1
|
Evers M, Stühmer T, Schreder M, Steinbrunn T, Rudelius M, Jundt F, Ebert R, Hartmann TN, Bargou RC, Rosenwald A, Leich E. Association of ADAM family members with proliferation signaling and disease progression in multiple myeloma. Blood Cancer J 2024; 14:156. [PMID: 39261477 PMCID: PMC11390935 DOI: 10.1038/s41408-024-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.
Collapse
Affiliation(s)
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Schreder
- First Department of Medicine, Klinik Ottakring, Vienna, Austria
| | - Torsten Steinbrunn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University München, München, Germany
| | - Franziska Jundt
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Ralf Christian Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
3
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
4
|
Gruba N, Piwkowska A, Lesner A. Initial study of the detection of ADAM 10 in the urine of type-2 diabetic patients. Bioorg Chem 2023; 140:106826. [PMID: 37666108 DOI: 10.1016/j.bioorg.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Abdel-Fattah MM, Abo-El Fetoh ME, Afify H, Ramadan LAA, Mohamed WR. Probenecid ameliorates testosterone-induced benign prostatic hyperplasia: Implications of PGE-2 on ADAM-17/EGFR/ERK1/2 signaling cascade. J Biochem Mol Toxicol 2023; 37:e23450. [PMID: 37352135 DOI: 10.1002/jbt.23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most prevalent clinical disorders in the elderly. Probenecid (Prob) is a well-known FDA-approved therapy for gout owing to its uricosuric effect. The present study evaluated the use of Prob for BPH as a COX-2 inhibitor. Prob (100 and 200 mg/kg) was intraperitoneally injected into male Wistar rats daily for 3 weeks. In the second week, testosterone (3 mg/kg) was subcutaneously injected to induce BPH. Compared with BPH-induced rats, Prob treatment reduced prostate weight and index and improved histopathological architecture. The protease activity of ADAM-17/TACE and its ligands (TGF-α and TNF-α) were regulated by prob, which in turn abolished EGFR phosphorylation, and several inflammatory mediators (COX-2, PGE2, NF-κB (p65), and IL-6) were suppressed. By reducing the nuclear import of extracellular regulated kinase protein 1/2 (ERK1/2), Prob helped re-establish the usual equilibrium between antiapoptotic proteins like Bcl-2 and cyclin D1 and proapoptotic proteins like Bax. All of these data point to Prob as a promising treatment for BPH because of its ability to inhibit COX-2-syntheiszed PGE2 and control the ADAM-17/TGF-α-induced EGFR/ERK1/2 signaling cascade. These findings might help to repurpose Prob for the treatment of BPH.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Laila A A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Herzfeldt AK, Gamez MP, Martin E, Boryn LM, Baskaran P, Huber HJ, Schuler M, Park JE, Swee LK. Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen-specific tumor cell killing by cytotoxic T cells. eLife 2023; 12:e84314. [PMID: 37732732 PMCID: PMC10586807 DOI: 10.7554/elife.84314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/20/2023] [Indexed: 09/22/2023] Open
Abstract
Cytotoxic CD8 +T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits, respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2 C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.
Collapse
Affiliation(s)
- Ann-Kathrin Herzfeldt
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Marta Puig Gamez
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Eva Martin
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | | | - Praveen Baskaran
- Department of Global Computational Biology and Digital Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Heinrich J Huber
- Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Michael Schuler
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Lee Kim Swee
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| |
Collapse
|
7
|
Bahrami E, Schmid JP, Jurinovic V, Becker M, Wirth AK, Ludwig R, Kreissig S, Duque Angel TV, Amend D, Hunt K, Öllinger R, Rad R, Frenz JM, Solovey M, Ziemann F, Mann M, Vick B, Wichmann C, Herold T, Jayavelu AK, Jeremias I. Combined proteomics and CRISPR‒Cas9 screens in PDX identify ADAM10 as essential for leukemia in vivo. Mol Cancer 2023; 22:107. [PMID: 37422628 PMCID: PMC10329331 DOI: 10.1186/s12943-023-01803-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.
Collapse
Affiliation(s)
- Ehsan Bahrami
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Jan Philipp Schmid
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Becker
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Romina Ludwig
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Sophie Kreissig
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tania Vanessa Duque Angel
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Diana Amend
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Katharina Hunt
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, and Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | - Roland Rad
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, and Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | - Joris Maximilian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Maria Solovey
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Chair of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Frank Ziemann
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Arai J, Otoyama Y, Nozawa H, Kato N, Yoshida H. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: a review. Oncogene 2023; 42:549-558. [PMID: 36572816 PMCID: PMC9937921 DOI: 10.1038/s41388-022-02583-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Metalloproteinases cleave transmembrane proteins that play critical roles in inflammation and cancers. Metalloproteinases include a disintegrin and metalloprotease (ADAM), which we previously examined using a fluorescence assay system, and described their association with resistance to systemic therapy in cancer patients. There are also many reports on the relation between ADAM expression and the prognosis of patients with gastroenterological chronic inflammatory diseases and cancers. Inhibiting their immunomodulating activity in chronic inflammation restores innate immunity and potentially prevents the development of various cancers. Among the numerous critical immune system-related molecules, we focus on major histocompatibility complex class I polypeptide-related sequence A (MICA), MICB, intracellular adhesion molecule (ICAM)-1, TNF-α, IL-6 receptor (IL-6R), and Notch. This review summarizes our current understanding of the role of ADAMs in gastroenterological diseases with regard to the immune system. Several Food and Drug Administration (FDA)-approved inhibitors of ADAMs have been identified, and potential therapies for targeting ADAMs in the treatment of chronic inflammatory diseases and cancers are discussed. Some ongoing clinical trials for cancers targeting ADAMs are also introduced.
Collapse
Affiliation(s)
- Jun Arai
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Yumi Otoyama
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hisako Nozawa
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- grid.136304.30000 0004 0370 1101Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Yoshida
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Abo-El Fetoh ME, Abdel-Fattah MM, Mohamed WR, Ramadan LAA, Afify H. Cyclooxygenase-2 activates EGFR-ERK1/2 pathway via PGE2-mediated ADAM-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023; 31:499-516. [PMID: 36586043 PMCID: PMC9958186 DOI: 10.1007/s10787-022-01123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE AND DESIGN Prostatic inflammation is the driving force in benign prostatic hyperplasia (BPH). This work investigated the potential modulatory effect of COX-2 inhibition on ADAM-17/EGFR/ERK1/2 axis. MATERIALS OR SUBJECTS Adult male Wistar rats were used. TREATMENT Celecoxib (10 and 20 mg/kg; i.p.) was injected i.p. daily for three weeks. Testosterone (TST) (3 mg/kg; s.c.) was used to induce BPH. METHODS Prostatic inflammation and hyperplasia were assessed by organ weight and histopathology. Inflammatory mediators were measured using ELISA technique. Protein analysis was performed using western blotting and immunohistochemistry. Gene expression analysis was performed using qRT-PCR. Statistical analyses included one-way ANOVA and Tukey's multiple comparison test. RESULTS Testosterone-treated rats had a marked increase in COX-2, prostate weight, and index. Moreover, TST-induced COX-2 was inferred from cytoskeletal changes and was attributable to the overexpression of PGE2, NF-κB (p65), and IL-6. COX-2-derived PGE2 increased the activity of ADAM-17, TGF-α, and TNF-α. Consequently, EGFR-ERK1/2 pathway was over-activated, disrupting anti-apoptotic Bcl-2, cyclin D1, and pro-apoptotic Bax. Celecoxib reversed these effects. CONCLUSION COX-2 stimulates the ERK1/2 pathway via PGE2-ADAM-17-catalyzed shedding of TGF-α in testosterone-induced BPH. The results indicate a functional correlation between inflammation and hyperplasia in BPH.
Collapse
Affiliation(s)
- Mohammed E. Abo-El Fetoh
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Maha M. Abdel-Fattah
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Wafaa R. Mohamed
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Laila A. A. Ramadan
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
11
|
Tong Y, Sun M, Chen L, Wang Y, Li Y, Li L, Zhang X, Cai Y, Qie J, Pang Y, Xu Z, Zhao J, Zhang X, Liu Y, Tian S, Qin Z, Feng J, Zhang F, Zhu J, Xu Y, Lou W, Ji Y, Zhao J, He F, Hou Y, Ding C. Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:168. [PMID: 36434634 PMCID: PMC9701038 DOI: 10.1186/s13045-022-01384-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis. Proteogenomic characterization and integrative proteomic analysis provide a functional context to annotate genomic abnormalities with prognostic value. METHODS We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 217 PDAC tumors with paired non-tumor adjacent tissues. In vivo functional experiments were performed to further illustrate the biological events related to PDAC tumorigenesis and progression. RESULTS A comprehensive proteogenomic landscape revealed that TP53 mutations upregulated the CDK4-mediated cell proliferation process and led to poor prognosis in younger patients. Integrative multi-omics analysis illustrated the proteomic and phosphoproteomic alteration led by genomic alterations such as KRAS mutations and ADAM9 amplification of PDAC tumorigenesis. Proteogenomic analysis combined with in vivo experiments revealed that the higher amplification frequency of ADAM9 (8p11.22) could drive PDAC metastasis, though downregulating adhesion junction and upregulating WNT signaling pathway. Proteome-based stratification of PDAC revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Immune clustering defined a metabolic tumor subset that harbored FH amplicons led to better prognosis. Functional experiments revealed the role of FH in altering tumor glycolysis and in impacting PDAC tumor microenvironments. Experiments utilizing both in vivo and in vitro assay proved that loss of HOGA1 promoted the tumor growth via activating LARP7-CDK1 pathway. CONCLUSIONS This proteogenomic dataset provided a valuable resource for researchers and clinicians seeking for better understanding and treatment of PDAC.
Collapse
Affiliation(s)
- Yexin Tong
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Mingjun Sun
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingli Chen
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yan Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingling Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xuan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yumeng Cai
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jingbo Qie
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yanrui Pang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Ziyan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiangyan Zhao
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xiaolei Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yang Liu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yifan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Wenhui Lou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yuan Ji
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jianyuan Zhao
- grid.16821.3c0000 0004 0368 8293Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.207374.50000 0001 2189 3846Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Fuchu He
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China ,grid.506261.60000 0001 0706 7839Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Yingyong Hou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Chen Ding
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| |
Collapse
|
12
|
ADAM10 and ADAM17 as Biomarkers Linked to Inflammation, Metabolic Disorders and Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4517-4527. [PMID: 36286024 PMCID: PMC9600049 DOI: 10.3390/cimb44100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
ADAM10 and ADAM17 have a role in inflammation and diseases associated with inflammation, such as diabetes, cardiovascular diseases (CVD) or cancer, e.g., colorectal cancer (CRC). The aim of this study was to evaluate whether ADAM10 and ADAM17 could be biomarkers of CRC. To achieve this goal, CRC tumors and a surgical margin from 72 patients with CRC were collected. The concentration of ADAM proteins was measured by the ELISA method. Results were analyzed statistically and compared with selected clinical parameters. We found that ADAM17 protein concentration in the tumor samples was higher in patients with diabetes mellitus type 2 (DMT2) (0.28 vs. 0.2 ng/µg protein; p = 0.01) and in the surgical margin was higher both in patients with coexisting DMT2 (0.22 vs. 0.16 ng/µg protein; p < 0.05) and CVD (0.21 vs. 0.13 ng/µg protein; p < 0.01). The concentration of ADAM10 was higher in the surgical margin than in the tumor (249.34 vs. 228.82 pg/µg protein), and the concentration of ADAM17 was higher in the tumor than in the margin (0.23 vs. 0.18 ng/µg protein), but results were not statistically significant. In conclusion, the results of our study indicate that ADAM10 and ADAM17 may be potential biomarkers in cancer linked with DMT2 and CVD as diseases associated with inflammation.
Collapse
|
13
|
Fukazawa T, Tanimoto K, Yamaoka E, Kojima M, Kanawa M, Hirohashi N, Hiyama E. Oncogenic Role of ADAM32 in Hepatoblastoma: A Potential Molecular Target for Therapy. Cancers (Basel) 2022; 14:cancers14194732. [PMID: 36230656 PMCID: PMC9562177 DOI: 10.3390/cancers14194732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes of pediatric hepatoblastoma (HBL) have improved, but refractory cases still occur. More effective and safer drugs are needed that are based on molecular mechanisms. A disintegrin and metalloproteases (ADAMs) are expressed with high frequency in various human carcinomas and play an important role in cancer progression. In this study, we analyzed expression of ADAMs in HBL with a cDNA microarray dataset and found that the expression level of ADAM32 is particularly high. To investigate the role of ADAM32 in cancer, forced expression or knockdown experiments were conducted with HepG2 and HBL primary cells. Colony formation, cell migration and invasion, and cell viability were increased in HepG2 expressing ADAM32, whereas knockdown of ADAM32 induced a decrease in these cellular functions. Quantitative RT-PCR demonstrated an association between ADAM32 expression and the expression of genes related to cancer stem cells and epithelial–mesenchymal transition (EMT), suggesting a role of ADAM32 in cancer stemness and EMT. Furthermore, knockdown of ADAM32 increased cisplatin-induced apoptosis, and this effect was attenuated by a caspase-8 inhibitor, suggesting that ADAM32 plays a role in extrinsic apoptosis signaling. We conclude that ADAM32 plays a crucial role in progression of HBL, so it might be a promising molecular target in anticancer therapy.
Collapse
Affiliation(s)
- Takahiro Fukazawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Correspondence: (K.T.); (E.H.); Tel.: +81-(0)82-257-5841 (K.T.); +81-(0)82-257-5555 (E.H.)
| | - Emi Yamaoka
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masato Kojima
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Eiso Hiyama
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
- Correspondence: (K.T.); (E.H.); Tel.: +81-(0)82-257-5841 (K.T.); +81-(0)82-257-5555 (E.H.)
| |
Collapse
|
14
|
MALAT1 in colorectal cancer: Its implication as a diagnostic, prognostic, and predictive biomarker. Gene 2022; 843:146791. [PMID: 35961438 DOI: 10.1016/j.gene.2022.146791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), originally described as a prognostic biomarker remarkably linked with metastasis potential in lung cancer, has been identified as contributing to many diseases, including colorectal cancer (CRC). This long non-coding RNA (lncRNA) has come to the forefront of lncRNA research for its implications in cancer-related processes, such as cell proliferation and migration. In general, lncRNAs are recognized as enhancers, scaffolds, or decoys for a variety of oncogenes and tumor suppressors, although our understanding of lncRNA functions and mechanisms of action is still limited. Nowadays, cancer research is attracted to lncRNAs' ability to improve the early diagnosis of cancer, determine patients' prognosis, or predict therapy outcomes. In this review, we aimed to evaluate recent publications trying to uncover the cellular mechanisms of MALAT1-mediated regulation, and its potential exploitation in the management of CRC. The conclusions of this review provide robust support for the essential role of MALAT1 in CRC development and future personalized therapy.
Collapse
|
15
|
Zhang YY, Li SQ, Song Y, Wang P, Song XG, Zhu WF, Wang DM. Silencing the ADAM9 Gene through CRISPR/Cas9 Protects Mice from Alcohol-Induced Acute Liver Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5110161. [PMID: 35707386 PMCID: PMC9192226 DOI: 10.1155/2022/5110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Alcoholic liver injury is a major global public health concern at present. The ADAM9 gene plays a crucial role in the occurrence and development of various liver diseases, but its role in acute alcoholic liver injury remains ambiguous. In this study, a chimeric single-guide RNA targeting the genomic regions of mouse ADAM9 was designed using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. Next, the role of ADAM9 in acute alcoholic liver injury in vitro in cultured mouse cells and in vivo in a hydrodynamic injection-based alcoholic liver injury mouse model was documented. The findings of this study suggest that ADAM9 induces by regulating cell proliferation, apoptosis, and stress metabolism in mice. Thus, inhibiting the expression of ADAM9 gene using CRISPR/Cas9 can attenuate alcohol-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Yong-Yong Zhang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Orthopedic Institute of Henan Province, Luoyang, 471003 Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - San-Qiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Ying Song
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Ping Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Xiao-Gai Song
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Wen-Feng Zhu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Dong-Mei Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| |
Collapse
|
16
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
17
|
Pan J, Huang Z, Zhang Y, Xu Y. ADAM12 as a Clinical Prognostic Indicator Associated with Tumor Immune Infiltration in Lung Adenocarcinoma. DNA Cell Biol 2022; 41:410-423. [PMID: 35377217 DOI: 10.1089/dna.2021.0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Twenty-two functional α-disintegrin and metalloproteinases (ADAMs) have been identified in humans, 12 of which have proteolytic activity. The role of ADAMs in cancer has attracted increasing attention. However, the expression and significance of ADAMs in lung adenocarcinoma (LUAD) remain unclear. Most recently, we investigated the transcriptional data of ADAMs and related overall survival in patients with LUAD based on several databases, including TCGA, cBioPortal, Kaplan-Meier Plotter, LinkedOmics, KEGG, TIMER, and TISIDB. Knockdown of ADAM12 was performed in vitro to verify its biological function. According to our findings, 10 ADAMs exhibited significant differential expression in LUAD compared with cancer-adjacent normal tissues. ADAM12 expression was significantly higher in LUAD tissues than in paracancerous tissues, and lower ADAM12 expression was associated with better survival. Genetic alterations of ADAM12 mainly included missense mutations, amplifications, and deep deletions. ADAM12 and positively correlated genes were mainly enriched in protein digestion and absorption, extracellular matrix-receptor interaction, and adhesion plaques. ADAM12 had a moderate correlation with immune cell markers EBIP1, CCNB1, EXO1, KNTC1, PRC1, and FAM198B. Prognostic model was established based on ADAM12 and immune-related genes. In vitro experiments revealed that knocking down ADAM12 inhibited cell proliferation, migration, and invasion. ADAM12 potentially plays an important role in the occurrence of LUAD and may be utilized as an immunotherapy target and a valuable prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Junfan Pan
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
18
|
Zhu H, Jiang W, Zhu H, Hu J, Tang B, Zhou Z, He X. Elevation of ADAM12 facilitates tumor progression by enhancing metastasis and immune infiltration in gastric cancer. Int J Oncol 2022; 60:51. [PMID: 35315496 PMCID: PMC8973920 DOI: 10.3892/ijo.2022.5341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
A disintegrin and metalloprotease 12 (ADAM12), an essential transmembrane protein with metalloprotease, cell binding and intracellular signal-regulating capabilities, has been reported to play a crucial role in various types of cancers. However, the biological function of ADAM12 in gastric cancer (GC) remains unclear. Bioinformatic and experimental analyses were used to determine the expression level and prognostic value of ADAM12 in GC. The level of DNA methylation and the competing endogenous RNA (ceRNA) network was identified using MethSurv, Starbase3.0, miRNet2.0 and experimental analyses. Then, the co-expression profiles of ADAM12 were determined and subjected to enrichment analysis using the LinkedOmics database. The protein-protein interaction network and the docking model of ADAM12 were constructed using the GeneMANIA, STRING, and HDOCK webservers. The role of ADAM12 in tumor metastasis and immune infiltration was investigated using in vitro assays and TIMER database exploration. It was found that ADAM12 was overexpressed and was correlated with a poor prognosis of GC patients. In addition, the aberrant DNA methylation status and ceRNA regulation may contribute to the upregulation of ADAM12 in GC. Moreover, the enrichment analysis revealed that ADAM12 is involved in multiple vital biological functions and pathways, such as 'macrophage activation', 'extracellular matrix binding' and 'ECM-receptor interaction'. Subsequently, the protein-protein interaction network and molecular docking model demonstrated that follistatin like 3 (FSTL3) is a potential binding partner of ADAM12. Finally, it was demonstrated that ADAM12 promotes tumor metastasis, immune infiltration and M2 macrophage polarization in GC. In summary, these results highlight the potential of ADAM12 to be used as a therapeutic target for GC.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Haixing Zhu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jinwei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bingge Tang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Zhiqiang Zhou
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xinyang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
19
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Maille E, Levallet J, Dubois F, Antoine M, Danel C, Creveuil C, Mazieres J, Margery J, Greillier L, Gounant V, Moro‐Sibilot D, Molinier O, Léna H, Monnet I, Bergot E, Langlais A, Morin F, Scherpereel A, Zalcman G, Levallet G. A Defect of Amphiregulin Release Predicted Longer Survival Independently of YAP Expression in Patients with Pleural Mesothelioma in the IFCT-0701 MAPS Phase 3 Trial. Int J Cancer 2022; 150:1889-1904. [PMID: 35262190 PMCID: PMC9545369 DOI: 10.1002/ijc.33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
The Hippo pathway effector YAP is dysregulated in malignant pleural mesothelioma (MPM). YAP's target genes include the secreted growth factor amphiregulin (AREG), which is overexpressed in a wide range of epithelial cancers and plays an elusive role in MPM. We assayed the expression of YAP and AREG in MPM pathology samples and that of AREG additionally in plasma samples of patients from the randomized phase 3 IFCT‐0701 Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) using immunohistochemistry and ELISA assays, respectively. MPM patients frequently presented high levels of tumor AREG (64.3%), a high cytosolic AREG expression being predictive of a better prognosis with longer median overall and progression‐free survival. Surprisingly, tumor AREG cytosolic expression was not correlated with secreted plasma AREG. By investigating the AREG metabolism and function in MPM cell lines H2452, H2052, MSTO‐211H and H28, in comparison with the T47D ER+ breast cancer cell line used as a positive control, we confirm that AREG is important for cell invasion, growth without anchorage, proliferation and apoptosis in mesothelioma cells. Yet, most of these MPM cell lines failed to correctly execute AREG posttranslational processing by metalloprotease ADAM17/tumor necrosis factor‐alpha‐converting enzyme (TACE) and extracell secretion. The favorable prognostic value of high cytosolic AREG expression in MPM patients could therefore be sustained by default AREG posttranslational processing and release. Thus, the determination of mesothelioma cell AREG content could be further investigated as a prognostic marker for MPM patients and used as a stratification factor in future clinical trials.
Collapse
Affiliation(s)
- Elodie Maille
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Fatéméh Dubois
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| | | | - Claire Danel
- Department of PathologyHôpital Bichat‐Claude Bernard, AP‐HP, Université Paris‐DiderotParisFrance
| | - Christian Creveuil
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Biomedical Research UnitCHU de CaenCaenFrance
| | - Julien Mazieres
- Department of PulmonologyHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Jacques Margery
- Department of Medical OncologyInstitut Gustave RoussyVillejuifFrance
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic InnovationsAssistance Publique Hôpitaux de Marseille, Université Aix‐Marseille UM015MarseilleFrance
| | - Valérie Gounant
- Department of PulmonologyHôpital Tenon, AP‐HPParisFrance
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
| | - Denis Moro‐Sibilot
- Pôle Thorax et Vaisseaux, University Hospital of Grenoble‐AlpesLa TroncheFrance
| | - Olivier Molinier
- Department of PulmonologyCentre Hospitalier Le MansLe MansFrance
| | - Hervé Léna
- Department of PulmonologyUniversity Hospital PontchaillouRennesFrance
| | - Isabelle Monnet
- Department of PulmonologyCentre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of Pulmonology and Thoracic OncologyUniversity Hospital of CaenCaenFrance
| | | | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT)ParisFrance
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic OncologyCentre Hospitalier Universitaire Lille, University of Lille, U1019 INSERM, Center of Infection and Immunity of LilleLilleFrance
| | - Gérard Zalcman
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
- U830 INSERM, “Cancer, Hétérogénéité, Instabilité et Plasticité” Centre de Recherche, Institut CurieParisFrance
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| |
Collapse
|
21
|
Cloud AS, Vargheese AM, Gunewardena S, Shimak RM, Ganeshkumar S, Kumaraswamy E, Jensen RA, Chennathukuzhi VM. Loss of REST in breast cancer promotes tumor progression through estrogen sensitization, MMP24 and CEMIP overexpression. BMC Cancer 2022; 22:180. [PMID: 35177031 PMCID: PMC8851790 DOI: 10.1186/s12885-022-09280-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, and is both pathologically and genetically heterogeneous, making early detection and treatment difficult. A subset of breast cancers express normal levels of REST (repressor element 1 silencing transcription factor) mRNA but lack functional REST protein. Loss of REST function is seen in ~ 20% of breast cancers and is associated with a more aggressive phenotype and poor prognosis. Despite the frequent loss of REST, little is known about the role of REST in the molecular pathogenesis of breast cancer. METHODS TCGA data was analyzed for the expression of REST target genes in breast cancer patient samples. We then utilized gene knockdown in MCF-7 cells in the presence or absence of steroid hormones estrogen and/ progesterone followed by RNA sequencing, as well as chromatin immunoprecipitation and PCR in an attempt to understand the tumor suppressor role of REST in breast cancer. RESULTS We show that REST directly regulates CEMIP (cell migration-inducing and hyaluronan-binding protein, KIAA1199) and MMP24 (matrix metallopeptidase 24), genes known to have roles in invasion and metastasis. REST knockdown in breast cancer cells leads to significant upregulation of CEMIP and MMP24. In addition, we found REST binds to RE-1 sites (repressor element-1) within the genes and influences their transcription. Furthermore, we found that the estrogen receptor (ESR1) signaling pathway is activated in the absence of REST, regardless of hormone treatment. CONCLUSIONS We demonstrate a critical role for the loss of REST in aggressive breast cancer pathogenesis and provide evidence for REST as an important diagnostic marker for personalized treatment plans.
Collapse
Affiliation(s)
- Ashley S. Cloud
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA
| | - Aditya M. Vargheese
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.266515.30000 0001 2106 0692University of Kansas, Lawrence, KS USA
| | - Sumedha Gunewardena
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS USA
| | - Raeann M. Shimak
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Sornakala Ganeshkumar
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA
| | - Easwari Kumaraswamy
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Roy A. Jensen
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.266515.30000 0001 2106 0692University of Kansas, Lawrence, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Vargheese M. Chennathukuzhi
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA
| |
Collapse
|
22
|
Mohamed AA, Abo-Elmatty DM, ezzat OI, Youssef AA, Mehanna ET, Hassnine AA, Mesbah NM, Saed S, Sayed EA, Hamada M, Khamis AF, Elshentenawy A, Abd El-Raouf MS, Abd-Elsalam S, Elsayed AM. Expression of a Disintegrin and Metalloprotease 10 Gene Polymorphisms in a Cohort of Egyptian Patients with Hepatocellular Carcinoma. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210427122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality.
There is a need for a marker associated with HCC progression. A disintegrin and metalloprotease
(ADAMs) family proteins have a lot of functions in cell adhesion, migration, proteolysis and
signaling.
Aims:
The aim of the study was to investigate the relation between ADAM 10 gene single nucleotide
polymorphisms (SNPs) and HCC progression.
Methods:
This study involved 201 cases divided: Group I (67 HCC patients), Group II (67 cirrhotic
patients), Group III (67 control). Each group was subjected to laboratory investigations: (CBC,
blood sugar, kidney and liver function, viral markers, alpha fetoprotein), imaging: (abdominal ultrasonography,
and triphasic C.T) and ADAM 10 gene polymorphism (rs 653765, rs 383902) detection
by real – time PCR.
Results:
There was a statistically significant difference in the frequency and genotyping of
ADAM10 SNPs in HCC patients in comparison to cirrhotic and control groups [the frequency of rs
653765 genotypes (p=0.015) and model (p=0.013)]; likewise, the frequency of rs 383902 genotypes
(p<0.001) and model (p=0.001)). Also, there was a statistically significant association between
different SNP rs 383902 genotype with CLIP stages (p=0.02) and with VISUM stages
(p=0.035).
Conclusion:
ADAM-10 is overexpressed in HCC patients and involved in HCC progress. These
findings highlight that ADAM inhibitor may be used as therapeutic goals in the treatment of HCC.
Collapse
Affiliation(s)
- Amal A. Mohamed
- Department of Biochemistry, National Hepatology and Tropical Medicine Research Institute, Cairo, 176,Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia,Egypt
| | - Omnia I ezzat
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Bade City,Egypt
| | - Ahmed A. Youssef
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Bade City,Egypt
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia,Egypt
| | - Alshymaa A. Hassnine
- Department of Gasteroentrology and Tropical Medicine, Faculty of Medicine, Minia University, Minia,Egypt
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia,Egypt
| | - Salma Saed
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo,Egypt
| | - Eman Al Sayed
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia,Egypt
| | - Mahmoud Hamada
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha,Egypt
| | - Afaf F. Khamis
- Clinical Pathology Department, Faculty of Medicine, Benha University, Benha,Egypt
| | - Ayman Elshentenawy
- Kasr Al-Ainy Center of Clinical Oncology and Nuclear Medicine (NEMROCK), Kasr Al-Ainy School of Medicine, Cairo University, Cairo,Egypt
| | - Marwa S.E. Abd El-Raouf
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Benha University, Benha,Egypt
| | | | - Amr M. Elsayed
- Department of Gasteroentrology and Tropical Medicine, Faculty of Medicine, Minia University, Minia,Egypt
| |
Collapse
|
23
|
Adamalizyny jako potencjalne biomarkery w wybranych nowotworach złośliwych przewodu pokarmowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstrakt
Nowotwory złośliwe przewodu pokarmowego zajmują czołowe miejsce zarówno wśród przyczyn zachorowań jak i zgonów z powodu chorób nowotworowych na świecie. Wciąż poszukuje się potencjalnych biomarkerów, które mogłyby posłużyć jako czynniki predykcyjne i prognostyczne w tych nowotworach. Wśród białek, które mogłyby pełnić taką rolę, wymienia się adamalizyny. Liczne białka z tej rodziny są zaangażowane w wielu etapach nowotworzenia, od procesu różnicowania się pojedynczych komórek, wzrost i progresję guza do tworzenia przerzutów odległych. Dzieje się to m.in. poprzez ścieżki sygnałowe związane z aktywacją insulinopodobnych czynników wzrostu, naskórkowych czynników wzrostu czy oddziaływanie na czynnik martwicy nowotworu TNF-α. Szczególnie istotna w wyjaśnieniu patomechanizmu rozwoju raków gruczołowych przewodu pokarmowego wydaje się ścieżka sygnałowa związana z aktywacją cytokin prozapalnych. Przewlekły stan zapalny jest bowiem dobrze udokumentowanym czynnikiem ryzyka rozwoju tej grupy chorób nowotworowych.
Poznanie roli białek z rodziny adamalizyn w rozwoju i patogenezie nowotworów złośliwych przewodu pokarmowego wymaga wciąż dalszych badań. W artykule podjęto próbę syntezy aktualnej wiedzy na temat wykorzystania wybranych białek z rodziny adamalizyn jako biomarkerów nowotworów złośliwych przewodu pokarmowego.
Collapse
|
24
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
25
|
Huang Z, Lai H, Liao J, Cai J, Li B, Meng L, Wang W, Mo X, Qin H. Upregulation of ADAM12 Is Associated With a Poor Survival and Immune Cell Infiltration in Colon Adenocarcinoma. Front Oncol 2021; 11:729230. [PMID: 34604068 PMCID: PMC8483634 DOI: 10.3389/fonc.2021.729230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background A disintegrin and metalloprotease 12 (ADAM12) is a member of the multidomain protein family, but the mechanisms by which it affects prognosis and immune cell infiltration in patients with colon adenocarcinoma (COAD) remain unclear. Here, our study aimed to analyze the prognostic value of ADAM12 and investigate the correlation between ADAM12 expression and immune cell infiltration in patients with COAD. Methods Differential expression analyses were performed using the Oncomine and UALCAN databases, and prognostic analyses were conducted using PrognoScan, Gene Expression Profiling Interactive Analysis (GEPIA), and Kaplan–Meier Plotter. Then, the cBioPortal database was used to analyze alterations in the ADAM12 gene, and the STRING and Metascape websites were used to conduct Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Additionally, relationships between ADAM12 and the immune microenvironment were evaluated based on the TIMER, GEPIA, and TISIDB databases. Results ADAM12 was overexpressed in COAD tissues, and higher ADAM12 expression correlated with a worse prognosis for patients with COAD. The gene regulatory network suggested that ADAM12 was mainly enriched in extracellular matrix (ECM) organization, ECM proteoglycans, skeletal system development, and ossification, among other pathways. Moreover, ADAM12 expression significantly correlated with the abundance of CD4+ T cells, B cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, and their markers, as well as lymphocytes, immunomodulators, and chemokines. Conclusions In colorectal tumors, ADAM12 may play vital roles in regulating the ECM and the recruitment of immune cells, and we suggest that ADAM12 will become a reliable biomarker for determining response to immunotherapy and the prognosis of patients with COAD.
Collapse
Affiliation(s)
- Zigao Huang
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hao Lai
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiankun Liao
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinghua Cai
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Baojia Li
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghou Meng
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wentao Wang
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haiquan Qin
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China.,Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
26
|
An Integrative Systems Biology Approach Identifies Molecular Signatures Associated with Gallbladder Cancer Pathogenesis. J Clin Med 2021; 10:jcm10163520. [PMID: 34441816 PMCID: PMC8397040 DOI: 10.3390/jcm10163520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Gallbladder cancer (GBC) has a lower incidence rate among the population relative to other cancer types but is a major contributor to the total number of biliary tract system cancer cases. GBC is distinguished from other malignancies by its high mortality, marked geographical variation and poor prognosis. To date no systemic targeted therapy is available for GBC. The main objective of this study is to determine the molecular signatures correlated with GBC development using integrative systems level approaches. We performed analysis of publicly available transcriptomic data to identify differentially regulated genes and pathways. Differential co-expression network analysis and transcriptional regulatory network analysis was performed to identify hub genes and hub transcription factors (TFs) associated with GBC pathogenesis and progression. Subsequently, we assessed the epithelial-mesenchymal transition (EMT) status of the hub genes using a combination of three scoring methods. The identified hub genes including, CDC6, MAPK15, CCNB2, BIRC7, L3MBTL1 were found to be regulators of cell cycle components which suggested their potential role in GBC pathogenesis and progression.
Collapse
|
27
|
Habič A, Novak M, Majc B, Lah Turnšek T, Breznik B. Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. J Histochem Cytochem 2021; 69:775-794. [PMID: 34310223 DOI: 10.1369/00221554211035192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor microenvironment niches. In this review, we briefly summarize the significance of proteases in regulating CSC activities with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted roles of proteases should be thoroughly investigated.
Collapse
Affiliation(s)
- Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
28
|
Pluda S, Mazzocato Y, Angelini A. Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases. Front Mol Biosci 2021; 8:703715. [PMID: 34368231 PMCID: PMC8335159 DOI: 10.3389/fmolb.2021.703715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
ADAM and ADAMTS are two large metalloproteinase families involved in numerous physiological processes, such as shedding of cell-surface protein ectodomains and extra-cellular matrix remodelling. Aberrant expression or dysregulation of ADAMs and ADAMTSs activity has been linked to several pathologies including cancer, inflammatory, neurodegenerative and cardiovascular diseases. Inhibition of ADAM and ADAMTS metalloproteinases have been attempted using various small molecules and protein-based therapeutics, each with their advantages and disadvantages. While most of these molecular formats have already been described in detail elsewhere, this mini review focuses solely on peptide-based inhibitors, an emerging class of therapeutic molecules recently applied against some ADAM and ADAMTS members. We describe both linear and cyclic peptide-based inhibitors which have been developed using different approaches ranging from traditional medicinal chemistry and rational design strategies to novel combinatorial peptide-display technologies.
Collapse
Affiliation(s)
- Stefano Pluda
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- Fidia Farmaceutici S.p.A., Abano Terme, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| |
Collapse
|
29
|
Mir H, Kapur N, Gales DN, Sharma PK, Oprea-Ilies G, Johnson AT, Singh R, Singh S. CXCR6-CXCL16 Axis Promotes Breast Cancer by Inducing Oncogenic Signaling. Cancers (Basel) 2021; 13:cancers13143568. [PMID: 34298782 PMCID: PMC8306453 DOI: 10.3390/cancers13143568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Breast cancer (BrCa) is the second leading cause of cancer-related deaths in American women, and its incidence is on the rise. Insufficient understanding of the mechanisms leading to BrCa limits the effectiveness of the treatment. In this article, we show the importance of a chemokine axis-CXCR6/CXCL16 in supporting BrCa progression. We have delineated BrCa-promoting mechanisms induced by this chemokine axis at the molecular level. This work projects the therapeutic significance of CXCR6/CXCL16 signaling for the treatment of BrCa. Abstract Precise mechanisms underlying breast cancer (BrCa) metastasis are undefined, which becomes a challenge for effective treatments. Chemokine signaling instigates the trafficking of cancer cells in addition to leukocytes. This study aimed to ascertain the clinical and biological significance of the CXCR6/CXCL16 signaling axis in the pathobiology of BrCa. Our data show a higher expression of CXCR6 in BrCa cell lines and tissues. Stage-III BrCa tissues express significantly higher CXCR6 compared to stage-II tissues. The ligand, CXCL16, could remain tethered to the cell surface, and, after proteolytic shedding of the ectodomain, the N-terminal fragment is released, converting it to its oncogenic, soluble form. Like CXCR6, N-terminal CXCL16 and ADAM-10 were significantly higher in stage-III than stage-II, but no significant difference was observed in the C-terminal fragment of CXCL16. Further, stimulation of the CXCR6/CXCL16 axis activated Src, FAK, ERK1/2, and PI3K signaling pathways, as per antibody microarray analysis, which also underlie CXCL16-induced F-actin polymerization. The CXCR6/CXCL16 axis induces cytoskeleton rearrangement facilitating migration and invasion and supports BrCa cell survival by activating the PI3K/Akt pathway. This study highlights the significance of the CXCR6/CXCL16 axis and ADAM10 as potential therapeutic targets for advanced-stage BrCa.
Collapse
Affiliation(s)
- Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Dominique N. Gales
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen K. Sharma
- Centre for Life Sciences, Central University of Jharkhand, Jharkhand 835205, India;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Anita T. Johnson
- Comprehensive Cancer Care Network, Cancer Treatment Center of America, Atlanta, GA 30265, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-756-5718
| |
Collapse
|
30
|
Wege AK, Dreyer TF, Teoman A, Ortmann O, Brockhoff G, Bronger H. CX3CL1 Overexpression Prevents the Formation of Lung Metastases in Trastuzumab-Treated MDA-MB-453-Based Humanized Tumor Mice (HTM). Cancers (Basel) 2021; 13:cancers13102459. [PMID: 34070094 PMCID: PMC8158361 DOI: 10.3390/cancers13102459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary In about 15–18% of breast cancers the HER2 gene is amplified, which allows an anti-HER2 treatment. However, about 50% of HER2-positive patients experience de novo or acquired resistance to the antibody-based therapy with trastuzumab. Therefore, the identification of predictive markers for therapy success and novel combination strategies is needed. Here we explored the impact of CX3CL1 on trastuzumab treatment efficiency and immunological mechanism involved in a humanized tumor mouse model. Trastuzumab treatment showed pronounced efficiency in CX3CL1 overexpressing cancer cells compared to low expressing cells preventing lung metastasis, while the administration of CX3CL1 shedding inhibition did not cause an enhanced treatment effect. Moreover, the application of shedding inhibitors to CX3CL1 overexpression tumors resulted in a slightly enhanced tumor growth. Therefore, the presence of CX3CL1 might predict a pronounced response to trastuzumab therapy in patients and should be investigated in a large cohort of HER2+ patients. Abstract CX3CL1 is a multifunctional chemokine that is involved in numerous biological processes, such as immune cell attraction and enhanced tumor immune cell interaction, but also in enhancing tumor cell proliferation and metastasis. The multifarious activity is partially determined by two CX3CL1 isoforms, a membrane-bound and a soluble version generated by proteolytic cleavage through proteases. Here, we investigated the impact of CX3CL1 overexpression in MDA-MB-453 and SK-BR-3 breast cancer cells. Moreover, we evaluated the therapeutic capacity of Matrix-Metalloproteinases-inhibitors TMI-1 and GI254023X in combination with the anti-HER2 antibody trastuzumab in vitro and in vivo. TMI-1 and GI254023X caused a reduced shedding of CX3CL1 and of HER2 in vitro but without effects on tumor cell proliferation or viability. In addition, trastuzumab treatment did not retard MDA-MB-453 cell expansion in vitro unless CX3CL1 was overexpressed upon transfection (MDA-MB-453CX3CL1). In humanized tumor mice, which show a coexistence of human tumor and human immune system, CX3CL1 overexpression resulted in a slightly enhanced tumor growth. However, trastuzumab treatment attenuated tumor growth of both MDA-MB-453CX3CL1 and empty vector transfected MDA-MB-453 transplanted mice but showed enhanced efficiency especially in preventing lung metastases in CX3CL1 overexpressing cancer cells. However, TMI-1 did not further enhance the trastuzumab treatment efficacy.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
- Correspondence: ; Tel.: +(49)-(0)941-944-8913
| | - Tobias F. Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| | - Attila Teoman
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| |
Collapse
|
31
|
Tosetti F, Alessio M, Poggi A, Zocchi MR. ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease. Int J Mol Sci 2021; 22:ijms22094969. [PMID: 34067041 PMCID: PMC8124674 DOI: 10.3390/ijms22094969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.
Collapse
Affiliation(s)
- Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
- Correspondence:
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
32
|
microRNA-1298 inhibits the malignant behaviors of breast cancer cells via targeting ADAM9. Biosci Rep 2021; 40:226894. [PMID: 33146718 PMCID: PMC7729294 DOI: 10.1042/bsr20201215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the progression of human malignancy by targeting oncogenes or tumor suppressors, which are 12 promising targets for cancer treatment. Increasing evidence has suggested the aberrant expression and tumor-suppressive function of miR-1298 in cancers, however, the regulatory mechanism of miR-1298 in breast cancer (BC) remains unclear. Here, our findings showed that miR-1298 was down-regulated in BC tissues and cell lines. Lower level of miR-1298 was significantly correlated with the advanced progression of BC patients. Experimental study showed that overexpression of miR-1298 inhibited the proliferation, induced apoptosis and cell cycle arrest in BC cells. The in vivo xenograft mice model showed that highly expressed miR-1298 significantly reduced the tumor growth and metastasis. Further mechanism analysis revealed that miR-1298 bound the 3′-untranslated region (UTR) of a disintegrin and metalloproteinase 9 domain (ADAM9) and suppressed the expression of ADAM9 in BC cells. ADAM9 was overexpressed in BC tissues and inversely correlated with miR-1298. Down-regulation of ADAM9 induced apoptosis and cell cycle arrest of BC cells. Moreover, ectopic expression of ADAM9 by transiently transfecting with vector encoding the full coding sequence of ADAM9 attenuated the inhibitory effects of miR-1298 on the proliferation and cell cycle progression of BC cells. Collectively, our results illustrated that miR-1298 played a suppressive role in regulating the phenotype of BC cells through directly repressing ADAM9, suggesting the potential application of miR-1298 in the therapy of BC.
Collapse
|
33
|
Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 2021; 23:415-428. [PMID: 33839455 PMCID: PMC8042651 DOI: 10.1016/j.neo.2021.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.
Collapse
|
34
|
Théret N, Bouezzeddine F, Azar F, Diab-Assaf M, Legagneux V. ADAM and ADAMTS Proteins, New Players in the Regulation of Hepatocellular Carcinoma Microenvironment. Cancers (Basel) 2021; 13:cancers13071563. [PMID: 33805340 PMCID: PMC8037375 DOI: 10.3390/cancers13071563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Members of the adamalysin family are multi-domain proteins involved in many cancer-related functions. In this review, we will examine the literature on the involvement of adamalysins in hepatocellular carcinoma progression and their importance in the tumor microenvironment where they regulate the inflammatory response and the epithelial–mesenchymal transition. We complete this review with an analysis of adamalysin expression in a large cohort of patients with hepatocellular carcinoma from The Cancer Genome Atlas (TCGA) database. These original results give a new insight into the involvement of all adamalysins in the primary liver cancer. Abstract The tumor microenvironment plays a major role in tumor growth, invasion and resistance to chemotherapy, however understanding how all actors from microenvironment interact together remains a complex issue. The tumor microenvironment is classically represented as three closely connected components including the stromal cells such as immune cells, fibroblasts, adipocytes and endothelial cells, the extracellular matrix (ECM) and the cytokine/growth factors. Within this space, proteins of the adamalysin family (ADAM for a disintegrin and metalloproteinase; ADAMTS for ADAM with thrombospondin motifs; ADAMTSL for ADAMTS-like) play critical roles by modulating cell–cell and cell–ECM communication. During last decade, the implication of adamalysins in the development of hepatocellular carcinoma (HCC) has been supported by numerous studies however the functional characterization of most of them remain unsettled. In the present review we propose both an overview of the literature and a meta-analysis of adamalysins expression in HCC using data generated by The Cancer Genome Atlas (TCGA) Research Network.
Collapse
Affiliation(s)
- Nathalie Théret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
- Correspondence:
| | - Fidaa Bouezzeddine
- Molecular Cancer and Pharmaceutical Biology Laboratory, Faculty of Sciences II, Lebanese University Fanar, 1500 Beirut, Lebanon; (F.B.); (M.D.-A.)
| | - Fida Azar
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
| | - Mona Diab-Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Faculty of Sciences II, Lebanese University Fanar, 1500 Beirut, Lebanon; (F.B.); (M.D.-A.)
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
| |
Collapse
|
35
|
N-cadherin in osteolineage cells modulates stromal support of tumor growth. J Bone Oncol 2021; 28:100356. [PMID: 33912383 PMCID: PMC8065282 DOI: 10.1016/j.jbo.2021.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
N-cadherin in osteolineage, Osterix+ cells restrains extraskeletal tumor growth. Osterix+ cells are present in the stromal microenvironment of extraskeletal tumors. Osterix+ cells are present in normal tissues frequent sites of metastasis. N-cadherin modulates pro-tumorigenic signaling in tumor associated Osterix+ cells.
Tumor growth and metastases are dependent on interactions between cancer cells and the local environment. Expression of the cell–cell adhesion molecule N-cadherin (Ncad) is associated with highly aggressive cancers, and its expression by osteogenic cells has been proposed to provide a molecular “dock” for disseminated tumor cells to establish in pre-metastatic niches within the bone. To test this biologic model, we conditionally deleted the Ncad gene (Cdh2) in osteolineage cells using Osx-cre (cKO). Contrary to expectations, the metastatic breast cancer cell line PyMT-BO1 was able to form tumors in bone and to induce osteolysis in cKO as well as in control mice. Despite absence of Ncad, bone marrow stromal cells isolated from cKO mice were able to engage in direct cell–cell interactions with tumor cells expressing either N- or E-cadherin. However, subcutaneous PyMT-BO1 and B16F10 tumors grew larger in cKO relative to control littermates. Cell tracking experiments using the Ai9 reporter revealed the presence of Osx+ and Ncad+ cells in the stroma of extra-skeletal tumors and in a small population of lung cells. Gene expression analysis by RNAseq of Osx+ cells isolated from extra-skeletal tumors revealed alterations of pro-tumorigenic signaling pathways in cKO cells relative to control Osx+ cells. Thus, Ncad in Osx+ cells is not necessary for the establishment of bone metastases, but in extra-skeletal tumors it regulates pro-tumorigenic support by the microenvironment.
Collapse
|
36
|
Wullweber A, Strick R, Lange F, Sikic D, Taubert H, Wach S, Wullich B, Bertz S, Weyerer V, Stoehr R, Breyer J, Burger M, Hartmann A, Strissel PL, Eckstein M. Bladder Tumor Subtype Commitment Occurs in Carcinoma In Situ Driven by Key Signaling Pathways Including ECM Remodeling. Cancer Res 2021; 81:1552-1566. [PMID: 33472889 DOI: 10.1158/0008-5472.can-20-2336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Basal and luminal subtypes of invasive bladder tumors have significant prognostic and predictive impacts for patients. However, it remains unclear whether tumor subtype commitment occurs in noninvasive urothelial lesions or in carcinoma in situ (CIS) and which gene pathways are important for bladder tumor progression. To understand the timing of this commitment, we used gene expression and protein analysis to create a global overview of 36 separate tissues excised from a whole bladder encompassing urothelium, noninvasive urothelial lesions, CIS, and invasive carcinomas. Additionally investigated were matched CIS, noninvasive urothelial lesions, and muscle-invasive bladder cancers (MIBC) from 22 patients. The final stage of subtype commitment to either a luminal or basal MIBC occurred at the CIS transition. For all tissues combined, hierarchical clustering of subtype gene expression revealed three subtypes: "luminal," "basal," and a "luminal p53-/extracellular matrix (ECM)-like" phenotype of ECM-related genes enriched in tumor-associated urothelium, noninvasive urothelial lesions, and CIS, but rarely invasive, carcinomas. A separate cohort of normal urothelium from noncancer patients showed significantly lower expression of ECM-related genes compared with tumor-associated urothelium, noninvasive urothelial lesions, and CIS. A PanCancer Progression Panel of 681 genes unveiled pathways specific for the luminal p53-/ECM-like cluster, for example, ECM remodeling, angiogenesis, epithelial-to-mesenchymal transition, cellular discohesion, cell motility involved in tumor progression, and cell proliferation and oncogenic ERBB2/ERBB3 signaling for invasive carcinomas. In conclusion, this study provides insights into bladder cancer subtype commitment and associated signaling pathways, which could help predict therapy response and enhance our understanding of therapy resistance. SIGNIFICANCE: This study demonstrates that CIS is the stage of commitment for determining MIBC tumor subtype, which is relevant for patient prognosis and therapy response.
Collapse
Affiliation(s)
- Adrian Wullweber
- Department of Internal Medicine, Evangelisches Krankenhaus Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabienne Lange
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
37
|
Mohamad A, Hassan R, Husin A, Johan MF, Sulong S. Aberrant Methylation of Tumour Suppressor Gene ADAM12 in Chronic Lympocytic Leukemia Patients: Application of Methylation Specific-PCR Technique. Asian Pac J Cancer Prev 2021; 22:85-91. [PMID: 33507683 PMCID: PMC8184192 DOI: 10.31557/apjcp.2021.22.1.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Chronic Lymphocytic Leukemia (CLL) is a common leukemia among Caucasians but rare in Asians population. We postulated that aberrant methylation either hypermethylation or partial methylation might be one of the silencing mechanisms that inactivates the tumour suppressor genes in CLL. This study aimed to compare the methylation status of tumour suppressor gene, ADAM12, among CLL patients and normal individuals. We also evaluated the association between methylation of ADAM12 and clinical and demographic characteristics of the participants. Methods: A total of 25 CLL patients and 25 normal individuals were recruited in this study. The methylation status of ADAM12 was determined using Methylation-Specific PCR (MSP); whereas, DNA sequencing method was applied for validation of the MSP results. Results: Among CLL patients, 12 (48%) were partially methylated and 13 (52%) were unmethylated. Meanwhile, 5 (20%) and 20 (80.6%) of healthy individuals were partially methylated and unmethylated, respectively. There was a statistically significant association between the status of methylation at ADAM12 and the presence of CLL (p=0.037). Conclusion: The aberrant methylation of ADAM12 found in this study using MSP assay may provide new exposure to CLL that may improve the gaps involved in genetic epigenetic study in CLL.
Collapse
Affiliation(s)
- Amira Mohamad
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
38
|
Nattmann A, Breun M, Monoranu CM, Matthies C, Ernestus RI, Löhr M, Hagemann C. Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells. BMC Res Notes 2020; 13:528. [PMID: 33176868 PMCID: PMC7659081 DOI: 10.1186/s13104-020-05378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS.
Collapse
Affiliation(s)
- Anja Nattmann
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, 97080, Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
39
|
Xu S, Huang S, Li D, Zou Q, Yuan Y, Yang Z. Comparison of ADAM19 and CUEDC2 expression in EHCC and their clinicopathological significance. Biomark Med 2020; 14:1573-1584. [PMID: 32960074 DOI: 10.2217/bmm-2020-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To evaluate the expression and clinicopathological significance of a disintegrin and metalloproteinases 19 (ADAM19) CUE domain containing protein 2 (CUEDC2) in extrahepatic cholangiocarcinoma (EHCC). Materials & methods: Immunostaining of ADAM19 and CUEDC2 was performed by EnVision immunohistochemistry in benign and malignant biliary tract tissues. Result: The expression of ADAM19 and CUEDC2 were significantly higher in EHCC (p < 0.05). ADAM19 expression was positive correlated with CUEDC2 expression in EHCC (p < 0.05). The overall survival time of those with positive expression of ADAM19 and CUEDC2 was lower (p < 0.001). Both positive expression of ADAM19 and CUEDC2 were independent prognostic factors in EHCC. Conclusion: ADAM19 and CUEDC2 have a positive correlation to the pathogenesis and dismal prognosis in EHCC.
Collapse
Affiliation(s)
- Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shengfu Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| |
Collapse
|
40
|
Sun L, Chen B, Wu J, Jiang C, Fan Z, Feng Y, Xu Y. Epigenetic Regulation of a Disintegrin and Metalloproteinase (ADAM) Transcription in Colorectal Cancer Cells: Involvement of β-Catenin, BRG1, and KDM4. Front Cell Dev Biol 2020; 8:581692. [PMID: 33043016 PMCID: PMC7517301 DOI: 10.3389/fcell.2020.581692] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family of proteins play versatile roles in cancer development and progression. In the present study, we investigated the role of ADAM proteins in colorectal cancer (CRC) cell migration and invasion focusing on the epigenetic mechanism whereby ADAM transcription is regulated. We report that higher levels of ADAM10, ADAM17, and ADAM19 were detected in SW480 cells than in HCT116 cells. Expression levels of the same set of ADAMs were higher in human CRC biopsy specimens of advanced stages than in those of a less aggressive phenotype. Overexpression of ADAM10/17/19 in HCT116 cells enhanced, whereas depletion of ADAM10/17/19 in SW480 cells weakened, migration and invasion. ADAM expression was activated by the Wnt signaling pathway, which could be attributed to direct binding of β-catenin on the ADAM promoters. Mechanistically, β-catenin recruited the chromatin remodeling protein BRG1, which in turn enlisted histone demethylase KDM4 to alter the chromatin structure, thereby leading to ADAM transactivation. In conclusion, our data suggest that the Wnt signaling may promote CRC metastasis, at least in part, by recruiting an epigenetic complex to activate ADAM transcription.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathophysiology, School of Biological and Basic Medical Sciences, Soochow University, Soochow, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Baoyu Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chao Jiang
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Jiangsu, China
| | - Zhiwen Fan
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Zha Z, Jia F, Hu P, Mai E, Lei T. MicroRNA-574-3p inhibits the malignant behavior of liver cancer cells by targeting ADAM28. Oncol Lett 2020; 20:3015-3023. [PMID: 32782619 PMCID: PMC7400418 DOI: 10.3892/ol.2020.11852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is one of the most common and aggressive tumors, and usually leads to a poor clinical outcome. Increasing evidence has demonstrated the important functions of microRNAs (miRs) in tumor progression. miR-574-3p has been reported as a tumor suppressor and potential therapeutic target in various types of cancer. However, the underlying mechanism of the effects of miR-574-3p in liver cancer remains unknown. In the present study, reverse transcription-quantitative PCR was performed to detect miR-574-3p expression in liver cancer tissues, and the influence of miR-574-3p on cell growth was evaluated using the Cell Counting Kit-8 assay, and cell migration and flow cytometry analyses. The present study revealed that miR-574-3p expression was downregulated in liver cancer tissues and cell lines. miR-574-3p overexpression, achieved by transfecting miR-574-3p mimics into liver cancer cells, reduced cell proliferation and migration, and promoted cell apoptosis. Mechanistically, ADAM metallopeptidase domain 28 (ADAM28) was identified as a miR-574-3p target via binding to the 3'-untranslated region of the ADAM28 mRNA. Gain-of-function of miR-574-3p downregulated the expression levels of ADAM28 in liver cancer cells. Additionally, overexpression of ADAM28 significantly attenuated the suppressive effect of miR-574-3p on the growth of liver cancer cells. The present results provide novel insights into the function of the miR-574-3p/ADAM28 signaling pathway in liver cancer.
Collapse
Affiliation(s)
- Zhongming Zha
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Fuxin Jia
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Pingan Hu
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Erhui Mai
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Ting Lei
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
42
|
Rossello A, Steinle A, Poggi A, Zocchi MR. Editorial: ADAM10 in Cancer Immunology and Autoimmunity: More Than a Simple Biochemical Scissor. Front Immunol 2020; 11:1483. [PMID: 32765514 PMCID: PMC7378445 DOI: 10.3389/fimmu.2020.01483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/08/2020] [Indexed: 12/04/2022] Open
Affiliation(s)
- Armando Rossello
- ProInLab, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Ni P, Yu M, Zhang R, He M, Wang H, Chen S, Duan G. Prognostic Significance of ADAM17 for Gastric Cancer Survival: A Meta-Analysis. ACTA ACUST UNITED AC 2020; 56:medicina56070322. [PMID: 32610677 PMCID: PMC7404708 DOI: 10.3390/medicina56070322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Background and objectives: The prognostic role of a disintegrin and metalloproteinase (ADAM) 17 has been widely assessed in gastric cancer. However, the results are inconsistent. We performed a meta-analysis to evaluate the prognostic significance of ADAM17 and its association with clinicopathological parameters. Methods: The databases of PubMed, Web of Science, and Embase were searched for relevant articles published up to April 2020. The reported hazard ratios (HRs) and odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were pooled to evaluate the strength of the association. Stata 12.1 was used to perform statistical analyses. Results: Seven studies, including 1757 patients, were screened for the meta-analysis. Compared with the high ADAM17 expression group, the pooled HR was higher in the low ADAM17 expression group (HR = 2.04, 95% CI 1.66–2.50; I2 = 18.1%; p = 0.299). High ADAM17 expression was also related to the tumor node metastasis (TNM) stages (OR = 4.09, 95% CI 1.85–9.04; I2 = 84.1%; p = 0.000), lymph node metastasis (OR = 3.08, 95% CI 1.13–8.36; I2 = 79.7%; p = 0.007), and ages (OR = 1.65, 95% CI 1.24–2.21; I2 = 0%; p = 0.692) of the gastric patients. Conclusions: This meta-analysis revealed that ADAM17 is a significant biomarker for poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
- College of Public Health, Hainan Medical University, Haikou 571199, China
- Correspondence: ; Tel.: +86-135-2558-3039; Fax: +86-371-6699-7182
| | - Mengya He
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Haiyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| |
Collapse
|
44
|
Zhou R, Cho WCS, Ma V, Cheuk W, So YK, Wong SCC, Zhang M, Li C, Sun Y, Zhang H, Chan LWC, Tian M. ADAM9 Mediates Triple-Negative Breast Cancer Progression via AKT/NF-κB Pathway. Front Med (Lausanne) 2020; 7:214. [PMID: 32637415 PMCID: PMC7317048 DOI: 10.3389/fmed.2020.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of a disintegrin and metalloprotease 9 (ADAM9) is correlated with progression of cancers, such as prostate, bladder, and pancreatic cancers. However, its role in triple-negative breast cancer (TNBC) is still unclear. Our study aimed to investigate whether ADAM9 is upregulated and promoted the aggressiveness in TNBC. Breast cancer cell lines and patient specimens were used to evaluate the ADAM9 expression by western blotting and immunohistochemistry staining, respectively. Compared with the non-TNBC, ADAM9 expression was significantly increased in TNBC cells and TNBC patient specimens. Based on the data acquired from public databases, the correlation between ADAM9 expression and breast cancer patient survival was analyzed by Kaplan-Meier method. It was shown that ADAM9 overexpression was significantly correlated with poorer survival in patients with TNBC. Furthermore, ADAM9 in TNBC cells was knocked down by small interference RNA and then studied by the MTT/colony formation assay, wound healing assay and transwell invasion assay on the cell proliferation, migration, and invasion, respectively. We found that inhibiting ADAM9 expression suppressed TNBC cell proliferation, migration, and invasion by lowering the activation of AKT/NF-κB pathway. Our results demonstrated that ADAM9 is an important molecule in mediating TNBC aggressiveness and may be a potential useful therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yik-Ka So
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, Japan
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.,Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Kumar R, George B, Campbell MR, Verma N, Paul AM, Melo-Alvim C, Ribeiro L, Pillai MR, da Costa LM, Moasser MM. HER family in cancer progression: From discovery to 2020 and beyond. Adv Cancer Res 2020; 147:109-160. [PMID: 32593399 DOI: 10.1016/bs.acr.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTKs) are among the first layer of molecules that receive, interpret, and transduce signals leading to distinct cancer cell phenotypes. Since the discovery of the tooth-lid factor-later characterized as the epidermal growth factor (EGF)-and its high-affinity binding EGF receptor, HER kinases have emerged as one of the commonly upregulated or hyperactivated or mutated kinases in epithelial tumors, thus allowing HER1-3 family members to regulate several hallmarks of cancer development and progression. Each member of the HER family exhibits shared and unique structural features to engage multiple receptor activation modes, leading to a range of overlapping and distinct phenotypes. EGFR, the founding HER family member, provided the roadmap for the development of the cell surface RTK-directed targeted cancer therapy by serving as a prototype/precursor for the currently used HER-directed cancer drugs. We herein provide a brief account of the discoveries, defining moments, and historical context of the HER family and guidepost advances in basic, translational, and clinical research that solidified a prominent position of the HER family in cancer research and treatment. We also discuss the significance of HER3 pseudokinase in cancer biology; its unique structural features that drive transregulation among HER1-3, leading to a superior proximal signaling response; and potential role of HER3 as a shared effector of acquired therapeutic resistance against diverse oncology drugs. Finally, we also narrate some of the current drawbacks of HER-directed therapies and provide insights into postulated advances in HER biology with extensive implications of these therapies in cancer research and treatment.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; Department of Medicine, Division of Hematology & Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Marcia R Campbell
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Luis Marques da Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
46
|
Yin G, Tian P, BuHe A, Yan W, Li T, Sun Z. LncRNA LINC00689 Promotes the Progression of Gastric Cancer Through Upregulation of ADAM9 by Sponging miR-526b-3p. Cancer Manag Res 2020; 12:4227-4239. [PMID: 32581594 PMCID: PMC7280092 DOI: 10.2147/cmar.s231042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing studies have demonstrated that noncoding RNAs, including miRNAs and lncRNAs, have vital roles in mediating cancer progression. However, the expression features and biological functions of LINC00689 in gastric cancer (GC) remain largely unknown. This study was designed to investigate the functions of LINC00689, miR-526b-3p and ADAM9 as well as their interactions in GC. Methods Real time PCR(RT-PCR) was used to detect the expression of LINC0068, miR-526b-3p and ADAM9 in both GC tissues or cell lines. Gain- and loss- of functions of assays were conducted to verify the role of LINC0068, miR-526b-3p and ADAM9 in GC development. Cell proliferation were determined by CCK8 assay and transwell assay and scratch wound-healing assay were used to test cell invasion and migration. Further, the relationships between LINC00689 and miR-526b-3p, miR-526b-3p and ADAM9 were predicted by bioinformatics analysis and then proved by Luciferase reporter assay and RNA Immunoprecipitation(RIP) assay. Results We found that LINC00689 was upregulated in GC tissues and positively correlated with advanced tumor stage and tumor size, while miR-526b-3p was downregulated. Furthermore, gain- and loss-of-function experiments revealed that LINC00689 promoted the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GC cells, while miR-526b-3p had the opposite effects. The underlying mechanisms indicated that LINC00689 functioned as a competing endogenous RNA (ceRNA) by sponging miR-526b-3p in GC cells. Further investigations confirmed that ADAM9 was a direct target of miR-526b-3p and positively modulated the progression of GC. Conclusion Our study suggests that LINC00689 functions as a novel oncogenic lncRNA in the development of GC by promoting ADAM9 expression through suppression of miR-526b-3p.
Collapse
Affiliation(s)
- Gang Yin
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - PeiRong Tian
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Amin BuHe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Wei Yan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - TianXiong Li
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - ZhiPeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| |
Collapse
|
47
|
Souza JSM, Lisboa ABP, Santos TM, Andrade MVS, Neves VBS, Teles-Souza J, Jesus HNR, Bezerra TG, Falcão VGO, Oliveira RC, Del-Bem LE. The evolution of ADAM gene family in eukaryotes. Genomics 2020; 112:3108-3116. [PMID: 32437852 DOI: 10.1016/j.ygeno.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/17/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
The ADAM (A Disintegrin And Metalloprotease) gene family encodes proteins with adhesion and proteolytic functions. ADAM proteins are associated with diseases like cancers. Twenty ADAM genes have been identified in humans. However, little is known about the evolution of the family. We analyzed the repertoire of ADAM genes in a vast number of eukaryotic genomes to clarify the main gene copy number expansions. For the first time, we provide compelling evidence that early-branching green algae (Mamiellophyceae) have ADAM genes, suggesting that they originated in the last common ancestor of eukaryotes, before the split of plants, fungi and animals. The ADAM family expanded in early metazoans, with the most significative gene expansion happening during the first steps of vertebrate evolution. We concluded that most of mammal ADAM diversity can be explained by gene duplications in early bone fish. Our data suggest that ADAM genes were lost early in green plant evolution.
Collapse
Affiliation(s)
- J S M Souza
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - A B P Lisboa
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil; Bioinformatics program, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - T M Santos
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil; Bioinformatics program, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - M V S Andrade
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - V B S Neves
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - J Teles-Souza
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - H N R Jesus
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - T G Bezerra
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - V G O Falcão
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - R C Oliveira
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - L E Del-Bem
- Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil.
| |
Collapse
|
48
|
de Mendonça RP, Chemelo GP, Mitre GP, Branco DC, da Costa NMM, Tuji FM, da Silva Kataoka MS, Mesquita RA, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in adenoid cystic carcinoma invasion. Diagn Pathol 2020; 15:47. [PMID: 32386517 PMCID: PMC7210690 DOI: 10.1186/s13000-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Among cancers affecting the oral cavity, adenoid cystic carcinoma (ACC) is a relatively common malignant neoplasm. It has high rates of metastasis and recurrence and is associated with significant morbidity. During the progression of ACC, the oxygen concentration is reduced in specific areas of the tumour microenvironment, leading to intratumoural hypoxia. The expression of NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1 alpha (HIF-1α), and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis. The aim of this study was to analyse the expression of these proteins to elucidate the mechanisms underlying ACC invasiveness. METHODS Fifteen ACC samples and 10 normal-looking salivary gland (SG) samples were used to investigate the expression of these proteins by immunohistochemistry. Primary antibodies against NOTCH1, ADAM-12, HIF-1α, and HB-EGF were used. RESULTS The immunoexpression of all proteins was higher in ACC samples than in SG samples (p < 0.05). CONCLUSIONS There was increased expression of proteins associated with hypoxia and tumour invasiveness in ACC samples, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Giordanna Pereira Chemelo
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Geovanni Pereira Mitre
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Dimitra Castelo Branco
- Multiprofessional Residency Program, Universidade Estadual do Pará, Rua do Una, 156, Belem, Para, 66050-540, Brazil
| | - Natacha Malu Miranda da Costa
- Department of Periodontology, School of Dentistry, Universidade de São Paulo, Avenida do Café, Subsetor Oeste, 11, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Fabrício Mesquita Tuji
- Department of Oral Radiology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil. .,School of Dentistry, Cell Culture Laboratory, Universidade Federal do Pará (UFPA), Institute of Health Sciences, Avenida Augusto Correa, 01, Belem, PA, 66075-110, Brazil.
| |
Collapse
|
49
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
50
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|