1
|
Joshi U, George LB, Highland H. Determination of the role of miR-451a on Plasmodium falciparum red blood cell stages, oxidative stress, and proteomic profiling. Mol Biol Rep 2024; 51:1041. [PMID: 39373748 DOI: 10.1007/s11033-024-09938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND This study examines the feasibility and effects of introducing microRNA mimic into red blood cells (RBCs) at the initial phases of Plasmodium falciparum 3D7 (Pf3D7) infection. The aim is to determine the correlation between increased expression of miR-451a and parasitaemia. METHODS In this study miR-mimic-451a labelled with Cy3 and transfected into control and infected RBCs using lipofectamine and analysed using the fluorescence microscopy and flow cytometry. The study demonstrated the efficacy of miR-451a by treating pre-and post-transfected control RBCs and Pf3D7-infected RBCs with miR-mimic-451a. We also examined its impact on % growth inhibition of Pf3D7, oxidative stress markers (Luminometry, LPO, SOD, CAT, GSH and GPx). Additionally, determination of pH, haemoglobin (Hb), and proteomic profile performed using SDS-PAGE. RESULTS Modified expression level of mir-451a has the potential to change the progression of the infection and yielded a 50% decrease in parasitaemia within 48 h. Moreover, transfected samples were shown to be efficacious in counteracting the oxidative stress-induced alterations during Pf3D7 infection and enable to return the cells towards the normalcy. Modified proteomic profile of transfected iRBCs demonstrates the correlation between overexpression of miRNA and protein expression. where, the major changes were observed in the heavy molecular weight proteins more than 57 kDa. CONCLUSION The study reveals promising effects of miR-mimic-451a enrichment during RBC stages of Pf3D7, offering insights into potential malaria therapeutic strategies and potential biomedical research implications.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Linz-Buoy George
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Hyacinth Highland
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
2
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024:10.1007/s13105-024-01050-x. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Tomioka Y, Seki N, Suetsugu T, Hagihara Y, Sanada H, Goto Y, Kikkawa N, Mizuno K, Tanaka K, Inoue H. Identification of Tumor Suppressive miR-144-5p Targets: FAM111B Expression Accelerates the Malignant Phenotypes of Lung Adenocarcinoma. Int J Mol Sci 2024; 25:9974. [PMID: 39337462 PMCID: PMC11432174 DOI: 10.3390/ijms25189974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Accumulating evidence suggests that the passenger strands microRNAs (miRNAs) derived from pre-miRNAs are closely involved in cancer pathogenesis. Analysis of our miRNA expression signature of lung adenocarcinoma (LUAD) and The Cancer Genome Atlas (TCGA) data revealed that miR-144-5p (the passenger strand derived from pre-miR-144) was significantly downregulated in LUAD tissues. The aim of this study was to identify therapeutic target molecules controlled by miR-144-5p in LUAD cells. Ectopic expression assays demonstrated that miR-144-5p attenuated LUAD cell aggressiveness, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. A total of 18 genes were identified as putative cancer-promoting genes controlled by miR-144-5p in LUAD cells based on our in silico analysis. We focused on a family with sequence similarity 111 member B (FAM111B) and investigated its cancer-promoting functions in LUAD cells. Luciferase reporter assay showed that expression of FAM111B was directly regulated by miR-144-5p in LUAD cells. FAM111B knockdown assays showed that LUAD cells significantly suppressed malignant phenotypes, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. Furthermore, we investigated the FAM111B-mediated molecular networks in LUAD cells. Identifying target genes regulated by passenger strands of miRNAs may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yoko Hagihara
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yusuke Goto
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Kentaro Tanaka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| |
Collapse
|
4
|
Wang FX, Shi ZA, Mu G. Regulation of immune cells by miR-451 and its potential as a biomarker in immune-related disorders: a mini review. Front Immunol 2024; 15:1421473. [PMID: 39076992 PMCID: PMC11284029 DOI: 10.3389/fimmu.2024.1421473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
In 2005, Altuvia and colleagues were the first to identify the gene that encodes miR-451 in the human pituitary gland, located in chromosome region 17q11.2. Subsequent studies have confirmed that miR-451 regulates various immune cells, including T cells, B cells, microglia, macrophages, and neutrophils, thereby influencing disease progression. The range of immune-related diseases affected encompasses various cancers, lymphoblastic leukemia, and injuries to the lungs and spinal cord, among others. Moreover, miR-451 is produced by immune cells and can regulate both their own functions and those of other immune cells, thus creating a regulatory feedback loop. This article aims to comprehensively review the interactions between miR-451 and immune cells, clarify the regulatory roles of miR-451 within the immune system, and assess its potential as both a therapeutic target and a biomarker for immune-related diseases.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Zu-an Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
5
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Vahidi S, Agah S, Mirzajani E, Asghari Gharakhyli E, Norollahi SE, Rahbar Taramsari M, Babaei K, Samadani AA. microRNAs, oxidative stress, and genotoxicity as the main inducers in the pathobiology of cancer development. Horm Mol Biol Clin Investig 2024; 45:55-73. [PMID: 38507551 DOI: 10.1515/hmbci-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | | | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Morteza Rahbar Taramsari
- Department of Forensic Medicine, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
8
|
Anoop TM, Basu PK, Chandramohan K, Thomas A, Manoj S. Evolving utility of exosomes in pancreatic cancer management. World J Methodol 2023; 13:46-58. [PMID: 37456979 PMCID: PMC10348087 DOI: 10.5662/wjm.v13.i3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Despite the development of newer oncological treatment, the survival of patients with pancreatic cancer (PC) remains poor. Recent studies have identified exosomes as essential mediators of intercellular communications and play a vital role in tumor initiation, metastasis and chemoresistance. Thus, the utility of liquid biopsies using exosomes in PC management can be used for early detection, diagnosis, monitoring as well as drug delivery vehicles for cancer therapy. This review summarizes the function, and clinical applications of exosomes in cancers as minimally invasive liquid biomarker in diagnostic, prognostic and therapeutic roles.
Collapse
Affiliation(s)
- Thattungal Manoharan Anoop
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Palash Kumar Basu
- Department of Avionics, Indian Institute of Space Science & Technology (IIST), Thiruvananthapuram 695547, Kerala, India
| | - K Chandramohan
- Surgical Oncology, Regional Cancer Center, Thiruvananthapuram 695011, Kerala, India
| | - Ajai Thomas
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - S Manoj
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
9
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
10
|
Zhang D, Lu R, Wang M, Ji J, Zhang S, Wang S, Zhang D, Chen M. Effects of Banxia Xiexin Decoction on apoptosis of interstitial cells of cajal by regulation of MiR-451-5p: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116606. [PMID: 37192721 DOI: 10.1016/j.jep.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a traditional Chinese medical formula applied to gastrointestinal (GI) motility disorders. Previous studies showed that miR-451-5p was down-regulated in rats with GI motility disorders induced by gastric electrical dysrhythmia. Interstitial cells of cajal (ICCs) are pacemakers for GI motility, while loss of ICCs is responsible for GI motility disturbance. Thus, the underlying interaction mechanisms for BXD regulating ICCs apoptosis via miR-451-5p remain to be explored. AIM OF THE STUDY In this work, the main objectives were to examine the efficacy of BXD on ICCs via miR-451-5p both in GI motility disorders rats model and in vitro, as well as the potential contributions of SCF/c-kit signaling. MATERIALS AND METHODS Rats with gastric electrical dysrhythmia were established in male SD rats by using a single-day diet and a double fasting method (drinking diluted hydrochloric acid water during the period) for 4 weeks. The gastric slow wave (GSW) recording, RT-qPCR, and western blot were performed to examine the effects of BXD on ICCs apoptosis in rats with GED and miR-451-5p expression. In vitro assays included CCK-8, flow cytometry analysis, RT-qPCR, and western blot were applied to investigate the potential molecular mechanism of BXD on ICCs apoptosis via miR-451-5p. RESULTS BXD promoted gastric motility, reduced ICCs apoptosis, and elevated miR-451-5p in GED rats. In addition, miR-451-5p was significantly up-regulated in ICCs after BXD treatment compared with that in ICCs with miR-451-5p inhibitor transfection. Meanwhile, high miR-451-5p expression with either BXD treatment or miRNA mimics enhanced ICCs proliferation and inhibit apoptosis. Moreover, overexpression of miR-451-5p can reverse G0/G1 arrest in ICCs by BXD treatment. Further, SCF and c-kit protein levels were detected to demonstrate that modulation of miR-451-5p by BXD treatment was involved in this signaling. CONCLUSIONS Through this study, we demonstrated that BXD could promote ICCs proliferation and inhibit apoptosis via miR-451-5p and may involve the modulations of SCF/c-kit signaling, thus suggesting a new therapy basis for GI motility dysfunction from the perspective of modulation of ICCs apoptosis by targeting miR-451-5p.
Collapse
Affiliation(s)
- Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Ruimin Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Mengwei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, PR China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| |
Collapse
|
11
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
12
|
Low Expression of miR-491-3p Is Correlated with Lymph Node Metastasis in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7807956. [PMID: 35815280 PMCID: PMC9262502 DOI: 10.1155/2022/7807956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/03/2023]
Abstract
Objective MiR-491-3p, as a tumor suppressor miRNA, was found decreased in many solid tissues. In this study, we aim to investigate miR-491-3p expression in gastric cancer with or without lymph node metastasis (LNM). Methods GSE173215 dataset from Gene Expression Omnibus (GEO) was used to measure miRNA expression from tissue samples of gastric cancer patients. Moreover, gastric tumor tissues (non-LNM: n = 78; LNM: n = 68) were obtained to detect the miR-491-3p expression. Receiver operating characteristic (ROC) curve and Kaplan–Meier (KM) survival analysis, as well as Cox regression analysis, were performed to reveal the role of miR-491-3p in diagnosis and prognosis of gastric cancer. Results According to GSE173215 datasets (t = −11.25, adjust P value = 1.30E-06) and our clinical results (0.390 ± 0.193 vs. 0.562 ± 0.166, P < 0.005), the gastric cancer patients with LNM showed lower miR-491-3p expression than those without LNM, demonstrating a high diagnostic efficiency (sensitivity: 74.36%; specificity: 69.12%). In addition, both LNM and low miR-491-3p expression were correlated with the poor prognosis of gastric cancer. Furthermore, the LNM patient with low expression of miR-491-3p had the worse prognosis, but the non-LNM patient with high expression of miR-491-3p had the best prognosis. MiR-491-3p expression (HR = 0.003, 95%CI: 3.35E-04∼0.028) and LNM (HR = 2.326, 95%CI: 1.046∼5.173) were independent risk factors for gastric cancer. Conclusion Downregulated miR-491-3p expression was found in gastric cancer, being a high diagnostic efficiency and an independent risk factor for gastric cancer, especially in those having LNM.
Collapse
|
13
|
Tian W, Pang X, Luan F. Diagnosis value of miR-181, miR-652, and CA72-4 for gastric cancer. J Clin Lab Anal 2022; 36:e24411. [PMID: 35446997 PMCID: PMC9169223 DOI: 10.1002/jcla.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To find a useful disease marker for early diagnosis of gastric cancer, we tried to explore the expression of serum miR-181, miR-652, and carbohydrate antigen 72-4 (CA72-4). PATIENTS AND METHODS According to clinical pathologic stages, 112 patients with gastric cancer were divided into early gastric cancer group (n = 60) and advanced gastric cancer group (n = 52), stage I-II (n = 65), and stage III-IV (n = 47). Another 50 cases of gastric benign lesions and 40 healthy controls were also selected. Real-time quantitative PCR together with chemiluminescence were applied to detect expression levels. ROC curve was applied to judge their diagnostic efficiency. Pearson's correlation analysis was put into use to investigate the relevance of three indicators. RESULTS Compared with benign lesions group and control group, significantly higher expression levels were found in patients of gastric cancer (all p < 0.001). Similarly, compared with early gastric cancer group, significantly higher expression levels were found in advanced gastric cancer group (all p < 0.001). The same result was also found in stage III-IV (all p < 0.001). The best cutoff values were 0.93, 2.38, and 16.94 U/ml, respectively. The area under the curve (0.917, 95%CI: 0.856-0.975) of the three combined diagnosis of early gastric cancer was the largest, and its sensitivity and specificity were 92.5% and 86.8%. And miR-181 and miR-652 were positively correlated with CA72-4 (r = 0.772, p < 0.001, r = 0.853, p < 0.001). CONCLUSION Serum miR-181, miR-652, and CA72-4 are closely linked to the occurrence and development of gastric cancer. Combination of three indicators has diagnostic value for early gastric cancer.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Xueqin Pang
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Fujuan Luan
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| |
Collapse
|
14
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, Ma M, Kang W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front Cell Dev Biol 2022; 10:862563. [PMID: 35517505 PMCID: PMC9065280 DOI: 10.3389/fcell.2022.862563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs (ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the field of ncRNAs increasingly expands, new complex roles have gradually emerged for ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the potential clinical significance and predictive value of ncRNAs in response to RT for guiding the individualized treatment of patients. This review can serve as a guide for the application of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of response in RT of gastrointestinal carcinoma.
Collapse
|
17
|
Desai S, Dharavath B, Manavalan S, Rane A, Redhu A, Sunder R, Butle A, Mishra R, Joshi A, Togar T, Apte S, Bala P, Chandrani P, Chopra S, Bashyam M, Banerjee A, Prabhash K, Nair S, Dutt A. Fusobacterium nucleatum is associated with inflammation and poor survival in early-stage HPV-negative tongue cancer. NAR Cancer 2022; 4:zcac006. [PMID: 35252868 PMCID: PMC8894079 DOI: 10.1093/narcan/zcac006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Persistent pathogen infection is a known cause of malignancy, although with sparse systematic evaluation across tumor types. We present a comprehensive landscape of 1060 infectious pathogens across 239 whole exomes and 1168 transcriptomes of breast, lung, gallbladder, cervical, colorectal, and head and neck tumors. We identify known cancer-associated pathogens consistent with the literature. In addition, we identify a significant prevalence of Fusobacterium in head and neck tumors, comparable to colorectal tumors. The Fusobacterium-high subgroup of head and neck tumors occurs mutually exclusive to human papillomavirus, and is characterized by overexpression of miRNAs associated with inflammation, elevated innate immune cell fraction and nodal metastases. We validate the association of Fusobacterium with the inflammatory markers IL1B, IL6 and IL8, miRNAs hsa-mir-451a, hsa-mir-675 and hsa-mir-486-1, and MMP10 in the tongue tumor samples. A higher burden of Fusobacterium is also associated with poor survival, nodal metastases and extracapsular spread in tongue tumors defining a distinct subgroup of head and neck cancer.
Collapse
Affiliation(s)
- Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sujith Manavalan
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Aishwarya Rane
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Archana Kumari Redhu
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Asim Joshi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Trupti Togar
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Pratyusha Bala
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Supriya Chopra
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai 400012, Maharashtra, India
| | - Sudhir Nair
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, Maharashtra, India
| | - Amit Dutt
- To whom correspondence should be addressed. Tel: +91 22 27405056/30435056;
| |
Collapse
|
18
|
Abdulmawjood B, Costa B, Roma-Rodrigues C, Baptista PV, Fernandes AR. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int J Mol Sci 2021; 22:12516. [PMID: 34830398 PMCID: PMC8626020 DOI: 10.3390/ijms222212516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a rare malignant proliferative disease of the hematopoietic system, whose molecular hallmark is the Philadelphia chromosome (Ph). The Ph chromosome originates an aberrant fusion gene with abnormal kinase activity, leading to the buildup of reactive oxygen species and genetic instability of relevance in disease progression. Several genetic abnormalities have been correlated with CML in the blast phase, including chromosomal aberrations and common altered genes. Some of these genes are involved in the regulation of cell apoptosis and proliferation, such as the epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), or Schmidt-Ruppin A-2 proto-oncogene (SRC); cell adhesion, e.g., catenin beta 1 (CTNNB1); or genes associated to TGF-β, such as SKI like proto-oncogene (SKIL), transforming growth factor beta 1 (TGFB1) or transforming growth factor beta 2 (TGFB2); and TNF-α pathways, such as Tumor necrosis factor (TNFA) or Nuclear factor kappa B subunit 1 (NFKB1). The involvement of miRNAs in CML is also gaining momentum, where dysregulation of some critical miRNAs, such as miRNA-451 and miRNA-21, which have been associated to the molecular modulation of pathogenesis, progression of disease states, and response to therapeutics. In this review, the most relevant genomic alterations found in CML will be addressed.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Beatriz Costa
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V. Baptista
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
19
|
Lu YH, Huang ZY. Global identification of circular RNAs in imatinib (IM) resistance of chronic myeloid leukemia (CML) by modulating signaling pathways of circ_0080145/miR-203/ABL1 and circ 0051886/miR-637/ABL1. Mol Med 2021; 27:148. [PMID: 34781898 PMCID: PMC8591874 DOI: 10.1186/s10020-021-00395-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023] Open
Abstract
Imatinib (IM), targeting of BCR-ABL1 tyrosine kinase, is currently one of the first-line choices in the treatment of chronic myeloid leukemia (CML). This study aims to explore the molecular mechanisms underlying IM resistance in CML treatment. 108 CML patients were recruited and grouped according to their sensitivity to IM as the responder group (N = 66) and the non-responder group (N = 42). Real-time quantitative PCR (RT-qPCR) was performed to evaluate the expression of candidate circular RNAs (circRNAs), microRNA (miRNAs) and messenger RNA (mRNAs). No significant difference was noted regarding demographic and clinicopathological characteristics between the responder group and the non-responder group. The expression of circ_0080145, circ_0051886 and ABL1 mRNA was significantly increased, while the expression of miR-203 and miR-637 was decreased in the non-responder group as compared with the responders. By using in-silicon analysis, it was predicted that circ_0080145 and circ_0051886 targeted miR-203 and miR-637 respectively, and ABL1 was found to be shared direct target gene of miR-203 and miR-637. Ectopic over-expression of circ_0080145 and circ_0051886 respectively reduced the expression of miR-203 and miR-637. The expression of ABL1 mRNA/protein was most upregulated in culture cells co-transfected with circ_0080145 and circ_0051886 as compared with those cells individually transfected. This study established the signaling pathways of circ_0080145/miR-203/ABL1 and circ 0051886/miR-637/ABL1. The deregulation of circ_0080145 and circ_0051886 is, at least partially, responsible for the development of IM chemoresistance in CML by regulating expression of ABL1 via modulating expression of miR-203 and miR-637.
Collapse
Affiliation(s)
- Yao-Hua Lu
- Department of Pharmacy, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China.
| | - Zhong-Yi Huang
- Department of Pharmacy, Jing'an District Central Hospital, No 259 Xikang Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
20
|
Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother 2021; 145:112394. [PMID: 34781141 DOI: 10.1016/j.biopha.2021.112394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
microRNA are noncoding endogenous RNAs of ∼ 25-nucleotide, involved in RNA silencing and controlling of cell function. Recent evidence has highlighted the important role of various in the biology of human cancers. miR-9 is a highly conserved microRNA and abnormal regulation of miR-9 expression has various impacts on disease pathology. miR-9 may play a dual tumor-suppressive or oncomiR activity in several cancers. There have been conflicting reports concerning the role of miR-9 in gastrointestinal cancers. Several signaling pathways including PDK/AKT, Hippo, Wnt/β-catenin and PDGFRB axes are affected by miR-9 in suppressing proliferation, invasion and metastasis of tumor cells. Oncogenic miR-9 triggers migration, metastasis and clinic-pathological characteristics of patients with gastrointestinal malignancy by targeting various enzymes and transcription factors such as E-cadherin, HK2, LMX1A, and CDX2. On the other hand, long non-coding RNAs and circular RNAs can modulate miR-9 expression in human cancers. In this review, we aimed to summarize recent findings about the potential value of miR-9 in gastrointestinal tumors, that include: screening, prognostic and treatment.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
21
|
Soofiyani SR, Hosseini K, Soleimanian A, Abkhooei L, Hoseini AM, Tarhriz V, Ghasemnejad T. An Overview on the Role of miR-451 in Lung Cancer: Diagnosis, Therapy, and Prognosis. Microrna 2021; 10:181-190. [PMID: 34514995 DOI: 10.2174/2211536610666210910130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved non-coding RNAs involved in many physiological processes such as cell proliferation, inhibition, development of apoptosis, differentiation, suppresses tumorigenicity, and regulating cell growth. The description of the alterations of miRNA expression patterns in cancers will be helpful to recognize biomarkers for early detection and possible therapeutic intervention in the treatment of cancers. Recent studies have shown that miR-451 is broadly dysregulated in lung cancer and is a crucial agent in lung tumor progression. This review summarizes recent advances of the potential role of miR-451 in lung cancer diagnosis, prognosis, and treatment and provides an insight into the potential use of miR-451 for the development of advanced therapeutic methods in lung cancer.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kamram Hosseini
- Student research committee, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Liela Abkhooei
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad. Iran
| | - Akbar Mohammad Hoseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine and Tabriz Blood Transfusion Center, Tabriz. Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
22
|
MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel) 2021; 12:genes12081289. [PMID: 34440464 PMCID: PMC8395027 DOI: 10.3390/genes12081289] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of the first microRNA (miRNA), the exploration of miRNA biology has come to a new era in recent decades. Monumental studies have proven that miRNAs can be dysregulated in different types of cancers and the roles of miRNAs turn out to function to either tumor promoters or tumor suppressors. The interplay between miRNAs and the development of cancers has grabbed attention of miRNAs as novel tools and targets for therapeutic attempts. Moreover, the development of miRNA delivery system accelerates miRNA preclinical implications. In this review, we depict recent advances of miRNAs in cancer and discuss the potential diagnostic or therapeutic approaches of miRNAs.
Collapse
|
23
|
Lin TY, Lan WH, Chiu YF, Feng CL, Chiu CH, Kuo CJ, Lai CH. Statins' Regulation of the Virulence Factors of Helicobacter pylori and the Production of ROS May Inhibit the Development of Gastric Cancer. Antioxidants (Basel) 2021; 10:1293. [PMID: 34439541 PMCID: PMC8389206 DOI: 10.3390/antiox10081293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Conventionally, statins are used to treat high cholesterol levels. They exhibit pleiotropic effects, such as the prevention of cardiovascular disease and decreased cancer mortality. Gastric cancer (GC) is one of the most common cancers, ranking as the third leading global cause of cancer-related deaths, and is mainly attributed to chronic Helicobacter pylori infection. During their co-evolution with hosts, H. pylori has developed the ability to use the cellular components of the host to evade the immune system and multiply in intracellular niches. Certain H. pylori virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and cholesterol-α-glucosyltransferase (CGT), have been shown to exploit host cholesterol during pathogenesis. Therefore, using statins to antagonize cholesterol synthesis might prove to be an ideal strategy for reducing the occurrence of H. pylori-related GC. This review discusses the current understanding of the interplay of H. pylori virulence factors with cholesterol and reactive oxygen species (ROS) production, which may prove to be novel therapeutic targets for the development of effective treatment strategies against H. pylori-associated GC. We also summarize the findings of several clinical studies on the association between statin therapy and the development of GC, especially in terms of cancer risk and mortality.
Collapse
Affiliation(s)
- Ting-Yu Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (T.-Y.L.); (W.-H.L.); (Y.-F.C.); (C.-H.C.)
- Research Center for Emerging Viral, Infections Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wen-Hsi Lan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (T.-Y.L.); (W.-H.L.); (Y.-F.C.); (C.-H.C.)
- Research Center for Emerging Viral, Infections Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Fang Chiu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (T.-Y.L.); (W.-H.L.); (Y.-F.C.); (C.-H.C.)
- Research Center for Emerging Viral, Infections Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chun-Lung Feng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan;
- Department of Internal Medicine, Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
| | - Cheng-Hsun Chiu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (T.-Y.L.); (W.-H.L.); (Y.-F.C.); (C.-H.C.)
- Research Center for Emerging Viral, Infections Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chia-Jung Kuo
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (T.-Y.L.); (W.-H.L.); (Y.-F.C.); (C.-H.C.)
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chih-Ho Lai
- Research Center for Emerging Viral, Infections Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Internal Medicine, Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
24
|
Wei C, Guo D, Pu H. microRNA-451 (miR-451) Regulates the Apoptosis of Non-Small Cell Lung Cancer Cells by Targeting Macrophage Migration Promoting Factors. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA (miRNA) participates in cellular activities. This article mainly discusses whether miR-451 has a role in the apoptosis of non-small cell lung cancer (NSCLC) cells. A549 cell was divided into blank group, miR-451 overexpression group and NC group followed by analysis of level
of miR-451, MIF mRNA, MIF, NF-κB, and nuclear expression of NF-κB by immunofluorescence, clone formation, cell apoptosis rate and cell cycle. miR-451 overexpression significantly inhibited MIF and NF-κB expression. In the case of miR-451 overexpression,
NSCLC clone formation was inhibited time-dependently The nuclear NF-κB expression in miR451 group was significantly inhibited, indicating inhibition of MIF by miR-451, leading to inhibition of NSCLC cell proliferation. Further results showed that cell apoptotic rate of miR-451
high expression group was elevated with increased cell number in G2 phase, confirming that miR-451 overexpression promoted NSCLC cell apoptosis. miR-451 over-expression can inhibit MIF level by inhibiting NF-κB signaling pathway, thereby promoting NSCLC cell apoptosis, providing
a new therapeutic approach for the clinical targeted therapy.
Collapse
Affiliation(s)
- Caihong Wei
- Department ofRespiratory Medicine, Baoshihua Hospital, Lanzhou, Gansu, 730060, China
| | - Dan Guo
- Department ofRespiratory Medicine, Baoshihua Hospital, Lanzhou, Gansu, 730060, China
| | - Huayun Pu
- Department of Gastroenterology, Baoshihua Hospital, Lanzhou, Gansu, 730060, China
| |
Collapse
|
25
|
Sutton JM, Kim J, El Zahar NM, Bartlett MG. BIOANALYSIS AND BIOTRANSFORMATION OF OLIGONUCLEOTIDE THERAPEUTICS BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:334-358. [PMID: 32588492 DOI: 10.1002/mas.21641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, eight new oligonucleotide therapies have been approved which has led to increased interest in oligonucleotide analysis. There is a particular need for powerful bioanalytical tools to study the metabolism and biotransformation of these molecules. This review provides the background on the biological basis of these molecules as currently used in therapies. The article also reviews the current state of analytical methodology including state of the art sample preparation techniques, liquid chromatography-mass spectrometry methods, and the current limits of detection/quantitation. Finally, the article summarizes the challenges in oligonucleotide bioanalysis and provides future perspectives for this emerging field. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo, 11566, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| |
Collapse
|
26
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Anti-tumor Activity of Propofol: A Focus on MicroRNAs. Curr Cancer Drug Targets 2021; 20:104-114. [PMID: 31657687 DOI: 10.2174/1568009619666191023100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are endogenous, short, non-coding RNAs with the length as low as 20 to 25 nucleotides. These RNAs are able to negatively affect the gene expression at the post-transcriptional level. It has been demonstrated that microRNAs play a significant role in cell proliferation, cell migration, cell death, cell differentiation, infection, immune response, and metabolism. Besides, the dysfunction of microRNAs has been observed in a variety of cancers. So, modulation of microRNAs is of interest in the treatment of disorders. OBJECTIVE The aim of the current review is to investigate the modulatory effect of propofol on microRNAs in cancer therapy. METHODS This review was performed at PubMed, SCOPUS and Web of Science data-bases using keywords "propofol', "microRNA", "cancer therapy", "propofol + microRNA" and "propofol + miR". RESULTS It was found that propofol dually down-regulates/upregulates microRNAs to exert its antitumor activity. In terms of oncogenesis microRNAs, propofol exert an inhibitory effect, while propofol significantly enhances the expression of oncosuppressor microRNAs. CONCLUSION It seems that propofol is a potential modulator of microRNAs and this capability can be used in the treatment of various cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
27
|
Qi W, Zhang Q. Development and clinical validation of a 3-miRNA signature to predict prognosis of gastric cancer. PeerJ 2021; 9:e10462. [PMID: 33604158 PMCID: PMC7866890 DOI: 10.7717/peerj.10462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 11/10/2020] [Indexed: 02/03/2023] Open
Abstract
Aims Identification of miRNA signature to predict the prognosis of gastric cancer (GC) patients by integrating bioinformatics and experimental validation. Methods The miRNA expression profile and clinical data of GC were collected. The univariable and LASSO-Cox regression were used to construct the risk signature. The receiver operating characteristic (ROC) curve analysis confirmed the good performance of the prognostic model. Results A 3-miRNA prognostic signature was constructed, which included hsa-miR-126-3p, hsa-miR-143-5p, and hsa-miR-1275. A nomogram, including the prognostic signature to predict the overall survival, was established, and internal validation in the The Cancer Genome Atlas (TCGA) cohort was performed. We found that compared with the traditional pathological stage, the nomogram was the best at predicting the prognosis. Conclusions The predictive model and the nomogram will enable patients with GC to be more accurately managed in clinical practice.
Collapse
Affiliation(s)
- Wenqian Qi
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qian Zhang
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
28
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
29
|
Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin Rheumatol 2020; 40:2387-2394. [PMID: 33210166 PMCID: PMC8121735 DOI: 10.1007/s10067-020-05502-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Recent studies have demonstrated an altered expression of certain microRNAs in patients with rheumatoid arthritis (RA) as well as their first-degree relatives (FDRs) compared to healthy controls (HCs), suggesting a role of microRNA in the progression of the disease. To corroborate this, a set of well-characterized RA families originating from northern Sweden were analyzed for differential expression of a selected set of microRNAs. METHOD MicroRNA was isolated from frozen peripheral blood cells obtained from 21 different families and included 26 RA patients, 22 FDRs, and 21 HCs. Expression of the selected microRNAs miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-3p, miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-451a was determined by a two-step quantitative real-time polymerase chain reaction (qRT-PCR). Statistical analysis including clinical variables was applied. RESULTS Out of the nine selected microRNAs that previously have been linked to RA, we confirmed four after adjusting for age and gender, i.e., miR-22-3p (p = 0.020), miR-26b-5p (p = 0.018), miR-142-3p (p = 0.005), and miR-155 (p = 0.033). Moreover, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs. In addition, analysis of the effect of corticosteroid use showed modulation of miR-103a-3p expression. CONCLUSIONS We confirm that microRNAs seem to be involved in the development of RA, and that the expression pattern in FDR is partly overlapping with RA patients. The contribution of single microRNAs in relation to the complex network including all microRNAs and other molecules is still to be revealed. Key Points • Expression levels of miR-22-3p, miR-26b-5p, miR-142-3p, and miR-155 were significantly altered in RA patients compared to those in controls. • In first-degree relatives, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs.
Collapse
|
30
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Chen Y, Feng H, Wu Y, Wang R, Li Z, Chen J, Yan W, Chen W. Evaluation of plasma exosomal microRNAs as circulating biomarkers for progression and metastasis of gastric cancer. Clin Transl Med 2020; 10:e171. [PMID: 33135342 PMCID: PMC7548098 DOI: 10.1002/ctm2.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruoqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoji Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiajia Chen
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Salah M, Shaheen I, El-Shanawany P, Eid Saad N, Saad R, El Guibaly M, Momen N. Detection of miR-1246, miR-23a and miR-451 in sera of colorectal carcinoma patients: a case-control study in Cairo University hospital. Afr Health Sci 2020; 20:1283-1291. [PMID: 33402976 PMCID: PMC7751536 DOI: 10.4314/ahs.v20i3.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Colorectal cancer (CRC) has high morbidity and mortality rates. Invasive techniques and other laboratory tests with variable sensitivity and specificity are currently used in diagnosis. Micro ribonucleic acids (miRNAs) have bio vital roles in cell proliferation and apoptosis. Dys-regulation of miRNAs is linked to tumour genesis. The objective of this study was to evaluate the specificity and sensitivity of serum non-invasive biomarkers (micro-RNAs), miR-1246, miR-23a, and miR-451in CRC patients. Methods Peripheral expression of three miRNAs (miR-1246, miR-23a and miR-451) was investigated in sera of 37 CRC Egyptian patients and 30 healthy controls, using quantitative real-time polymerase chain reaction trying to reach the optimal non-invasive combination of miRNAs. Results Serum miR-1246 was up-regulated in sera of CRC patients compared to normal controls (fold change = 3.55; P<0.001) and showed 100% sensitivity and 80% specificity in diagnosis of CRC. Serum miR-451 was significantly down-regulated in CRC patients (fold change = -4.86; p= 0.014), whereas, miR-23a was down-regulated but this was not statistically significant. Conclusion Up-regulation of miR-1246 and down-regulation of miR-451 in the sera of primary CRC Egyptian patients were confirmed with high sensitivity and specificity. Large-scale studies on a wider spectrum of miRNAs in Egyptian CRC patients are needed.
Collapse
|
33
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
34
|
The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res 2020; 2020:5193036. [PMID: 32775466 PMCID: PMC7397388 DOI: 10.1155/2020/5193036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers' attention for years to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines, microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines, growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of CAD is discussed.
Collapse
|
35
|
Verma HK, Ratre YK, Mazzone P, Laurino S, Bhaskar LVKS. Micro RNA facilitated chemoresistance in gastric cancer: a novel biomarkers and potential therapeutics. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1779992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Henu Kumar Verma
- Developmental and Stem Cell Biology Laboratory, Institute of Experimental Endocrinology and Oncology CNR, Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | | | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | | |
Collapse
|
36
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
37
|
Chung S, Lee YG, Karpurapu M, Englert JA, Ballinger MN, Davis IC, Park GY, Christman JW. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2. Am J Physiol Lung Cell Mol Physiol 2020; 318:L921-L930. [PMID: 32159972 PMCID: PMC7272736 DOI: 10.1152/ajplung.00457.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
The incidence of asthma has increased from 5.5% to near 8% of the population, which is a major health concern. The hallmarks of asthma include eosinophilic airway inflammation that is associated with chronic airway remodeling. Allergic airway inflammation is characterized by a complex interplay of resident and inflammatory cells. MicroRNAs (miRNAs) are small noncoding RNAs that function as posttranscriptional modulators of gene expression. However, the role of miRNAs, specifically miR-451, in the regulation of allergic airway inflammation is unexplored. Our previous findings showed that oxidant stress regulates miR-451 gene expression in macrophages during an inflammatory process. In this paper, we examined the role of miR-451 in regulating macrophage phenotype using an experimental poly-allergenic murine model of allergic airway inflammation. We found that miR-451 contributes to the allergic induction of CCL17 in the lung and plays a key role in proasthmatic macrophage activation. Remarkably, administration of a Sirtuin 2 (Sirt2) inhibitor diminished alternate macrophage activation and markedly abrogated triple-allergen [dust mite, ragweed, Aspergillus fumigatus (DRA)]-induced lung inflammation. These data demonstrate a role for miR-451 in modulating allergic inflammation by influencing allergen-mediated macrophages phenotype.
Collapse
Affiliation(s)
- Sangwoon Chung
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Yong Gyu Lee
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Manjula Karpurapu
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Joshua A Englert
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Megan N Ballinger
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Ian C Davis
- College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Gye Young Park
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W Christman
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| |
Collapse
|
38
|
Gilfillan M, Das P, Shah D, Alam MA, Bhandari V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res 2020; 21:92. [PMID: 32321512 PMCID: PMC7178994 DOI: 10.1186/s12931-020-01353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. Methods Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. Results Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. Conclusion We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Mohammad Afaque Alam
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Temple University, Philadelphia, PA, 19140, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA. .,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA. .,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA. .,Temple University, Philadelphia, PA, 19140, USA. .,Pediatrics, Obstetrics and Gynecology and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. .,Neonatology, The Children's Regional Hospital at Cooper, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
39
|
Tavakolian S, Goudarzi H, Faghihloo E. Evaluating the expression level of miR-9-5p and miR-192-5p in gastrointestinal cancer: introducing novel screening biomarkers for patients. BMC Res Notes 2020; 13:226. [PMID: 32307002 PMCID: PMC7168809 DOI: 10.1186/s13104-020-05071-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE It has been indicated that there is a tight association between cancer and different factors, such as environment and genetics, including aberrantly expressed microRNAs. The crucial role of microRNAs in the regulation of diverse signaling pathways in gastrointestinal cancer has been established in several studies. In this study, we aimed to evaluate the expression of microRNA-9 and -192 in colon and gastric cancers. After extracting the RNA from tissues and serum samples of patients, suffering from colon and gastric cancer, cDNA was synthesized. Then by performing quantitative real-time PCR, we evaluated the expression level of miR-9-5p and miR-192-5p in collected samples. RESULTS Unlike to colon cancer in which the expression level of miR-9-5p remained unchanged, the relative expression of this miRNA decreased remarkably in gastric cancer (with P value < 0.05), in comparison with normal adjacent tissues. In agreement with this finding, we also found that the expression level of miR-192-5p was decreased in gastric cancer tissues, compared to normal gastric tissue. Given the reduction in the expression level of miR-9-5p and miR-192-5p in gastric cancer, it could be postulated to consider these miRNAs as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran.
| |
Collapse
|
40
|
Course MM, Gudsnuk K, Desai N, Chamberlain JR, Valdmanis PN. Endogenous MicroRNA Competition as a Mechanism of shRNA-Induced Cardiotoxicity. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:572-580. [PMID: 31927330 PMCID: PMC6957822 DOI: 10.1016/j.omtn.2019.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Gene knockdown using short hairpin RNAs (shRNAs) is a promising strategy for targeting dominant mutations; however, delivering too much shRNA can disrupt the processing of endogenous microRNAs (miRNAs) and lead to toxicity. Here, we sought to understand the effect that excessive shRNAs have on muscle miRNAs by treating mice with recombinant adeno-associated viral vectors (rAAVs) that produce shRNAs with 19-nt or 21-nt stem sequences. Small RNA sequencing of their muscle and liver tissues revealed that shRNA expression was highest in the heart, where mice experienced substantial cardiomyopathy when shRNAs accumulated to 51.2% ± 13.7% of total small RNAs. With the same treatment, shRNAs in other muscle tissues reached only 12.1% ± 5.0% of total small RNAs. Regardless of treatment, the predominant heart miRNAs remained relatively stable across samples. Instead, the lower-expressed miR-451, one of the few miRNAs processed independently of Dicer, changed in relation to shRNA level and toxicity. Our data suggest that a protective mechanism exists in cardiac tissue for maintaining the levels of most miRNAs in response to shRNA delivery, in contrast with what has been shown in the liver. Quantifying miRNA profiles after excessive shRNA delivery illuminates the host response to rAAV-shRNA, allowing for safer and more robust therapeutic gene knockdown.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Nitin Desai
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Joel R Chamberlain
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
41
|
Wu M, Tang Y, Hu G, Yang C, Ye K, Liu X. miR-4458 directly targets IGF1R to inhibit cell proliferation and promote apoptosis in hemangioma. Exp Ther Med 2020; 19:3017-3023. [PMID: 32256788 PMCID: PMC7086214 DOI: 10.3892/etm.2020.8546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hemangiomas (HAs) are benign neoplasms of the vasculature. MicroRNA-4458 (miR-4458) has been reported to function as a tumor suppressor in multiple malignancies, but its biological function in HAs remains unknown. In the present study, the potential role of miR-4458 in HA-derived endothelial cells (HDECs) was investigated. Firstly, reverse-transcription-quantitative PCR analysis was used to confirm the expression of miR-4458 in HDECs following transfection with miR-4458 mimics or inhibitor. Subsequently, MTT and EdU assays were performed and subsequently determined that miR-4458 overexpression significantly inhibited proliferation, and knockdown promoted cell proliferation in HDECs. Flow cytometry analysis revealed that miR-4458 overexpression induced cell cycle arrest, whereas knockdown reversed G0/G1 phase arrest and apoptosis. Furthermore, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-4458. IGF1R knockdown enhanced the effects of miR-4458 on cell proliferation, cell cycle G0/G1 phase arrest and apoptosis in HDECs. Taken together, the results revealed that miR-4458 targeting of IGF1R may serve as a novel therapeutic strategy for treating patients with HAs.
Collapse
Affiliation(s)
- Maosong Wu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yongsheng Tang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Gang Hu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Kaichuang Ye
- Department of Vascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 230011, P.R. China
| | - Xianluo Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
42
|
Lin J, Jiang J, Zhou R, Li X, Ye J. MicroRNA-451b Participates in Coronary Heart Disease By Targeting VEGFA. Open Med (Wars) 2019; 15:1-7. [PMID: 31922013 PMCID: PMC6944456 DOI: 10.1515/med-2020-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
Coronary artery disease (CAD) is one of the main causes of hospitalization worldwide and has high morbidity. MicroRNAs (miRNAs) play an important role in the pathogenesis of cardiovascular diseases. miR-451 is a special miRNA that is involved in many cancers' development. At present, there is no research about miR-451 in coronary heart disease. In this study, we aimed to identify the action mechanism of miR-451 in coronary heart disease and human umbilical vein endothelial cells (HUVECs). In this study, we found that miR-451 is up-regulated in the peripheral blood of patients with coronary heart disease. Moreover, TargetScan and dual-luciferase reporter gene assay results showed that VEGFA is a direct target gene of miR-451. C (CCK-8) and flow cytometry assay results showed that miR-451 mimic significantly inhibits cell proliferation and promotes apoptosis in HUVECs. Moreover, we found that the role of miR-451 in HUVECs is associated with the PI3K-Akt-mTOR pathway. Taken together, the data indicates that miR-451 might be a novel bio-marker for coronary heart disease.
Collapse
Affiliation(s)
- Jie Lin
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Jun Jiang
- Taizhou Polytechnic College, Taizhou 225300, China
| | - Ruifang Zhou
- Taizhou Polytechnic College, Taizhou 225300, China
| | - Xiaojie Li
- Taizhou Polytechnic College, Taizhou 225300, China
| | - Jun Ye
- Translational Medicine Center, Taizhou People's Hospital, No. 399 Hailing Road, Taizhou 225300, China
| |
Collapse
|
43
|
Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019; 12:11069-11082. [PMID: 31908476 PMCID: PMC6924581 DOI: 10.2147/ott.s230963] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded small RNAs involved in a variety of cellular processes, including ontogeny, cell proliferation, differentiation, and apoptosis. They can also function as oncogenes or tumor suppressor genes. Recent studies have revealed that miRNA-451 (miR-451) is involved in the regulation of various human physiological and pathological processes. Furthermore, it has been shown that miR-451 not only directly affects the biological functions of tumor cells but also indirectly affects tumor cell invasion and metastasis upon secretion into the tumor microenvironment via exosomes. Thus, miR-451 also influences the progression of tumorigenesis and drug resistance. This review summarizes the expression of miR-451 in various cancer types and the relationship between miR-451 and the diagnosis, treatment, and drug resistance of solid tumors. In addition, we address possible mechanisms of action of miR-451 and its potential application as a biomarker in the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Hua Bai
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Suhui Wu
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
44
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Kong W, Feng L, Yang M, Chen Q, Wang H, Wang X, Hou J. Prognostic value of microRNA-451 in various cancers: A meta-analysis. Pathol Res Pract 2019; 215:152726. [PMID: 31708373 DOI: 10.1016/j.prp.2019.152726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Increasing evidence shows microRNA-451 plays a crucial role in various tumors, but there is inconsistency. The aim of this study was to explore the prognostic role of miR-451 in various tumors. METHODS Online PubMed, EMBASE, Web of Science, and the Cochrane library database were searched through February 2019. Hazard ratios (HRs) were extracted and used to describe the association between expression of microRNA-451 and survival outcome, and the correlation between microRNA-451 and clinicopathologic features were described by pooled odds ratios (ORs). RESULTS Sixteen retrospective studies containing 2122 patients were incorporated in this meta-analysis. High expression of miR-451 was considered statistically associated with prolonged overall survival (OS) (HR = 0.62, 95% CI 0.49-0.80, p < 0.001) as well as RFS/DFS (HR = 0.55, 95% CI 0.42-0.71, p < 0.001) compared with low expression of miR-451. Besides, the pooled ORs revealed significant association between high expression of miR-451 with lymph node invasion (yes vs. no) (OR = 0.64, 95% CI 0.46-0.90, P = 0.01), tumor diameter (big vs. small) (OR = 0.77, 95% CI 0.60-0.97, P = 0.028) and tumor stage (III + IV vs. I + II) (OR = 0.62, 95% CI 0.42-0.93, P = 0.019). CONCLUSION MicroRNA-451 may serve as a promising clinical prognostic biomarker in various carcinomas.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingwei Yang
- Department of Radiation Oncology, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Qihang Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengyi Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Xingyu Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Jun Hou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
46
|
Li S, Nie K, Zhang Q, Guo M, Qiu Y, Li Y, Gao Y, Wang L. Macrophage Migration Inhibitory Factor Mediates Neuroprotective Effects by Regulating Inflammation, Apoptosis and Autophagy in Parkinson's Disease. Neuroscience 2019; 416:50-62. [DOI: 10.1016/j.neuroscience.2019.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023]
|
47
|
Zhang Y, Xu C. G allele of rs7853346 polymorphism in PTENP1 enhances the proliferation of multiple myeloma cancer stem cells by promoting the expression of PTENP1 and its downstream signaling molecules. J Cell Biochem 2019; 120:19738-19748. [PMID: 31338886 DOI: 10.1002/jcb.29280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yehua Zhang
- Department of Hematology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Changqing Xu
- Emergency Department, Xingtai Third Hospital, Xingtai, Hebei, China
| |
Collapse
|
48
|
Altered Expression of CD44, SIRT1, CXCR4, miR-21, miR-34a, and miR-451 Genes in MKN-45 Cell Line After Docetaxel Treatment. J Gastrointest Cancer 2019; 51:520-526. [DOI: 10.1007/s12029-019-00274-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B. A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol 2019; 234:21716-21731. [PMID: 31140618 DOI: 10.1002/jcp.28888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
|