1
|
Sui Q, Zhou Y, Li M, Wang D, Cui R, Cai X, Liu J, Wang X, Teng D, Zhou J, Hou H, Zhang S, Zheng M. Design, synthesis, and structure-activity relationship studies of triazolo-pyrimidine derivatives as WRN inhibitors for the treatment of MSI tumors. Eur J Med Chem 2025; 282:117039. [PMID: 39561494 DOI: 10.1016/j.ejmech.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound HRO761 is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound S35. S35 exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC50 = 16.1 nM, fluorometric helicase assay IC50 = 23.5 nM). Additionally, S35 exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI50 = 36.4-306 nM), while the GI50 values for multiple microsatellite stability (MSS) cell lines were greater than 20,000 nM. Furthermore, we observed that compound S35 induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. S35 demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.
Collapse
Affiliation(s)
- Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuanyang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Manjia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Gootzen TA, Steenbeek MP, van Bommel M, IntHout J, Kets CM, Hermens R, de Hullu JA. Risk-reducing salpingectomy with delayed oophorectomy to prevent ovarian cancer in women with an increased inherited risk: insights into an alternative strategy. Fam Cancer 2024; 23:437-445. [PMID: 38907139 PMCID: PMC11512845 DOI: 10.1007/s10689-024-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal type of gynaecological cancer, due to lack of effective screening possibilities and because the disease tends to metastasize before onset of symptoms. Women with an increased inherited risk for EOC are advised to undergo a risk-reducing salpingo-oophorectomy (RRSO), which decreases their EOC risk by 96% when performed within guideline ages. However, it also induces premature menopause, which has harmful consequences. There is compelling evidence that the majority of EOCs originate in the fallopian tube. Therefore, a risk-reducing salpingectomy with delayed oophorectomy (RRS with DO) has gained interest as an alternative strategy. Previous studies have shown that this alternative strategy has a positive effect on menopause-related quality of life and sexual health when compared to the standard RRSO. It is hypothesized that the alternative strategy is non-inferior to the standard RRSO with respect to oncological safety (EOC incidence). Three prospective studies are currently including patients to compare the safety and/or quality of life of the two distinct strategies. In this article we discuss the background, opportunities, and challenges of the current and alternative strategy.
Collapse
Affiliation(s)
- T A Gootzen
- Department of Gynaecology and Obstetrics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA, 6525, The Netherlands.
| | - M P Steenbeek
- Department of Gynaecology and Obstetrics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA, 6525, The Netherlands
| | - Mhd van Bommel
- Department of Gynaecology and Obstetrics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA, 6525, The Netherlands
| | - J IntHout
- Department of IQ Health, Radboudumc, Kapittelweg 54, Nijmegen, EP, 6525, The Netherlands
| | - C M Kets
- Department of Genetics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA, 6525, The Netherlands
| | - Rpmg Hermens
- Department of IQ Health, Radboudumc, Kapittelweg 54, Nijmegen, EP, 6525, The Netherlands
| | - J A de Hullu
- Department of Gynaecology and Obstetrics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA, 6525, The Netherlands
| |
Collapse
|
3
|
de Nonneville A, Kalbacher E, Cannone F, Guille A, Adelaïde J, Finetti P, Cappiello M, Lambaudie E, Ettore G, Charafe E, Mamessier E, Provansal M, Bertucci F, Sabatier R. Endometrioid ovarian carcinoma landscape: pathological and molecular characterization. Mol Oncol 2024; 18:2586-2600. [PMID: 38923749 PMCID: PMC11459045 DOI: 10.1002/1878-0261.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Endometrioid ovarian cancers (EOvC) are usually managed as serous tumors. In this study, we conducted a comprehensive molecular investigation to uncover the distinct biological characteristics of EOvC. This retrospective multicenter study involved patients from three European centers. We collected clinical data and formalin-fixed paraffin-embedded (FFPE) samples for analysis at the DNA level using panel-based next-generation sequencing and array-comparative genomic hybridization. Additionally, we examined mRNA expression using NanoString nCounter® and protein expression through tissue microarray. We compared EOvC with other ovarian subtypes and uterine endometrioid tumors. Furthermore, we assessed the impact of molecular alterations on patient outcomes, including progression-free survival (PFS) and overall survival (OS). Preliminary analysis of clinical data from 668 patients, including 86 (12.9%) EOvC, revealed more favorable prognosis for EOvC compared with serous ovarian carcinoma (5-year OS of 60% versus 45%; P = 0.001) driven by diagnosis at an earlier stage. Immunohistochemistry and copy number alteration (CNA) profiles of 43 cases with clinical data and FFPE samples available indicated that EOvC protein expression and CNA profiles were more similar to endometrioid endometrial tumors than to serous ovarian carcinomas. EOvC exhibited specific alterations, such as lower rates of PTEN loss, mutations in DNA repair genes, and P53 abnormalities. Survival analysis showed that patients with tumors harboring loss of PTEN expression had worse outcomes (median PFS 19.6 months vs. not reached; P = 0.034). Gene expression profile analysis confirmed that EOvC differed from serous tumors. However, comparison to other rare subtypes of ovarian cancer suggested that the EOvC transcriptomic profile was close to that of ovarian clear cell carcinoma. Downregulation of genes involved in the PI3K pathway and DNA methylation was observed in EOvC. In conclusion, EOvC represents a distinct biological entity and should be regarded as such in the development of specific clinical approaches.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Elsa Kalbacher
- Department of Medical OncologyCHRU Jean MinjozBesançonFrance
| | | | - Arnaud Guille
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - José Adelaïde
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Pascal Finetti
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Maria Cappiello
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - Eric Lambaudie
- Department of Surgical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - Giuseppe Ettore
- Department of Obstetrics and GynecologyARNAS GaribaldiCataniaItaly
| | - Emmanuelle Charafe
- Department of BiopathologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, ICEP platform, CRCMMarseilleFrance
| | - Emilie Mamessier
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Magali Provansal
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - François Bertucci
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Renaud Sabatier
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
- ARCAGY‐GINECO, GINEGEPS GroupParisFrance
| |
Collapse
|
4
|
Incorvaia L, Bazan Russo TD, Gristina V, Perez A, Brando C, Mujacic C, Di Giovanni E, Bono M, Contino S, Ferrante Bannera C, Vitale MC, Gottardo A, Peri M, Galvano A, Fanale D, Badalamenti G, Russo A, Bazan V. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ Precis Oncol 2024; 8:190. [PMID: 39237751 PMCID: PMC11377838 DOI: 10.1038/s41698-024-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Homologous recombination (HR) and mismatch repair (MMR) defects are driver mutational imprints and actionable biomarkers in DNA repair-defective tumors. Although usually thought as mutually exclusive pathways, recent preclinical and clinical research provide preliminary evidence of a functional crosslink and crosstalk between HRR and MMR. Shared core proteins are identified as key players in both pathways, broadening the concept of DNA repair mechanism exclusivity in specific tumor types. These observations may result in unexplored forms of synthetic lethality or hypermutable tumor phenotypes, potentially impacting the cancer risk management, and considerably expanding in the future the therapeutic window for DNA repair-defective tumors.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Peri
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Pejovic T, Cathcart AM, Alwaqfi R, Brooks MN, Kelsall R, Nezhat FR. Genetic Links between Endometriosis and Endometriosis-Associated Ovarian Cancer-A Narrative Review (Endometriosis-Associated Cancer). Life (Basel) 2024; 14:704. [PMID: 38929687 PMCID: PMC11204815 DOI: 10.3390/life14060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis is a frequent, estrogen-dependent, chronic disease, characterized by the presence of endometrial glands and stroma outside of the uterine cavity. Although it is not considered a precursor of cancer, endometriosis is associated with ovarian cancer. In this review, we summarized the evidence that clear-cell and endometrioid ovarian carcinomas (endometriosis-associated ovarian carcinoma-EAOC) may arise in endometriosis. The most frequent genomic alterations in these carcinomas are mutations in the AT-rich interaction domain containing protein 1A (ARID1A) gene, a subunit of the SWI/SNF chromatin remodeling complex, and alterations in phosphatidylinositol 3-kinase (PI3K) which frequently coexist. Recent studies have also suggested the simultaneous role of the PTEN tumor-suppressor gene in the early malignant transformation of endometriosis and the contribution of deficient MMR (mismatch repair) protein status in the pathogenesis of EAOC. In addition to activating and inactivating mutations in cancer driver genes, the complex pathogenesis of EAOC involves multiple other mechanisms such as the modulation of cancer driver genes via the transcriptional and post-translational (miRNA) modulation of cancer driver genes and the interplay with the inflammatory tissue microenvironment. This knowledge is being translated into the clinical management of endometriosis and EAOC. This includes the identification of the new biomarkers predictive of the risk of endometriosis and cancer, and it will shape the precision oncology treatment of EAOC.
Collapse
Affiliation(s)
- Tanja Pejovic
- Department of Obstetrics and Gynecology, Providence Medical Center and Providence Cancer Institute, Medford, OR 97504, USA;
| | - Ann M. Cathcart
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97201, USA;
| | - Rofieda Alwaqfi
- Department of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (R.A.); (F.R.N.)
| | - Marjorie N. Brooks
- Department of Obstetrics and Gynecology, Providence Medical Center and Providence Cancer Institute, Medford, OR 97504, USA;
| | - Rachel Kelsall
- Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA;
| | - Farr R. Nezhat
- Department of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (R.A.); (F.R.N.)
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
6
|
Veneziani AC, Gonzalez-Ochoa E, Alqaisi H, Madariaga A, Bhat G, Rouzbahman M, Sneha S, Oza AM. Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev Clin Oncol 2023; 20:820-842. [PMID: 37783747 DOI: 10.1038/s41571-023-00819-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Ovarian carcinoma is characterized by heterogeneity at the molecular, cellular and anatomical levels, both spatially and temporally. This heterogeneity affects response to surgery and/or systemic therapy, and also facilitates inherent and acquired drug resistance. As a consequence, this tumour type is often aggressive and frequently lethal. Ovarian carcinoma is not a single disease entity and comprises various subtypes, each with distinct complex molecular landscapes that change during progression and therapy. The interactions of cancer and stromal cells within the tumour microenvironment further affects disease evolution and response to therapy. In past decades, researchers have characterized the cellular, molecular, microenvironmental and immunological heterogeneity of ovarian carcinoma. Traditional treatment approaches have considered ovarian carcinoma as a single entity. This landscape is slowly changing with the increasing appreciation of heterogeneity and the recognition that delivering ineffective therapies can delay the development of effective personalized approaches as well as potentially change the molecular and cellular characteristics of the tumour, which might lead to additional resistance to subsequent therapy. In this Review we discuss the heterogeneity of ovarian carcinoma, outline the current treatment landscape for this malignancy and highlight potentially effective therapeutic strategies in development.
Collapse
Affiliation(s)
- Ana C Veneziani
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Husam Alqaisi
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Medical Oncology Department, 12 De Octubre University Hospital, Madrid, Spain
| | - Gita Bhat
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Toronto General Hospital, Toronto, Ontario, Canada
| | - Suku Sneha
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Mishima S, Naito Y, Akagi K, Hayashi N, Hirasawa A, Hishiki T, Igarashi A, Ikeda M, Kadowaki S, Kajiyama H, Kato M, Kenmotsu H, Kodera Y, Komine K, Koyama T, Maeda O, Miyachi M, Nishihara H, Nishiyama H, Ohga S, Okamoto W, Oki E, Ono S, Sanada M, Sekine I, Takano T, Tao K, Terashima K, Tsuchihara K, Yatabe Y, Yoshino T, Baba E. Japanese Society of Medical Oncology/Japan Society of Clinical Oncology/Japanese Society of Pediatric Hematology/Oncology-led clinical recommendations on the diagnosis and use of immunotherapy in patients with DNA mismatch repair deficient (dMMR) tumors, third edition. Int J Clin Oncol 2023; 28:1237-1258. [PMID: 37599324 PMCID: PMC10542286 DOI: 10.1007/s10147-023-02397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Clinical trials have reported the efficacy of immune checkpoint inhibitors in the treatment of mismatch repair-deficient (dMMR) advanced solid tumors. The accumulated evidence of tumor agnostic agent has been made since PD-1 inhibitor was approved and used in clinical practice. Therefore, we have revised the guideline "Japan Society of Clinical Oncology provisional clinical opinion for the diagnosis and use of immunotherapy in patients with deficient DNA mismatch repair tumors, cooperated by Japanese Society of Medical Oncology, First Edition". METHODS Clinical questions regarding medical care were formulated for patients with dMMR advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by Japan Society of Clinical Oncology (JSCO), Japanese Society of Medical Oncology (JSMO), and Japanese society of pediatric hematology/oncology (JSPHO) voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and JSPHO and the public comments among all societies' members were done. RESULTS The current guideline describes two clinical questions and eight recommendations for whom, when, and how MMR status should be tested. CONCLUSION In this guideline, the committee proposed eight recommendations for performing MMR testing properly to select patients who are likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Saori Mishima
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Naomi Hayashi
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Ataru Igarashi
- Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eiji Oki
- Kyushu University, Fukuoka, Japan
| | | | - Masashi Sanada
- National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | | | | | - Kayoko Tao
- National Cancer Center Hospital, Tokyo, Japan
| | - Keita Terashima
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Loong HH, Shimizu T, Prawira A, Tan AC, Tran B, Day D, Tan DSP, Ting FIL, Chiu JW, Hui M, Wilson MK, Prasongsook N, Koyama T, Reungwetwattana T, Tan TJ, Heong V, Voon PJ, Park S, Tan IB, Chan SL, Tan DSW. Recommendations for the use of next-generation sequencing in patients with metastatic cancer in the Asia-Pacific region: a report from the APODDC working group. ESMO Open 2023; 8:101586. [PMID: 37356359 PMCID: PMC10319859 DOI: 10.1016/j.esmoop.2023.101586] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/27/2023] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
INTRODUCTION Next-generation sequencing (NGS) diagnostics have shown clinical utility in predicting survival benefits in patients with certain cancer types who are undergoing targeted drug therapies. Currently, there are no guidelines or recommendations for the use of NGS in patients with metastatic cancer from an Asian perspective. In this article, we present the Asia-Pacific Oncology Drug Development Consortium (APODDC) recommendations for the clinical use of NGS in metastatic cancers. METHODS The APODDC set up a group of experts in the field of clinical cancer genomics to (i) understand the current NGS landscape for metastatic cancers in the Asia-Pacific (APAC) region; (ii) discuss key challenges in the adoption of NGS testing in clinical practice; and (iii) adapt/modify the European Society for Medical Oncology guidelines for local use. Nine cancer types [breast cancer (BC), gastric cancer (GC), nasopharyngeal cancer (NPC), ovarian cancer (OC), prostate cancer, lung cancer, and colorectal cancer (CRC) as well as cholangiocarcinoma and hepatocellular carcinoma (HCC)] were identified, and the applicability of NGS was evaluated in daily practice and/or clinical research. Asian ethnicity, accessibility of NGS testing, reimbursement, and socioeconomic and local practice characteristics were taken into consideration. RESULTS The APODDC recommends NGS testing in metastatic non-small-cell lung cancer (NSCLC). Routine NGS testing is not recommended in metastatic BC, GC, and NPC as well as cholangiocarcinoma and HCC. The group suggested that patients with epithelial OC may be offered germline and/or somatic genetic testing for BReast CAncer gene 1 (BRCA1), BRCA2, and other OC susceptibility genes. Access to poly (ADP-ribose) polymerase inhibitors is required for NGS to be of clinical utility in prostate cancer. Allele-specific PCR or a small-panel multiplex-gene NGS was suggested to identify key alterations in CRC. CONCLUSION This document offers practical guidance on the clinical utility of NGS in specific cancer indications from an Asian perspective.
Collapse
Affiliation(s)
- H H Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - T Shimizu
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - A Prawira
- Cancer Trials and Research Unit, Prince of Wales Hospital, Sydney, Australia
| | - A C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - B Tran
- Department of Oncology, Peter MacCallum Cancer Centre, Melbourne
| | - D Day
- Department of Oncology, Monash Health and Monash University, Australia
| | - D S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - F I L Ting
- Department of Medicine, Dr. Pablo O. Torre Memorial Hospital, Bacolod, Philippines
| | - J W Chiu
- Department of Medicine, The University of Hong Kong, HKSAR, Pok Fu Lam, Hong Kong, China
| | - M Hui
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia
| | - M K Wilson
- Department of Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - N Prasongsook
- Division of Medical Oncology, Phramongkutklao Hospital, Bangkok, Thailand
| | - T Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - T Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T J Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - V Heong
- Department Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - P J Voon
- Radiotherapy and Oncology Department, Hospital Umum Sarawak, Kuching, Malaysia
| | - S Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - I B Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - S L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - D S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
9
|
Fujiwara S. Clinical perspectives of rare ovarian tumors: clear cell ovarian cancer. Jpn J Clin Oncol 2023; 53:664-672. [PMID: 37288485 DOI: 10.1093/jjco/hyad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare and distinct histological type of epithelial ovarian carcinoma in terms of its histopathological, clinical and genetic features. Patients with OCCC are younger and diagnosed at earlier stages than those with the most common histological type-high-grade serous carcinoma. Endometriosis is considered a direct precursor of OCCC. Based on preclinical data, the most frequent gene alternations in OCCC are mutations of AT-rich interaction domain 1A and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. The prognosis of patients with early-stage OCCC is favorable, whereas patients at an advanced stage or who have the recurrent disease have a dismal prognosis due to OCCC's resistance to standard platinum-based chemotherapy. Despite a lower rate of response due to its resistance to standard platinum-based chemotherapy, the treatment strategy for OCCC resembles that of high-grade serous carcinoma, which includes aggressive cytoreductive surgery and adjuvant platinum-based chemotherapy. Alternative treatment strategies, including biological agents based on molecular characteristics specific to OCCC, are urgently needed. Furthermore, due to its rarity, well-designed collaborative international clinical trials are needed to improve oncologic outcomes and the quality of life in patients with OCCC.
Collapse
Affiliation(s)
- Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
10
|
Parker MJ, Lee H, Yao S, Irwin S, Hwang S, Belanger K, de Mare SW, Surgenor R, Yan L, Gee P, Morla S, Puyang X, Hsiao P, Zeng H, Zhu P, Korpal M, Dransfield P, Bolduc DM, Larsen NA. Identification of 2-Sulfonyl/Sulfonamide Pyrimidines as Covalent Inhibitors of WRN Using a Multiplexed High-Throughput Screening Assay. Biochemistry 2023; 62:2147-2160. [PMID: 37403936 PMCID: PMC10358344 DOI: 10.1021/acs.biochem.2c00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Indexed: 07/06/2023]
Abstract
Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 ∼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.
Collapse
Affiliation(s)
- Mackenzie J. Parker
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hyelee Lee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shihua Yao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sean Irwin
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sunil Hwang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Kylie Belanger
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sofia Woo de Mare
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Richard Surgenor
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Lu Yan
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Patricia Gee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shravan Morla
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Xiaoling Puyang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Peng Hsiao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hao Zeng
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Ping Zhu
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Manav Korpal
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Paul Dransfield
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - David M. Bolduc
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Nicholas A. Larsen
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol 2023; 14:1210164. [PMID: 37492581 PMCID: PMC10363668 DOI: 10.3389/fimmu.2023.1210164] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Up to 30% of colorectal, endometrial and gastric cancers have a deficiency in mismatch repair (MMR) protein expression due to either germline or epigenetic inactivation. Patients with Lynch Syndrome who inherit an inactive MMR allele have an up to 80% risk for developing a mismatch repair deficient (MMRd) cancer. Due to an inability to repair DNA, MMRd tumors present with genomic instability in microsatellite regions (MS). Tumors with high MS instability (MSI-H) are characterized by an increased frequency of insertion/deletions (indels) that can encode novel neoantigens if they occur in coding regions. The high tumor antigen burden for MMRd cancers is accompanied by an inflamed tumor microenvironment (TME) that contributes to the clinical effectiveness of anti-PD-1 therapy in this patient population. However, between 40 and 70% of MMRd cancer patients do not respond to treatment with PD-1 blockade, suggesting that tumor-intrinsic and -extrinsic resistance mechanisms may affect the success of checkpoint blockade. Immune evasion mechanisms that occur during early tumorigenesis and persist through cancer development may provide a window into resistance pathways that limit the effectiveness of anti-PD-1 therapy. Here, we review the mechanisms of immune escape in MMRd tumors during development and checkpoint blockade treatment, including T cell dysregulation and myeloid cell-mediated immunosuppression in the TME. Finally, we discuss the development of new therapeutic approaches to tackle resistance in MMRd tumors, including cancer vaccines, therapies targeting immunosuppressive myeloid programs, and immune checkpoint combination strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew Brown
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
12
|
Yakushina V, Kavun A, Veselovsky E, Grigoreva T, Belova E, Lebedeva A, Mileyko V, Ivanov M. Microsatellite Instability Detection: The Current Standards, Limitations, and Misinterpretations. JCO Precis Oncol 2023; 7:e2300010. [PMID: 37315263 DOI: 10.1200/po.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Valentina Yakushina
- OncoAtlas LLC, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| |
Collapse
|
13
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
14
|
Pan L, Han J, Lin M. Targeting breast cancer stem cells directly to treat refractory breast cancer. Front Oncol 2023; 13:981247. [PMID: 37251931 PMCID: PMC10213424 DOI: 10.3389/fonc.2023.981247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023] Open
Abstract
For patients with refractory breast cancer (BC), integrative immunotherapies are emerging as a critical component of treatment. However, many patients remain unresponsive to treatment or relapse after a period. Different cells and mediators in the tumor microenvironment (TME) play important roles in the progression of BC, and cancer stem cells (CSCs) are deemed the main cause of relapse. Their characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements in this environment. Strategies to modulate the immune system in the TME of BC that are aimed at reversing the suppressive networks within it and eradicating residual CSCs are, thus, essential for improving the current therapeutic efficacy of BC. This review focuses on the development of immunoresistance in BCs and discusses the strategies that can modulate the immune system and target breast CSCs directly to treat BC including immunotherapy with immune checkpoint blockades.
Collapse
Affiliation(s)
- Liping Pan
- Wuhan Center for Clinical Laboratory, Wuhan, China
| | - Juan Han
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Lin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
16
|
Mitric C, Salman L, Abrahamyan L, Kim SR, Pechlivanoglou P, Chan KKW, Gien LT, Ferguson SE. Mismatch-repair deficiency, microsatellite instability, and lynch syndrome in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2023; 170:133-142. [PMID: 36682091 DOI: 10.1016/j.ygyno.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Investigating for mismatch repair protein deficiency (MMRd), microsatellite instability (MSI), and Lynch syndrome (LS) is widely accepted in endometrial cancer, but knowledge is limited on its value in epithelial ovarian cancer (EOC). The primary objective was to evaluate the prevalence of mismatch repair protein deficiency (MMRd), microsatellite instability (MSI)-high, and Lynch syndrome (LS) in epithelial ovarian cancer (EOC), as well as the diagnostic accuracy of LS screening tests. The secondary objective was to determine the prevalence of MMRd, MSI-high, and LS in synchronous ovarian endometrial cancer and in histological subtypes. METHODS We systematically searched the MEDLINE, Epub Ahead of Print, MEDLINE In-Process and Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, and Embase databases. We included studies analysing MMR, MSI, and/or LS by sequencing. RESULTS A total of 55 studies were included. The prevalence of MMRd, MSI-high, and LS in EOC was 6% (95% confidence interval (CI) 5-8%), 13% (95% CI 12-15%), and 2% (95% CI 1-3%) respectively. Hypermethylation was present in 76% of patients with MLH1 deficiency (95% CI 64-84%). The MMRd prevalence was highest in endometrioid (12%) followed by non-serous non-mucinous (9%) and lowest in serous (1%) histological subtypes. MSI-high prevalence was highest in endometrioid (12%) and non-serous non-mucinous (12%) and lowest in serous (9%) histological subtypes. Synchronous and endometrioid EOC had the highest prevalence of LS pathogenic variants at 7% and 3% respectively, with serous having lowest prevalence (1%). Synchronous ovarian and endometrial cancers had highest rates of MMRd (28%) and MSI-high (28%). Sensitivity was highest for IHC (91.1%) and IHC with MSI (92.8%), while specificity was highest for IHC with methylation (92.3%). CONCLUSION MMRd and germline LS testing should be considered for non-serous non-mucinous EOC, particularly for endometrioid. PRECIS The rates of mismatch repair deficiency, microsatellite instability high, and mismatch repair germline mutations are highest in endometrioid subtype and non-serous non-mucinous ovarian cancer. The rates are lowest in serous histologic subtype.
Collapse
Affiliation(s)
- Cristina Mitric
- Division of Gynecologic Oncology, University Health Network and Sinai Health System, Toronto, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada; Division of Gynecologic Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lina Salman
- Division of Gynecologic Oncology, University Health Network and Sinai Health System, Toronto, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada; Division of Gynecologic Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lusine Abrahamyan
- Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Soyoun Rachel Kim
- Division of Gynecologic Oncology, University Health Network and Sinai Health System, Toronto, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Petros Pechlivanoglou
- Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, Canada
| | - Kelvin K W Chan
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medicine, University of Toronto, Canada
| | - Lilian T Gien
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada; Division of Gynecologic Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, Canada
| | - Sarah E Ferguson
- Division of Gynecologic Oncology, University Health Network and Sinai Health System, Toronto, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Update on Prognostic and Predictive Markers in Mucinous Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15041172. [PMID: 36831515 PMCID: PMC9954175 DOI: 10.3390/cancers15041172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This review includes state-of-the-art prognostic and predictive factors of mucinous ovarian cancer (MOC), a rare tumor. Clinical, pathological, and molecular features and treatment options according to prognosis are comprehensively discussed. Different clinical implications of MOC are described according to the The International Federation of Gynecology and Obstetrics (FIGO) stage: early MOC (stage I-II) and advanced MOC (stage III-IV). Early MOC is characterized by a good prognosis. Surgery is the mainstay of treatment. Fertility-sparing surgery could be performed in patients who wish to become pregnant and that present low recurrence risk of disease. Adjuvant chemotherapy is not recommended, except in patients with high-risk clinical and pathological features. Regarding the histological features, an infiltrative growth pattern is the major prognostic factor of MOC. Furthermore, novel molecular biomarkers are emerging for tailored management of early-stage MOC. In contrast, advanced MOC is characterized by poor survival. Radical surgery is the cornerstone of treatment and adjuvant chemotherapy is recommended, although the efficacy is limited by the intrinsic chemoresistance of these tumors. Several molecular hallmarks of advanced MOC have been described in recent years (e.g., HER2 amplification, distinct methylation profiles, peculiar immunological microenvironment), but target therapy for these rare tumors is not available yet.
Collapse
|
18
|
Zhou Y, Gao M, Jing Y, Wang X. Pan-cancer analyses reveal IGSF10 as an immunological and prognostic biomarker. Front Genet 2023; 13:1032382. [PMID: 36685968 PMCID: PMC9845414 DOI: 10.3389/fgene.2022.1032382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: IGSF10 is a member of the immunoglobulin superfamily. Over the previous decade, growing proof has validated definitive correlations between individuals of the immunoglobulin superfamily and human diseases. However, the function of IGSF10 in pan-cancer stays unclear. We aimed to analyze the immunological and prognostic value of IGSF10 in pan-cancer. Methods: We utilized a vary of bioinformatic ways to inspect the function of IGSF10 in pan-cancer, including its correlation with prognosis, immune cell infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methyltransferases, genetic alteration, drug sensitivity, etc. Results: We noticed low expression of IGSF10 in most cancer types. IGSF10 expression in tumor samples correlates with prognosis in most cancers. In most cancer types, IGSF10 expression was strongly related to immune cells infiltration, immune checkpoints, immune modulators, TMB, MSI, MMR, and DNA methyltransferases, among others. Functional enrichment analyses indicated that IGSF10 expression was involved in lymphocyte differentiation, cell molecules adhesion, etc. Furthermore, low IGSF10 expression could increase the drug sensitivity of many drugs. Conclusion: IGSF10 could serve as a novel prognostic marker and attainable immunotherapy target for several malignancies.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Manzhi Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yaoyao Jing
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,Day Ward of Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,*Correspondence: Xiaofang Wang,
| |
Collapse
|
19
|
The presence of clear cell glands around the ovarian endometrioid cyst has an association with clear cell carcinoma. Virchows Arch 2022:10.1007/s00428-022-03479-1. [PMID: 36580137 DOI: 10.1007/s00428-022-03479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
We found some clear cell glands appeared in the endometrioid cysts (ECs) of the ovary (EC-CCG). To explore the clinicopathological features, molecular biological changes, and prognosis in EC-CCG and analyze the association with ovarian clear cell borderline tumors (CCBT) and clear cell carcinoma (CCC). We retrospectively examined 35 cases of EC-CCG, compared them to 13 cases of clear cell cystadenomas, 14 cases of CCBT, and 49 cases of CCC. We analyzed the differences in clinicopathological features and prognosis between the four groups. Data on clinicopathology and survival were gathered. Immunohistochemistry (IHC) was performed in all cases, and we analyzed the molecular changes of 2 cases of EC-CCG and 1 case of CCC by whole-exome sequencing (WES). EC-CCG shared some common clinicopathological features with CCBT: they occurred before menopause, had an elevated serum CA125 level in some cases, had an ovarian cystic mass on B-ultrasound, and had a risk of recurrence. Microscopically, both diseases were based on typical EC, and clear cell glands in the EC cyst wall were seen in varying numbers. Some cases of EC-CCG had IHC results similar to those of CCBT and CCC, with positive expression of HNF1β and NapsinA; decreased expression of ER, PR, and ARID1A; and increased expression of Ki67 (> 5%). WES results revealed that EC-CCG had mutations in TP53BP1, ZNF462, FN1, and FTL (which was also mutated in CCC). In summary, we found that clear cell glands appearing around EC in the ovary have an association with CCC.
Collapse
|
20
|
Marques C, Ferreira da Silva F, Sousa I, Nave M. Chemotherapy-free treatment of recurrent advanced ovarian cancer: myth or reality? Int J Gynecol Cancer 2022; 33:607-618. [PMID: 36446409 PMCID: PMC10086454 DOI: 10.1136/ijgc-2022-003719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Advanced ovarian cancer remains a leading cause of death from gynecologic malignancy. Surgery and, in most cases, platinum-based chemotherapy with or without maintenance with bevacizumab and/or poly-ADP ribose polymerase inhibitors (PARPi) represent the mainstay of treatment, but the disease typically recurs. The treatment of these patients represents a clinical challenge because sequential chemotherapy regimens are often used, with suboptimal outcomes and cumulative toxicity. Chemotherapy-free regimens, based on combinations of PARPi, vascular endothelial growth factor receptor inhibitors, anti-programmed cell death protein-1/programmed death-ligand 1, and anti-cytotoxic T-lymphocyte-associated protein-4 antibodies, among others, represent a valid option, with manageable toxicity profile and ease of administration. This review addresses this new strategy in the management of recurrent ovarian cancer and discusses its feasibility in the treatment landscape of the disease.
Collapse
Affiliation(s)
- Cristiana Marques
- Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Portugal
| | | | - Isabel Sousa
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mónica Nave
- Hospital da Luz, Lisboa, Portugal
- Nova Medical School, Lisbon, Portugal
| |
Collapse
|
21
|
Huepenbecker SP, Wright JD, Downer MK, Incerti D, Luhn P, Dolado I, Bastiere-Truchot L, Lin YG, Chan JK, Meyer LA. Temporal Patterns and Adoption of Germline and Somatic BRCA Testing in Ovarian Cancer. Obstet Gynecol 2022; 140:758-767. [PMID: 36201776 PMCID: PMC9588544 DOI: 10.1097/aog.0000000000004958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To describe the testing rate, patient characteristics, temporal trends, timing, and results of germline and somatic BRCA testing in patients with ovarian cancer using real-world data. METHODS We included a cross-sectional subset of adult patients diagnosed with ovarian cancer between January 1, 2011, and November 30, 2018, who received frontline treatment and were followed for at least 1 year in a real-world database. The primary outcome was receipt of BRCA testing, classified by biosample source as germline (blood or saliva) or somatic (tissue). Lines of therapy (frontline, second line, third line) were derived based on dates of surgery and chemotherapy. Descriptive statistics were analyzed. RESULTS Among 2,557 patients, 72.2% (n=1,846) had at least one documented BRCA test. Among tested patients, 62.5% (n=1,154) had only germline testing, 10.6% (n=197) had only somatic testing, and 19.9% (n=368) had both. Most patients had testing before (9.7%, n=276) or during (48.6%, n=1,521) frontline therapy, with 17.6% (n=273) tested during second-line and 12.7% (n=129) tested during third-line therapy. Patients who received BRCA testing, compared with patients without testing, were younger (mean age 63 years vs 66 years, P <.001) and were more likely to be treated at an academic practice (10.4% vs 7.0%, P =.01), with differences by Eastern Cooperative Oncology Group performance score ( P <.001), stage of disease ( P <.001), histology ( P <.001), geography ( P <.001), and type of frontline therapy ( P <.001), but no differences based on race or ethnicity. The proportion of patients who received BRCA testing within 1 year of diagnosis increased from 24.6% of patients in 2011 to 75.6% of patients in 2018. CONCLUSION In a large cohort of patients with ovarian cancer, significant practice disparities existed in testing for actionable BRCA mutations. Despite increased testing over time, many patients did not receive testing, suggesting missed opportunities to identify patients appropriate for targeted therapy and genetic counseling.
Collapse
Affiliation(s)
| | - Jason D. Wright
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Mary K. Downer
- Personalized Healthcare Data Science, Genentech, Inc., South San Francisco, CA
| | - Devin Incerti
- Product Development Medical Affairs, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Patricia Luhn
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - Ignacio Dolado
- Product Development Medical Affairs, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | | | - Yvonne G. Lin
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - John K. Chan
- California Pacific Medical Center and Palo Alto Medical Foundation, Sutter Health, San Francisco, CA
| | | |
Collapse
|
22
|
Fuh K. Editorial for June issue 2022. Gynecol Oncol Rep 2022; 41:101015. [PMID: 35769496 PMCID: PMC9235039 DOI: 10.1016/j.gore.2022.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Next Generation Sequencing and Molecular Biomarkers in Ovarian Cancer—An Opportunity for Targeted Therapy. Diagnostics (Basel) 2022; 12:diagnostics12040842. [PMID: 35453890 PMCID: PMC9030726 DOI: 10.3390/diagnostics12040842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic malignancies claiming the lives of nearly 14,000 women in the United States annually. Despite therapeutic advances, the ovarian cancer mortality rate has remained stagnant since the 1980’s. The molecular heterogeneity of ovarian cancers suggest they may be more effectively treated via precision medicine. Current guidelines recommend germline and somatic testing for all new epithelial ovarian cancer diagnoses to assist providers in identifying candidates for targeted therapies. Next generation sequencing (NGS) identifies targetable, driver, and novel mutations used to guide treatment decisions. Performing NGS is standard of care in many other malignancies, but for ovarian cancer the use of NGS in daily practice is still emerging. This review discusses the targetable genetic mutations and role of NGS and molecular biomarker testing in the treatment of ovarian cancer.
Collapse
|
24
|
Integrating Precision Medicine into the Contemporary Management of Gynecologic Cancers. Curr Oncol Rep 2022; 24:889-904. [DOI: 10.1007/s11912-021-01163-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
|
25
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
26
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
27
|
Takeda T, Tsuji K, Kobayashi Y, Banno K, Aoki D. Clinical and pathological analysis of companion diagnostic testing of microsatellite instability-high for pembrolizumab in gynaecologic malignancy. Jpn J Clin Oncol 2021; 52:128-133. [PMID: 34750611 DOI: 10.1093/jjco/hyab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Microsatellite instability-high is a known biomarker for anti-PD-1/PD-L1 immune checkpoint therapy. It is also a known tumour feature of Lynch syndrome, detected most frequently in endometrial cancer. However, it remains unclear how microsatellite instability testing is carried out in the clinical field. METHODS Ninety-nine patients with gynaecological malignant tumours who underwent microsatellite instability testing as a companion diagnosis for pembrolizumab and 16 patients who previously underwent microsatellite instability testing as a screening for Lynch syndrome were recruited. Clinical information, microsatellite instability status, outcomes, genetic assessments and information about cancer tissue were retrospectively analysed. RESULTS Ninety-nine patients had 101 gynaecologic malignant tumours including 26 endometrial, 38 ovarian and 28 cervical cancers, 9 with other tumours including 2 synchronous endometrial and ovarian cancers. All tissue samples were successfully tested, even though some were ≥10-year-old samples. Three cases (3.0%, 3/99) showed microsatellite instability-high; all cases were endometrial cancers with one case of synchronous endometrial and ovarian cancer [11.5% (3/26) in endometrial cancer, 2.6% (1/38) in ovarian cancer], and there was no microsatellite instability-high in cervical and other cancers. One of the endometrial cancer patients received pembrolizumab treatment, but finally died of cancer. Two other cases underwent genetic testing; both were diagnosed as Lynch syndrome. Six cases (37.5%) showed microsatellite instability-high in screening for Lynch syndrome. CONCLUSIONS Microsatellite instability-high was less commonly detected as a companion diagnosis for pembrolizumab in unselected gynaecologic patients. Genetic counselling should be always provided along with treatment selection.
Collapse
Affiliation(s)
| | | | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Openshaw MR, McVeigh TP. Non-invasive Technology Advances in Cancer-A Review of the Advances in the Liquid Biopsy for Endometrial and Ovarian Cancers. Front Digit Health 2021; 2:573010. [PMID: 34713045 PMCID: PMC8521848 DOI: 10.3389/fdgth.2020.573010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Improving cancer survival rates globally requires improvements in disease detection and monitoring, with the aim of improving early diagnosis and prediction of disease relapse. Traditional means of detecting and monitoring cancers rely largely on imaging and, where possible, blood-based protein biomarkers, many of which are non-specific. Treatments are being improved by identification of inherited and acquired genomic aberrations in tumors, some of which can be targeted by newly developed therapeutic interventions. Treatment of gynecological malignancy is progressively moving toward personalized therapy, as exemplified by application of PARP-inhibition for patients with BRCA-deficient tubo-ovarian cancers, or checkpoint inhibition in patients with mismatch repair-deficient disease. However, the more recent discovery of a group of biomarkers described under the umbrella term of “liquid biopsy” promises significant improvement in our ability to detect and monitor cancers. The term “liquid biopsy” is used to describe an array of tumor-derived material found in blood plasma and other bodily fluids such as ascites, pleural fluid, saliva, and urine. It includes circulating tumors cells (CTCs), circulating nucleic acids including DNA, messenger RNA and micro RNAs, and extracellular vesicles (EVs). In this review, we discuss recent advancements in liquid biopsy for biomarker detection to help in diagnosis, prognosis, and planning of treatment of ovarian and endometrial cancer.
Collapse
Affiliation(s)
- Mark R Openshaw
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Terri P McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
29
|
Wong OGW, Li J, Cheung ANY. Targeting DNA Damage Response Pathway in Ovarian Clear Cell Carcinoma. Front Oncol 2021; 11:666815. [PMID: 34737943 PMCID: PMC8560708 DOI: 10.3389/fonc.2021.666815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is one of the major types of ovarian cancer and is of higher relative prevalence in Asians. It also shows higher possibility of resistance to cisplatin-based chemotherapy leading to poor prognosis. This may be attributed to the relative lack of mutations and aberrations in homologous recombination-associated genes, which are crucial in DNA damage response (DDR), such as BRCA1, BRCA2, p53, RAD51, and genes in the Fanconi anemia pathway. On the other hand, OCCC is characterized by a number of genetic defects rendering it vulnerable to DDR-targeting therapy, which is emerging as a potent treatment strategy for various cancer types. Mutations of ARID1A, PIK3CA, PTEN, and catenin beta 1 (CTNNB1), as well as overexpression of transcription factor hepatocyte nuclear factor-1β (HNF-1β), and microsatellite instability are common in OCCC. Of particular note is the loss-of-function mutations in ARID1A, which is found in approximately 50% of OCCC. ARID1A is crucial for processing of DNA double-strand break (DSB) and for sustaining DNA damage signaling, rendering ARID1A-deficient cells prone to impaired DNA damage checkpoint regulation and hence sensitive to poly ADP ribose polymerase (PARP) inhibitors. However, while preclinical studies have demonstrated the possibility to exploit DDR deficiency in OCCC for therapeutic purpose, progress in clinical application is lagging. In this review, we will recapitulate the preclinical studies supporting the potential of DDR targeting in OCCC treatment, with emphasis on the role of ARID1A in DDR. Companion diagnostic tests (CDx) for predicting susceptibility to PARP inhibitors are rapidly being developed for solid tumors including ovarian cancers and may readily be applicable on OCCC. The potential of various available DDR-targeting drugs for treating OCCC by drawing analogies with other solid tumors sharing similar genetic characteristics with OCCC will also be discussed.
Collapse
|
30
|
Development of New Cancer Treatment by Identifying and Focusing the Genetic Mutations or Altered Expression in Gynecologic Cancers. Genes (Basel) 2021; 12:genes12101593. [PMID: 34680987 PMCID: PMC8535522 DOI: 10.3390/genes12101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.
Collapse
|
31
|
Taylor K, Loo Yau H, Chakravarthy A, Wang B, Shen SY, Ettayebi I, Ishak CA, Bedard PL, Abdul Razak A, R Hansen A, Spreafico A, Cescon D, Butler MO, Oza AM, Lheureux S, Stjepanovic N, Van As B, Boross-Harmer S, Wang L, Pugh TJ, Ohashi PS, Siu LL, De Carvalho DD. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors. J Immunother Cancer 2021; 8:jitc-2020-000883. [PMID: 32753546 PMCID: PMC7406114 DOI: 10.1136/jitc-2020-000883] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate whether administration of the oral DNA hypomethylating agent CC-486 enhances the poor response rate of immunologically ‘cold’ solid tumors to immune checkpoint inhibitor durvalumab. Experimental design PD-L1/PD-1 inhibitor naïve patients with advanced microsatellite stable colorectal cancer; platinum resistant ovarian cancer; and estrogen receptor positive, HER2 negative breast cancer were enrolled in this single-institution, investigator-initiated trial. Two 28 day regimens, regimen A (CC-486 300 mg QD Days 1–14 (cycles 1–3 only) in combination with durvalumab 1500 mg intravenous day 15) and regimen B (CC-486 100 mg QD days 1–21 (cycle 1 and beyond), vitamin C 500 mg once a day continuously and durvalumab 1500 mg intravenous day 15) were investigated. Patients underwent paired tumor biopsies and serial peripheral blood mononuclear cells (PBMCs) collection for immune-profiling, transcriptomic and epigenomic analyzes. Results A total of 28 patients were enrolled, 19 patients treated on regimen A and 9 on regimen B. The combination of CC-486 and durvalumab was tolerable. Regimen B, with a lower dose of CC-486 extended over a longer treatment course, showed less grade 3/4 adverse effects. Global LINE-1 methylation assessment of serial PBMCs and genome-wide DNA methylation profile in paired tumor biopsies demonstrated minimal changes in global methylation in both regimens. The lack of robust tumor DNA demethylation was accompanied by an absence of the expected ‘viral mimicry’ inflammatory response, and consequently, no clinical responses were observed. The disease control rate was 7.1%. The median progression-free survival was 1.9 months (95% CI 1.5 to 2.3) and median overall survival was 5 months (95% CI 4.5 to 10). Conclusions The evaluated treatment schedules of CC-486 in combination with durvalumab did not demonstrate robust pharmacodynamic or clinical activity in selected immunologically cold solid tumors. Lessons learned from this biomarker-rich study should inform continued drug development efforts using these agents. Trial registration number NCT02811497.
Collapse
Affiliation(s)
- Kirsty Taylor
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Helen Loo Yau
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ankur Chakravarthy
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ben Wang
- Immunology, University of Toronto, Toronto, Ontario, Canada.,Immuno-Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shu Yi Shen
- Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilias Ettayebi
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles A Ishak
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dave Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O Butler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neda Stjepanovic
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brendan Van As
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Boross-Harmer
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa Wang
- Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genomics, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Immunology, University of Toronto, Toronto, Ontario, Canada.,Immuno-Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada .,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021. [PMID: 34440647 DOI: 10.3390/cells1008187828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
|
33
|
Malapelle U, Parente P, Pepe F, De Luca C, Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli F, Bellevicine C, Vigliar E, Iaccarino A, Covelli C, Balistreri M, Clemente C, Perrone G, Danza A, Scaramuzzi F, Fassan M, Troncone G, Graziano P. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021; 10:cells10081878. [PMID: 34440647 PMCID: PMC8391221 DOI: 10.3390/cells10081878] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Floriana Conticelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Mariangela Balistreri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Celeste Clemente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Giovanni Perrone
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Angela Danza
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Fabio Scaramuzzi
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
- Correspondence:
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| |
Collapse
|
34
|
De Nonneville A, Zemmour C, Frank S, Joly F, Ray-Coquard I, Costaz H, Classe JM, Floquet A, De la Motte Rouge T, Colombo PE, Sauterey B, Leblanc E, Pomel C, Marchal F, Barranger E, Savoye AM, Guillemet C, Petit T, Pautier P, Rouzier R, Gladieff L, Simon G, Courtinard C, Sabatier R. Clinicopathological characterization of a real-world multicenter cohort of endometrioid ovarian carcinoma: Analysis of the French national ESME-Unicancer database. Gynecol Oncol 2021; 163:64-71. [PMID: 34294414 DOI: 10.1016/j.ygyno.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prognostic significance of endometrioid epithelial ovarian cancer (EOC) is controversial. We compared clinical, pathological, and biological features of patients with endometrioid and serous EOC, and assessed the independent effect of histology on outcomes. METHODS We conducted a multicenter retrospective analysis of patients with EOC selected from the French Epidemiological Strategy and Medical Economics OC database between 2011 and 2016. Our main objective was to compare overall survival (OS) in endometrioid and serous tumors of all grades. Our second objectives were progression-free survival (PFS) and prognostic features. RESULTS Out of 10,263 patients included, 3180 cases with a confirmed diagnosis of serous (N = 2854) or endometrioid (N = 326) EOC were selected. Patients with endometrioid histology were younger, more often diagnosed at an early stage, with lower-grade tumors, more frequently dMMR/MSI-high, and presented more personal/familial histories of Lynch syndrome-associated cancers. BRCA1/2 mutations were more frequently identified in the serous population. Endometrioid patients were less likely to receive chemotherapy, with less bevacizumab. After median follow-up of 51.7 months (95CI[50.1-53.6]), five-year OS rate was 81% (95CI[74-85]) in the endometrioid subgroup vs. 55% (95CI[53-57] in the serous subset (p < 0.001, log-rank test). In multivariate analyses including [age, ECOG-PS, FIGO, grade, and histology], the endometrioid subtype was independently associated with better OS (HR = 0.38, 95CI[0.20-0.70], p= 0.002) and PFS (HR = 0.53, 95CI[0.37-0.75], p < 0.001). CONCLUSIONS Clinicopathological features at diagnosis are not the same for endometrioid and serous EOC. Endometrioid histology is an independent prognosis factor in EOC. These observations suggest the endometrioid population requires dedicated clinical trials and management.
Collapse
Affiliation(s)
- Alexandre De Nonneville
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Christophe Zemmour
- Department of Clinical Research and Investigation, Biostatistics and Methodology Unit, Paoli-Calmettes Institute, Aix Marseille Univ., INSERM, IRD, SESSTIM, Marseille, France
| | - Sophie Frank
- Department of Medical Oncology, Institut Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Florence Joly
- Department of Medical Oncology, Centre François Baclesse, 3 Avenue du Général Harris, 14000 Caen, France
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, 28 Promenade Léa et Napoléon Bullukian, 69008 Lyon, France
| | - Hèlène Costaz
- Department of Surgical Oncology, Centre Georges François Leclerc, 1 rue Professeur Marion, 21079 Dijon, France
| | - Jean-Marc Classe
- Department of Surgical Oncology, Institut de Cancérologie de l'Ouest Centre René Gauducheau, Boulevard Jacques Monod, 44805 Saint Herblain, France
| | - Anne Floquet
- Department of Medical Oncology, Institut Bergonié, 229 Cours de l'Argonne, 33000 Bordeaux, France
| | - Thibault De la Motte Rouge
- Medical Oncology Department, Centre Eugéne Marquis, Avenue de la Bataille Flandres-Dunkerque, 35000 Rennes, France
| | - Pierre-Emmanuel Colombo
- Department of Surgical Oncology, Institut du Cancer de Montpellier, 208 Rue des Apothicaires, 34298 Montpellier, France
| | - Baptiste Sauterey
- Department of medical Oncology, Institut de Cancérologie de l'Ouest Centre Paul Papin, 5 Rue Moll, 49000 Angers, France
| | - Eric Leblanc
- Medical Oncology Department, Centre Oscar Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France
| | - Christophe Pomel
- Department of Surgical Oncology, Centre Jean Perrin, 58 Rue Montalembert, 63011 Clermont Ferrand, France
| | - Frédéric Marchal
- Department of Surgical Oncology, Institut de Cancérologie de Lorraine, Université de Lorraine, 6 Avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Emmanuel Barranger
- Department of Medical Oncology, Centre Antoine Lacassagne, 33 Avenue de Valambrose, 06189 Nice, France
| | - Aude-Marie Savoye
- Department of Medical Oncology, Institut de Cancérologie Jean-Godinot, 1 Rue du Général Koenig, 51100 Reims, France
| | - Cécile Guillemet
- Department of Medical Oncology, Centre Henri Becquerel, Rue d'Amiens, 76000 Rouen, France
| | - Thierry Petit
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Centre Paul Strauss, 17 rue Albert Calmette, 67033 Strasbourg, France
| | - Patricia Pautier
- Department of Cancer Medicine, Gustave Roussy, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Roman Rouzier
- Department of Breast and Gynecological Surgery, Institut Curie, 35, Rue Dailly, 92 210 Saint-Cloud, France
| | - Laurence Gladieff
- Department of Medical Oncology, Institut Claudius Regaud - IUCT Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Gaëtane Simon
- Data Office, Unicancer, 101 Rue de Tolbiac, 75654 Paris, France
| | - Coralie Courtinard
- Data Office, Unicancer, 101 Rue de Tolbiac, 75654 Paris, France; Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, Epicene Team, UMR 1219, Bordeaux, France
| | - Renaud Sabatier
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France.
| |
Collapse
|
35
|
Chen S, Geng X, Syeda MZ, Huang Z, Zhang C, Ying S. Human MUS81: A Fence-Sitter in Cancer. Front Cell Dev Biol 2021; 9:657305. [PMID: 33791310 PMCID: PMC8005573 DOI: 10.3389/fcell.2021.657305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
MUS81 complex, exhibiting endonuclease activity on specific DNA structures, plays an influential part in DNA repair. Research has proved that MUS81 is dispensable for embryonic development and cell viability in mammals. However, an intricate picture has emerged from studies in which discrepant gene mutations completely alter the role of MUS81 in human cancers. Here, we review the recent understanding of how MUS81 functions in tumors with distinct genetic backgrounds and discuss the potential therapeutic strategies targeting MUS81 in cancer.
Collapse
Affiliation(s)
- Sisi Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinwei Geng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengming Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Modification of Homologous Recombination Deficiency Score Threshold and Association with Long-Term Survival in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13050946. [PMID: 33668244 PMCID: PMC7956737 DOI: 10.3390/cancers13050946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies, such as poly-ADP ribose polymerase inhibitors (PARPi), and immunotherapy treatments have generated great interest in enhancing individualized molecular profiling of epithelial ovarian cancer (EOC) to improve management of the disease. In EOC patients, putative biomarkers for homologous recombination deficiency (HRD), microsatellite instability (MSI), and tumor mutational burden (TMB) were characterized and correlated with survival outcomes. A series of 300 consecutive EOC patients were enrolled. Patients underwent neoadjuvant chemotherapy (n = 172) or primary cytoreductive surgery (n = 128). Molecular profiling and survival analyses were restricted to the primary cytoreductive surgery cohort due to tissue availability. All patients underwent germline testing for HRD- and MSI-related gene mutations. When sufficient tissue was available, screening for somatic BRCA1/2 mutations, BRCA1 promoter methylation, HRD score (a measure of genomic instability), MSI, and TMB testing were performed. HRD score ≥33 was associated with improved overall survival on multivariable analysis. In the era of biomarker-driven clinical care, HRD score ≥33 may be a useful adjunctive prognostic tool and should be evaluated in future studies to predict PARPi benefits.
Collapse
|
37
|
Abstract
AbstractLynch syndrome was formerly known as Hereditary Nonpolyposis Colorectal Cancer. Currently, these two nomenclatures each have their unique definitions and are no longer used interchangeably. The history of hereditary nonpolyposis colorectal cancer was first recognized formally in the literature by Henry Lynch in 1967. With advances of molecular genetics, there has been a transformation from clinical phenotype to genotype diagnostics. This has led to the ability to diagnose affected patients before they manifest with cancer, and therefore allow preventative surveillance strategies. Genotype diagnostics has shown a difference in penetrance of different cancer risks dependent on the gene containing the mutation. Surgery is recommended as prevention for some cancers; for others they are reserved for once cancer is noted. Various surveillance strategies are recommended dependent on the relative risk of cancer and the ability to intervene with surgery to impact on survival. Risk reduction through aspirin has shown some recent promise, and continues to be studied.
Collapse
|
38
|
Gallon R, Gawthorpe P, Phelps RL, Hayes C, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers (Basel) 2021; 13:406. [PMID: 33499123 PMCID: PMC7865939 DOI: 10.3390/cancers13030406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (P.G.); (R.L.P.); (C.H.); (G.M.B.); (M.S.-K.); (M.S.J.)
| |
Collapse
|
39
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
40
|
Hodgson A, Turashvili G. Pathology of Hereditary Breast and Ovarian Cancer. Front Oncol 2020; 10:531790. [PMID: 33117676 PMCID: PMC7550871 DOI: 10.3389/fonc.2020.531790] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary breast and ovarian cancer (HBOC) syndrome is most commonly characterized by deleterious germline mutations in BRCA1 and BRCA2. HBOC patients are prone to the development of malignant neoplasms in multiple organs including the breast, ovary, and fallopian tube. From a pathological perspective, a number of morphological features have been described in BRCA-associated breast and tubo-ovarian cancers. For example, breast cancers diagnosed in BRCA1-mutation carriers are frequently of a high Nottingham grade and display medullary morphology and a triple-negative and/or a basal-like immunophenotype. In contrast, breast cancers in BRCA2-mutation carriers are similar to sporadic luminal-type tumors that are positive for hormone receptors and lack expression of human epidermal growth factor receptor 2. Cancers arising in the fallopian tube and ovary are almost exclusively of a high-grade serous histotype with frequent Solid, pseudo-Endometrioid, and Transitional cell carcinoma-like morphology (“SET features”), marked nuclear atypia, high mitotic index, abundant tumor infiltrating lymphocytes, and necrosis. In addition, pushing or infiltrative micropapillary patterns of invasion have been described in BRCA-associated metastases of tubo-ovarian high-grade serous carcinomas. Besides BRCA1 and BRCA2 mutations, alterations in a number of other homologous recombination genes with moderate penetrance, including PALB2, RAD51C, RAD51D, BRIP1, and others, have also been described in HBOC patients with varying frequency; however, distinct morphological characteristics of these tumors have not been well characterized to date. In this review, the above pathological features are discussed in detail and a focus is placed on how accurate pathologic interpretation plays an important role in allowing HBOC patients to receive the best possible management.
Collapse
Affiliation(s)
- Anjelica Hodgson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gulisa Turashvili
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
41
|
Crosbie EJ, Ryan NAJ, McVey RJ, Lalloo F, Bowers N, Green K, Woodward ER, Clancy T, Bolton J, Wallace AJ, McMahon RF, Evans DG. Assessment of mismatch repair deficiency in ovarian cancer. J Med Genet 2020; 58:687-691. [PMID: 32917768 PMCID: PMC8479746 DOI: 10.1136/jmedgenet-2020-107270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Background Hereditary causes of ovarian cancer include Lynch syndrome, which is due to inherited pathogenic variants affecting one of the four mismatch repair genes involved in DNA repair. The aim of this study was to evaluate tumour mismatch repair deficiency and prevalence of Lynch syndrome in high-risk women referred to the Manchester Centre for Genomic Medicine with ovarian cancer over the past 20 years. Methods Women with ovarian cancer diagnosed before the age of 35 years and/or with a suggestive personal or family history of Lynch syndrome cancers underwent tumour testing with immunohistochemistry for mismatch repair deficiency and, where indicated, MLH1 promoter methylation testing followed by constitutional testing for Lynch syndrome. Results In total, 261 ovarian cancers were tested and 27 (10.3%; 95% CI 6.9% to 14.7%) showed mismatch repair deficiency by immunohistochemistry. Three of 7 with MLH1 loss showed MLH1 promoter hypermethylation, and 18 of the remaining 24 underwent constitutional testing for Lynch syndrome. A further 15 women with mismatch repair proficient tumours underwent constitutional testing because of a strong family history of Lynch syndrome cancers. Pathogenic variants were identified in 9/33 (27%) women who underwent constitutional testing, aged 33–59 years (median 48 years), including one whose tumour was mismatch repair proficient. Most Lynch syndrome tumours were of endometrioid histological subtype. Conclusions Tumour mismatch repair deficiency identified by immunohistochemistry is a useful prescreen for constitutional testing in women with ovarian cancer with personal or family histories suggestive of Lynch syndrome.
Collapse
Affiliation(s)
- Emma J Crosbie
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9WL, UK .,Department of Obstetrics and Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Neil A J Ryan
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9WL, UK.,Department of Obstetrics and Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.,Division of Evolution and Genomic Medicine, The University of Manchester, Manchester M13 9WL, UK
| | - Rhona J McVey
- Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Naomi Bowers
- Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Kate Green
- Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Emma R Woodward
- Division of Evolution and Genomic Medicine, The University of Manchester, Manchester M13 9WL, UK.,Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Tara Clancy
- Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - James Bolton
- Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Andrew J Wallace
- Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Raymond F McMahon
- Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Medicine, The University of Manchester, Manchester M13 9WL, UK.,Manchester Centre for Genomic Medicine, North-West Genomics Laboratory Hub, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
42
|
A preoperative prediction model for predicting coexisting adnexa malignancy of patients with G1/G2 endometrioid endometrial cancer. Gynecol Oncol 2020; 159:402-408. [PMID: 32847677 DOI: 10.1016/j.ygyno.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To identify the predictors of coexisting adnexa malignancy (CAM) before surgery for patients with G1/G2 endometrioid endometrial cancer (EEC). METHODS Patients with G1/G2 EEC who received surgery in Fudan University Shanghai Cancer Center from 1996 to 2017 were enrolled. Univariate and multivariate logistic regression were performed to identify the predictors for CAM, and the nomogram was constructed and evaluated the discrimination and calibration. RESULTS Among the 1511 patients in the study cohort, 66 (4.4%) coexisted adnexa malignancy (51 metastatic and 15 synchronous primaries). In the univariate logistic regression analysis, CA125 level (>35 U/ml), histologic grades, myometrial invasion depth in magnetic resonance imaging (MRI), adnexal involvement in MRI/surgical exploration (SEP) were found to be significant predictors for CAM (P < .001, 0.047, 0.011, <0.001, respectively). The multivariate analysis demonstrated that high CA125 level (P < .001; OR: 2.945; 95%CI: 1.700-5.101), deep myometrial invasion (P = .011; OR: 2.194; 95%CI: 1.200-4.011), and suspected adnexal involvement in MRI/SEP (P < .001; OR: 11.524; 95%CI: 6.726-19.744) were independent predictors for CAM (AUC = 0.786). In 338 patients with MMR results, eighty-seven (25.7%) were detected MSI-high. There were 5.7% (5/87) patients diagnosed with CAM in the MSI-high group compared with 4.4% (11/251) in the MSS group. CONCLUSIONS A nomogram with pre- and intra-operative factors was constructed to predict CAM in G1/G2 EEC patients, which may help clinicians in decision-making for ovarian preservation for these patients.
Collapse
|
43
|
Abstract
Mismatch repair deficiency (MMRD) is involved in the initiation of both hereditary and sporadic tumors. MMRD has been extensively studied in colorectal cancer and endometrial cancer, but not so in other tumors, such as ovarian carcinoma. We have determined the expression of mismatch repair proteins in a large cohort of 502 early-stage epithelial ovarian carcinoma entailing all the 5 main subtypes: high-grade serous carcinoma, endometrioid ovarian carcinoma (EOC), clear cell carcinoma (CCC), mucinous carcinoma, and low-grade serous carcinoma. We studied the association of MMRD with clinicopathologic and immunohistochemical features, including tumor-infiltrating lymphocytes in EOC, the histologic type in which MMRD is most frequent. In addition, MLH1 promoter methylation status and massive parallel sequencing were used to evaluate the proportion of sporadic and Lynch syndrome-associated tumors, and the most frequently mutated genes in MMRD EOCs. MMRD occurred only in endometriosis-associated histologic types, and it was much more frequent in EOC (18%) than in CCC (2%). The most frequent immunohistochemical pattern was loss of MLH1/PMS2, and in this group, 80% of the cases were sporadic and secondary to MLH1 promoter hypermethylation. The presence of somatic mutations in mismatch repair genes was the other mechanism of MMRD in sporadic tumors. In this series, the minimum estimated frequency of Lynch syndrome was 35% and it was due to germline mutations in MLH1, MSH2, and MSH6. ARID1A, PTEN, KTM2B, and PIK3CA were the most common mutated genes in this series. Interestingly, possible actionable mutations in ERRB2 were found in 5 tumors, but no TP53 mutations were detected. MMRD was associated with younger age and increased tumor-infiltrating lymphocytes. Universal screening in EOC and mixed EOC/CCC is recommended for the high frequency of MMRD detected; however, for CCC, additional clinical and pathologic criteria should be evaluated to help select cases for analysis.
Collapse
|
44
|
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, Scarpa A. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 2020; 30:1232-1243. [PMID: 31056702 DOI: 10.1093/annonc/mdz116] [Citation(s) in RCA: 591] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having microsatellite instability (MSI). Therefore, MSI is a marker of dMMR. MSI/dMMR can be identified using immunohistochemistry to detect loss of MMR proteins and/or molecular tests to show microsatellite alterations. Together with tumour mutational burden (TMB) and PD-1/PD-L1 expression, it plays a role as a predictive biomarker for immunotherapy. METHODS To define best practices to implement the detection of dMMR tumours in clinical practice, the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project, based on a systematic review-approach, to generate consensus recommendations on the: (i) definitions related to the concept of MSI/dMMR; (ii) methods of MSI/dMMR testing and (iii) relationships between MSI, TMB and PD-1/PD-L1 expression. RESULTS The MSI-related definitions, for which a consensus frame-work was used to establish definitions, included: 'microsatellites', 'MSI', 'DNA mismatch repair' and 'features of MSI tumour'. This consensus also provides recommendations on MSI testing; immunohistochemistry for the mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 represents the first action to assess MSI/dMMR (consensus with strong agreement); the second method of MSI/dMMR testing is represented by polymerase chain reaction (PCR)-based assessment of microsatellite alterations using five microsatellite markers including at least BAT-25 and BAT-26 (strong agreement). Next-generation sequencing, coupling MSI and TMB analysis, may represent a decisive tool for selecting patients for immunotherapy, for common or rare cancers not belonging to the spectrum of Lynch syndrome (very strong agreement). The relationships between MSI, TMB and PD-1/PD-L1 expression are complex, and differ according to tumour types. CONCLUSIONS This ESMO initiative is a response to the urgent questions raised by the growing success of immunotherapy and provides also important insights on the relationships between MSI, TMB and PD-1/PD-L1.
Collapse
Affiliation(s)
- C Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Bibeau
- Department of Pathology, Caen University Hospital, Caen, France
| | - M J L Ligtenberg
- Departments of Human Genetics Radboud university medical center, Nijmegen, The Netherlands; Departments of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - N Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - A Nottegar
- Department of Surgery, San Bortolo Hospital, Vicenza, Italy
| | - T Bosse
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Miller
- Department of Oncology, University College London, London, UK
| | - N Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J-Y Douillard
- European Society for Medical Oncology, Lugano, Switzerland
| | - F Andre
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
| | - A Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Maoz A, Ciccone MA, Matsuzaki S, Coleman RL, Matsuo K. Emerging serine-threonine kinase inhibitors for treating ovarian cancer. Expert Opin Emerg Drugs 2020; 24:239-253. [PMID: 31755325 DOI: 10.1080/14728214.2019.1696773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Ovarian cancer is the leading cause of gynecologic cancer death, owing to high rates of incurable, recurrent disease after initial treatment. Serine threonine kinases (STKs) have been proposed as potential therapeutic targets in ovarian cancer because of their role in the initiation and progression of cancers. Experience in non-ovarian cancers suggests that STK inhibitors are active against tumors with specific molecular alterations.Areas covered: This review discusses STK inhibitors in active development in phase II/III clinical trials for ovarian cancer. PubMed and ClinicalTrials.gov were systematically searched to identify STK inhibitor trials for ovarian cancer; active development was confirmed via Pharmaprojects. Available data regarding the efficacy and safety of these compounds are explored.Expert opinion: STK inhibitors currently in development have modest activity as single agents and are unlikely to achieve approval as monotherapy for unselected ovarian cancer patients. Combination trials of STK inhibitors with chemotherapy and/or targeted therapies have suggested an acceptable efficacy/toxicity ratio for certain combinations but confirmatory studies are needed. Carefully designed trials, especially those including somatic molecular analysis, may help identify the subsets of patients most likely to benefit from these therapeutic strategies and determine the role of STK inhibitors in the evolving landscape of precision oncology.
Collapse
Affiliation(s)
- Asaf Maoz
- Department of Internal Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Marcia A Ciccone
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shinya Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Robert L Coleman
- Department of Gynecologic Oncology, University of Texas, MD-Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, Kohn EC, Levine DA, Liu JF, Lu KH, Sparacio D, Annunziata CM. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. J Clin Oncol 2020; 38:1222-1245. [PMID: 31986064 PMCID: PMC8842911 DOI: 10.1200/jco.19.02960] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 08/01/2023] Open
Abstract
PURPOSE To provide recommendations on genetic and tumor testing for women diagnosed with epithelial ovarian cancer based on available evidence and expert consensus. METHODS A literature search and prospectively defined study selection criteria sought systematic reviews, meta-analyses, randomized controlled trials (RCTs), and comparative observational studies published from 2007 through 2019. Guideline recommendations were based on the review of the evidence. RESULTS The systematic review identified 19 eligible studies. The evidence consisted of systematic reviews of observational data, consensus guidelines, and RCTs. RECOMMENDATIONS All women diagnosed with epithelial ovarian cancer should have germline genetic testing for BRCA1/2 and other ovarian cancer susceptibility genes. In women who do not carry a germline pathogenic or likely pathogenic BRCA1/2 variant, somatic tumor testing for BRCA1/2 pathogenic or likely pathogenic variants should be performed. Women with identified germline or somatic pathogenic or likely pathogenic variants in BRCA1/2 genes should be offered treatments that are US Food and Drug Administration (FDA) approved in the upfront and the recurrent setting. Women diagnosed with clear cell, endometrioid, or mucinous ovarian cancer should be offered somatic tumor testing for mismatch repair deficiency (dMMR). Women with identified dMMR should be offered FDA-approved treatment based on these results. Genetic evaluations should be conducted in conjunction with health care providers familiar with the diagnosis and management of hereditary cancer. First- or second-degree blood relatives of a patient with ovarian cancer with a known germline pathogenic cancer susceptibility gene variant should be offered individualized genetic risk evaluation, counseling, and genetic testing. Clinical decision making should not be made based on a variant of uncertain significance. Women with epithelial ovarian cancer should have testing at the time of diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elise C Kohn
- Gynecologic Cancer Therapeutics, National Cancer Institute, Bethesda, MD
| | | | | | - Karen H Lu
- The University of Texas MD Anderson Cancer Center, Houston,TX
| | | | | |
Collapse
|
47
|
Epidemiology of Microsatellite Instability High (MSI-H) and Deficient Mismatch Repair (dMMR) in Solid Tumors: A Structured Literature Review. JOURNAL OF ONCOLOGY 2020. [DOI: 10.1155/2020/1807929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background. Given limited data on the epidemiology of MSI-H and dMMR across solid tumors (except colorectal cancer (CRC)), the current study was designed to estimate their prevalence. Materials and Methods. A structured literature review identified English language publications that used immunohistochemistry (IHC) or polymerase chain replication (PCR) techniques. Publications were selected for all tumors except CRC using MEDLINE, EMBASE, and Cochrane databases and key congresses; CRC and pan-tumor genomic publications were selected through a targeted review. Meta-analysis was performed to estimate pooled prevalence of MSI-H/dMMR across all solid tumors and for selected tumor types. Where possible, prevalence within tumor types was estimated by disease stages. Results. Of 1,176 citations retrieved, 103 and 48 publications reported prevalence of MSI-H and dMMR, respectively. Five pan-tumor genomic studies supplemented the evidence base. Tumor types with at least 5 publications included gastric (n = 39), ovarian (n = 23), colorectal (n = 20), endometrial (n = 53), esophageal (n = 6), and renal cancer (n = 8). Overall MSI-H prevalence (with 95% CI) across 25 tumors was based on 90 papers (28,213 patients) and estimated at 14% (10%–19%). MSI-H prevalence among Stage 1/2 cancers was estimated at 15% (8%–23%); Stages 3 and 4 prevalence was estimated at 9% (3%–17%) and 3% (1%–7%), respectively. Overall, dMMR prevalence across 13 tumor types (based on 54 papers and 20,383 patients) was estimated at 16% (11%–22%). Endometrial cancer had the highest pooled MSI-H and dMMR prevalence (26% and 25% all stages, respectively). Conclusions. This is the first comprehensive attempt to report pooled prevalence estimates of MSI-H/dMMR across solid tumors based on published data. Prevalence determined by IHC and PCR was generally comparable, with some variations by cancer type. Late-stage prevalence was lower than that in earlier stages.
Collapse
|
48
|
Immune Checkpoint Inhibitors in Epithelial Ovarian Cancer: An Overview on Efficacy and Future Perspectives. Diagnostics (Basel) 2020; 10:diagnostics10030146. [PMID: 32156035 PMCID: PMC7151145 DOI: 10.3390/diagnostics10030146] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological cancers. Despite improvements in medical treatments, the prognosis for EOC remains poor, and there is an urgent need for new therapeutic strategies. Immune checkpoint inhibitors (CPIs) have dramatically improved survival of several cancers and are under evaluation in OC. Unfortunately, CPIs have shown globally unsatisfactory results. The aim of this manuscript is to critically review the results from early-phase trials with CPIs in terms of safety and activity, discuss the possible reasons for disappointing results and the new therapeutic approaches to improve patient outcomes.
Collapse
|
49
|
Gorringe KL, Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Amarasinghe KC, Ananda S, Bowtell DDL, Christie M, Chiew YE, Churchman M, DeFazio A, Fereday S, Gilks CB, Gourley C, Hadley AM, Hendley J, Hunter SM, Kaufmann SH, Kennedy CJ, Köbel M, Le Page C, Li J, Lupat R, McNally OM, McAlpine JN, Pyman J, Rowley SM, Salazar C, Saunders H, Semple T, Stephens AN, Thio N, Torres MC, Traficante N, Zethoven M, Antill YC, Campbell IG, Scott CL. Therapeutic options for mucinous ovarian carcinoma. Gynecol Oncol 2020; 156:552-560. [PMID: 31902686 PMCID: PMC7056511 DOI: 10.1016/j.ygyno.2019.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.
Collapse
Affiliation(s)
- Kylie L Gorringe
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia.
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - Matthew J Wakefield
- The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Prue E Allan
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | | | - Sumitra Ananda
- Peter MacCallum Cancer Centre, Melbourne, Australia; Western Health, St. Albans, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - Michael Christie
- The University of Melbourne, Melbourne, Australia; Royal Melbourne Hospital, Parkville, Australia
| | - Yoke-Eng Chiew
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia; The Westmead Institute for Medical Research, Sydney, Australia
| | - Michael Churchman
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, University of Edinburgh, UK
| | - Anna DeFazio
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia; The Westmead Institute for Medical Research, Sydney, Australia; The University of Sydney, Sydney, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | | | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, University of Edinburgh, UK
| | | | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | | | | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Orla M McNally
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Royal Womens Hospital, Parkville, Australia
| | | | - Jan Pyman
- Royal Womens Hospital, Parkville, Australia; Royal Children's Hospital, Flemington, Australia
| | | | | | | | | | | | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | | | - Yoland C Antill
- Cabrini Health, Malvern, Australia; Frankston Hospital, Frankston, Australia
| | - Ian G Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - Clare L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Royal Melbourne Hospital, Parkville, Australia; Royal Womens Hospital, Parkville, Australia
| |
Collapse
|
50
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|