1
|
Seres R, Hameed H, McCabe MG, Russell D, Lee ATJ. The Multimodality Management of Malignant Peripheral Nerve Sheath Tumours. Cancers (Basel) 2024; 16:3266. [PMID: 39409887 PMCID: PMC11475700 DOI: 10.3390/cancers16193266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that have nerve sheath differentiation and can present at any anatomical site. They can arise from precursor neurofibroma in the context of neurofibromatosis type 1 (NF1) or as de novo and sporadic tumours in the absence of an underlying genetic predisposition. The primary therapeutic approach is most often radical surgery, with non-surgical modalities playing an important role, especially in locally advanced or metastatic cases. The aim of multimodality approaches is to optimize both local and systemic control while keeping to a minimum acute and late treatment morbidity. Advances in the understanding of the underlying biology of MPNSTs in both sporadic and NF-1-related contexts are essential for the management and implementation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Remus Seres
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Hassan Hameed
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Martin G. McCabe
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - David Russell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, Lancashire Teaching Hospitals NHS Trust, Chorley PR7 1PP, UK
| | - Alexander T. J. Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- NHS England Highly Specialised Service for Complex Neurofibromatosis Type 1: Manchester, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
2
|
Ferrito N, Báez-Flores J, Rodríguez-Martín M, Sastre-Rodríguez J, Coppola A, Isidoro-García M, Prieto-Matos P, Lacal J. Biomarker Landscape in RASopathies. Int J Mol Sci 2024; 25:8563. [PMID: 39201250 PMCID: PMC11354534 DOI: 10.3390/ijms25168563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
RASopathies are a group of related genetic disorders caused by mutations in genes within the RAS/MAPK signaling pathway. This pathway is crucial for cell division, growth, and differentiation, and its disruption can lead to a variety of developmental and health issues. RASopathies present diverse clinical features and pose significant diagnostic and therapeutic challenges. Studying the landscape of biomarkers in RASopathies has the potential to improve both clinical practices and the understanding of these disorders. This review provides an overview of recent discoveries in RASopathy molecular profiling, which extend beyond traditional gene mutation analysis. mRNAs, non-coding RNAs, protein expression patterns, and post-translational modifications characteristic of RASopathy patients within pivotal signaling pathways such as the RAS/MAPK, PI3K/AKT/mTOR, and Rho/ROCK/LIMK2/cofilin pathways are summarized. Additionally, the field of metabolomics holds potential for uncovering metabolic signatures associated with specific RASopathies, which are crucial for developing precision medicine. Beyond molecular markers, we also examine the role of histological characteristics and non-invasive physiological assessments in identifying potential biomarkers, as they provide evidence of the disease's effects on various systems. Here, we synthesize key findings and illuminate promising avenues for future research in RASopathy biomarker discovery, underscoring rigorous validation and clinical translation.
Collapse
Affiliation(s)
- Noemi Ferrito
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Julián Sastre-Rodríguez
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
| | - Alessio Coppola
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Pablo Prieto-Matos
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Pediatrics, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
3
|
Grit JL, McGee LE, Tovar EA, Essenburg CJ, Wolfrum E, Beddows I, Williams K, Sheridan RTC, Schipper JL, Adams M, Arumugam M, Vander Woude T, Gurunathan S, Field JM, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. p53 modulates kinase inhibitor resistance and lineage plasticity in NF1-related MPNSTs. Oncogene 2024; 43:1411-1430. [PMID: 38480916 PMCID: PMC11068581 DOI: 10.1038/s41388-024-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lauren E McGee
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ian Beddows
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kaitlin Williams
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Joshua L Schipper
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Thomas Vander Woude
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sharavana Gurunathan
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey M Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
- Helen DeVos Children's Hospital, Corewell Health System, Grand Rapids, MI, 49503, USA.
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
4
|
Rechberger JS, Millesi E, Power EA, Wang H, Mardini S, Spinner RJ, Daniels DJ. Shaping Our Understanding of Malignant Peripheral Nerve Sheath Tumor: A Bibliometric Analysis of the 100 Most-Cited Articles. World Neurosurg 2024; 184:293-302.e11. [PMID: 38219800 DOI: 10.1016/j.wneu.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are rare yet highly aggressive soft tissue sarcomas of mesenchymal origin, characterized by a heterogeneous pathological spectrum, limited therapeutic options, and high metastatic potential. METHODS Here, the authors conducted a comprehensive bibliometric analysis of the 100 most-cited MPNST articles by utilizing Elsevier's Scopus to identify all relevant published and indexed articles referring to MPNST, thereby aiming to elucidate the pertinent research findings regarding the disease's pathophysiology and therapeutic advancements. Articles were classified as basic science or clinical and analyzed for various bibliometric parameters. RESULTS The majority of articles (75%) focused on clinical aspects, reflecting the extensive clinicopathological characterization of MPNSTs. Notable studies investigated prognostic factors, histological and immunohistochemical features, and diagnostic modalities. The identification of loss of function mutations in the polycomb repressive complex 2 emerged as a pivotal role, as it opened avenues for potential targets for novel therapeutic interventions. Newer articles (published in or after 2006) demonstrated higher citation rates, suggesting evolving impact and collaboration. CONCLUSIONS This bibliometric analysis showed how developments in the understanding of MPNST pathophysiology and the creation of novel therapeutic strategies occurred throughout time. Changes that have been noticed recently could portend future innovative therapeutic approaches.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Elena Millesi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA; Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Erica A Power
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Samir Mardini
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA.
| |
Collapse
|
5
|
Roohani S, Claßen NM, Ehret F, Jarosch A, Dziodzio T, Flörcken A, Märdian S, Zips D, Kaul D. The role of radiotherapy in the management of malignant peripheral nerve sheath tumors: a single-center retrospective cohort study. J Cancer Res Clin Oncol 2023; 149:17739-17747. [PMID: 37924493 PMCID: PMC10725397 DOI: 10.1007/s00432-023-05449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE This study sought to investigate the role of radiotherapy (RT) in addition to surgery for oncological outcomes in patients with malignant peripheral nerve sheath tumors (MPNST). METHODS In this single-center, retrospective cohort study, histopathologically confirmed MPNST were analyzed. Local control (LC), overall survival (OS), and distant metastasis-free survival (DMFS) were assessed using the Kaplan-Meier estimator. Multivariable Cox regression analysis was performed to identify factors associated with LC, OS, and DMFS. RESULTS We included 57 patients with a median follow-up of 20.0 months. Most MPNSTs were located deeply (87.5%), were larger than 5 cm (55.8%), and had high-grade histology (78.7%). Seventeen patients received surgery only, and 25 patients received surgery and pre- or postoperative RT. Median LC, OS, and DMFS after surgery only were 8.7, 25.5, and 22.0 months; after surgery with RT, the median LC was not reached, while the median OS and DMFS were 111.5 and 69.9 months. Multivariable Cox regression of LC revealed a negative influence of patients presenting with local disease recurrence compared to patients presenting with an initial primary diagnosis of localized MPNST (hazard ratio: 8.86, p = 0.003). CONCLUSIONS The addition of RT to wide surgical excision appears to have a beneficial effect on LC. Local disease recurrence at presentation is an adverse prognostic factor for developing subsequent local recurrences. Future clinical and translational studies are warranted to identify molecular targets and find effective perioperative combination therapies with RT to improve patient outcomes.
Collapse
Affiliation(s)
- Siyer Roohani
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Noa Marie Claßen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Jarosch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Charitéplatz 1, 10117, Germany
| | - Tomasz Dziodzio
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Berlin, Germany
| | - Anne Flörcken
- Charité - Universitätsmedizin Berlin, Berlin, Germany, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hematology, Oncology and Tumor Immunology, Berlin, Augustenburger Platz 1, 13353, Germany
| | - Sven Märdian
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Chung MH, Aimaier R, Yu Q, Li H, Li Y, Wei C, Gu Y, Wang W, Guo Z, Long M, Li Q, Wang Z. RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST. Cell Oncol (Dordr) 2023; 46:1399-1413. [PMID: 37086345 DOI: 10.1007/s13402-023-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs. METHODS Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis. RESULTS RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation. CONCLUSIONS RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.
Collapse
Affiliation(s)
- Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Rahouma M, Baudo M, Khairallah S, Dabsha A, Tafuni A, El-Sayed Ahmed MM, Lau C, Iannacone E, Naka Y, Girardi L, Gaudino M, Lorusso R, Mick SL. Primary Cardiac Schwannoma: A Meta-Analysis of Individual Case Reports. J Clin Med 2023; 12:jcm12103356. [PMID: 37240461 DOI: 10.3390/jcm12103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Primary cardiac schwannoma (PCS) is a neurogenic tumor that arises from Schwann cells. Malignant schwannoma (MSh) is an aggressive cancer comprising 2% of all sarcomas. Information on the proper management of these tumors is limited. Four databases were searched for case reports/series of PCS. The primary outcome was overall survival (OS). Secondary outcomes included therapeutic strategies and the corresponding outcomes. Among 439 potentially eligible studies, 53 met the inclusion criteria. The patients included had 43.72 ± 17.76 years and 28.3% were males. Over 50% of patients had MSh, with 9.4% also demonstrating metastases. Schwannoma commonly occurs in the atria (66.0%). Left-sided PCS were more common than right-sided ones. Surgery was performed in almost 90% of the cases; chemotherapy and radiotherapy were used in 16.9% and 15.1% of cases, respectively. Compared to benign cases, MSh occurs at a younger age and is commonly located on the left side. OS of the entire cohort at 1 and 3 years were 60.7%, and 54.0%, respectively. Females and males OS were similar up to 2 years follow-up. Surgery was associated with higher OS (p < 0.01). Surgery is the primary treatment option for both benign and malignant cases and was the only factor associated with a relative improvement in survival.
Collapse
Affiliation(s)
- Mohamed Rahouma
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Massimo Baudo
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
- Cardiac Surgery Department, Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Sherif Khairallah
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Anas Dabsha
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Alessandro Tafuni
- Unit of Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Magdy M El-Sayed Ahmed
- Cardiothoracic Surgery Department, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Surgery, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Christopher Lau
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| | - Erin Iannacone
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yoshifumi Naka
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| | - Leonard Girardi
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mario Gaudino
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, 6229 ER Maastricht, The Netherlands
| | - Stephanie L Mick
- Cardiothoracic Surgery Department, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Borcherding DC, Amin NV, He K, Zhang X, Lyu Y, Dehner C, Bhatia H, Gothra A, Daud L, Ruminski P, Pratilas CA, Pollard K, Sundby T, Widemann BC, Hirbe AC. MEK Inhibition Synergizes with TYK2 Inhibitors in NF1-Associated Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2023; 29:1592-1604. [PMID: 36799629 PMCID: PMC10102849 DOI: 10.1158/1078-0432.ccr-22-3722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with limited treatment options and poor survival rates. About half of MPNST cases are associated with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Overexpression of TYK2 occurs in the majority of MPNST, implicating TYK2 as a therapeutic target. EXPERIMENTAL DESIGN The effects of pharmacologic TYK2 inhibition on MPNST cell proliferation and survival were examined using IncuCyte live cell assays in vitro, and downstream actions were analyzed using RNA-sequencing (RNA-seq), qPCR arrays, and validation of protein changes with the WES automated Western system. Inhibition of TYK2 alone and in combination with MEK inhibition was evaluated in vivo using both murine and human MPNST cell lines, as well as MPNST PDX. RESULTS Pharmacologic inhibition of TYK2 dose-dependently decreased proliferation and induced apoptosis over time. RNA-seq pathway analysis on TYK2 inhibitor-treated MPNST demonstrated decreased expression of cell cycle, mitotic, and glycolysis pathways. TYK2 inhibition resulted in upregulation of the MEK/ERK pathway gene expression, by both RNA-seq and qPCR array, as well as increased pERK1/2 levels by the WES Western system. The compensatory response was tested with dual treatment with TYK2 and MEK inhibitors, which synergistically decreased proliferation and increased apoptosis in vitro. Finally, combination therapy was shown to inhibit growth of MPNST in multiple in vivo models. CONCLUSIONS These data provide the preclinical rationale for the development of a phase I clinical trial of deucravacitinib and mirdametinib in NF1-assosciated MPNST.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Neha V. Amin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin He
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Himanshi Bhatia
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Angad Gothra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Layla Daud
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Ruminski
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Yao C, Zhou H, Dong Y, Alhaskawi A, Hasan Abdullah Ezzi S, Wang Z, Lai J, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Lu H. Malignant Peripheral Nerve Sheath Tumors: Latest Concepts in Disease Pathogenesis and Clinical Management. Cancers (Basel) 2023; 15:cancers15041077. [PMID: 36831419 PMCID: PMC9954030 DOI: 10.3390/cancers15041077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma with limited therapeutic options and a poor prognosis. Although neurofibromatosis type 1 (NF1) and radiation exposure have been identified as risk factors for MPNST, the genetic and molecular mechanisms underlying MPNST pathogenesis have only lately been roughly elucidated. Plexiform neurofibroma (PN) and atypical neurofibromatous neoplasm of unknown biological potential (ANNUBP) are novel concepts of MPNST precancerous lesions, which revealed sequential mutations in MPNST development. This review summarized the current understanding of MPNST and the latest consensus from its diagnosis to treatment, with highlights on molecular biomarkers and targeted therapies. Additionally, we discussed the current challenges and prospects for MPNST management.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, #138 Tongzipo Road, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-87236121
| |
Collapse
|
10
|
Huang X, Fu Z, Gu Q, Wang J, Sun Y, He Y, Wu S, Hu X, Guo C. A worldwide bibliometric analysis of malignant peripheral nerve sheath tumors from 2000 to 2022. Front Oncol 2023; 13:1111985. [PMID: 36776342 PMCID: PMC9911664 DOI: 10.3389/fonc.2023.1111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Background Currently, malignant peripheral nerve sheath tumors (MPNST) are the subject of intense research interest. However, bibliometric studies have not been conducted in this field. The purpose of the study was to identify historical trends and presents a bibliometric analysis of the MPNST literature from 2000 to 2022. Methods For the bibliometric analysis, publications were retrieved from the Web of Science database based on the following search terms: [TI = (MPNST) OR TI= (malignant peripheral nerve sheath tumors) AND PY = (2000-2022)]. The following information was collected for each document: the publication trends and geographical distribution, important authors and collaboration, keyword distribution and evaluation, most popular journals, and most influential articles. Results We included 1400 documents for bibliometric analysis, covering five categories: 824 articles, 17 proceedings papers, 68 letters, 402 meeting abstracts, and 89 reviews. Corrections, editorials, book chapters, data papers, publications with expressed concerns, and retractions were excluded from our research. Conclusion Since 2000, the number of publications on MPNST has continuously increased. Among all countries that contributed to the MPNST research, the USA, Japan, and China were the three most productive countries. The journal Modern Pathology has the most publications on MPNST, while those in the Cancer Research journal were the most frequently cited. The University of Texas MD Anderson Cancer Center may be a good partner to collaborate with. Recent research trends in MPNST have focused on tumorigenesis, clinical management, and predictive biomarkers.
Collapse
Affiliation(s)
- Xingfeng Huang
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Zexin Fu
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinhao Gu
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ji Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yong He
- Cancer Center, Zhejiang University, Hangzhou, China,State Key Laboratory of Fluid Power and Mechatronics Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China,Key Laboratory of Materials Processing and Mold, Zhejiang University, Zhengzhou, China,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Sufan Wu
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xiaojie Hu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaojie Hu, ; Chengrui Guo,
| | - Chengrui Guo
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China,*Correspondence: Xiaojie Hu, ; Chengrui Guo,
| |
Collapse
|
11
|
Shen JW, Wu PY, Kuo YH, Chang QX, Wen KC, Chiang HM. Fermented Taiwanofungus camphoratus Extract Ameliorates Psoriasis-Associated Response in HaCaT Cells via Modulating NF-𝜅B and mTOR Pathways. Int J Mol Sci 2022; 23:ijms232314623. [PMID: 36498953 PMCID: PMC9739991 DOI: 10.3390/ijms232314623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is a chronic autoimmune disease, and until now, it remains an incurable disease. Therefore, the development of new drugs or agents that ameliorate the disease will have marketing potential. Taiwanofungus camphoratus (TC) is a specific fungus in Taiwan. It is demonstrated to have anticancer, anti-inflammation, and hepatoprotective effects. However, the effects of TC fermented extract on psoriasis are under investigation. In this research, we studied the ability of TC on antioxidative activity and the efficacy of TC on interleukin-17 (IL-17A)-induced intracellular oxidative stress, inflammation-relative, and proliferation-relative protein expression in human keratinocytes. The results of a DPPH radical scavenging assay, reducing power assay, and hydroxyl peroxide inhibition assay indicated that TC has a potent antioxidant ability. Furthermore, TC could reduce IL-17A-induced intracellular ROS generation and restore the NADPH level. In the investigation of pathogenesis, we discovered TC could regulate inflammatory and cell proliferation pathways via p-IKKα/p-p65 and p-mTOR/p-p70S6k signaling pathways in human keratinocytes. In conclusion, TC showed characteristics such as antioxidant, anti-inflammatory, and anti-psoriatic-associated responses. It is expected to be developed as a candidate for oxidative-stress-induced skin disorders or psoriasis treatment.
Collapse
Affiliation(s)
- Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Qiao-Xin Chang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, School of Life Sciences, China Medical University, Taichung 406, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 5302)
| |
Collapse
|
12
|
Tao J, Sun D, Zhou H, Zhu J, Zhang X, Hou H. Next-generation sequencing identifies potential novel therapeutic targets in Chinese HGSOC patients. Pathol Res Pract 2022; 238:154074. [PMID: 35988354 DOI: 10.1016/j.prp.2022.154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Targeted therapy, especially the use of poly (adenosine diphosphate ribose) polymerase (PARP) inhibitors (PARPis), has improved the outcome of patients with ovarian cancer. However, most high-grade serous ovarian cancer (HGSOC) patients have wild-type BRCA1/2, and it is necessary to disclose more potential novel targets for other available targeted drugs. So, detection of genetic alterations beyond BRCA1/2 is critical to screen HGSOC patients for personalized therapy. In this study, a broad, hybrid capture-based next-generation sequencing (NGS) assay was used to identify actionable genetic alterations from HGSOC cancer tissues. METHODS Sixty-eight patients with HGSOC were enrolled, including 6 International Federation of Gynecology and Obstetrics (FIGO) stage I, 15 stage II, 37 stage III and 10 stage IV patients. All patients signed informed consent forms. Potentially actionable genetic alterations, including base substitutions, indels, copy number alterations, and gene fusions, were identified using targeted NGS. RESULTS In our study, 14.7% (10/68) of the tumors harbored actionable genetic alterations in patients with BRCA1. A total of 25.0% (17/68) of patients without BRCA1 mutations harbored other actionable genetic alterations, such as homologous recombination repair (HRR) pathway-related genes (ATM, CDK12, FANCA, and FANCD2), PI3K/AKT/mTOR pathway genes (NF1, FBXW7, PIK3CA, PTEN, TSC1, and TSC2), and some other genes (ARID1A, FGFR1, KRAS, and NRAS). Furthermore, some patients harboring ARID1A or NF1 actionable genetic alterations showed good clinical efficacy to immune checkpoint inhibitors (ICIs) and everolimus, respectively. CONCLUSIONS Our research indicates that 39.7% (27/68) of patients with HGSOC harbored at least one actionable genetic alteration. 25.0% (17/68) of patients had somatic mutations or copy number variations beyond BRCA1 mutations and might be treated with off-label therapy or to be allocated into clinical trial. NGS assays of HGSOC patients are necessary to screen actionable genetic alterations to guide personalized and precise treatment.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China
| | - Dantong Sun
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China
| | - Hai Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China
| | - Jingjuan Zhu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, 59 Haier Road, Shandong 266000, China.
| |
Collapse
|
13
|
Ge LL, Xing MY, Zhang HB, Wang ZC. Neurofibroma Development in Neurofibromatosis Type 1: Insights from Cellular Origin and Schwann Cell Lineage Development. Cancers (Basel) 2022; 14:cancers14184513. [PMID: 36139671 PMCID: PMC9497298 DOI: 10.3390/cancers14184513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1), a genetic tumor predisposition syndrome that affects about 1 in 3000 newborns, is caused by mutations in the NF1 gene and subsequent inactivation of its encoded neurofibromin. Neurofibromin is a tumor suppressor protein involved in the downregulation of Ras signaling. Despite a diverse clinical spectrum, one of several hallmarks of NF1 is a peripheral nerve sheath tumor (PNST), which comprises mixed nervous and fibrous components. The distinct spatiotemporal characteristics of plexiform and cutaneous neurofibromas have prompted hypotheses about the origin and developmental features of these tumors, involving various cellular transition processes. METHODS We retrieved published literature from PubMed, EMBASE, and Web of Science up to 21 June 2022 and searched references cited in the selected studies to identify other relevant papers. Original articles reporting the pathogenesis of PNSTs during development were included in this review. We highlighted the Schwann cell (SC) lineage shift to better present the evolution of its corresponding cellular origin hypothesis and its important effects on the progression and malignant transformation of neurofibromas. CONCLUSIONS In this review, we summarized the vast array of evidence obtained on the full range of neurofibroma development based on cellular and molecular pathogenesis. By integrating findings relating to tumor formation, growth, and malignancy, we hope to reveal the role of SC lineage shift as well as the combined impact of additional determinants in the natural history of PNSTs.
Collapse
Affiliation(s)
- Ling-Ling Ge
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming-Yan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
| | - Hai-Bing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| |
Collapse
|
14
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Gu Y, Wang W, Li Y, Li H, Guo Z, Wei C, Long M, Chung M, Aimaier R, Li Q, Wang Z. Preclinical Assessment of MEK Inhibitors for Malignant Peripheral Nerve Sheath Tumors Reveals Differences in Efficacy and Adaptive Response. Front Oncol 2022; 12:903177. [PMID: 35875109 PMCID: PMC9303010 DOI: 10.3389/fonc.2022.903177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare soft-tissue sarcomas refractory to standard therapies. Inactivation of NF1 and subsequent upregulation of RAS/RAF/MEK/ERK signaling exist in the majority of MPNSTs. However, the lack of preclinical assessment of MEK inhibitors in MPNSTs hinders the clinical application as well as the development of combination therapy. To guide further clinical studies, we evaluated different MEK inhibitors in terms of efficacy, safety, and mechanism of adaptive response in treating MPNSTs. Using a MPNST tissue microarray, we found that p-ERK could serve as a biomarker for predicting the prognosis of MPNST patients as well as an effective therapeutic target. Through in vitro and in vivo experiments, we identified trametinib as the most potent MEK inhibitor for the treatment of MPNSTs. Mechanistically, reduced reactivation of the MAPK pathway and compensatory activation of the parallel pathways contributed to better efficacy. Our results provide a basis for the further clinical application of MEK inhibitors as single agents or combinational therapies.
Collapse
Affiliation(s)
- Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| |
Collapse
|
16
|
Gonzalez-Muñoz T, Kim A, Ratner N, Peinado H. The need for new treatments targeting MPNST: the potential of strategies combining MEK inhibitors with antiangiogenic agents. Clin Cancer Res 2022; 28:3185-3195. [PMID: 35446392 DOI: 10.1158/1078-0432.ccr-21-3760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive soft tissue sarcomas that represent an important clinical challenge, particularly given their strong tendency to relapse and metastasize, and their relatively poor response to conventional therapies. To date, targeted, non-cytotoxic treatments have demonstrated limited clinical success with MPNSTs, highlighting the need to explore other key pathways in order to find novel, improved therapeutic approaches. Here, we review evidence supporting the crucial role of the RAS/MEK/ERK pathway and angiogenesis in MPNST pathogenesis, and we focus on the potential of therapies targeting these pathways to treat this disease. We also present works suggesting that the combination of MEK inhibitors and anti-angiogenic agents could represent a promising therapeutic strategy to manage MPNSTs. In support of this notion, we discuss the preclinical rational and clinical benefits of this combination therapy in other solid tumor types. Finally, we describe other emerging therapeutic approaches that could improve patient outcomes in MPNSTs, such as immune-based therapies.
Collapse
Affiliation(s)
| | - AeRang Kim
- Children's National Hospital, Washington, DC, United States
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Héctor Peinado
- Spanish National Cancer Research Centre, Madrid, Madrid, Spain
| |
Collapse
|
17
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
18
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
19
|
Walczak A, Radek M, Majsterek I. The Role of ER Stress-Related Phenomena in the Biology of Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 22:ijms22179405. [PMID: 34502310 PMCID: PMC8430526 DOI: 10.3390/ijms22179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare but one of the most aggressive types of cancer. Currently, there are no effective chemotherapy strategies for these malignancies. The inactivation of the neurofibromatosis type I (NF1) gene, followed by loss of TP53, is an early stage in MPNST carcinogenesis. NF1 is a negative regulator of the Ras proteins family, which are key factors in regulating cell growth, homeostasis and survival. Cell cycle dysregulation induces a stress phenotype, such as proteotoxic stress, metabolic stress, and oxidative stress, which should result in cell death. However, in the case of neoplastic cells, we observe not only the avoidance of apoptosis, but also the impact of stress factors on the treatment effectiveness. This review focuses on the pathomechanisms underlying MPNST cells physiology, and discusses the possible ways to develop a successful treatment based on the molecular background of the disease.
Collapse
Affiliation(s)
- Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence:
| |
Collapse
|
20
|
Mohamad T, Plante C, Brosseau JP. Toward Understanding the Mechanisms of Malignant Peripheral Nerve Sheath Tumor Development. Int J Mol Sci 2021; 22:ijms22168620. [PMID: 34445326 PMCID: PMC8395254 DOI: 10.3390/ijms22168620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) originate from the neural crest lineage and are associated with the neurofibromatosis type I syndrome. MPNST is an unmet clinical need. In this review article, we summarize the knowledge and discuss research perspectives related to (1) the natural history of MPNST development; (2) the mouse models recapitulating the progression from precursor lesions to MPNST; (3) the role of the tumor microenvironment in MPNST development, and (4) the signaling pathways linked to MPNST development.
Collapse
Affiliation(s)
- Teddy Mohamad
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Camille Plante
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 72477)
| |
Collapse
|
21
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
22
|
Feroze K, Kaliyadan F. Targeted genetic and molecular therapies in neurofibromatosis - A review of present therapeutic options and a glimpse into the future. Indian J Dermatol Venereol Leprol 2021; 88:1-10. [PMID: 34379966 DOI: 10.25259/ijdvl_6_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/01/2021] [Indexed: 11/04/2022]
Abstract
Neurofibromatosis type 1, the most common phakomatoses, can present with a host of signs and symptoms, usually involving the skin and the peripheral nervous system. It is characterized by a mutation in the neurofibromatosis type 1 gene on chromosome 17q11.2 that codes for the protein neurofibromin. Neurofibromin acts as a tumor suppressor gene by inhibiting rat sarcoma (Ras) activity and its deficiency leads to increased Ras activity, cellular proliferation and tumor formation. This review was conducted to analyze the various targeted therapies at the genetic and molecular level employed to manage the tumors and other clinical presentations associated with neurofibromatosis type 1. Twenty-eight studies of treatment modalities for the conditions associated with neurofibromatosis and which involved either targeted gene therapy or molecular level therapies, including the latest advances, were included in this review. Mitogen-activated protein kinase kinase inhibition, mammalian target of Rapamycin inhibition and Tyrosine kinase inhibition, represent some of the newer treatment options in this category. Although there are a number of trials for providing therapeutic options at the genetic and molecular level for the various physical and psychological morbidities associated with neurofibromatosis type 1, most of them are in the preclinical stage. Increased clinical trials of the molecules and gene therapies could significantly help in managing the various chronic and sometimes, life-threatening conditions associated with neurofibromatosis 1 and these will probably represent the preferred treatment direction of the future.
Collapse
Affiliation(s)
- Kaberi Feroze
- Department of Ophthalmology, Al Azhar Medical College, Thodupuzha, Kerala, India
| | - Feroze Kaliyadan
- Department of Dermatology, College of Medicine, King Faisal University, Hofuf, Saudi Arabia.,Department of Dermatology, Sree Narayana Institute of Medical Sciences, Chalakka, Kerala, India
| |
Collapse
|
23
|
Singh D, Dromel PC, Perepelkina T, Baranov P, Young M. C6 Cell Injection into the Optic Nerve of Long-Evans Rats: A Short-Term Model of Optic Pathway Gliomas. Cell Transplant 2021; 29:963689720964383. [PMID: 33356508 PMCID: PMC7873768 DOI: 10.1177/0963689720964383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The optic pathway glioma (OPG) is a slow-growing brain tumor that arises along the optic nerve or its downstream connections and causing vision to gradually worsen with time. This tumor forms in children with a genetic condition called neurofibromatosis type 1 (NF1), causing tumors to grow on nerves. In normal conditions, glial cells are there to support and protect nerve cells but, in NF1-OPG, glial cells have a genetic defect and grow out of control forming a tumor called a glioma. There are no rat models of NF1-OPG that can be used to explore various treatment options, and mouse models make interventional studies difficult due to their small eye size. We have created a model in which to study the progression of tumor growth in the optic nerve and establish the anatomical and functional consequences of the model and determine its suitability to serve as a surrogate for human disease. C6 rat glioma cells were injected into the optic nerve of Long-Evans rats and allowed to proliferate for 2 weeks. The eye clearly showed proptosis and lens opacity was observed, likely due to increased intraocular pressure caused by growing tumors. Hematoxylin–eosin staining showed marked cellularity, with hyperchromatism and pleomorphism. There was prominent area of necrosis with neoplastic cells palisading around the penumbra. Immunostaining with markers such as S100, β-tubulin III, Foxp3, CD45, Vimentin, and Ki67 confirmed low-grade tumor formation, with a mild immune response. Our results show the utility of a surgically induced rat model of OPG that may be used for exploring various treatment options for NF1 ocular tumors.
Collapse
Affiliation(s)
- Deepti Singh
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Pierre C Dromel
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA.,Department of Material Science and Engineering, 2167 Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Perepelkina
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Michael Young
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Tsukamoto S, Mavrogenis AF, Tanaka Y, Errani C. Imaging of Soft Tissue Tumors. Curr Med Imaging 2021; 17:197-216. [PMID: 32660406 DOI: 10.2174/1573405616666200713183400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
Differentiation of malignant from benign soft tissue tumors is challenging with imaging alone, including that by magnetic resonance imaging and computed tomography. However, the accuracy of this differentiation has increased owing to the development of novel imaging technology. Detailed patient history and physical examination remain essential for differentiation between benign and malignant soft tissue tumors. Moreover, measurement only of tumor size based on Response Evaluation Criteria In Solid Tumors criteria is insufficient for the evaluation of response to chemotherapy or radiotherapy. Change in metabolic activity measured by 18F-fluorodeoxyglucose positron emission tomography or dynamic contrast enhanced-derived quantitative endpoints can more accurately evaluate treatment response compared to change in tumor size. Magnetic resonance imaging can accurately evaluate essential factors in surgical planning such as vascular or bone invasion and "tail sign". Thus, imaging plays a critical role in the diagnosis and treatment of soft tissue tumors.
Collapse
Affiliation(s)
- Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Andreas F Mavrogenis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Costantino Errani
- Department Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
25
|
Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Clin Pharmacokinet 2020; 60:283-303. [PMID: 33354735 DOI: 10.1007/s40262-020-00967-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Selumetinib, a highly specific mitogen-activated protein kinase 1/2 inhibitor, is approved for children older than 2 years of age with neurofibromatosis 1 who have inoperable plexiform neurofibromas. By selectively binding to mitogen-activated protein kinase 1/2 proteins, selumetinib can arrest the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway that regulates critical cellular responses. Selumetinib has shown promising results as a single agent or in combination with conventional chemotherapy and other targeted therapies both preclinically and clinically, in multiple cancers including pediatric low-grade glioma, non-small cell lung cancer, and melanoma, among others. The pharmacokinetic profiles of selumetinib and its active metabolite N-desmethyl selumetinib have been well characterized in both adults and children. Both compounds exhibited rapid absorption and mean terminal elimination half-lives of about 7.5 h, with minimal accumulation at steady state. Three population pharmacokinetic models have been developed in adults and children, characterizing large inter- and intra-patient variabilities, and identifying significant covariates including food intake on selumetinib absorption, weight metrics, age, co-administration of cytochrome modulators, and Asian ethnicity on selumetinib apparent oral clearance. The most common side effects associated with selumetinib are dermatologic, gastrointestinal toxicities, and fatigue. Most toxicities are mild or moderate, generally tolerated and manageable. Cardiovascular and ocular toxicities remain less frequent but can be potentially more severe and require close monitoring. Overall, selumetinib exhibits a favorable safety profile and pharmacokinetic properties, with promising activity in multiple solid tumors, supporting current and further evaluation in combination with conventional chemotherapy and other targeted agents.
Collapse
|
26
|
Martin E, Acem I, Grünhagen DJ, Bovée JVMG, Verhoef C. Prognostic Significance of Immunohistochemical Markers and Genetic Alterations in Malignant Peripheral Nerve Sheath Tumors: A Systematic Review. Front Oncol 2020; 10:594069. [PMID: 33415076 PMCID: PMC7783392 DOI: 10.3389/fonc.2020.594069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas with dismal prognosis. Pathological and genetic markers may predict more aggressive behavior in MPNSTs but have uncommonly been investigated, and few are used in daily practice. This study reviews the prognostic value of immunohistochemical markers and genetic alterations in MPNST. Methods A systematic search was performed in PubMed and Embase databases according to the PRISMA guidelines. Search terms related to ‘MPNST’ and ‘prognostic’ were used. Studies investigating the association of immunohistochemical markers or genetic alterations with prognosis were included. Qualitative synthesis was performed on all studies. A distinction was made between univariable and multivariable associations. Results Forty-six studies were included after full-text screening. Sixty-seven different immunohistochemical markers were investigated. Absence of S100 and H3K27me3 and high Ki67 and p53 staining was most commonly independently associated with worse survival and disease-free survival. Several genetic alterations were investigated as well with varying association to survival. TP53, CDK4, RASSF1A alterations were independently associated with worse survival, as well as changes in chromosomal length in Xp, 10q, and 16p. Conclusions MPNSTs harbor complex and heterogeneous biology. Immunohistochemical markers and genetic alterations have variable prognostic value. Absence of S100 and H3K27me3 and increased Ki67 can be of prognostic value. Alterations in TP53 or increase in p53 staining may distinguish MPNSTs with worse outcomes. Genetic alterations and staining of other cell cycle regulatory and Ras pathway proteins may also help stratifying patients with worse outcomes. A combination of markers can increase the prognostic value.
Collapse
Affiliation(s)
- Enrico Martin
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ibtissam Acem
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
27
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
28
|
Tao J, Sun D, Dong L, Zhu H, Hou H. Advancement in research and therapy of NF1 mutant malignant tumors. Cancer Cell Int 2020; 20:492. [PMID: 33061844 PMCID: PMC7547409 DOI: 10.1186/s12935-020-01570-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The NF1 gene encodes neurofibromin, which is one of the primary negative regulatory factors of the Ras protein. Neurofibromin stimulates the GTPase activity of Ras to convert it from an active GTP-bound form to its inactive GDP-bound form through its GTPase activating protein-related domain (GRD). Therefore, neurofibromin serves as a shutdown signal for all vertebrate RAS GTPases. NF1 mutations cause a resultant decrease in neurofibromin expression, which has been detected in many human malignancies, including NSCLC, breast cancer and so on. NF1 mutations are associated with the underlying mechanisms of treatment resistance discovered in multiple malignancies. This paper reviews the possible mechanisms of NF1 mutation-induced therapeutic resistance to chemotherapy, endocrine therapy and targeted therapy in malignancies. Then, we further discuss advancements in targeted therapy for NF1-mutated malignant tumors. In addition, therapies targeting the downstream molecules of NF1 might be potential novel strategies for the treatment of advanced malignancies.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Dantong Sun
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Lina Dong
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Hua Zhu
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Helei Hou
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| |
Collapse
|
29
|
Meister MT, Scheer M, Hallmen E, Stegmaier S, Vokuhl C, von Kalle T, Fuchs J, Münter M, Niggli F, Ladenstein R, Kazanowska B, Ljungman G, Bielack S, Koscielniak E, Klingebiel T. Malignant peripheral nerve sheath tumors in children, adolescents, and young adults: Treatment results of five Cooperative Weichteilsarkom Studiengruppe (CWS) trials and one registry. J Surg Oncol 2020; 122:1337-1347. [PMID: 32812260 DOI: 10.1002/jso.26153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that present as large, invasive tumors. Our aim was to assess outcomes, identify prognostic factors, and analyze treatment strategies in a prospectively collected pediatric cohort. METHODS Patients less than 21 years with MPNST treated in the consecutive prospective European Cooperative Weichteilsarkom Studiengruppe (CWS)-trials (1981-2009) and the CWS-SoTiSaR registry (2009-2015) were analyzed. RESULTS A total of 159 patients were analyzed. Neurofibromatosis type I (NF1) was reported in thirty-eight patients (24%). Most were adolescents (67%) with large (>10 cm, 65%) tumors located at extremities (42%). Nodal involvement was documented in 15 (9%) and distant metastases in 15 (9%) upon diagnosis. Overall, event-free survival (EFS) was 40.5% at 5 and 36.3% at 10 years, and overall survival (OS) was 54.6% at 5 and 47.1% at 10 years. Age, NF1 status, tumor site, tumor size, Intergroup Rhabdomyosarcoma Study (IRS) group, metastatic disease, and achieving first complete remission (CR1) were identified as prognostic factors for EFS and/or OS in the univariate analysis. CONCLUSIONS Prognostic factors were identified and research questions for future clinical trials were addressed.
Collapse
Affiliation(s)
- Michael T Meister
- Department of Pediatric Oncology and Hematology, University Hospital Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Research, Utrecht, The Netherlands
| | - Monika Scheer
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Erika Hallmen
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Sabine Stegmaier
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Christian Vokuhl
- Department of Pathology, Section of Pediatric Pathology, University Hospital Bonn, Bonn, Germany
| | - Thekla von Kalle
- Institute of Radiology, Klinikum Stuttgart, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital, Tübingen, Germany
| | - Marc Münter
- Institute of Radiotherapy, Klinikum Stuttgart, Stuttgart, Germany
| | - Felix Niggli
- Department of Pediatric Oncology, University of Zürich, Zürich, Switzerland
| | - Ruth Ladenstein
- Department of Pediatrics, St. Anna Kinderspital and St. Anna Kinderkrebsforschung e.V., Vienna, Austria
| | | | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Stefan Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Thomas Klingebiel
- Department of Pediatric Oncology and Hematology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | | |
Collapse
|
30
|
Current Approaches for Personalized Therapy of Soft Tissue Sarcomas. Sarcoma 2020; 2020:6716742. [PMID: 32317857 PMCID: PMC7152984 DOI: 10.1155/2020/6716742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcomas (STS) are a highly heterogeneous group of cancers of mesenchymal origin with diverse morphologies and clinical behaviors. While surgical resection is the standard treatment for primary STS, advanced and metastatic STS patients are not eligible for surgery. Systemic treatments, including standard chemotherapy and newer chemical agents, still play the most relevant role in the management of the disease. Discovery of specific genetic alterations in distinct STS subtypes allowed better understanding of mechanisms driving their pathogenesis and treatment optimization. This review focuses on the available targeted drugs or drug combinations based on genetic aberration involved in STS development including chromosomal translocations, oncogenic mutations, gene amplifications, and their perspectives in STS treatment. Furthermore, in this review, we discuss the possible use of chemotherapy sensitivity and resistance assays (CSRA) for the adjustment of treatment for individual patients. In summary, current trends in personalized management of advanced and metastatic STS are based on combination of both genetic testing and CSRA.
Collapse
|
31
|
Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. Int J Mol Sci 2020; 21:ijms21041548. [PMID: 32102484 PMCID: PMC7073166 DOI: 10.3390/ijms21041548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Persistent signalling via the PI3K/AKT/mTOR pathway is a major driver of malignancy in NF1-associated malignant peripheral nerve sheath tumours (MPNST). Nevertheless, single targeting of this pathway is not sufficient to inhibit MPNST growth. In this report, we demonstrate that combined treatment with the allosteric pan-AKT inhibitor MK-2206 and the mTORC1/mTORC2 inhibitor AZD8055 has synergistic effects on the viability of MPNST cell lines in comparison to the treatment with each compound alone. However, when treating animals bearing experimental MPNST with the combined AKT/mTOR regime, no influence on tumour growth was observed. Further analysis of the MPNST xenograft tumours resistant to AKT/mTOR treatment revealed a reactivation of both AKT and mTOR in several tumour samples. Additional targeting of the RAS/RAF/MEK/MAPK pathway with the allosteric MEK1/2 inhibitor AZD6244 showed synergistic effects on the viability of MPNST cell lines in vitro in comparison to the dual AKT/mTOR inhibition. In summary, these data indicate that combined treatment with AKT and mTOR inhibitors is effective on MPNST cells in vitro but tumour resistance can occur rapidly in vivo by restoration of AKT/mTOR signalling. Our data further suggest that a triple treatment with inhibitors against AKT, mTORC1/2 and MEK1/2 may be a promising treatment option that should be further analysed in an experimental MPNST mouse model in vivo.
Collapse
|
32
|
Towards a neurobiological understanding of pain in neurofibromatosis type 1: mechanisms and implications for treatment. Pain 2020; 160:1007-1018. [PMID: 31009417 DOI: 10.1097/j.pain.0000000000001486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurofibromatosis type 1 (NF1) is the most common of a group of rare diseases known by the term, "Neurofibromatosis," affecting 1 in 3000 to 4000 people. NF1 patients present with, among other disease complications, café au lait patches, skin fold freckling, Lisch nodules, orthopedic complications, cutaneous neurofibromas, malignant peripheral nerve sheath tumors, cognitive impairment, and chronic pain. Although NF1 patients inevitably express pain as a debilitating symptom of the disease, not much is known about its manifestation in the NF1 disease, with most current information coming from sporadic case reports. Although these reports indicate the existence of pain, the molecular signaling underlying this symptom remains underexplored, and thus, we include a synopsis of the literature surrounding NF1 pain studies in 3 animal models: mouse, rat, and miniswine. We also highlight unexplored areas of NF1 pain research. As therapy for NF1 pain remains in various clinical and preclinical stages, we present current treatments available for patients and highlight the importance of future therapeutic development. Equally important, NF1 pain is accompanied by psychological complications in comorbidities with sleep, gastrointestinal complications, and overall quality of life, lending to the importance of investigation into this understudied phenomenon of NF1. In this review, we dissect the presence of pain in NF1 in terms of psychological implication, anatomical presence, and discuss mechanisms underlying the onset and potentiation of NF1 pain to evaluate current therapies and propose implications for treatment of this severely understudied, but prevalent symptom of this rare disease.
Collapse
|
33
|
Neurofibromatosis Type 1 Implicates Ras Pathways in the Genetic Architecture of Neurodevelopmental Disorders. Behav Genet 2020; 50:191-202. [DOI: 10.1007/s10519-020-09991-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/04/2020] [Indexed: 01/12/2023]
|
34
|
Okumura Y, Kohashi K, Tanaka Y, Kato M, Maehara Y, Ogawa Y, Oda Y. Activation of the Akt/mammalian target of rapamycin pathway in combined hepatocellular carcinoma and cholangiocarcinoma: significant correlation between p-4E-BP1 expression in cholangiocarcinoma component and prognosis. Virchows Arch 2020; 476:881-890. [PMID: 31927624 DOI: 10.1007/s00428-019-02741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/03/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
The Akt/mammalian target of rapamycin (mTOR) pathway, which plays an important role in regulating cellular functions including proliferation, motility, and invasion, is known to be activated in many cancers. Combined hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) (cHCC-CC) has wide histological diversity characterized by relatively poor prognosis. Because of a lack of investigation into its molecular mechanisms, no effective systemic therapy is currently available for unresectable cHCC-CC tumors. Here, we retrospectively examined the clinicopathological and activation statuses of the Akt/mTOR pathway in 89 cases of cHCC-CC. Expression levels of molecular markers associated with this signaling pathway, including phosphatase and tensin homologue deleted on chromosome 10 (PTEN), phosphorylated Akt (p-Akt), p-mTOR, p-ribosomal protein S6 (p-S6RP), and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (p-4E-BP1), were measured by immunohistochemical staining. In addition, such activation in different cHCC-CC morphological categories was compared by dividing cases into those with HCC (n = 86), CC (n = 78), and intermediate components (n = 60). Comparison of prognosis among these groups revealed that p-4E-BP1 immunopositivity in cHCC-CC cases containing CC a component was a significant risk factor for poorer overall survival (P = 0.041). By evaluating factors in p-4E-BP1 expression in 78 cHCC-CC cases with a CC component, only lymph node metastasis was significantly correlated with positive immunostaining for p-4E-BP1 (P = 0.0222). In conclusion, p-4E-BP1 expression, especially in cHCC-CC cases with a CC component, was a notable Akt/mTOR pathway-related factor associated with poor prognosis. Assessing histological structure and p-4E-BP1 expression in cHCC-CC may be helpful for both predicting prognosis and using molecular targeted therapy.
Collapse
Affiliation(s)
- Yukihiko Okumura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Tanaka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Martin E, Flucke UE, Coert JH, van Noesel MM. Treatment of malignant peripheral nerve sheath tumors in pediatric NF1 disease. Childs Nerv Syst 2020; 36:2453-2462. [PMID: 32494969 PMCID: PMC7575473 DOI: 10.1007/s00381-020-04687-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are rare yet highly aggressive soft tissue sarcomas. Children with neurofibromatosis type 1 (NF1) have a 10% lifetime risk for development of MPNST. Prognosis remains poor and survival seems worse for NF1 patients. METHODS This narrative review highlights current practices and pitfalls in the management of MPNST in pediatric NF1 patients. RESULTS Preoperative diagnostics can be challenging, but PET scans have shown to be useful tools. More recently, functional MRI holds promise as well. Surgery remains the mainstay treatment for these patients, but careful planning is needed to minimize postoperative morbidity. Functional reconstructions can play a role in improving functional status. Radiotherapy can be administered to enhance local control in selected cases, but care should be taken to minimize radiation effects as well as reduce the risk of secondary malignancies. The exact role of chemotherapy has yet to be determined. Reports on the efficacy of chemotherapy vary as some report lower effects in NF1 populations. Promisingly, survival seems to ameliorate in the last few decades and response rates of chemotherapy may increase in NF1 populations when administering it as part of standard of care. However, in metastasized disease, response rates remain poor. New systemic therapies are therefore desperately warranted and multiple trials are currently investigating the role of drugs. Targeted drugs are nevertheless not yet included in first line treatment. CONCLUSION Both research and clinical efforts benefit from multidisciplinary approaches with international collaborations in this rare malignancy.
Collapse
Affiliation(s)
- Enrico Martin
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, G04.126, PO Box 85060, 3508, AB, Utrecht, the Netherlands.
| | - Uta E. Flucke
- Department of Solid Tumors, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands ,Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J. Henk Coert
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, G04.126, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | - Max M. van Noesel
- Department of Solid Tumors, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
36
|
Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene 2019; 38:6585-6598. [PMID: 31444410 DOI: 10.1038/s41388-019-0965-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that frequently arise in patients with neurofibromatosis type 1 (NF1). Most of these tumors are unresectable at diagnosis and minimally responsive to conventional treatment, lending urgency to the identification of new pathway dependencies and drugs with potent antitumor activities. We therefore examined a series of candidate agents for their ability to induce apoptosis in MPNST cells arising in nf1/tp53-deficient zebrafish. In this study, we found that DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors were the most effective single agents in eliminating MPNST cells without prohibitive toxicity. In addition, three members of these classes of drugs, either AZD2014 or INK128 in combination with irinotecan, acted synergistically to induce apoptosis both in vitro and in vivo. In mechanistic studies, irinotecan not only induces apoptosis by eliciting a DNA damage response, but also acts synergistically with AZD2014 to potentiate the hypophosphorylation of 4E-BP1, a downstream target of mTORC1. Profound hypophosphorylation of 4E-BP1 induced by this drug combination causes an arrest of protein synthesis, which potently induces tumor cell apoptosis. Our findings provide a compelling rationale for further in vivo evaluation of the combination of DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors against these aggressive nerve sheath tumors.
Collapse
|
37
|
Non-cytotoxic systemic treatment in malignant peripheral nerve sheath tumors (MPNST): A systematic review from bench to bedside. Crit Rev Oncol Hematol 2019; 138:223-232. [DOI: 10.1016/j.critrevonc.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
|
38
|
Abstract
OPINION STATEMENT The proper diagnosis and treatment planning for subcutaneous soft tissue sarcoma is very important. Soft tissue tumors can occur anywhere in the body, but if they occur subcutaneously, patients can easily notice a subcutaneous soft tissue mass. Therefore, it is possible to determine through recording, the growth speed of the mass, which is often difficult to obtain with deep-situated soft tissue masses. Palpation can also provide information about the firmness and mobility of the mass. Thus, history taking and physical examinations are informative for subcutaneous soft tissue tumors, compared to tumors that occur deeply. Because subcutaneous soft tissue tumors are easily recognized, they are often resected, without sufficient imaging analyses or thorough treatment planning. An operation performed based on such an inadequate preoperative plan is called a "whoops surgery." In the case of "whoops surgeries," subsequent radical surgery is required to remove additional areas, including hematomas that result from the initial surgery, that require a wider range of resection and soft tissue reconstruction. Therefore, as with deep-seated soft tissue tumors, it is important to conduct careful imaging examinations and make appropriate preoperative plans for subcutaneous soft tissue tumors. Subcutaneous soft tissue sarcomas often show an invasive pattern, and such tumors require a more careful assessment to prevent local recurrence after surgery. During surgery, it is necessary to remove the entire infiltration area along the fascia. Sometimes, an adequately wide excision is necessary, which is considered the minimum necessary procedure to eradicate the lesion. As noted above, clinicians who see patients with subcutaneous soft tissue tumors are encouraged to have sufficient knowledge and experience regarding the diagnosis and treatment. This article is intended for all doctors who deal with subcutaneous soft tissue tumors and focuses on essential points regarding their diagnosis and management.
Collapse
|
39
|
Zhang S, Hu B, Lv X, Chen S, Liu W, Shao Z. The Prognostic Role of Ribosomal Protein S6 Kinase 1 Pathway in Patients With Solid Tumors: A Meta-Analysis. Front Oncol 2019; 9:390. [PMID: 31139572 PMCID: PMC6527894 DOI: 10.3389/fonc.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Recent studies supported the predictive role of ribosomal protein S6 kinase 1 (S6K1), phosphorylated S6K1 (p-S6K1), and phosphorylated ribosomal protein S6 (p-S6) for the outcome of cancer patients. However, inconsistent results were acquired across different researches. To comprehensively and quantitatively elucidate their prognostic significance in solid malignancies, the current meta-analysis was carried out utilizing the results of clinical studies. Methods: We conducted the literature retrieval by searching PubMed, Web of Science, EMBASE, and Cochrane library to identify eligible publications. Data were collected from included articles to calculate pooled overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and progression-free survival (PFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) served as appropriate parameters to assess prognostic significance. Results: Forty-four original studies were included, of which 7 studies were analyzed for S6K1, 24 for p-S6K1, and 16 for p-S6. The overexpression of p-S6K1 was significantly associated with poorer prognosis of solid tumor patients in OS (HR = 1.706, 95%CI: 1.369–2.125, p < 0.001), DFS (HR = 1.665, 95%CI: 1.002–2.768, p = 0.049). However, prognostic role of p-S6K1 in RFS and PFS was not found. The result also revealed that S6K1 and p-S6 were significantly associated with reduced OS (HR = 1.691, 95%CI: 1.306–2.189, p < 0.001; HR = 2.019, 95%CI: 1.775–2.296, p < 0.001, respectively). Conclusions: The present meta-analysis demonstrated that elevated expression of S6K1, p-S6K1, or p-S6 might indicate worse prognosis of patients with solid tumors, and supported a promising clinical test to predict solid tumor prognosis based on the level of S6K1 pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Carmagnani Pestana R, Groisberg R, Roszik J, Subbiah V. Precision Oncology in Sarcomas: Divide and Conquer. JCO Precis Oncol 2019; 3:PO.18.00247. [PMID: 32914012 PMCID: PMC7446356 DOI: 10.1200/po.18.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies that exhibit remarkable heterogeneity, with more than 50 subtypes recognized. Advances in next-generation sequencing technology have resulted in the discovery of genetic events in these mesenchymal tumors, which in addition to enhancing understanding of the biology, have opened up avenues for molecularly targeted therapy and immunotherapy. This review focuses on how incorporation of next-generation sequencing has affected drug development in sarcomas and strategies for optimizing precision oncology for these rare cancers. In a significant percentage of soft tissue sarcomas, which represent up to 40% of all sarcomas, specific driver molecular abnormalities have been identified. The challenge to evaluate these mutations across rare cancer subtypes requires the careful characterization of these genetic alterations to further define compelling drivers with therapeutic implications. Novel models of clinical trial design also are needed. This shift would entail sustained efforts by the sarcoma community to move from one-size-fits-all trials, in which all sarcomas are treated similarly, to divide-and-conquer subtype-specific strategies.
Collapse
Affiliation(s)
| | - Roman Groisberg
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Roszik
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
41
|
Shatsky R, Parker BA, Bui NQ, Helsten T, Schwab RB, Boles SG, Kurzrock R. Next-Generation Sequencing of Tissue and Circulating Tumor DNA: The UC San Diego Moores Center for Personalized Cancer Therapy Experience with Breast Malignancies. Mol Cancer Ther 2019; 18:1001-1011. [DOI: 10.1158/1535-7163.mct-17-1038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/12/2018] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
|
42
|
Slopis JM, Arevalo O, Bell CS, Hebert AA, Northrup H, Riascos RF, Samuels JA, Smith KC, Tate P, Koenig MK. Treatment of Disfiguring Cutaneous Lesions in Neurofibromatosis-1 with Everolimus: A Phase II, Open-Label, Single-Arm Trial. Drugs R D 2019; 18:295-302. [PMID: 30284154 PMCID: PMC6277319 DOI: 10.1007/s40268-018-0248-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cutaneous neurofibromas cause disfigurement and discomfort in individuals with neurofibromatosis type 1 (NF-1). Methods The primary objective of this phase II, open-label, single-arm trial was to assess whether orally administered everolimus reduced the surface volume of cutaneous neurofibromas in patients with NF-1. Results Of 22 patients who took the study drug, 17 completed the trial; 5 patients withdrew due to adverse events. Sixteen patients had photographs of sufficient quality for assessment of the primary outcome. A significant reduction in lesion surface volume, defined as an end of trial volume > 2 standard errors (SE) less than baseline volume, was observed for 4/31 lesions (13%) from 3/16 patients (19%). Additionally, a statistically significant absolute change in average height for paired lesions was observed (p = 0.048). Although not a prespecified outcome measure, a dramatic reduction in the size of 3 large plexiform neurofibromas with a cutaneous component was also noted and documented by measurement of maximum circumference or magnetic resonance imaging-based volumetric analysis. Adverse events were common in this trial, but no serious adverse events occurred. Conclusions Although this was a small, exploratory trial that was not powered for significance, the reduction in surface volume observed in this study is noteworthy assuming that the natural course for untreated lesions is to maintain or increase in volume. Future studies are needed with larger study populations that incorporate longer durations of treatment and better standardization of volumetric measurements. Trial Registration ClinicalTrials.gov Identifier: NCT02332902 Electronic supplementary material The online version of this article (10.1007/s40268-018-0248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cynthia S Bell
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Adelaide A Hebert
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Dermatology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joshua A Samuels
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Keri C Smith
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patti Tate
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mary Kay Koenig
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Pediatrics, Division of Child and Adolescent Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UTPB 732, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare and aggressive soft-tissue sarcomas with dismal prognosis. Complete resection, which is the only known definitive therapy, is not feasible with every tumor, and local recurrence after surgery is another challenge to successful treatment. Treatments used with other sarcoma types have not proven beneficial to MPNST patients. Targeted therapies blocking several signaling pathways known to drive MPNST pathogenesis have also not improved patient outcomes in clinical trials. This review discusses existing therapies and targeted chemotherapeutic options currently being tested clinically, and potential therapeutic avenues identified in preclinical studies that include targeting signaling pathways such as the HIPPO-YAP pathway and epigenetic mechanisms as well as multi-agent strategies.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology & Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Qing Richard Lu
- Division of Experimental Hematology & Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
44
|
Zhao F, Zhang S, Du J, Chen Y, Wang B, Zhang J, He Q, Lin L, Zhang L, Yu Y, Liu P. Comparison of Clinical, Histopathological, and Genomic Features Between Malignant Peripheral Nerve Sheath Tumors and Cellular Schwannomas of the Eighth Cranial Nerve: A Case Series. World Neurosurg 2019; 122:e487-e497. [DOI: 10.1016/j.wneu.2018.10.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
45
|
Fan Y, Mao Y, Cao S, Xia G, Zhang Q, Zhang H, Qiu F, Kang N. S5, a Withanolide Isolated from Physalis Pubescens L., Induces G2/M Cell Cycle Arrest via the EGFR/P38 Pathway in Human Melanoma A375 Cells. Molecules 2018; 23:E3175. [PMID: 30513793 PMCID: PMC6321527 DOI: 10.3390/molecules23123175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022] Open
Abstract
S5 is a withanolide natural product isolated from Physalis pubescens L. Our previous experimental studies found that it has significant antitumor activity on renal cell carcinoma. In the present study, the anti-melanoma effect of S5 and the related molecular mechanism was first investigated. It was found that S5 induced an obvious growth inhibitory effect on human melanoma A375 cells with low toxicity to human peripheral blood cells. Furthermore, the results demonstrated that the cell death mode of S5 on A375 cells is not due to inducing apoptosis and autophagy. However, there was a significant time-dependent increase in G2/M phase after treatment of A375 with S5. Meanwhile, S5 could also decrease the protein expression of Cdc25c, Cdc2, and CyclinB1, and increased the expression of p-P53 and P21, suggesting that S5 inhibited A375 cell death through G2/M phase arrest. Moreover, the signal pathway factors P38, extracellular regulated protein kinases (ERK), and epidermal growth factor receptor (EGFR) were observed taking part in the S5-induced A375 cells growth inhibitory effect. In addition, suppressing P38 and EGFR reversed the cell proliferation inhibitory effect and G2/M cell cycle arrest induced by S5 and inhibition of EGFR enhanced the downregulation of the expression of P38 and p-P38, indicating that S5 induced A375 G2/M arrest through the EGFR/P38 pathway. Briefly, this study explained for the first time the mechanism of S5-induced A375 cell growth inhibition in order to provide the basis for its clinical application in melanoma.
Collapse
Affiliation(s)
- Yuqi Fan
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yiwei Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Guiyang Xia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Hongyang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
46
|
Li Y, Li J, Zhou Q, Liu Y, Chen W, Xu H. mTORC1 signaling is essential for neurofibromatosis type I gene modulated osteogenic differentiation of BMSCs. J Cell Biochem 2018; 120:2886-2896. [DOI: 10.1002/jcb.26626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Affiliation(s)
- YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - QingHe Zhou
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - Yuanzhong Liu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - WeiDong Chen
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| |
Collapse
|
47
|
Fonsato V, De Lena M, Tritta S, Brossa A, Calvetti R, Tetta C, Camussi G, Bussolati B. Human liver stem cell-derived extracellular vesicles enhance cancer stem cell sensitivity to tyrosine kinase inhibitors through Akt/mTOR/PTEN combined modulation. Oncotarget 2018; 9:36151-36165. [PMID: 30546834 PMCID: PMC6281417 DOI: 10.18632/oncotarget.26319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023] Open
Abstract
It is well recognized that Cancer Stem Cells (CSCs) sustain the initiation, the maintenance and the recurrence of tumors. We previously reported that extracellular vesicles (EVs) derived from human liver stem cells (HLSCs) were able to limit tumor development. In this study, we evaluated whether EV derived from HLSCs could act in synergy with tyrosine kinase inhibitors (TKIs) on apoptosis of CSCs isolated from renal carcinomas. For this purpose, we administered to renal CSCs, HLSC-EVs and TKIs, as co-incubation or sequential administration. We found that HLSC-EVs in combination with Sunitinb or Sorafenib significantly increased renal CSCs apoptosis induced by low TKI dose. At variance, no synergistic effect was observed when bone marrow mesenchymal stem cell-derived EVs were used. In particular, renal CSCs chemosensitivity to TKIs was enhanced when HLSC-EVs were either co-administered with TKIs or added after, but not before. CSC apoptosis was also incremented at a percentage comparable to that of co-administration when TKIs were loaded in HLSC-EVs. By a mechanistic point of view, Akt/mTOR and Erk and Creb intracellular pathways, known to be pivotal in the induction of tumor growth and survival, appeared modulated as consequence of TKIs/HLSC-EVs co-administration. Together, our results indicate that the synergistic effect of HLSC-EVs with TKIs may increase the response to TKIs at low doses, providing a rational for their combined use in the treatment of renal carcinoma.
Collapse
Affiliation(s)
- Valentina Fonsato
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Michela De Lena
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefania Tritta
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessia Brossa
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ruggero Calvetti
- Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
48
|
Li X, Zhang S, Chiu AP, Lo LH, Huang J, Rowlands DK, Wang J, Keng VW. Targeting of AKT/ERK/CTNNB1 by DAW22 as a potential therapeutic compound for malignant peripheral nerve sheath tumor. Cancer Med 2018; 7:4791-4800. [PMID: 30112810 PMCID: PMC6144169 DOI: 10.1002/cam4.1732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive form of soft tissue neoplasm with extremely poor prognosis and no effective medical options currently available. MPNSTs can occur either sporadically or in association with the neurofibromatosis type 1 (NF1) syndrome. Importantly, activation of RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, and WNT/CTNNB1 signaling pathways has been reported in both NF1-related and late-stage sporadic MPNSTs. In this study, we found that DAW22, a natural sesquiterpene coumarin compound isolated from Ferula ferulaeoides (Steud.) Korov., could inhibit cell proliferation and colony formation in five established human MPNST cancer cell lines. Further molecular mechanism exploration indicated that DAW22 could target the main components in the MPNST tumorigenic pathways: namely suppress phosphorylation of AKT and ERK, and reduce levels of non-phospho (active) CTNNB1. Using the xenograft mouse model transplanted with human MPNST cancer cell line, daily treatment with DAW22 for 25 days was effective in reducing tumor growth. These results support DAW22 as an alternative therapeutic compound for MPNST treatment by affecting multiple signaling transduction pathways in its disease progression.
Collapse
Affiliation(s)
- Xiao‐Xiao Li
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Shi‐Jie Zhang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Amy P. Chiu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Lilian H. Lo
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China)Harbin Medical UniversityHarbinChina
| | - Dewi K. Rowlands
- Laboratory Animal Services CentreThe Chinese University of Hong KongSha TinNew TerritoriesHong Kong
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China)Harbin Medical UniversityHarbinChina
| | - Vincent W. Keng
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| |
Collapse
|
49
|
Wang X, Kallionpää RA, Gonzales PR, Chitale DA, Tousignant RN, Crowley JP, Chen Z, Yoder SJ, Blakeley JO, Acosta MT, Korf BR, Messiaen LM, Tainsky MA. Germline and Somatic NF1 Alterations Are Linked to Increased HER2 Expression in Breast Cancer. Cancer Prev Res (Phila) 2018; 11:655-664. [PMID: 30104415 DOI: 10.1158/1940-6207.capr-18-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
NF1 germline mutation predisposes to breast cancer. NF1 mutations have also been proposed as oncogenic drivers in sporadic breast cancers. To understand the genomic and histologic characteristics of these breast cancers, we analyzed the tumors with NF1 germline mutations and also examined the genomic and proteomic profiles of unselected tumors. Among 14 breast cancer specimens from 13 women affected with neurofibromatosis type 1 (NF1), 9 samples (NF + BrCa) underwent genomic copy number (CN) and targeted sequencing analysis. Mutations of NF1 were identified in two samples and TP53 were in three. No mutation was detected in ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, and STK11 HER2 (ErbB2) overexpression was detected by IHC in 69.2% (9/13) of the tumors. CN gain/amplification of ERBB2 was detected in 4 of 9 with DNA analysis. By evaluating HER2 expression and NF1 alterations in unselected invasive breast cancers in TCGA datasets, we discovered that among samples with ERBB2 CN gain/amplification, the HER2 mRNA and protein expression were much more pronounced in NF1-mutated/deleted samples in comparison with NF1-unaltered samples. This finding suggests a synergistic interplay between these two genes, potentially driving the development of breast cancer harboring NF1 mutation and ERBB2 CN gain/amplification. NF1 gene loss of heterozygosity was observed in 4 of 9 NF + BrCa samples. CDK4 appeared to have more CN gain in NF + BrCa and exhibited increased mRNA expression in TCGA NF1--altered samples. Cancer Prev Res; 11(10); 655-64. ©2018 AACR.
Collapse
Affiliation(s)
- Xia Wang
- H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Roope A Kallionpää
- Department of Dermatology and Venereology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | | | | - Zhihua Chen
- H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sean J Yoder
- H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Maria T Acosta
- Children's National Health System, George Washington University, Washington, DC
| | - Bruce R Korf
- The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
50
|
Neurofibromin level directs RAS pathway signaling and mediates sensitivity to targeted agents in malignant peripheral nerve sheath tumors. Oncotarget 2018; 9:22571-22585. [PMID: 29854299 PMCID: PMC5978249 DOI: 10.18632/oncotarget.25181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a type of soft-tissue sarcoma strongly associated with dysfunction in neurofibromin; an inhibitor of the RAS pathway. We performed high-throughput screening of an array of FDA approved and promising agents in clinical development both alone and in combination at physiologically achievable concentrations against a panel of established MPNST cell line models. We found that drugs targeting a variety of factors in the RAS pathway can effectively lead to cell death in vitro with considerable drug combination synergy in regimens that target MEK or mTOR. We observed that the degree of relative sensitivity to chemotherapeutic agents was associated with the status of neurofibromin in these cell line models. Using a combination of agents that target MEK and mTORC1/2, we effectively silenced RAS/PI3K/MEK/mTOR signaling in vitro. Moreover, we employed RNAi against NF1 to establish that MPNST drug sensitivity is directly proportional to relative level of intracellular neurofibromin. Thus, two-drug combinations that target MEK and mTORC1/2 are most effective in halting the RAS signaling cascade, and the relative success of this and related small molecule interventions in MPNSTs may be predicated upon the molecular status of neurofibromin.
Collapse
|