vitexin significantly suppressed the luciferase activity of pNF-κB-Luc and inhibited the activation of NF-κB key regulators, including p65, IκBα and IKKs in NPC cells. Moreover, the kinase activity of IKKβ could be suppressed by vitexin in a cell-free system, and overexpression of CA-IKKβ could attenuate the inhibitory effect of vitexin on p65 phosphorylation. Conclusion: These results indicated that vitexin displayed antitumor activity by suppressing NF-κB signaling in NPC, which suggested that vitexin could be as a potential drug for the treatment of NPC in the future.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Otorhinolaryngology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, People's Republic of China
| | - Hongbo Cheng
- Department of Otorhinolaryngology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, People's Republic of China
| | - Xilan Gu
- Department of Otorhinolaryngology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, People's Republic of China
| | - Xiaodong Yin
- Department of Otorhinolaryngology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, People's Republic of China
| |
Collapse
|
14
|
Amin N, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is an appropriate candidate for breast cancer treatment: Based on known molecular mechanisms. J Cell Biochem 2019; 120:12208-12215. [PMID: 31041825 DOI: 10.1002/jcb.28832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent cancer and one of the most important causes of death in women throughout the world. Breast cancer risk factors include smoking, alcohol consumption, personal and family history, hypertension, and hormone therapy, long-term use of nonsteroidal anti-inflammatory drugs and tobacco usage. Surgery, chemotherapy, radiotherapy, immunotherapy, and neoadjuvant therapy are the current means for breast cancer treatment. Despite hormonal agents and chemotherapy, which have beneficial effects on lowering breast cancer death rate, the reaction of different people to these treatments is still a challenging point. Melatonin (N-acetyl-5-methoxy tryptamine) is a methoxy indole compound that is mainly secreted by the pineal gland at night; it is as an antioxidant, anti-inflammatory, and oncostatic agent. On the basis of recent studies, melatonin has antitumor properties on different cancer types and it may suppress cancer development in vitro and as well as in animal models. It is suggested that melatonin inhibits the development of breast cancer by various mechanisms. This paper summarizes the roles of melatonin in breast cancer treatment from the aspect of its molecular actions.
Collapse
Affiliation(s)
- Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Liu M, Xiao CQ, Sun MW, Tan MJ, Hu LH, Yu Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med 2019; 23:4301-4312. [PMID: 30993883 PMCID: PMC6533482 DOI: 10.1111/jcmm.14322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) and the nuclear factor‐κB (NF‐κB) signalling pathways is associated with the development of cancer and inflammatory diseases. JAKs and IKKs are the key regulators in the STAT3 and NF‐κB signalling respectively. Therefore, the two families of kinases have been the major targets for developing drugs to regulate the two signalling pathways. Here, we report a natural compound xanthatin from the traditional Chinese medicinal herb Xanthium L. as a potent inhibitor of both STAT3 and NF‐κB signalling pathways. Our data demonstrated that xanthatin was a covalent inhibitor and its activities depended on its α‐methylene‐γ‐butyrolactone group. It preferentially interacted with the Cys243 of JAK2 and the Cys412 and Cys464 of IKKβ to inactivate their activities. In doing so, xanthatin preferentially inhibited the growth of cancer cell lines that have constitutively activated STAT3 and p65. These data suggest that xanthatin may be a promising anticancer and anti‐inflammation drug candidate.
Collapse
Affiliation(s)
- Man Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Cheng-Qian Xiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming-Wei Sun
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Min-Jia Tan
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Li-Hong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
16
|
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, Endo Y, Ohta M, Kobayashi T, Inomata M. Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. Int J Mol Sci 2018; 19:ijms19103043. [PMID: 30301191 PMCID: PMC6213941 DOI: 10.3390/ijms19103043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) are key players in liver fibrosis, cellular senescence, and hepatic carcinogenesis. Bile acids (BAs) are involved in the activation of HSCs, but the detailed mechanism of this process remains unclear. We conducted a comprehensive DNA microarray study of the human HSC line LX-2 treated with deoxycholic acid (DCA), a secondary unconjugated BA. Additionally, LX-2 cells were exposed to nine BAs and studied using immunofluorescence staining, enzyme-linked immunosorbent assay, and flow cytometry to examine the mechanisms of HSC activation. We focused on the tumor necrosis factor (TNF) pathway and revealed upregulation of genes related to nuclear factor kappa B (NF-κB) signaling and senescence-associated secretory phenotype factors. α-Smooth muscle actin (α-SMA) was highly expressed in cells treated with secondary unconjugated BAs, including DCA, and a morphological change associated with radial extension of subendothelial protrusion was observed. Interleukin-6 level in culture supernatant was significantly higher in cells treated with secondary unconjugated BAs. Flow cytometry showed that the proportion of cells highly expressing α-SMA was significantly increased in HSCs cultured with secondary unconjugated BAs. We demonstrated that secondary unconjugated BAs induced the activation of human HSCs.
Collapse
Affiliation(s)
- Kunihiro Saga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuiko Aso
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kenji Isaka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Hiroomi Takayama
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| |
Collapse
|
17
|
Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Al-Asmari AF, Ansari MN, Al-Anazi WA, Bahashwan S, Almutairi MM, Alshammari M, Khan MR, Alsaad AM, Alotaibi MR. Apremilast prevent doxorubicin-induced apoptosis and inflammation in heart through inhibition of oxidative stress mediated activation of NF-κB signaling pathways. Pharmacol Rep 2018; 70:993-1000. [DOI: 10.1016/j.pharep.2018.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/01/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
|
18
|
Marino S, Bishop RT, Mollat P, Idris AI. Pharmacological Inhibition of the Skeletal IKKβ Reduces Breast Cancer-Induced Osteolysis. Calcif Tissue Int 2018; 103:206-216. [PMID: 29455416 PMCID: PMC6061461 DOI: 10.1007/s00223-018-0406-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 11/30/2022]
Abstract
IKKβ has previously been implicated in breast cancer bone metastasis and bone remodelling. However, the contribution of IKKβ expressed by bone cells of the tumour microenvironment to breast cancer-induced osteolysis has yet to be investigated. Here, we studied the effects of the verified selective IKKβ inhibitors IKKβIII or IKKβV on osteoclast formation and osteoblast differentiation in vitro and in vivo, human and mouse breast cancer cells' support for osteoclast formation and signalling in vitro and osteolysis ex vivo and in immunocompetent mice after supracalvarial injection of human MDA-MB-231 conditioned medium or intra-cardiac injection of syngeneic 4T1 breast cancer cells. Pre-treatment with IKKβIII or IKKβV prior to exposure to tumour-derived factors from human and mouse breast cancer cell lines protected against breast cancer-induced osteolysis in two independent immunocompetent mouse models of osteolysis and the ex vivo calvarial bone organ system. Detailed functional and mechanistic studies showed that direct inhibition of IKKβ kinase activity in osteoblasts and osteoclasts was associated with significant reduction of osteoclast formation, enhanced osteoclast apoptosis and reduced the ability of osteoblasts to support osteoclastogenesis in vitro. When combined with previous findings that suggest NFκB inhibition reduces breast cancer tumorigenesis and metastasis our present findings have an important clinical implication on raising the possibility that IKKβ inhibitors, as bone anabolics, osteoclast inhibitors as well as anti-metastatic agents, may have advantages over anti-osteoclasts agents in the treatment of both skeletal and non-skeletal complications associated with metastatic breast cancer.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ryan T Bishop
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Patrick Mollat
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230, Romainville, France
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
19
|
Elzamly S, Badri N, Padilla O, Dwivedi AK, Alvarado LA, Hamilton M, Diab N, Rock C, Elfar A, Teleb M, Sanchez L, Nahleh Z. Epithelial-Mesenchymal Transition Markers in Breast Cancer and Pathological Responseafter Neoadjuvant Chemotherapy. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418788074. [PMID: 30083055 PMCID: PMC6071152 DOI: 10.1177/1178223418788074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/17/2018] [Indexed: 01/13/2023]
Abstract
The association between pathologic complete response (pCR) following to
neoadjuvant chemotherapy (NAC) and the improved survival in breast cancer has
been previously reported. The aim of this study was is to explore the expression
of several biomarkers described during epithelial-mesenchymal transition (EMT)
and the achievement of pCR in different molecular subtypes of breast cancer. We
identified archived pathology tissue from patients with breast cancer who
received NAC during the year 2014. We performed immunohistochemical analysis of
vimentin, nuclear factor κB (NF-κB), epidermal growth factor receptor (EGFR),
E-cadherin, estrogen receptor (ER), progesterone receptor, and Her2neu and
studied the association between the expression of these markers and pCR. A
Fisher exact test for categorical cofactors, an unpaired t test
and a nonparametric Wilcoxon test for continuous cofactors were used. The
results showed a significant expression of vimentin in triple-negative breast
cancer (TNBC; P = .023). An inverse correlation between
vimentin and the ER expression (P = .032) was observed. No
significant association was noted for vimentin, NF-κB, EGFR, and E-cadherin was
associated with pCR. This study suggests that the evaluated EMT related
biomarkers are not associated with pCR after NAC chemotherapy in an unselected
breast cancer population. Vimentin and NF-κB expressions were associated with
TNBC and could be further explored as potential therapeutic targets in this
subgroup. A prevalence of vimentin and NF-κB among Hispanic patients with breast
cancer warrants further investigation as a possibly contributing to the
prevalence of TNBC and adverse prognosis in this population.
Collapse
Affiliation(s)
- Shaimaa Elzamly
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nabeel Badri
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Osvaldo Padilla
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alok Kumar Dwivedi
- Division of Biostatistics and Epidemiology, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Luis A Alvarado
- Division of Biostatistics and Epidemiology, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Matthew Hamilton
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Nabih Diab
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Crosby Rock
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Ahmed Elfar
- Department of Nephrology, UT Southwestern Medical Center and Parkland Memorial Hospital, Dallas, TX, USA
| | - Marwa Teleb
- Department of Internal Medicine VA Hospital of North Texas, Dallas, TX, USA
| | - Luis Sanchez
- Department of Internal Medicine VA Hospital of North Texas, Dallas, TX, USA
| | - Zeina Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
20
|
Zhu J, Zhao J, Yu Z, Shrestha S, Song J, Liu W, Lan W, Xing J, Liu S, Chen C, Cao M, Sun X, Wang Q, Song X. Epoxymicheliolide, a novelguaiane-type sesquiterpene lactone, inhibits NF‑κB/COX‑2 signaling pathways by targeting leucine 281 and leucine 25 in IKKβ in renal cell carcinoma. Int J Oncol 2018; 53:987-1000. [PMID: 29956738 PMCID: PMC6065450 DOI: 10.3892/ijo.2018.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Parthenolide (PTL) is a sesquiterpene lactone compound obtained from Tanacetum parthenium (feverfew) and inhibits the activation of nuclear factor (NF)-κB. Epoxymicheliolide (EMCL) is a compound which is structurally related to PTL; however, EMCL is more stable under acidic and alkaline conditions. As a biologically active molecule, the detailed mechanism by which EMCL inhibits tumor activity remains to be elucidated. The present study evaluated the effect of EMCL on renal cell carcinoma (RCC) cells and identified the underlying mechanisms. It was found that treatment with EMCL significantly inhibited the proliferation of RCC cells in vitro and increased the induction of apoptosis by activating the mitochondria- and caspase-dependent pathway. Simultaneously, EMCL suppressed cell invasion and metastasis by inhibiting epithelial-mesenchymal transition, as observed in a microfluidic chip assay. Furthermore, using immunofluorescence analysis, an electrophoretic mobility shift assay and a dual-luciferase reporter assay, it was shown that treatment with EMCL significantly suppressed the expression of cyclooxygenase-2 by inhibiting the translocation of NF-κB p50/p65 and the activity of NF-κB. Collectively, the results indicated that EMCL suppressed tumor growth by inhibiting the activation of NF-κB and suggested that EMCL may be a novel anticancer agent in the treatment of RCC.
Collapse
Affiliation(s)
- Jiabin Zhu
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Sandeep Shrestha
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Song
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Wen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jinshan Xing
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Shuang Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chen Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Momo Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiuzhen Sun
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xishuang Song
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
21
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
22
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
23
|
A standardized herbal extract mitigates tumor inflammation and augments chemotherapy effect of docetaxel in prostate cancer. Sci Rep 2017; 7:15624. [PMID: 29142311 PMCID: PMC5688072 DOI: 10.1038/s41598-017-15934-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 01/28/2023] Open
Abstract
Activation of the NFκB pathway is often associated with advanced cancer and has thus been regarded as a rational therapeutic target. Wedelia chinensis is rich in luteolin, apigenin, and wedelolactone that act synergistically to suppress androgen receptor activity in prostate cancer. Interestingly, our evaluation of a standardized Wedelia chinensis herbal extract (WCE) concluded its efficacy on hormone-refractory prostate cancer through systemic mechanisms. Oral administration of WCE significantly attenuated tumor growth and metastasis in orthotopic PC-3 and DU145 xenografts. Genome-wide transcriptome analysis of these tumors revealed that WCE suppressed the expression of IKKα/β phosphorylation and downstream cytokines/chemokines, e.g., IL6, CXCL1, and CXCL8. Through restraining the cytokines expression, WCE reduced tumor-elicited infiltration of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and endothelial cells into the tumors, therefore inhibiting angiogenesis, tumor growth, and metastasis. In MDSCs, WCE also reduced STAT3 activation, downregulated S100A8 expression and prevented their expansion. Use of WCE in combination with docetaxel significantly suppressed docetaxel-induced NFκB activation, boosted the therapeutic effect and reduced the systemic toxicity caused by docetaxel monotherapy. These data suggest that a standardized preparation of Wedelia chinensis extract improved prostate cancer therapy through immunomodulation and has potential application as an adjuvant agent for castration-resistant prostate cancer.
Collapse
|
24
|
Identification of 11(13)-dehydroivaxillin as a potent therapeutic agent against non-Hodgkin's lymphoma. Cell Death Dis 2017; 8:e3050. [PMID: 28906487 PMCID: PMC5636986 DOI: 10.1038/cddis.2017.442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/15/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Despite great advancements in the treatment of non-Hodgkin lymphoma (NHL), sensitivity of different subtypes to therapy varies. Targeting the aberrant activation NF-κB signaling pathways in lymphoid malignancies is a promising strategy. Here, we report that 11(13)-dehydroivaxillin (DHI), a natural compound isolated from the Carpesium genus, induces growth inhibition and apoptosis of NHL cells. Multiple signaling cascades are influenced by DHI in NHL cells. PI3K/AKT and ERK are activated or inhibited in a cell type dependent manner, whereas NF-κB signaling pathway was inhibited in all the NHL cells tested. Applying the cellular thermal shift assay, we further demonstrated that DHI directly interacts with IKKα/IKKβ in NHL cells. Interestingly, DHI treatment also reduced the IKKα/IKKβ protein level in NHL cells. Consistent with this finding, knockdown of IKKα/IKKβ inhibits cell proliferation and enhances DHI-induced proliferation inhibition. Overexpression of p65, p52 or RelB partially reverses DHI-induced cell growth inhibition. Furthermore, DHI treatment significantly inhibits the growth of NHL cell xenografts. In conclusion, we demonstrate that DHI exerts anti-NHL effect in vitro and in vivo, through a cumulative effect on NF-κB and other pathways. DHI may serve as a promising lead compound for the therapy of NHL.
Collapse
|
25
|
Yi L, Shen H, Zhao M, Shao P, Liu C, Cui J, Wang J, Wang C, Guo N, Kang L, Lv P, Xing L, Zhang X. Inflammation-mediated SOD-2 upregulation contributes to epithelial-mesenchymal transition and migration of tumor cells in aflatoxin G 1-induced lung adenocarcinoma. Sci Rep 2017; 7:7953. [PMID: 28801561 PMCID: PMC5554181 DOI: 10.1038/s41598-017-08537-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor-associated inflammation plays a critical role in facilitating tumor growth, invasion and metastasis. Our previous study showed Aflatoxin G1 (AFG1) could induce lung adenocarcinoma in mice. Chronic lung inflammation associated with superoxide dismutase (SOD)-2 upregulation was found in the lung carcinogenesis. However, it is unclear whether tumor-associated inflammation mediates SOD-2 to contribute to cell invasion in AFG1-induced lung adenocarcinoma. Here, we found increased SOD-2 expression associated with vimentin, α-SMA, Twist1, and MMP upregulation in AFG1-induced lung adenocarcinoma. Tumor-associated inflammatory microenvironment was also elicited, which may be related to SOD-2 upregulation and EMT in cancer cells. To mimic an AFG1-induced tumor-associated inflammatory microenvironment in vitro, we treated A549 cells and human macrophage THP-1 (MΦ-THP-1) cells with AFG1, TNF-α and/or IL-6 respectively. We found AFG1 did not promote SOD-2 expression and EMT in cancer cells, but enhanced TNF-α and SOD-2 expression in MΦ-THP-1 cells. Furthermore, TNF-α could upregulate SOD-2 expression in A549 cells through NF-κB pathway. Blocking of SOD-2 by siRNA partly inhibited TNF-α-mediated E-cadherin and vimentin alteration, and reversed EMT and cell migration in A549 cells. Thus, we suggest that tumor-associated inflammation mediates SOD-2 upregulation through NF-κB pathway, which may contribute to EMT and cell migration in AFG1-induced lung adenocarcinoma. INTRODUCTION
Collapse
Affiliation(s)
- Li Yi
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mei Zhao
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Peilu Shao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunping Liu
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Dermatology,The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ningfei Guo
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lifei Kang
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China. .,Lab of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
26
|
Zhang Z, Lu J, Guo G, Yang Y, Dong S, Liu Y, Nan Y, Zhong Y, Yu K, Huang Q. IKBKE promotes glioblastoma progression by establishing the regulatory feedback loop of IKBKE/YAP1/miR-Let-7b/i. Tumour Biol 2017; 39:1010428317705575. [PMID: 28677425 DOI: 10.1177/1010428317705575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, we have demonstrated that IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) is overexpressed in human glioblastoma and that inhibition of IKBKE remarkably suppresses the proliferative and invasive behaviour of glioblastoma cells. However, the specific pathogenic molecular mechanism remains to be elucidated. In this study, we verified that IKBKE promotes YAP1 expression via posttranslational modification and accelerates YAP1 translocation to the nucleus for the development of glioblastoma. We then determined that YAP1 negatively regulates miR-let-7b/i by overexpressing and silencing YAP1 expression. In addition, miR-let-7b/i feedback decreases the expression of IKBKE and YAP1 and suppresses the transportation of YAP1 located in the nucleus. Therefore, the regulatory feedback circuit of IKBKE↑→YAP1↑→miR-let-7b/i↓→IKBKE↑ dictates glioblastoma progression. Thus, we propose that blocking the circuit may be a new therapeutic strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Jie Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yi Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Shicai Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yue Zhong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
Ozer J, Fishman D, Eilam B, Golan-Goldhirsh A, Gopas J. Anti-Metastatic Effect of Semi-Purified Nuphar Lutea Leaf Extracts. J Cancer 2017. [PMID: 28638458 PMCID: PMC5479249 DOI: 10.7150/jca.18435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuphar lutea L. SM., leaf and rhizome extracts (NUP), contain nupharidines as active components. Nupharidines belong to the sesquiterpene lactones class of a naturally occurring plant terpenoids. This family of compounds has gained considerable interest for treating infection, inflammation and cancer. NF-κB is a central, downstream regulator of inflammation, cell proliferation and apoptosis. In our previous work we demonstrated strong inhibition of NF-κB activity and induction of apoptosis by NUP. In addition, NUP exhibited anti-inflammatory properties and partial protection from LPS-induced septic shock by modulating ERK pathway and cytokine secretion in macrophages. In the present study, we examined the effect of NUP in a B16 melanoma experimental murine lung metastasis model and its ability to affect the ERK and NF-κB pathways in variety of cell lines. We showed that NUP and cisplatin combined treatment was synergistic and reduced the lung metastatic load. In addition NUP treatment inhibited TNFα-induced IκBα degradation and NF- κB nuclear translocation. We also observed that NUP induced ERK activation. Furthermore, ERK inhibition prevented NF-κB inactivation by NUP. Overall, our work implies that co-administration of NF-κB inhibitors such as NUP, with standard anti-cancer drugs, may act as "sensitizers" for more effective chemotherapy.
Collapse
Affiliation(s)
- Janet Ozer
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Fishman
- Department of Physiology and Cell Biology, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Brit Eilam
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), French Associates Institute for Agriculture and Biotechnology of Drylands, Sede Boqer Campus 84990 Israel
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel.,Dept. of Oncology, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
28
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
29
|
Tsolou A, Liousia M, Kalamida D, Pouliliou S, Giatromanolaki A, Koukourakis M. Inhibition of IKK-NFκB pathway sensitizes lung cancer cell lines to radiation. Cancer Biol Med 2017; 14:293-301. [PMID: 28884046 PMCID: PMC5570606 DOI: 10.20892/j.issn.2095-3941.2017.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective : Cancer cell radioresistance is a stumbling block in radiation therapy. The activity in the nuclear factor kappa B (NFκB) pathway correlates with anti-apoptotic mechanisms and increased radioresistance. The IKK complex plays a major role in NFκB activation upon numerous signals. In this study, we examined the interaction between ionizing radiation (IR) and different members of the IKK-NFκB pathway, as well as upstream activators, RAF1, ERK, and AKT1. Methods : The effect of 4 Gy of IR on the expression of the RAF1-ERK-IKK-NFκB pathway was examined in A549 and H1299 lung cancer cell lines using Western blot analysis and confocal microscopy. We examined changes in radiation sensitivity using gene silencing or pharmacological inhibitors of ERK and IKKβ. Results : IKKα, IKKγ, and IκBα increased upon exposure to IR, thereby affecting nuclear levels of NFκB (phospho-p65). ERK inhibition or siRNA-mediated down-regulation of RAF1 suppressed the post-irradiation survival of the examined lung cancer cell lines. A similar effect was detected on survival upon silencing IKKα/IKKγ or inhibiting IKKβ. Conclusions : Exposure of lung cancer cells to IR results in NFκB activation via IKK. The genetic or pharmacological blockage of the RAF1-ERK-IKK-NFκB pathway sensitizes cells to therapeutic doses of radiation. Therefore, the IKK pathway is a promising target for therapeutic intervention in combination with radiotherapy.
Collapse
|
30
|
Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Almutairi MM, Alshammari M, Almukhlafi TS, Ansari MN, Aljerian K, Ahmad SF. Apremilast reversed carfilzomib-induced cardiotoxicity through inhibition of oxidative stress, NF-κB and MAPK signaling in rats. Toxicol Mech Methods 2016; 26:700-708. [PMID: 27785949 DOI: 10.1080/15376516.2016.1236425] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carfilzomib (CFZ), is a potent, selective second generation proteasome inhibitor, used for the treatment of multiple myeloma. The aim of the present study was to investigate the possible protective effect of apremilast (AP) on the CFZ -induced cardiotoxicity. Rats were randomly divided into four groups: Group 1, served as the control group, received normal saline. Group 2, served as the toxic group, received CFZ (4 mg/kg, intraperitoneally [i.p.]). Groups 3 and 4, served as treatment groups, and received CFZ with concomitant oral administration of AP in doses of 10 and 20 mg/kg/day, respectively. In the present study, administration of CFZ resulted in a significant increase in serum aspartate transaminase (AST), lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase-MB (CK-MB), which were reversed by treatment with AP. CFZ resulted in a significant increase in heart malondialdehyde (MDA) contents and decrease in cardiac glutathione (GSH) level and catalase (CAT) enzyme activity which were significantly reversed by treatment with AP. Induction of cardiotoxicity by CFZ significantly increased caspase-3 enzyme activity which were reversed by treatment with AP. RT-PCR analysis revealed an increased mRNA expression of NF-κB, ERK and JNK which were reversed by treatment with AP in cardiac tissues. Western blot analysis revealed an increased expression of caspase-3 and NF-κB p65 and a decrease expression of inhibitory kappa B-alpha (Iκbα) with CFZ, which were reversed by treatment with AP. In conclusion, apremilast showed protective effect against CFZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Faisal Imam
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Naif O Al-Harbi
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Mohammad Matar Al-Harbi
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Mushtaq Ahmad Ansari
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Mashal M Almutairi
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Musaad Alshammari
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Talal Saad Almukhlafi
- b Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Mohd Nazam Ansari
- b Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Khaldoon Aljerian
- c King Khalid University Hospital, College of Medicine , King Saud University, Forensic Medicine and Toxicology Unit , Riyadh , Saudi Arabia
| | - Sheikh Fayaz Ahmad
- a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
31
|
Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget 2016; 6:31216-32. [PMID: 26435478 PMCID: PMC4741599 DOI: 10.18632/oncotarget.5157] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Manish Datt
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Gregory T MacLennan
- Department of Pathology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Department of Nutrition, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Li C, Jones AX, Lei X. Synthesis and mode of action of oligomeric sesquiterpene lactones. Nat Prod Rep 2016; 33:602-11. [DOI: 10.1039/c5np00089k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this highlight we describe two case studies from our laboratory, involving the biomimetic syntheses and the biological mechanism elucidation of the bioactive oligomeric sesquiterpenoids, (+)-ainsliadimer A (4) and (−)-ainsliatrimer A (5).
Collapse
Affiliation(s)
- Chao Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Department of Chemical Biology
- College of Chemistry and Molecular Engineering
- Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences
| | - Alexander X. Jones
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Department of Chemical Biology
- College of Chemistry and Molecular Engineering
- Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Department of Chemical Biology
- College of Chemistry and Molecular Engineering
- Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences
| |
Collapse
|
33
|
Zhou X, Li H, Chai Y, Liu Z. Leptin Inhibits the Apoptosis of Endometrial Carcinoma Cells Through Activation of the Nuclear Factor κB-inducing Kinase/IκB Kinase Pathway. Int J Gynecol Cancer 2015; 25:770-8. [PMID: 25811593 DOI: 10.1097/igc.0000000000000440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Leptin has recently been shown to affect cancer proliferation and invasion through multiple pathways. In the current study, we investigated the role of leptin in endometrial carcinoma (EC) apoptosis and the underlying mechanisms of action. METHODS Immunoprecipitation was used to characterize leptin receptor expression in EC lines. The levels of nuclear factor κB-inducing kinase (NIK)/IκB kinase (IKK) signaling proteins were analyzed using Western blot. In addition, Western blot and immunohistochemical analyses were used to detect the hierarchy of these proteins in EC tissues. Quantitative cancer cell apoptosis assay was performed using flow cytometry after incubation of cells with Annexin-V/fluorescein/propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide or staining of cancer cell DNA fragments with propidium iodide. RESULTS Leptin induced a decrease in apoptosis in Ishikawa and HEC-1A EC cells, partly through nuclear factor κB activation via phosphorylation in the IKK/NIK pathway. Inhibition of IKK or NIK partly neutralized this suppression of apoptosis. Expression levels of leptin receptors (Ob-Rs) and IKK/NIK signaling proteins were higher in poorly and moderately differentiated than in well-differentiated EC tissues, and higher Ob-Rs expression was observed in clinical stages II and III, compared with stage I EC (P = 0.012). High serum leptin concentration displayed mild correlation (r = 0.23, P = 0.035) with degree of EC differentiation. CONCLUSIONS Leptin inhibits EC apoptosis partly through activation of the NIK/IKK pathway in vitro. Ob-Rb overexpression seems to facilitate EC progression.
Collapse
Affiliation(s)
- Xi Zhou
- *Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; and †Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | |
Collapse
|
34
|
Shostak K, Chariot A. EGFR and NF-κB: partners in cancer. Trends Mol Med 2015; 21:385-93. [DOI: 10.1016/j.molmed.2015.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/29/2022]
|
35
|
Dong T, Li C, Wang X, Dian L, Zhang X, Li L, Chen S, Cao R, Li L, Huang N, He S, Lei X. Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine. Nat Commun 2015; 6:6522. [PMID: 25813672 PMCID: PMC4389228 DOI: 10.1038/ncomms7522] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of NF-κB is associated with the development of cancer and autoimmune and inflammatory diseases. IKKs are well recognized as key regulators in the NF-κB pathway and therefore represent attractive targets for intervention with small molecule inhibitors. Herein, we report that a complex natural product ainsliadimer A is a potent inhibitor of the NF-κB pathway. Ainsliadimer A selectively binds to the conserved cysteine 46 residue of IKKα/β and suppresses their activities through an allosteric effect, leading to the inhibition of both canonical and non-canonical NF-κB pathways. Remarkably, ainsliadimer A induces cell death of various cancer cells and represses in vivo tumour growth and endotoxin-mediated inflammatory responses. Ainsliadimer A is thus a natural product targeting the cysteine 46 of IKKα/β to block NF-κB signalling. Therefore, it has great potential for use in the development of anticancer and anti-inflammatory therapies. IKK is a key inducer of NF-κB, and has been targeted by several small molecule drugs. Here the authors show that a natural product from a Chinese medical herb inhibits NF-κB via covalent binding to a unique conserved region of IKK, and efficiently inhibits tumour growth and sepsis in mice.
Collapse
Affiliation(s)
- Ting Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Longyang Dian
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiuguo Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Ran Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Li Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Sudan He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaoguang Lei
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China.,Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Matteucci C, Minutolo A, Marino-Merlo F, Grelli S, Frezza C, Mastino A, Macchi B. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sci 2015; 127:90-7. [PMID: 25744407 DOI: 10.1016/j.lfs.2015.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
AIMS The present study addresses the issue of enhanced apoptotic response to AZT following co-treatment with an NF-kB inhibitor. MAIN METHODS To investigate this issue, different cell lines were assayed for susceptibility to AZT-mediated apoptosis without or with the addition of the NF-kB inhibitor Bay-11-7085. For further investigation, U937 cells were selected as good-responder cells to the combination treatment with 32 or 128 μM AZT, and 1 μM Bay-11-7085. Inhibition of NF-kB activation by Bay-11-7085 in cells treated with AZT was assayed through Western blot analysis of p65 expression and by EMSA. Involvement of the mitochondrial pathway of apoptosis in mechanisms underlying the improved effect of AZT following Bay-11-7085 co-treatment, was evaluated by assaying the cytochrome c release and the mitochondrial membrane potential (MMP) status using the JC-1 dye. Moreover, the transcriptional activity of both anti- and pro-apoptotic genes in U937 cells after combination treatment was quantitatively evaluated through real-time PCR. KEY FINDINGS We found that the combined treatment induced high levels of cytochrome c release and of MMP collapse in association with evident changes in the expression of both anti- and pro-apoptotic genes of the Bcl-2 family. Overexpression of Bcl-2 significantly suppressed the sensitization of U937 cells to an enhanced apoptotic response to AZT following co-treatment with the NF-kB inhibitor. SIGNIFICANCE The new findings suggest that a combination regimen based on AZT plus an NF-kB inhibitor could represent a new chemotherapeutic tool for retrovirus-related pathologies.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Caterina Frezza
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy; The Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
37
|
Ozer J, Levi T, Golan-Goldhirsh A, Gopas J. Anti-inflammatory effect of a Nuphar lutea partially purified leaf extract in murine models of septic shock. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:86-91. [PMID: 25490314 DOI: 10.1016/j.jep.2014.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various plant organs of Nuphar lutea (L.) SM. (Nymphaeaceae) are used in traditional medicine for the treatment of arthritis, fever, aches, pains and inflammation. The main purpose of this study was to determine the anti-inflammatory effect of Nuphar lutea leaf extract (NUP) in two septic shock models: (1) Survival of mice challenged with a lethal dose of LPS, determination of pro-inflammatory and anti-inflammatory cytokines in serum, as well as in peritoneal macrophages in cell culture. (2) The effect of NUP in a murine model of fecal-induced peritonitis. MATERIALS AND METHODS NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation. RESULTS A significant average survival rate (60%) of LPS lethally-challenged mice was achieved by pre-treatment with NUP. In addition, NUP pre-treatment reduced nuclear NF-κB translocation in peritoneal macrophages. The production of pro-inflammatory cytokines, TNF-α, IL-6 and IL-12, in the sera of LPS-treated mice or in the supernatants of peritoneal macrophages stimulated with LPS for 2-6 h was also decreased by NUP. Pre-treatment with NUP caused a significant increase in the anti-inflammatory cytokine IL-10. The NUP pre-treatment reduced and delayed mortality in mice with fecal-induced peritonitis. Our studies also revealed that NUP pre-treatment induced a dose-dependent phosphorylation of ERK in peritoneal macrophages. Since most of the reports about the anti-inflammatory effect of Nuphar lutea refer to rhizome and root powder and extracts, it is important to clarify the effectiveness of leaf extract as a source for such activity. CONCLUSION NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation.
Collapse
Affiliation(s)
- J Ozer
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - T Levi
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - A Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), French Associates Institute for Agriculture and Biotechnology of Drylands, Sede Boqer Campus, 84990, Israel
| | - J Gopas
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Oncology, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
38
|
Fatima A, Abdul ABH, Abdullah R, Karjiban RA, Lee VS. Binding mode analysis of zerumbone to key signal proteins in the tumor necrosis factor pathway. Int J Mol Sci 2015; 16:2747-66. [PMID: 25629232 PMCID: PMC4346863 DOI: 10.3390/ijms16022747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/07/2015] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.
Collapse
Affiliation(s)
- Ayesha Fatima
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, University Putra Malaysia, 43400 Serdang, Malaysia.
| | - Ahmad Bustamam Hj Abdul
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, University Putra Malaysia, 43400 Serdang, Malaysia.
| | - Rasedee Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, University Putra Malaysia, 43400 Serdang, Malaysia.
| | - Roghayeh Abedi Karjiban
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University Malaya, Petaling Jaya, 50603 Selangor, Malaysia.
| |
Collapse
|
39
|
Tian F, Zhou P, Kang W, Luo L, Fan X, Yan J, Liang H. The small-molecule inhibitor selectivity between IKKα and IKKβ kinases in NF-κB signaling pathway. J Recept Signal Transduct Res 2014; 35:307-18. [PMID: 25386663 DOI: 10.3109/10799893.2014.980950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The enzyme complex IκB kinase (IKK) is an essential activator of NF-κB signaling pathway involved in propagating the cellular response to inflammation. The complex contains two functional subunits IKKα and IKKβ, which are structurally conserved kinases and selective inhibition of them would result in distinct biological effects. However, most existing IKK inhibitors show moderate or high promiscuity for the two homologous kinases. Understanding of the molecular mechanism and biological implication underlying the specific interactions in IKK-ligand recognition is thus fundamentally important for the rational design of selective IKK inhibitors. In the current work, we integrated molecular docking, quantum mechanics/molecular mechanics calculation and Poisson-Boltzmann/surface area analysis to investigate the structural basis and energetic property of the selective binding of small-molecule ligands to IKKα and IKKβ. It was found that the selectivity is primarily determined by the size and topology difference in ATP-binding pocket of IKKα and IKKβ kinase domains; bulky inhibitor molecules commonly have, respectively, low and appropriate affinities towards IKKα and IKKβ, and thus exhibit relatively high selectivity for IKKβ over IKKα, whereas small ligands can only bind weakly to both the two kinases with low selectivity. In addition, the conformation, arrangement and distribution of residues in IKK pockets are also responsible for constituting the exquisite specificity of ligand binding to KKα and IKKβ. Next, a novel quantitative structure-selectivity relationship model was developed to characterize the relative contribution of each kinase residue to inhibitor selectivity and to predict the selectivity and specificity for a number of known IKK inhibitors. Results showed that the active-site residues contribute significantly to the selectivity by directly interacting with inhibitor ligands, while those protein portions far away from the kinase active sites may also play an important role in determining the selectivity through long-range non-bonded forces and indirect allosteric effect.
Collapse
Affiliation(s)
- Feifei Tian
- a State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital , Third Military Medical University , Chongqing , China .,b School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China , and
| | - Peng Zhou
- c Center of Bioinformatics (COBI), School of Life Science and Technology , University of Electronic Science and Technology of China (UESTC) , Chengdu , China
| | - Wenyuan Kang
- b School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China , and
| | - Li Luo
- a State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital , Third Military Medical University , Chongqing , China
| | - Xia Fan
- a State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital , Third Military Medical University , Chongqing , China
| | - Jun Yan
- a State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital , Third Military Medical University , Chongqing , China
| | - Huaping Liang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital , Third Military Medical University , Chongqing , China
| |
Collapse
|
40
|
Nagasawa T, Matsushima-Nishiwaki R, Yasuda E, Matsuura J, Toyoda H, Kaneoka Y, Kumada T, Kozawa O. Heat shock protein 20 (HSPB6) regulates TNF-α-induced intracellular signaling pathway in human hepatocellular carcinoma cells. Arch Biochem Biophys 2014; 565:1-8. [PMID: 25447820 DOI: 10.1016/j.abb.2014.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that the expression of HSP20, a small heat shock protein, is inversely correlated with the progression of HCC. Inflammation is associated with HCC, and numerous cytokines, including TNF-α, act as key mediators in the progression of HCC. In the present study, we investigated whether HSP20 is implicated in the TNF-α-stimulated intracellular signaling in HCC using human HCC-derived HuH7 cells in the presence of TNF-α. In HSP20-overexpressing HCC cells, the cell growth was retarded compared with that in the control cells under long-term exposure of TNF-α. Because NF-κB pathway is the main intracellular signaling system activated by TNF-α, we investigated the effects of HSP20-overexpression of this pathway. The protein levels of IKK-α, but not IKK-β, in the HSP20-overexpressing cells were decreased. Short-term exposure to TNF-α-induced phosphorylation and degradation of IκB, and the phosphorylation and transactivational activity of NF-κB were suppressed in the HSP20-overexpressing HCC cells. Furthermore, the increase in IKK-α levels was accompanied by a decrease in the HSP20 levels in human HCC tissues. These findings strongly suggest that HSP20 might decrease the IKK-α protein level and that it down-regulates the TNF-α-stimulated intracellular signaling in HCC, thus resulting in the suppression of HCC progression.
Collapse
Affiliation(s)
- Tomoaki Nagasawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Eisuke Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; Department of Radiological Technology, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Junya Matsuura
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
41
|
Horie R. Molecularly-targeted Strategy and NF-κB in lymphoid malignancies. J Clin Exp Hematop 2014; 53:185-95. [PMID: 24369220 DOI: 10.3960/jslrt.53.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecularly-targeted therapy is a promising strategy for the treatment of cancer. Nuclear factor (NF)-κB is a transcription factor that is constitutively activated in various lymphoid malignancies and may therefore be a good therapeutic target. Lymphoid malignancies arise from different stages of normal lymphocyte differentiation and acquire distinct pathways for constitutive NF-κB activation. However, no NF-κB inhibitor has yet been successfully applied in clinical medicine. This review focuses on the concept of molecularly-targeted therapeutics with small molecule drugs, molecular mechanisms of constitutive NF-κB activation in lymphoid malignancies, and the development of NF-κB inhibitors. A future perspective regarding the development of NF-κB inhibitors is also included.
Collapse
Affiliation(s)
- Ryouichi Horie
- Department of Hematology, School of Medicine, Kitasato University
| |
Collapse
|
42
|
You DJ, Park CR, Lee HB, Moon MJ, Kang JH, Lee C, Oh SH, Ahn C, Seong JY, Hwang JI. A splicing variant of NME1 negatively regulates NF-κB signaling and inhibits cancer metastasis by interacting with IKKβ. J Biol Chem 2014; 289:17709-20. [PMID: 24811176 DOI: 10.1074/jbc.m114.553552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IKKβ functions as a principal upstream activator of the canonical NF-κB pathway by phosphorylating IκB, leading to its proteasomal degradation. Because IKKβ is considered a therapeutic target, understanding its regulation may facilitate the design of efficient regulators of this molecule. Here, we report a novel IKKβ-interacting molecule, NME1L, a splicing variant of the NME1 protein. NME1 has attracted attention in cancer research because of its antimetastatic activity and reduced expression in multiple aggressive types of cancer. However, the effect was just moderate but not dramatic in anti-cancer activities. We found that only NME1L interacts with IKKβ. Exogenous expression of NME1L resulted in a potent decrease in TNFα-stimulated NF-κB activation, whereas knockdown of NME1/NME1L with shRNA enhanced activity of NF-κB. NME1L down-regulates IKKβ signaling by blocking IKKβ-mediated IκB degradation. When NME1L was introduced into highly metastatic HT1080 cells, the mobility was efficiently inhibited. Furthermore, in a metastasis assay, NME1L-expressing cells did not colonize the lung. Based on these results, NME1L is a potent antimetastatic protein and may be a useful weapon in the fight against cancers.
Collapse
Affiliation(s)
- Dong-Joo You
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Cho Rong Park
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyun Bok Lee
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Mi Jin Moon
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Ju-Hee Kang
- the National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Korea
| | - Cheolju Lee
- the Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - Seong-Hyun Oh
- the College of Pharmacy, Gachon University, Incheon 406-840, Korea, and
| | - Curie Ahn
- the Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Korea
| | - Jae Young Seong
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Jong-Ik Hwang
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea,
| |
Collapse
|
43
|
Li C, Liu VWS, Chiu PM, Yao KM, Ngan HYS, Chan DW. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer. Mol Cancer 2014; 13:49. [PMID: 24602453 PMCID: PMC4016028 DOI: 10.1186/1476-4598-13-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Hextan Y S Ngan
- Department of Obstetrics & Gynecology, The University of Hong Kong, 6th Floor, Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | | |
Collapse
|
44
|
Johannes JW, Chuaqui C, Cowen S, Devereaux E, Gingipalli L, Molina A, Wang T, Whitston D, Wu X, Zhang HJ, Zinda M. Discovery of 6-aryl-azabenzimidaoles that inhibit the TBK1/IKK-ε kinases. Bioorg Med Chem Lett 2014; 24:1138-43. [DOI: 10.1016/j.bmcl.2013.12.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
|
45
|
Meyer AN, Drafahl KA, McAndrew CW, Gilda JE, Gallo LH, Haas M, Brill LM, Donoghue DJ. Tyrosine phosphorylation allows integration of multiple signaling inputs by IKKβ. PLoS One 2014; 8:e84497. [PMID: 24386391 PMCID: PMC3873999 DOI: 10.1371/journal.pone.0084497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Signaling regulated by NFκB and related transcription factors is centrally important to many inflammatory and autoimmune diseases, cancer, and stress responses. The kinase that directly regulates the canonical NFκB transcriptional pathway, Inhibitor of κB kinase β (IKKβ), undergoes activation by Ser phosphorylation mediated by NIK or TAK1 in response to inflammatory signals. Using titanium dioxide-based phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS), we analyzed IKKβ phosphorylation in human HEK293 cells expressing IKKβ and FGFR2, a Receptor tyrosine kinase (RTK) essential for embryonic differentiation and dysregulated in several cancers. We attained unusually high coverage of IKKβ, identifying an abundant site of Tyr phosphorylation at Tyr169 within the Activation Loop. The phosphomimic at this site confers a level of kinase activation and NFκB nuclear localization exceeding the iconic mutant S177E/S181E, demonstrating that RTK-mediated Tyr phosphorylation of IKKβ has the potential to directly regulate NFκB transcriptional activation.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kristine A. Drafahl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Jennifer E. Gilda
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Laurence M. Brill
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- *
| |
Collapse
|
46
|
Lin CY, Ho JY, Hsieh MT, Chiang HL, Chuang JM, Whang-Peng J, Chang YC, Tseng YH, Chen SF, Nieh S, Hwang J. Reciprocal relationship of Tn/NF-κB and sTn as an indicator of the prognosis of oral squamous cell carcinoma. Histopathology 2013; 64:713-21. [PMID: 24117943 DOI: 10.1111/his.12309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
AIMS In order to determine whether the expression of tumour-associated carbohydrate antigens (Tn/sTn) and a representative inflammation marker, nuclear factor-κB (NF-κB), is associated with the invasiveness of oral squamous cell carcinoma (OSCC), this study has attempted to investigate the correlation of the aforementioned markers with the well-established invasive pattern grading score (IPGS) and clinicopathological parameters. METHODS AND RESULTS Specimens from 143 OSCC patients with classified clinicopathological parameters and IPGS were stained immunohistochemically using anti-Tn, sTn and NF-κB antibodies. Our results showed that the expression of both Tn and NF-κB was correlated positively with staging (P = 0.036; P = 0.015), recurrence (P < 0.001; P < 0.001) and distant metastasis (P = 0.005; P = 0.009), as well as with IPGS, while the expression of sTn was correlated inversely. In addition, poor survival was associated with overexpression of Tn and NF-κB but not with expression of sTn. CONCLUSIONS Our results indicate that a reciprocal relationship between Tn and sTn expression may serve as a reliable indicator for OSCC prognostic evaluation. In addition, expression of Tn rather than sTn may play an important role in deeply invasive OSCC via regulation of NF-κB signalling.
Collapse
Affiliation(s)
- Chi-Yu Lin
- Graduate Institute of Life Sciences, National Defense Medical Centre, Taipei, Taiwan; Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Synthesis and in vitro characterization of ionone-based compounds as dual inhibitors of the androgen receptor and NF-κB. Invest New Drugs 2013; 32:227-34. [DOI: 10.1007/s10637-013-0040-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
48
|
|
49
|
Smith GL, Benfield CTO, Maluquer de Motes C, Mazzon M, Ember SWJ, Ferguson BJ, Sumner RP. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 2013; 94:2367-2392. [PMID: 23999164 DOI: 10.1099/vir.0.055921-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Camilla T O Benfield
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Michela Mazzon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stuart W J Ember
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Rebecca P Sumner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
50
|
Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer. Pharmaceuticals (Basel) 2013; 6:929-59. [PMID: 24276377 PMCID: PMC3817732 DOI: 10.3390/ph6080929] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.
Collapse
|