1
|
Hussain MS, Mujwar S, Babu MA, Goyal K, Chellappan DK, Negi P, Singh TG, Ali H, Singh SK, Dua K, Gupta G, Balaraman AK. Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03809-5. [PMID: 39862263 DOI: 10.1007/s00210-025-03809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers. It acts against the tolerance mechanisms, including efflux pump upregulation, epithelial-mesenchymal transition, and cancer stem cells. Triptolide modulates important cascades, including PI3K/AKT/mTOR, enhancing the efficacy of conventional therapies. Nonetheless, its clinical application is constrained by toxicity and bioavailability challenges. Emerging drug delivery systems, such as nanoparticles and micellar formulations, are being developed to address these limitations. It has strong interactions with key anticancer targets, like PARP, as determined in preclinical and computational studies consistent with its mechanism of action. Early-phase clinical trials of Minnelide, a water-soluble derivative of triptolide, are promising, but additional work is necessary to optimize dosing, delivery, and safety. This comprehensive analysis demonstrates that triptolide may constitute a repurposed precision medicine tool to overcome tolerance in cancer therapy.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Poonam Negi
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Chiou LF, Jayaprakash D, Droby GN, Zhang X, Yang Y, Mills CA, Webb TS, Barker NK, Wu D, Herring LE, Bowser J, Vaziri C. The RING Finger E3 Ligase RNF25 Protects DNA Replication Forks Independently of its Canonical Roles in Ubiquitin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632184. [PMID: 39829812 PMCID: PMC11741350 DOI: 10.1101/2025.01.09.632184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry. Using single-molecule DNA fiber analysis, we show that RNF25 protects reversed DNA replication forks generated by the fork remodeler HLTF from nucleolytic degradation by MRE11 and CtIP. Mechanistically, RNF25 interacts with the replication fork protection factor REV7 and recruits REV7 to nascent DNA after replication stress. The role of RNF25 in protecting replication forks is fully separable from its canonical functions in ubiquitin conjugation. This work reveals the RNF25-REV7 signaling axis as an important protective mechanism in cells experiencing replication stress.
Collapse
Affiliation(s)
- Lilly F. Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Present address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C. Allie Mills
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. Webb
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead Contact
| |
Collapse
|
3
|
Yao H, Luo L, Li R, Zhao Y, Zhang L, Pešić M, Cai L, Li L. New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas. Biochim Biophys Acta Rev Cancer 2024; 1879:189220. [PMID: 39571764 DOI: 10.1016/j.bbcan.2024.189220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
Collapse
Affiliation(s)
- Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lin Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China..
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
4
|
Maloney S, Clarke SJ, Sahni S, Hudson A, Colvin E, Mittal A, Samra J, Pavlakis N. The role of diagnostic, prognostic, and predictive biomarkers in the management of early pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:13437-13450. [PMID: 37460806 PMCID: PMC10587199 DOI: 10.1007/s00432-023-05149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2023] [Indexed: 10/20/2023]
Abstract
Despite modern advances in cancer medicine, pancreatic cancer survival remains unchanged at just 12%. For the small proportion of patients diagnosed with 'early' (upfront or borderline resectable) disease, recurrences are common, and many recur soon after surgery. Whilst chemotherapy has been shown to increase survival in this cohort, the morbidity of surgery renders many candidates unsuitable for adjuvant treatment. Due to this, and the success of upfront chemotherapy in the advanced setting, use of neoadjuvant chemotherapy has been introduced in patients with upfront or borderline resectable disease. Randomized controlled trials have been conducted to compare upfront surgery to neoadjuvant chemotherapy in this patient cohort, opinions on the ideal upfront treatment approach are divided. This lack of consensus has highlighted the need for biomarkers to assist in clinical decision making. This review analyses the potential diagnostic, prognostic and predictive biomarkers that may assist in the diagnosis and management of early (upfront and borderline resectable) pancreatic cancer.
Collapse
Affiliation(s)
- Sarah Maloney
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia.
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia.
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia.
| | - Stephen J Clarke
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Emily Colvin
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Jaswinder Samra
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|
5
|
Lee YS, Kim HS, Kim HJ, Kang HW, Lee DE, Kim MJ, Hong WC, Kim JH, Kim M, Cheong JH, Park JS. The role of LOXL2 induced by glucose metabolism-activated NF-κB in maintaining drug resistance through EMT and cancer stemness in gemcitabine-resistant PDAC. J Mol Med (Berl) 2023; 101:1449-1464. [PMID: 37737908 PMCID: PMC10663195 DOI: 10.1007/s00109-023-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Gemcitabine is considered a standard treatment for pancreatic cancer, but developing drug resistance greatly limits the effectiveness of chemotherapy and increases the rate of recurrence. Lysyl oxide-like 2 (LOXL2) is highly expressed in pancreatic cancer and is involved in carcinogenesis and EMT regulation. However, studies on the role of LOXL2 in drug resistance are limited. Here, we investigated the mechanism of LOXL2 induction and the effect of LOXL2 on EMT and CSC in gemcitabine-resistant pancreatic cancer. Glucose metabolism was activated in gemcitabine-resistant pancreatic cancer cells, and NF-κB signaling was regulated accordingly. Activated NF-κB directly induces transcription by binding to the promoters of LOXL2 and ZEB1. The EMT process was significantly inhibited by the coregulation of ZEB1 and LOXL2. In addition, LOXL2 inhibition reduced the expression of cancer stemness markers and stemness by regulating MAPK signaling activity. LOXL2 inhibits tumor growth of gemcitabine-resistant pancreatic cancer cells and increases the sensitivity to gemcitabine in mouse models. KEY MESSAGES: We identified a specific mechanism for inducing LOXL2 overexpression in gemcitabine-resistant pancreatic cancer. Taken together, our results suggest LOXL2 has an important regulatory role in maintaining gemcitabine resistance and may be an effective therapeutic target to treat pancreatic cancer.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minsoo Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Lee JW, Hruban RH, Wood LD. Molecular Understanding of the Development of Ductal Pancreatic Cancer. THE PANCREAS 2023:912-920. [DOI: 10.1002/9781119876007.ch119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Establishment and Molecular Characterization of Two Patient-Derived Pancreatic Ductal Adenocarcinoma Cell Lines as Preclinical Models for Treatment Response. Cells 2023; 12:cells12040587. [PMID: 36831254 PMCID: PMC9954561 DOI: 10.3390/cells12040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is exceedingly poor. Although surgical resection is the only curative treatment option, multimodal treatment is of the utmost importance, as only about 20% of tumors are primarily resectable at the time of diagnosis. The choice of chemotherapeutic treatment regimens involving gemcitabine and FOLFIRINOX is currently solely based on the patient's performance status, but, ideally, it should be based on the tumors' individual biology. We established two novel patient-derived primary cell lines from surgical PDAC specimens. LuPanc-1 and LuPanc-2 were derived from a pT3, pN1, G2 and a pT3, pN2, G3 tumor, respectively, and the clinical follow-up was fully annotated. STR-genotyping revealed a unique profile for both cell lines. The population doubling time of LuPanc-2 was substantially longer than that of LuPanc-1 (84 vs. 44 h). Both cell lines exhibited a typical epithelial morphology and expressed moderate levels of CK7 and E-cadherin. LuPanc-1, but not LuPanc-2, co-expressed E-cadherin and vimentin at the single-cell level, suggesting a mixed epithelial-mesenchymal differentiation. LuPanc-1 had a missense mutation (p.R282W) and LuPanc-2 had a frameshift deletion (p.P89X) in TP53. BRCA2 was nonsense-mutated (p.Q780*) and CREBBP was missense-mutated (p.P279R) in LuPanc-1. CDKN2A was missense-mutated (p.H83Y) in LuPanc-2. Notably, only LuPanc-2 harbored a partial or complete deletion of DPC4. LuPanc-1 cells exhibited high basal and transforming growth factor (TGF)-β1-induced migratory activity in real-time cell migration assays, while LuPanc-2 was refractory. Both LuPanc-1 and LuPanc-2 cells responded to treatment with TGF-β1 with the activation of SMAD2; however, only LuPanc-1 cells were able to induce TGF-β1 target genes, which is consistent with the absence of DPC4 in LuPanc-2 cells. Both cell lines were able to form spheres in a semi-solid medium and in cell viability assays, LuPanc-1 cells were more sensitive than LuPanc-2 cells to treatment with gemcitabine and FOLFIRINOX. In summary, both patient-derived cell lines show distinct molecular phenotypes reflecting their individual tumor biology, with a unique clinical annotation of the respective patients. These preclinical ex vivo models can be further explored for potential new treatment strategies and might help in developing personalized (targeted) therapy regimens.
Collapse
|
8
|
Yao H, Song W, Cao R, Ye C, Zhang L, Chen H, Wang J, Shi Y, Li R, Li Y, Liu X, Zhou X, Shao R, Li L. An EGFR/HER2-targeted conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through different SMAD4-mediated mechanisms. Nat Commun 2022; 13:5506. [PMID: 36127339 PMCID: PMC9489697 DOI: 10.1038/s41467-022-33037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Chemoresistance limits its clinical implementation for pancreatic ductal adenocarcinoma (PDAC). We previously generated an EGFR/HER2 targeted conjugate, dual-targeting ligand-based lidamycin (DTLL), which shows a highly potent antitumor effect. To overcome chemoresistance in PDAC, we aim to study DTLL efficacy when combined with gemcitabine and explore its mechanisms of action. DTLL in combination with gemcitabine show a superior inhibitory effect on the growth of gemcitabine-resistant/sensitive tumors. DTLL sensitizes gemcitabine efficacy via distinct action mechanisms mediated by mothers against decapentaplegic homolog 4 (SMAD4). It not only prevents neoplastic proliferation via ATK/mTOR blockade and NF-κB impaired function in SMAD4-sufficient PDACs, but also restores SMAD4 bioactivity to trigger downstream NF-κB-regulated signaling in SMAD4-deficient tumors and to overcome chemoresistance. DTLL seems to act as a SMAD4 module that normalizes its function in PDAC, having a synergistic effect in combination with gemcitabine. Our findings provide insight into a rational SMAD4-directed precision therapy in PDAC. Chemoresistance is a main limitation for the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, the authors show that an antibody drug conjugate-like compound targeting both EGFR and HER2 overcomes gemcitabine resistance in PDAC preclinical models by mechanisms involving the tumour suppressor SMAD4.
Collapse
Affiliation(s)
- Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Wenping Song
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China.,Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, China
| | - Rui Cao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China.,Academy of Life Science, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China.,Tianjin Municipal Health Commission, Tianjin, 300000, P. R. China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Junting Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Beijing, 100700, China
| | - Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Yi Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Xiujun Liu
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China.
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 TiantanXili, Beijing, 100050, P.R. China.
| |
Collapse
|
9
|
Pancreatic Cancer Organoids in the Field of Precision Medicine: A Review of Literature and Experience on Drug Sensitivity Testing with Multiple Readouts and Synergy Scoring. Cancers (Basel) 2022; 14:cancers14030525. [PMID: 35158794 PMCID: PMC8833348 DOI: 10.3390/cancers14030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary New treatments are urgently needed for pancreatic ductal adenocarcinoma because it is one of the most aggressive and lethal cancers, detected too late and resistant to conventional chemotherapy. Tumors in most patients feature a similar set of core mutations but so far it has not been possible to design a one-fits-all treatment strategy. Instead, efforts are underway to personalize the therapies. To find the treatments that might work the best for each patient, entirely new experimental platforms based on living miniature tumors, organoids, have been developed. We review here the latest international findings in designing personalized treatments pancreatic cancer patients using organoids as testing beds. Our own work adds important clues about how such testing could, and perhaps should, be conducted. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a silent killer, often diagnosed late. However, it is also dishearteningly resistant to nearly all forms of treatment. New therapies are urgently needed, and with the advent of organoid culture for pancreatic cancer, an increasing number of innovative approaches are being tested. Organoids can be derived within a short enough time window to allow testing of several anticancer agents, which opens up the possibility for functional precision medicine for pancreatic cancer. At the same time, organoid model systems are being refined to better mimic the cancer, for example, by incorporation of components of the tumor microenvironment. We review some of the latest developments in pancreatic cancer organoid research and in novel treatment design. We also summarize our own current experiences with pancreatic cancer organoid drug sensitivity and resistance testing (DSRT) in 14 organoids from 11 PDAC patients. Our data show that it may be necessary to include a cell death read-out in ex vivo DSRT assays, as metabolic viability quantitation does not capture actual organoid killing. We also successfully adapted the organoid platform for drug combination synergy discovery. Lastly, live organoid culture 3D confocal microscopy can help identify individual surviving tumor cells escaping cell death even during harsh combination treatments. Taken together, the organoid technology allows the development of novel precision medicine approaches for PDAC, which paves the way for clinical trials and much needed new treatment options for pancreatic cancer patients.
Collapse
|
10
|
Impact of Driver Mutations on the Evolution of Isolated Metachronous Lung Metastasis of Pancreatic Ductal adenocarcinoma. Mol Diagn Ther 2021; 24:443-449. [PMID: 32524539 DOI: 10.1007/s40291-020-00472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND The incidence of pancreatic ductal adenocarcinoma (PDAC) is increasing sharply. The survival of patients with metastases is usually about a year. However, the occurrence of isolated lung metastases after resection of the primary tumor, although rare, seems to indicate a better prognosis, with an average survival ranging from 40 to 80 months. KRAS, TP53, CDK2NA, and SMAD4 are the most common driver genes in pancreatic adenocarcinoma. OBJECTIVE Our objectives were to determine whether a link exists between survival and mutations of driver genes in patients with isolated pulmonary metastases. METHODS All patients who underwent curative surgery in our institution between 2010 and 2018 were included in the study. From these, we identified patients for whom recurrence was only pulmonary and those with metastases at other sites. KRAS, TP53, CDK2NA, and SMAD4 were analyzed on the primary tumor of patients with pulmonary metastases. RESULTS Among 233 patients diagnosed with PDAC in our institution over 8 years, 41 (17.5%) underwent curative surgery. Of these, seven (3%) developed isolated pulmonary metastases, 32 developed other metastases, and two did not recur. Median survival was 59 months for patients with isolated lung metastases and 25.3 months for patients with metastases at other sites. An absence of mutations of two driver genes in primary tumors (CDK2NA and SMAD4) was observed in patients with isolated pulmonary metastases. CONCLUSIONS The absence of mutations in the CDK2NA and SMAD4 tumor-suppressor genes in patients with isolated pulmonary metastases contrasts with the commonly observed high rates of driver gene mutations and suggests a link with overall survival.
Collapse
|
11
|
Xu W, Lee SH, Qiu F, Zhou L, Wang X, Ye T, Hu X. Association of SMAD4 loss with drug resistance in clinical cancer patients: A systematic meta-analysis. PLoS One 2021; 16:e0250634. [PMID: 34048444 PMCID: PMC8162645 DOI: 10.1371/journal.pone.0250634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Drug resistance frequently led to the failure of chemotherapy for malignant cancers, hence causing cancer relapse. Thus, understanding mechanism of drug resistance in cancer is vital to improve the treatment efficacy. Here, we aim to evaluate the association between SMAD4 expression and the drug resistance in cancers by performing a meta-analysis. Method Relevant studies detecting SMAD4 expression in cancer patients treated with chemo-drugs up till December 2020 were systematically searched in four common scientific databases using selected keywords. The pooled hazard ratio (HR) was the ratio of hazard rate between SMAD4neg population vs SMAD4pos population. The HRs and risk ratios (RRs) with 95% confidence intervals (CIs) were used to explore the association between SMAD4 expression losses with drug resistance in cancers. Result After an initial screening according to the inclusion and exclusion criteria, eleven studies were included in the meta-analysis. There were a total of 2092 patients from all the included studies in this analysis. Results obtained indicated that loss of SMAD4 expression was significantly correlated with drug resistance with pooled HRs (95% CI) of 1.23 (1.01–1.45), metastasis with pooled RRs (95% CI) of 1.10 (0.97–1.25) and recurrence with pooled RRs (95% CI) of 1.32 (1.06–1.64). In the subgroup analysis, cancer type, drug type, sample size and antibody brand did not affect the significance of association between loss of SMAD4 expression and drug resistance. In addition, there was no evidence of publication bias as suggested by Begg’s test. Conclusion Findings from our meta-analysis demonstrated that loss of SMAD4 expression was correlated with drug resistance, metastasis and recurrence. Therefore, SMAD4 expression could be potentially used as a molecular marker for cancer resistance.
Collapse
Affiliation(s)
- Wei Xu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail:
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Fengjun Qiu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhou
- iSoftStone Information Technology (Group) Co., Ltd, Beijing, China
| | - Xiaoling Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingjie Ye
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Gulla A, Kazlauskas E, Liang H, Strupas K, Petrauskas V, Matulis D, Eshleman JR. Heat Shock Protein 90 Inhibitor Effects on Pancreatic Cancer Cell Cultures. Pancreas 2021; 50:625-632. [PMID: 33939678 DOI: 10.1097/mpa.0000000000001807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma is one of the deadliest cancers for which few curative therapies are available to date. Heat shock protein 90 (Hsp90) inhibitors have shown activity against numerous cancers in vitro; therefore, we tested whether they could be used to target pancreatic ductal adenocarcinoma. METHODS Inhibitors of Hsp90 ATPase activity were applied on low-passage pancreatic cell line cultures (Panc10.05, Panc215, A6L) in a dose-response manner, and the inhibitor in vitro effect on cell growth was evaluated. Seven of novel Hsp90 inhibitors based on resorcinol fragment and 5 commercially available Hsp90 inhibitors (17-AAG, AT-13387, AUY-922, ganetespib, and rifabutin) as well as control compound triptolide were tested yielding IC50 values in 2- and 3-dimensional assays. RESULTS The novel Hsp90 inhibitors exhibited strong effects on all 3 tested pancreatic cell line cultures (Panc10.05, Panc215, A6L) reaching the IC50 of 300 to 600 nM in 2- and 3-dimensional assays. CONCLUSIONS Novel Hsp90 inhibitors can be developed as antipancreatic cancer agents. Their chemical structures are simpler, and they are likely to exhibit lower side effects than the much more complex inhibitors used as controls.
Collapse
Affiliation(s)
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Hong Liang
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - James R Eshleman
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Yaw ACK, Chan EWL, Yap JKY, Mai CW. The effects of NLRP3 inflammasome inhibition by MCC950 on LPS-induced pancreatic adenocarcinoma inflammation. J Cancer Res Clin Oncol 2020; 146:2219-2229. [PMID: 32507974 DOI: 10.1007/s00432-020-03274-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Pancreatic cancer is a lethal form of cancer that can be triggered by prolonged or acute inflammation of the pancreas. Inflammation have been shown to be regulated by a group of key protein molecules known as the inflammasomes. The NLRP3 inflammasome is the most studied inflammasome and have been strongly implicated to regulate cancer cell proliferation. Therefore, this study aimed to examine the regulation of NLRP3 inflammasome under LPS-induced inflammation and its role in modulating cell proliferation in a panel of pancreatic cancer cells. METHODS The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively. RESULTS LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation. CONCLUSION There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.
Collapse
Affiliation(s)
- Alan Cheuk Keong Yaw
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, International Medical University, Jalan Jalil Perkasa 19, 126 Jalan 19/155B, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Jeremy Kean Yi Yap
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Dhamija S, Yang CM, Seiler J, Myacheva K, Caudron-Herger M, Wieland A, Abdelkarim M, Sharma Y, Riester M, Groß M, Maurer J, Diederichs S. A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nat Cell Biol 2020; 22:999-1010. [DOI: 10.1038/s41556-020-0551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
|
15
|
Xu D, Zhou D, Bum-Erdene K, Bailey BJ, Sishtla K, Liu S, Wan J, Aryal UK, Lee JA, Wells CD, Fishel ML, Corson TW, Pollok KE, Meroueh SO. Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data. ACS Chem Biol 2020; 15:1424-1444. [PMID: 32243127 PMCID: PMC7919753 DOI: 10.1021/acschembio.0c00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor's RNA sequence and mutation data along with cellular protein-protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including 1 (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC50 values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC50 values, and (iii) had no effect on primary hematopoietic CD34+ progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for 1, and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of 1 to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM.
Collapse
Affiliation(s)
- David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, Indiana 46202, United States
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Barbara J Bailey
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan A Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Timothy W Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Karen E Pollok
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
16
|
Dardare J, Witz A, Merlin JL, Gilson P, Harlé A. SMAD4 and the TGFβ Pathway in Patients with Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E3534. [PMID: 32429474 PMCID: PMC7278913 DOI: 10.3390/ijms21103534] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become the second leading cause of cancer in Western countries within a decade. Despite research and therapeutic development, current knowledge about PDAC molecular mechanisms still needs improvements and it seems crucial to identify novel therapeutic targets. Genomic analyses of PDAC revealed that transforming growth factor β (TGFβ) signaling pathways are modified and the SMAD4 gene is altered in 47% and 60% of cases, respectively, highlighting their major roles in PDAC development. TGFβ can play a dual role in malignancy depending on the context, sometimes as an inhibitor and sometimes as an inducer of tumor progression. TGFβ signaling was identified as a potent inducer of epithelial-to-mesenchymal transition (EMT), a process that confers migratory and invasive properties to epithelial cells during cancer. Therefore, aberrant TGFβ signaling and EMT are linked to promoting PDAC aggressiveness. TGFβ and SMAD pathways were extensively studied but the mechanisms leading to cancer promotion and development still remain unclear. This review aims to describe the complex role of SMAD4 in the TGFβ pathway in patients with PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Harlé
- Université de Lorraine, CNRS UMR7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, 54519 Vandoeuvre-lès-Nancy, France; (J.D.); (A.W.); (J.-L.M.); (P.G.)
| |
Collapse
|
17
|
Dhayat SA, Yang Z. Impact of circulating tumor DNA in hepatocellular and pancreatic carcinomas. J Cancer Res Clin Oncol 2020; 146:1625-1645. [PMID: 32338295 PMCID: PMC7256092 DOI: 10.1007/s00432-020-03219-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) and pancreatic cancer (PC) belong to the most lethal malignancies worldwide. Despite advances in surgical techniques and perioperative multidisciplinary management, the prognosis of both carcinoma entities remains poor mainly because of rapid tumor progression and early dissemination with diagnosis in advanced tumor stages with poor sensitivity to current therapy regimens. Both highly heterogeneous visceral carcinomas exhibit unique somatic alterations, but share common driver genes and mutations as well. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as non-invasive biomarker in early diagnosis and prognosis. CtDNA released from necrotic or apoptotic cells of primary tumors, metastasis, and circulating tumor cells can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. In this article, we focus on clinical impact of ctDNA as potential biomarker in patients with HCC and PC.
Collapse
Affiliation(s)
- Sameer A Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Munster, Germany.
| | - Zixuan Yang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Munster, Germany
| |
Collapse
|
18
|
Dell'Aquila E, Fulgenzi CAM, Minelli A, Citarella F, Stellato M, Pantano F, Russano M, Cursano MC, Napolitano A, Zeppola T, Vincenzi B, Tonini G, Santini D. Prognostic and predictive factors in pancreatic cancer. Oncotarget 2020; 11:924-941. [PMID: 32206189 PMCID: PMC7075465 DOI: 10.18632/oncotarget.27518] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer death worldwide. Its high mortality rate has remained unchanged for years. Radiotherapy and surgery are considered standard treatments in early and locally advanced stages. Chemotherapy is the only option for metastatic patients. Two treatment regimens, i. e. the association of 5-fluorouracil- irinotecan-oxaliplatin (FOLFIRINOX) and the association of nab-paclitaxel with gemcitabine, have been shown to improve outcomes for metastatic pancreatic adenocarcinoma patients. However, there are not standardized predictive biomarkers able to identify patients who benefit most from treatments. CA19-9 is the most studied prognostic biomarker, its predictive role remains unclear. Other clinical, histological and molecular biomarkers are emerging in prognostic and predictive settings. The aim of this review is to provide an overview of prognostic and predictive markers used in clinical practice and to explore the most promising fields of research in terms of treatment selection and tailored therapy in pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Alessandro Minelli
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Fabrizio Citarella
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Marco Stellato
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Francesco Pantano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Marco Russano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | | | - Andrea Napolitano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Tea Zeppola
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| |
Collapse
|
19
|
Debreli Coskun M, Sudha T, Bharali DJ, Celikler S, Davis PJ, Mousa SA. αvβ3 Integrin Antagonists Enhance Chemotherapy Response in an Orthotopic Pancreatic Cancer Model. Front Pharmacol 2020; 11:95. [PMID: 32174830 PMCID: PMC7056702 DOI: 10.3389/fphar.2020.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether αvβ3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1β, IL-6, IL-10, and TNF-α from plasma samples. To determine the neuroprotective effects of the compounds on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone. NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and significantly increased expression of anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT and XT199 treatment with cisplatin that inactivates NF-κB may contribute to increased antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of motor function in this pancreatic tumor mouse model.
Collapse
Affiliation(s)
- Melis Debreli Coskun
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Dhruba J Bharali
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Serap Celikler
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
20
|
Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, Miao X, Yang L. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol 2020; 122:105731. [PMID: 32097728 DOI: 10.1016/j.biocel.2020.105731] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Pancreatic cancer is a leading cause of cancer-related death worldwide. Cisplatin is an essential drug treating patients with BRCA1/2 or PALB2 mutations. Whether other genetic determinants of cisplatin sensitivity exist and their underlying mechanisms remain unclear. Immunohistochemistry was used to determine METTL14 expression in pancreatic cancer tissues and non-tumoural tissues. Cell proliferation was detected with CCK-8 assays. Apoptosis was analysed via Western blotting and flow cytometry, and autophagy was analysed via Western blotting and immunofluorescence. In this work, we found higher METTL14 expression in pancreatic cancer tissues than in non-tumoural tissues, and METTL14 expression was associated with pathological characteristics. Downregulation of METTL14 with siRNA sensitized pancreatic cancer cells to cisplatin. Specifically, apoptosis and autophagy were significantly enhanced in METT14 knockdown cells compared with control cells after treatment with cisplatin. Mechanistically, the AMPKα, ERK1/2 and mTOR signalling pathways were disturbed by downregulation of METTL14. We further found that METTL14 knockdown-mediated autophagy was dependent on mTOR signalling and that mTOR activation decreased autophagy to the level observed in the control group. Collectively, our results indicate that METTL14 is upregulated in pancreatic cancer, downregulation of METTL14 sensitizes pancreatic cancer cells to cisplatin by enhancing apoptosis, and autophagy is improved via an mTOR signalling-dependent pathway.
Collapse
Affiliation(s)
- Fanhua Kong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas 2019; 48:1294-1302. [PMID: 31688592 DOI: 10.1097/mpa.0000000000001438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Most patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts have been established from surgical specimens of patients who have not received chemotherapy. However, xenografts have rarely been established from chemotherapy-resistant, advanced PDACs, because such cases are usually inoperable. The purpose of this study is to establish patient-derived xenografts using PDAC cells refractory to chemotherapy. METHODS Clinical PDAC cells obtained from ascites of patients who had received continuous chemotherapy were implanted into the flanks of immunocompromised mice. Growth and histological features of the xenografts with and without gemcitabine treatment were then analyzed. RESULTS Ascites-derived PDAC cells were successfully expanded through serial xenograft passage without changes in histological appearance. While treatment with gemcitabine substantially inhibited the growth of all PDAC xenografts tested, the tumor volume gradually increased, and the tumors showed marked regrowth even under continued gemcitabine treatment. These findings are consistent with the actual clinical course of the corresponding patients for each xenograft. CONCLUSIONS Ascites-derived xenograft models represent a valuable experimental system for testing the efficacy of currently available therapeutic compounds on chemotherapy-resistant PDAC cells and for elucidation of the mechanisms underlying chemotherapy resistance.
Collapse
|
22
|
Integration of Bioinformatics Resources Reveals the Therapeutic Benefits of Gemcitabine and Cell Cycle Intervention in SMAD4-Deleted Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2019; 10:genes10100766. [PMID: 31569425 PMCID: PMC6827004 DOI: 10.3390/genes10100766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer. The five-year survival rate of PDAC is very low (less than 8%), which is associated with the late diagnosis, high metastatic potential, and resistance to therapeutic agents. The identification of better prognostic or therapeutic biomarker may have clinical benefits for PDAC treatment. SMAD4, a central mediator of transforming growth factor beta (TGFβ) signaling pathway, is considered a tumor suppressor gene. SMAD4 inactivation is frequently found in PDAC. However, its role in prognosis and therapeutics of PDAC is still unclear. In this study, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of SMAD4 gene deletion in PDAC. We found that SMAD4 deletion was associated with poorer disease-free, but not overall, survival in PDAC patients. Cancer hallmark enrichment and pathway analysis suggested that the upregulation of cell cycle-related genes in SMAD4-deleted PDAC. Chemotherapy response profiling of PDAC cell lines and patient-derived organoids revealed that SMAD4-deleted PDAC was sensitive to gemcitabine, the first-line treatment for PDAC, and specific cell cycle-targeting drugs. Taken together, our study provides an insight into the prognostic and therapeutic roles of SMAD4 gene deletion in PDAC, and SMAD4 gene copy numbers may be used as a therapeutic biomarker for PDAC treatment.
Collapse
|
23
|
Tsui KH, Wu MY, Lin LT, Wen ZH, Li YH, Chu PY, Li CJ. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Am J Cancer Res 2019; 9:6631-6645. [PMID: 31588240 PMCID: PMC6771251 DOI: 10.7150/thno.33353] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Tumor angiogenesis promotes tumor development, progression, growth, and metastasis. Metronomic chemotherapy involves the frequent administration of low-dose chemotherapeutic agents to block angiogenic activity and reduce side effects. Methods: MDA-MB-231 cells were treated with various concentrations of artemisinin (ART) and vinorelbine (NVB) and the cytotoxic effects of ART/NVB were determined using the CCK-8 assay. Mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) and mass were assessed using MitoSOX, TMRE and MitoTracker green staining. Western blot analysis was used to quantify the expression of autophagy-related proteins. Herein, by using bioinformatics analysis and experimental verification, we identified CREB as a master in MDA-MB-231 cells. Results: We found that artemisinin (ART), which exhibits anti-angiogenic and anti-cancer effects via mitochondrial regulation, synergized with vinorelbine (NVB) to inhibit MDA-MB-231 cell proliferation. ART and NVB cooperated to regulate mitochondrial biogenesis. CREB acted as a crucial regulator of PGC1α and VEGF, which played critical roles in NVB-dependent growth factor depletion. Moreover, CREB suppression significantly reversed mitochondrial dysfunction following ART/NVB co-treatment. In addition, combination treatment with ART and NVB significantly suppressed tumor growth in a nude mouse xenograft model, with downregulated CREB and PGC1α expression levels observed in tumor biopsies, in agreement with our in vitro and ex vivo data. Conclusions: These findings support the hypothesis that ART affects cancer and endothelial cells by targeting the auto-paracrine effects of VEGF to suppress mitochondrial biogenesis, angiogenesis, and migration between cancer cells and endothelial cells.
Collapse
|
24
|
Zemanek T, Melichar B, Lovecek M, Soucek P, Mohelnikova-Duchonova B. Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics 2018; 20:113-127. [PMID: 30539680 DOI: 10.2217/pgs-2018-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic carcinoma is usually diagnosed late when treatment options are limited and is considered a chemo-resistant malignancy. However, early stage, good performance status and specific patient subgroup are thought to have a more favorable prognosis. Search for novel molecular biomarkers, which could predict treatment resistance, represents a major opportunity, but also a challenge in further research. This review summarizes most aspects of individualized therapy of pancreatic cancer including promising biomarkers, BRCA-deficient pancreatic cancer and its etiology. It may be estimated that nearly a third of metastatic pancreatic ductal adenocarcinoma patients could benefit from treatment other than gold standard chemotherapy. Thus, other aspects of an individualized approach concerning the main factors for the choice of the best therapy for individual pancreatic cancer patient (surgery and chemotherapy), as well as the future directions (target therapy and immunotherapy), are also addressed.
Collapse
Affiliation(s)
- Tomas Zemanek
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine & Dentistry, Palacky University, Olomouc, University Hospital Olomouc, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
25
|
Bisht S, Feldmann G. Novel Targets in Pancreatic Cancer Therapy - Current Status and Ongoing Translational Efforts. Oncol Res Treat 2018; 41:596-602. [PMID: 30269126 DOI: 10.1159/000493437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC, pancreatic cancer) carries one of the poorest overall prognoses of all human malignancies known to date. Despite the introduction of novel therapeutic regimens, the outcome has not markedly improved over the past decades, the incidence rates are almost identical to the mortality rates, and PDAC is projected to soon become the second most common cause of cancer-related mortality in Western countries. Despite this clear medical need to develop novel therapeutic strategies against this dire malady, this need has so far not been addressed with sufficient institutional attention and support in terms of research funding and strategical programs. Given the still growing life expectancy and projected demographic changes with a growing proportion of senior citizens in many European societies, this discrepancy is likely to become even more pressing in the future. This article provides a brief overview of ongoing preclinical efforts to identify novel targets and, based on this, to develop novel strategies to treat advanced pancreatic cancer and improve survival and the quality of life of patients suffering from this malignancy.
Collapse
|
26
|
Soderquist RS, Crawford L, Liu E, Lu M, Agarwal A, Anderson GR, Lin KH, Winter PS, Cakir M, Wood KC. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat Commun 2018; 9:3513. [PMID: 30158527 PMCID: PMC6115427 DOI: 10.1038/s41467-018-05815-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
While inhibitors of BCL-2 family proteins (BH3 mimetics) have shown promise as anti-cancer agents, the various dependencies or co-dependencies of diverse cancers on BCL-2 genes remain poorly understood. Here we develop a drug screening approach to define the sensitivity of cancer cells from ten tissue types to all possible combinations of selective BCL-2, BCL-XL, and MCL-1 inhibitors and discover that most cell lines depend on at least one combination for survival. We demonstrate that expression levels of BCL-2 genes predict single mimetic sensitivity, whereas EMT status predicts synergistic dependence on BCL-XL+MCL-1. Lastly, we use a CRISPR/Cas9 screen to discover that BFL-1 and BCL-w promote resistance to all tested combinations of BCL-2, BCL-XL, and MCL-1 inhibitors. Together, these results provide a roadmap for rationally targeting BCL-2 family dependencies in diverse human cancers and motivate the development of selective BFL-1 and BCL-w inhibitors to overcome intrinsic resistance to BH3 mimetics. Dependency of diverse cancers on specific BCL-2 family members and their combinations is unknown. Here they perform drug screening and find most cell lines to be dependent on at least one combination of BCL-2 family members, and using a CRISPR screen find BCL-w and BFL-1 to mediate resistance to BH3 mimetics
Collapse
Affiliation(s)
- Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lorin Crawford
- Department of Statistics, Duke University, Durham, NC, 27710, USA.,Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Esther Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Anika Agarwal
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Grace R Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother 2018; 104:771-780. [DOI: 10.1016/j.biopha.2018.05.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
|
28
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
29
|
Byrne JD, Jajja MRN, O'Neill AT, Schorzman AN, Keeler AW, Luft JC, Zamboni WC, DeSimone JM, Yeh JJ. Impact of formulation on the iontophoretic delivery of the FOLFIRINOX regimen for the treatment of pancreatic cancer. Cancer Chemother Pharmacol 2018; 81:991-998. [PMID: 29603014 DOI: 10.1007/s00280-018-3570-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/22/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Effective treatment of patients with locally advanced pancreatic cancer is a significant unmet clinical need. One major hurdle that exists is inadequate drug delivery due to the desmoplastic stroma and poor vascularization that is characteristic of pancreatic cancer. The local iontophoretic delivery of chemotherapies provides a novel way of improving treatment. With the growing practice of highly toxic combination therapies in the treatment of pancreatic cancer, the use of iontophoresis for local delivery can potentiate the anti-cancer effects of these therapies while sparing unwanted toxicity. The objective of this study was to investigate the impact of formulation on the electro-transport of the FOLFIRINOX regimen for the development of a new treatment for pancreatic cancer. METHODS Three formulations of the FOLFIRINOX regimen (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) were generated at a fixed pH of 6.0 and were referred to as formulation A (single drug solution with all four drugs combined), formulation B (two drug solutions with two drugs per solution), and formulation C (four individual drug solutions). Anodic iontophoresis of the three different formulations was evaluated in orthotopic patient-derived xenografts of pancreatic cancer. RESULTS Iontophoretic transport of the FOLFIRINOX drugs was characterized according to organ exposure after a single device treatment in vivo. We report that the co-iontophoresis of two drug solutions, leucovorin + oxaliplatin and 5-fluorouracil + irinotecan, resulted in the highest levels of cytotoxic drugs in the tumor compared to drugs delivered individually or combined into one solution. There was no significant difference in plasma, pancreas, kidney, and liver exposure to the cytotoxic drugs delivered by the three different formulations. In addition, we found that reducing the duration of iontophoretic treatment from 10 to 5 min per solution resulted in a significant decrease in drug concentrations. CONCLUSIONS Underlying the difference in drug transport of the formulations was electrolyte concentrations, which includes both active and inactive components. Electrolyte concentrations can hinder or improve drug electro-transport. Overall, balancing electrolyte concentration is needed for optimal electro-transport.
Collapse
Affiliation(s)
- James D Byrne
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Mohammad R N Jajja
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrian T O'Neill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amanda W Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J Christopher Luft
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William C Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph M DeSimone
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
30
|
Susanto H, Liu TY, Chen CC, Purnomo JDT, Chen SF, Wang CH. Increased serum levels of betatrophin in pancreatic cancer-associated diabetes. Oncotarget 2018; 7:42330-42339. [PMID: 27276680 PMCID: PMC5173138 DOI: 10.18632/oncotarget.9815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/20/2016] [Indexed: 12/12/2022] Open
Abstract
Long-standing diabetes or glucose intolerance is recognized as a crucial event in the process of pancreatic cancer. Betatrophin, a novel liver-derived hormone, promotes β-cell proliferation and improves glucose intolerance. However, the relationship between betatrophin and PDAC-associated diabetes is not fully understood. To evaluate the serum betatrophin levels in PDAC-associated diabetes, a total 105 Taiwanese subjects including 15 healthy subjects, and 12 patients having PDAC with normal glucose tolerance (PDAC-NGT), 12 patients having PC with impaired glucose tolerance (PDAC-IGT), and 66 patients having PC with diabetes mellitus (PDAC-DM) were enrolled for this study. Serum betatrophin and carbohydrate antigen 19-9 (CA19-9) levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Compared to healthy subjects, PDAC patients had higher levels of betatrophin and CA19-9. Consistently, betatrophin protein was significantly expressed in pancreatic ductal of PDAC-associated DM patients using immunohistochemistry (IHC) method. Furthermore, multivariate regression analysis showed the betatrophin was significantly and positively independent with T category (β= 0.605, P=0.010), serum albumin (β= 0. 423, P=0.021), lipase (β= 0.292, P=0.039), and blood urea nitrogen (BUN) (β= 0.303, P=0.040). Further, the betatrophin was three folds of having PDAC-associated diabetes with the highest odds ratio [OR=3.39; 95% CI (1.20–9.57); P=0.021) and receiver operating characteristic (ROC) curve analysis showed that AUC value of betarophin was 0.853 which is slightly larger than AUC value of CA19-9 (0.792) in PDAC-DM patients. Interestingly, AUC value of betarophin plus CA19-9 was 0.988 in PDAC-DM patients. Therefore, betatrophin combined CA19-9 may serve as a potential biomarker for PDAC-associated diabetes.
Collapse
Affiliation(s)
- Hendra Susanto
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ta-Yu Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chang-Chiang Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan
| | - Jerry D T Purnomo
- Institute of Statistics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shu-Fan Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Hong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
31
|
Czapiewski P, Kunc M, Haybaeck J. Genetic and molecular alterations in olfactory neuroblastoma: implications for pathogenesis, prognosis and treatment. Oncotarget 2018; 7:52584-52596. [PMID: 27256979 PMCID: PMC5239575 DOI: 10.18632/oncotarget.9683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022] Open
Abstract
Olfactory neuroblastoma (ONB, Esthesioneuroblastoma) is an infrequent neoplasm of the head and neck area derived from olfactory neuroepithelium. Despite relatively good prognosis a subset of patients shows recurrence, progression and/or metastatic disease, which requires additional treatment. However, neither prognostic nor predictive factors are well specified. Thus, we performed a literature search for the currently available data on disturbances in molecular pathways, cytogenetic changes and results gained by next generation sequencing (NGS) approaches in ONB in order to gain an overview of genetic alterations which might be useful for treating patients with ONB. We present briefly ONB molecular pathogenesis and propose potential therapeutic targets and prognostic factors. Possible therapeutic targets in ONB include: receptor tyrosine kinases (c-kit, PDGFR-b, TrkB; EGFR); somatostatin receptor; FGF-FGFR1 signaling; Sonic hedgehog pathway; apoptosis-related pathways (Bcl-2, TRAIL) and neoangiogenesis (VEGF; KDR). Furthermore, we compare high- and low-grade ONB, and describe its frequent mimicker: sinonasal neuroendocrine carcinoma. ONB is often a therapeutic challenge, so our goal should be the implementation of acquired knowledge into clinical practice, especially at pretreated, recurrent and metastatic stages. Moreover, the multicenter molecular studies are needed to increase the amount of available data.
Collapse
Affiliation(s)
- Piotr Czapiewski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Kunc
- Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Johannes Haybaeck
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Hata T, Dal Molin M, McGregor-Das A, Song TJ, Wolfgang C, Eshleman JR, Hruban RH, Goggins M. Simple Detection of Telomere Fusions in Pancreatic Cancer, Intraductal Papillary Mucinous Neoplasm, and Pancreatic Cyst Fluid. J Mol Diagn 2018; 20:46-55. [PMID: 29229290 PMCID: PMC5745545 DOI: 10.1016/j.jmoldx.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Telomere end-to-end fusions are an important source of chromosomal instability that arise in cells with critically shortened telomeres. We developed a nested real-time quantitative PCR method for telomere fusion detection in pancreatic ductal adenocarcinomas, intraductal papillary mucinous neoplasms (IPMNs), and IPMN cyst fluids. Ninety-one pancreatic cancer cell lines and xenograft samples, 93 IPMNs, and 93 surgically aspirated IPMN cyst fluid samples were analyzed. The association between telomere shortening, telomerase activity, and telomere fusion detection was evaluated. Telomere fusions were detected in 56 of 91 pancreatic cancers (61.5%). Telomere fusion-positive cell lines had significantly shorter telomere lengths than fusion-negative lines (P = 0.003). Telomere fusions were undetectable in normal pancreas or IPMNs with low-grade dysplasia (0.0%) and were detected in IPMN with high-grade dysplasia (HGD; 48.0%) (P < 0.001). In IPMN cyst fluids, telomere fusions were more frequent in IPMNs with HGD (26.9%) or associated invasive cancer (42.9%) than IPMN with intermediate-grade dysplasia (15.4%) or low-grade dysplasia (0%) (P = 0.025). Telomerase activity levels were higher in cyst fluids with fusions than in those without (P = 0.0414). Cyst fluid telomere fusion status was an independent predictor of HGD/invasive cancer by multivariate analysis (odds ratio, 6.23; 95% CI, 1.61-28.0). Telomere fusions are detected in later stages of IPMN progression and can serve as a marker for predicting the presence of HGD and/or invasive cancer.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marco Dal Molin
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne McGregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tae Jun Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
33
|
Schunke KJ, Rosati LM, Zahurak M, Herman JM, Narang AK, Usach I, Klein AP, Yeo CJ, Korman LT, Hruban RH, Cameron JL, Laheru DA, Abrams RA. Long-term analysis of 2 prospective studies that incorporate mitomycin C into an adjuvant chemoradiation regimen for pancreatic and periampullary cancers. Adv Radiat Oncol 2018; 3:42-51. [PMID: 29556579 PMCID: PMC5856978 DOI: 10.1016/j.adro.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The purpose of this study was to report toxicity and long-term survival outcomes of 2 prospective trials evaluating mitomycin C (MMC) with 5-fluorouracil-based adjuvant chemoradiation in resected periampullary adenocarcinoma. METHODS AND MATERIALS From 1996 to 2002, 119 patients received an adjuvant 4-drug chemotherapy regimen of 5-fluorouracil, leucovorin, MMC, and dipyridamole with chemoradiation on 2 consecutive trials (trials A and B). Trial A patients received upfront chemoradiation (50 Gy split-course, 2.5 Gy/fraction) followed by 4 cycles of the 4-drug chemotherapy with bolus 5-fluorouracil. Trial B patients received 1 cycle of the 4-drug chemotherapy with continuous infusion 5-fluorouracil followed by continuous chemoradiation (45-54 Gy, 1.8 Gy/fraction) and 2 additional cycles of chemotherapy. Cox proportional hazards models were performed to identify prognostic factors for overall survival (OS). RESULTS Of the 62 trial A patients, 61% had pancreatic and 39% nonpancreatic periampullary carcinomas. Trial B (n = 57) consisted of 68% pancreatic and 32% nonpancreatic periampullary carcinomas. Resection margin and lymph node status were similar for both trials. Median follow-up was longer for trial A than trial B (197.5 vs 107.0 months), with median OS of 32.2 and 24.2 months, respectively. Rates of 3-, 5-, and 10-year OS were 48%, 31%, and 26% in trial A and 32%, 23%, and 9% in trial B. On multivariate analysis, lymph node-positive resection was the strongest prognostic factor for OS. A pancreatic primary and positive margin status were also associated with inferior survival (P < .05). Rates of grade ≥3 treatment-related toxicity in trials A and B were 2% and 7%, respectively. CONCLUSIONS This is the first study to report long-term outcomes of MMC with 5-fluorouracil-based adjuvant chemoradiation in periampullary cancers. Because MMC may be considered in DNA repair-deficient carcinomas, randomized trials are needed to determine the true benefit of adjuvant MMC.
Collapse
Affiliation(s)
- Kathryn J. Schunke
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren M. Rosati
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marianna Zahurak
- Division of Biostatistics and Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph M. Herman
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amol K. Narang
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Irina Usach
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles J. Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Larry T. Korman
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John L. Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A. Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ross A. Abrams
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
34
|
Elander N, Aughton K, Greenhalf W. Development of Novel Therapeutic Response Biomarkers. PANCREATIC CANCER 2018:1273-1304. [DOI: 10.1007/978-1-4939-7193-0_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Shah F, Goossens E, Atallah NM, Grimard M, Kelley MR, Fishel ML. APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing. Mol Oncol 2017; 11:1711-1732. [PMID: 28922540 PMCID: PMC5709621 DOI: 10.1002/1878-0261.12138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.
Collapse
Affiliation(s)
- Fenil Shah
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Nadia M Atallah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Michelle Grimard
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
36
|
Ormanns S, Haas M, Remold A, Kruger S, Holdenrieder S, Kirchner T, Heinemann V, Boeck S. The Impact of SMAD4 Loss on Outcome in Patients with Advanced Pancreatic Cancer Treated with Systemic Chemotherapy. Int J Mol Sci 2017; 18:E1094. [PMID: 28534865 PMCID: PMC5455003 DOI: 10.3390/ijms18051094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 05/15/2017] [Indexed: 02/04/2023] Open
Abstract
The role of the tumor suppressor mothers against decapentaplegic homolog 4 (SMAD4) has not yet been defined in patients (pts) with advanced pancreatic cancer (aPC). This translational research study was designed to evaluate the impact of tumoral SMAD4 loss on clinicopathological parameters and outcome in PC patients receiving palliative chemotherapy. Using immunohistochemistry, we examined SMAD4 expression in tumor tissue of 143 aPC pts treated within completed prospective clinical and biomarker trials. In uni- and multivariate analyses, SMAD4 expression status was correlated to clinicopathological patient characteristics and outcome. At chemotherapy initiation, 128 pts had metastatic PC; most pts (n = 99) received a gemcitabine-based regimen. SMAD4 loss was detected in 92 pts (64%); patient characteristics such as gender, age, tumor grading, disease stage or number of metastatic sites had no significant impact on tumoral SMAD4 status. In univariate analyses, SMAD4 loss had no impact on overall survival (hazard ratio (HR) 1.008, p = 0.656); however, we observed a prolonged progression-free survival (HR 1.565, p = 0.038) in pts with tumoral SMAD4 loss. This finding was confirmed in multivariate analyses (HR 1.790, p = 0.040), but only for gemcitabine-treated pts. In contrast to previous studies in resectable PC, loss of SMAD4 expression was not associated with a negative outcome in patients with advanced PC receiving systemic chemotherapy.
Collapse
Affiliation(s)
- Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians Universität München, Thalkirchner Str. 36, 80337 Munich, Germany.
| | - Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Marchioninistr. 15, 81377 Munich, Germany.
| | - Anna Remold
- Institute of Pathology, Ludwig-Maximilians Universität München, Thalkirchner Str. 36, 80337 Munich, Germany.
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Marchioninistr. 15, 81377 Munich, Germany.
| | - Stephan Kruger
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Marchioninistr. 15, 81377 Munich, Germany.
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technische Universität München, 80333 Munich, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany.
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians Universität München, Thalkirchner Str. 36, 80337 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK, German Cancer Consortium), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Marchioninistr. 15, 81377 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK, German Cancer Consortium), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Marchioninistr. 15, 81377 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK, German Cancer Consortium), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Ayars M, Eshleman J, Goggins M. Susceptibility of ATM-deficient pancreatic cancer cells to radiation. Cell Cycle 2017; 16:991-998. [PMID: 28453388 PMCID: PMC5462076 DOI: 10.1080/15384101.2017.1312236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.
Collapse
Affiliation(s)
- Michael Ayars
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Eshleman
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Centre; The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Beglyarova N, Banina E, Zhou Y, Mukhamadeeva R, Andrianov G, Bobrov E, Lysenko E, Skobeleva N, Gabitova L, Restifo D, Pressman M, Serebriiskii IG, Hoffman JP, Paz K, Behrens D, Khazak V, Jablonski SA, Golemis EA, Weiner LM, Astsaturov I. Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3-MYC Interactions as a Target in Pancreatic Cancer. Clin Cancer Res 2016; 22:6153-6163. [PMID: 27384421 PMCID: PMC5161635 DOI: 10.1158/1078-0432.ccr-16-0149] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. EXPERIMENTAL DESIGN We first developed a panel of new physiologic models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. RESULTS Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. The Cancer Genome Atlas analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. CONCLUSIONS This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers. Clin Cancer Res; 22(24); 6153-63. ©2016 AACR.
Collapse
Affiliation(s)
- Natalya Beglyarova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eugenia Banina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Grigorii Andrianov
- Department of Biochemistry, Kazan Federal University, Kazan, Russian Federation
| | - Egor Bobrov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena Lysenko
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalya Skobeleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Linara Gabitova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Max Pressman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John P Hoffman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Keren Paz
- Champions Oncology, Baltimore, Maryland
| | - Diana Behrens
- EPO Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Sandra A Jablonski
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Igor Astsaturov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Affiliation(s)
- Andrew H Ko
- Division of Hematology/Oncology Gastrointestinal Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco CA 94143, USA.
| |
Collapse
|
40
|
Chand S, O'Hayer K, Blanco FF, Winter JM, Brody JR. The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int J Biol Sci 2016; 12:273-82. [PMID: 26929734 PMCID: PMC4753156 DOI: 10.7150/ijbs.14951] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma, PDA) is infamously moving to the top of the list as one of the most lethal cancers with an overall 5 year survival rate of 7%. Multiple genomic-based and molecular characterization studies of PDA specimens and established animal models have provided the field with multiple targets and a progression model of this disease. Still, to date, the best therapeutic options are surgery and combination cytotoxic therapies. In general, even in the best case scenario (i.e., an early stage diagnosis and a response to a specific therapy), most of these fortunate patients' PDA cells acquire or exert resistance mechanisms and eventually kill the patient. Herein, we touch on a growing field of investigation that focuses on PDA cell therapeutic resistance mechanisms. We examine extrinsic elements (i.e., the tumor microenvironment, hypoxia) to the intrinsic processes within the cell (i.e., post-transcriptional gene regulation and somatic mutations) that are important for therapeutic efficacy and resistance. Even as better targeted and personalized approaches move through the clinical trial pipeline the discussed resistance mechanisms will most likely play a role in the management of this deadly disease.
Collapse
Affiliation(s)
- Saswati Chand
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| | - Kevin O'Hayer
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center;; 2. Department of Medical Oncology, and the; 3. Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia PA
| | - Fernando F Blanco
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center;; 3. Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia PA
| | - Jordan M Winter
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| | - Jonathan R Brody
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| |
Collapse
|
41
|
Samulitis BK, Pond KW, Pond E, Cress AE, Patel H, Wisner L, Patel C, Dorr RT, Landowski TH. Gemcitabine resistant pancreatic cancer cell lines acquire an invasive phenotype with collateral hypersensitivity to histone deacetylase inhibitors. Cancer Biol Ther 2015; 16:43-51. [PMID: 25485960 DOI: 10.4161/15384047.2014.986967] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gemcitabine based treatment is currently a standard first line treatment for patients with advanced pancreatic cancer, however overall survival remains poor, and few options are available for patients that fail gemcitabine based therapy. To identify potential molecular targets in gemcitabine refractory pancreatic cancer, we developed a series of gemcitabine resistant (GR) cell lines. Initial drug exposure selected for an early resistant phenotype that was independent of drug metabolic pathways. Prolonged drug selection pressure after 16 weeks, led to an induction of cytidine deaminase (CDA) and enhanced drug detoxification. Cross resistance profiles demonstrate approximately 100-fold cross resistance to the pyrimidine nucleoside cytarabine, but no resistance to the same in class agents, azacytidine and decitabine. GR cell lines demonstrated a dose dependent collateral hypersensitivity to class I and II histone deacetylase (HDAC) inhibitors and decreased expression of 3 different global heterochromatin marks, as detected by H4K20me3, H3K9me3 and H3K27me3. Cell morphology of the drug resistant cell lines demonstrated a fibroblastic type appearance with loss of cell-cell junctions and an altered microarray expression pattern, using Gene Ontology (GO) annotation, consistent with progression to an invasive phenotype. Of particular note, the gemcitabine resistant cell lines displayed up to a 15 fold increase in invasive potential that directly correlates with the level of gemcitabine resistance. These findings suggest a mechanistic relationship between chemoresistance and metastatic potential in pancreatic carcinoma and provide evidence for molecular pathways that may be exploited to develop therapeutic strategies for refractory pancreatic cancer.
Collapse
|
42
|
Abstract
Cancer is caused by the accumulation of inherited and/or acquired alterations in specific genes. The recent decline in the cost of DNA sequencing has allowed tumor sequencing to be conducted on a large scale, which, in turn, has led to an unprecedented understanding of the genetic events that drive neoplasia. This understanding, when integrated with meticulous histologic analyses and with clinical findings, has direct clinical implications. The recent sequencing of all of the major types of cystic and noncystic neoplasms of the pancreas has revealed opportunities for molecular diagnoses and for personalized treatment. This review summarizes the results from these recent studies focusing on the clinical relevance of genomic data.
Collapse
|
43
|
Ko AH. Progress in the treatment of metastatic pancreatic cancer and the search for next opportunities. J Clin Oncol 2015; 33:1779-86. [PMID: 25918299 DOI: 10.1200/jco.2014.59.7625] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A growing number of therapeutic options are now available for patients with metastatic pancreatic cancer, informed by positive results from recently completed phase III clinical trials. These have led to modest, if not necessarily transformative, improvements in clinical outcomes. Although the standard of care for metastatic disease remains cytotoxic therapy, a variety of novel therapeutic approaches are currently under active investigation, several of which have already demonstrated encouraging results in phase I/II studies. The following three broad categories (with significant overlap among them) are highlighted here: stromal-depleting agents, immunotherapies, and signal transduction inhibitors. The mechanistic rationale, limitations, and promise of each of these strategies specific to pancreatic cancer are discussed, as are the aspects of this disease and this patient population that pose ongoing challenges in terms of both therapeutic management and biomarker-driven trial design.
Collapse
Affiliation(s)
- Andrew H Ko
- From the University of California San Francisco Comprehensive Cancer Center, San Francisco, CA.
| |
Collapse
|
44
|
Duconseil P, Gilabert M, Gayet O, Loncle C, Moutardier V, Turrini O, Calvo E, Ewald J, Giovannini M, Gasmi M, Bories E, Barthet M, Ouaissi M, Goncalves A, Poizat F, Raoul JL, Secq V, Garcia S, Viens P, Iovanna J, Dusetti N. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1022-32. [PMID: 25765988 DOI: 10.1016/j.ajpath.2014.11.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
A major impediment to the effective treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is the molecular heterogeneity of this disease, which is reflected in an equally diverse pattern of clinical outcome and in responses to therapies. We developed an efficient strategy in which PDAC samples from 17 consecutive patients were collected by endoscopic ultrasound-guided fine-needle aspiration or surgery and were preserved as breathing tumors by xenografting and as a primary culture of epithelial cells. Transcriptomic analysis was performed from breathing tumors by an Affymetrix approach. We observed significant heterogeneity in the RNA expression profile of tumors. However, the bioinformatic analysis of these data was able to discriminate between patients with long- and short-term survival corresponding to patients with moderately or poorly differentiated PDAC tumors, respectively. Primary culture of cells allowed us to analyze their relative sensitivity to anticancer drugs in vitro using a chemogram, similar to the antibiogram for microorganisms, establishing an individual profile of drug sensitivity. As expected, the response was patient dependent. We also found that transcriptomic analysis predicts the sensitivity of cells to the five anticancer drugs most frequently used to treat patients with PDAC. In conclusion, using this approach, we found that transcriptomic analysis could predict the sensitivity to anticancer drugs and the clinical outcome of patients with PDAC.
Collapse
Affiliation(s)
- Pauline Duconseil
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France
| | - Marine Gilabert
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France
| | - Odile Gayet
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France
| | - Celine Loncle
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France
| | - Vincent Moutardier
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France; Department of Surgery, Hôpital Nord, Marseille, France
| | - Olivier Turrini
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France; Paoli-Calmettes Institute, Marseille, France
| | - Ezequiel Calvo
- Genomic Center, CHUL Research Centre, Quebec City, Quebec, Canada
| | | | | | - Mohamed Gasmi
- Department of Gastroenterology, Hôpital Nord, Marseille, France
| | | | - Marc Barthet
- Department of Gastroenterology, Hôpital Nord, Marseille, France
| | - Mehdi Ouaissi
- Department of Surgery, La Timone Hospital, Marseille, France
| | | | | | | | - Veronique Secq
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France; Department of Surgery, Hôpital Nord, Marseille, France
| | - Stephane Garcia
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France; Department of Surgery, Hôpital Nord, Marseille, France
| | | | - Juan Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France.
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille University and Paoli-Calmettes Institute, Scientific and Technological Park of Luminy, Marseille, France.
| |
Collapse
|
45
|
Xiang J, Liu L, Wang W, Xu H, Wu C, Xu J, Liu C, Long J, Ni Q, Yu X. Metabolic tumor burden: A new promising way to reach precise personalized therapy in PDAC. Cancer Lett 2015; 359:165-8. [DOI: 10.1016/j.canlet.2015.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
|
46
|
Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr JM, Neoptolemos J, Real FX, Van Laethem JL, Heinemann V. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 2015; 15:8-18. [PMID: 25547205 DOI: 10.1016/j.pan.2014.10.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic tumours, is a devastating malignancy with an extremely poor prognosis, as shown by a 1-year survival rate of around 18% for all stages of the disease. The low survival rates associated with PDAC primarily reflect the fact that tumours progress rapidly with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. As a result, there is an urgent need to develop accurate markers of pre-invasive pancreatic neoplasms in order to facilitate prediction of cancer risk and to help diagnose the disease at an earlier stage. However, screening for early diagnosis of prostate cancer remains challenging and identifying a highly accurate, low-cost screening test for early PDAC for use in clinical practice remains an important unmet need. More effective therapies are also crucial in PDAC, since progress in identifying novel therapies has been hampered by the genetic complexity of the disease and treatment remains a major challenge. Presently, the greatest step towards improved treatment efficacy has been made in the field of palliative chemotherapy by introducing FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan and oxaliplatin) and gemcitabine/nab-paclitaxel. Strategies designed to raise the profile of PDAC in research and clinical practice are a further requirement in order to ensure the best treatment for patients. This article proposes a number of approaches that may help to accelerate progress in treating patients with PDAC, which, in turn, may be expected to improve the quality of life and survival for those suffering from this devastating disease.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Stefano Cascinu
- Department of Medical Oncology, University of Ancona, Ancona, Italy
| | - Jörg Kleeff
- Department of General Surgery, Technische Universität München, Munich, Germany
| | | | - J-Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - John Neoptolemos
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Cancer Research UK Liverpool Clinical Trials Unit Director, University of Liverpool and Royal Liverpool University Hospital, Liverpool, UK
| | - Francisco X Real
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid and Universitat Pompeu Fabra, Barcelona, Spain
| | - Jean-Luc Van Laethem
- Department of Gastroenterology-GI Cancer Unit, Erasme University Hospital, Brussels, Belgium
| | - Volker Heinemann
- Comprehensive Cancer Centre Munich, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
47
|
Knott SR, Maceli A, Erard N, Chang K, Marran K, Zhou X, Gordon A, Demerdash OE, Wagenblast E, Kim S, Fellmann C, Hannon GJ. A computational algorithm to predict shRNA potency. Mol Cell 2014; 56:796-807. [PMID: 25435137 PMCID: PMC4272634 DOI: 10.1016/j.molcel.2014.10.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.
Collapse
Affiliation(s)
- Simon R.V. Knott
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Ashley Maceli
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Nicolas Erard
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Kenneth Chang
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Krista Marran
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Xin Zhou
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Assaf Gordon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Osama El Demerdash
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Elvin Wagenblast
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Sun Kim
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Christof Fellmann
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Cancer Research UK Cambridge Insitute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB20RE, UK
| |
Collapse
|
48
|
Hoffe S, Rao N, Shridhar R. Neoadjuvant vs adjuvant therapy for resectable pancreatic cancer: the evolving role of radiation. Semin Radiat Oncol 2014; 24:113-25. [PMID: 24635868 DOI: 10.1016/j.semradonc.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major challenge with pancreatic cancer management is in the discrimination of clearly resectable tumors from those that would likely be accompanied by a positive resection margin if upfront surgery was attempted. The standard of care for clearly resectable pancreatic cancer remains surgery followed by adjuvant therapy, but there is considerable controversy over whether such therapeutic adjuvant strategies should include radiotherapy. Furthermore, in a malignancy with such high rates of distant metastasis, investigators are now exploring the feasibility and outcomes of delivering therapy in the neoadjuvant setting, both for clearly resectable as well as borderline resectable tumors. In this review, we explore the current standard of care of upfront surgery for clearly resectable cancers followed by adjuvant therapy, focusing on the role of radiotherapy. We highlight the difficulties in interpreting a literature fraught with inconsistencies in how resectable vs borderline resectable cancers are defined and treated. Finally, we explore the role of neoadjuvant strategies in the modern era.
Collapse
Affiliation(s)
- Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL.
| | - Nikhil Rao
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Ravi Shridhar
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
49
|
Lee KC, Maturo C, Perera CN, Luddy J, Rodriguez R, Shorr R. Translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:91. [PMID: 25405166 PMCID: PMC4205874 DOI: 10.3978/j.issn.2305-5839.2014.05.08] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
STUDY RATIONALE AND OBJECTIVES Via genetic alterations, malignant transformation and proliferation are associated with extensive alterations of mitochondrial energy metabolism of tumor cells. Thus, inhibition of the altered form of mitochondrial energy metabolism of tumor cells may be an effective therapy for cancers. This study performed translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613. METHODS The gene profiles of BxPC-3 human pancreatic tumor cells and non-transformed NIH-3T3 mouse fibroblast cells (negative control), after CPI-613 or sham treatment, were assessed and compared using microarray technique. The anti-cancer efficacies of CPI-613 and Gemcitabine were assessed and compared in mice with xenograft from inoculation of BxPC-3 human pancreatic tumor cells, based on the degree of tumor growth inhibition and prolongation of survival when compared to vehicle treatment. The anti-cancer activities, according to overall survival (OS), of CPI-613 alone and in combination with Gemcitabine were assessed in patients with Stage IV pancreatic cancer. RESULTS Microarray studies indicated that CPI-613 down-regulated the expression of Cyclin D3, E1, E2, F, A2, B1 and CDK2 genes of BxPC-3 pancreatic cancer cells but not non-transformed NIH-3T3 mouse fibroblast cells (negative control). In mice with pancreatic carcinoma xenografts, four weekly intraperitoneal injections of either CPI-613 (25 mg/kg/administration) or Gemcitabine (50 mg/kg/administration) inhibited tumor growth and prolonged survival when compared to vehicle treatment. The degree of tumor growth inhibition was ~2×, and prolongation of survival was ~4×, greater with CPI-613 treatment than with Gemcitabine treatment. In patients with Stage IV advanced pancreatic cancer, CPI-613 at 420-1,300 mg/m(2), given twice weekly for three weeks followed by a week of rest (i.e., 3-week-on-1-week-off) as monotherapy, provided median OS of 15 months in three patients. CPI-613 at 150-320 mg/m(2) given twice weekly on the 3-week-on-1-week-off dosing schedule, coinciding with Gemcitabine (1,000 mg/m(2)) given once weekly on the 3-week-on-1-week-off dosing schedule, provided median OS of 17.8 months in four patients. These median OS values from CPI-613 monotherapy and CPI-613 + Gemcitabine treatment tend to be longer than those in patients treated with Abraxane + Gemcitabine combination or FOLFININOX (median OS ~12 months). CONCLUSIONS The dysfunctional mitochondria of pancreatic cancer cells was translationable from in vitro gene alteration and animal tumor model studies to patients with advanced Stage IV pancreatic cancer, as reflected by the anti-cancer activities of the tumor-specific anti-mitochondrial agent, CPI-613, in these studies.
Collapse
Affiliation(s)
- King C Lee
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| | - Claudia Maturo
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| | - Candida N Perera
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| | - John Luddy
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| | - Robert Rodriguez
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| | - Robert Shorr
- 1 Cornerstone Pharmaceuticals, Inc., 1 Duncan Drive, Cranbury, NJ 08512, USA ; 2 Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA
| |
Collapse
|
50
|
Kasloff SB, Pizzuto MS, Silic-Benussi M, Pavone S, Ciminale V, Capua I. Oncolytic activity of avian influenza virus in human pancreatic ductal adenocarcinoma cell lines. J Virol 2014; 88:9321-34. [PMID: 24899201 PMCID: PMC4136238 DOI: 10.1128/jvi.00929-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/01/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These results suggest that slightly pathogenic IAVs may prove to be effective for oncolytic virotherapy of PDA and provide grounds for further studies to develop specific and targeted viruses, with the aim of testing their efficacy in clinical contexts.
Collapse
Affiliation(s)
- Samantha B Kasloff
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Matteo S Pizzuto
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy Imperial College of London, London, United Kingdom
| | - Micol Silic-Benussi
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Silvia Pavone
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|