1
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yamada A, Choules MP, Brightman FA, Takeshita S, Nakao S, Amino N, Nakayama T, Takeuchi M, Komatsu K, Ortega F, Mistry H, Orrell D, Chassagnole C, Bonate PL. A Multiple-Model-Informed Drug-Development Approach for Optimal Regimen Selection of an Oncolytic Virus in Combination With Pembrolizumab. CPT Pharmacometrics Syst Pharmacol 2025. [PMID: 39776360 DOI: 10.1002/psp4.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The antitumor efficacy of an intratumoral injection of a genetically engineered oncolytic vaccinia virus carrying human IL-7 and murine IL-12 genes (hIL-7/mIL-12-VV) was demonstrated in CT26.WT-bearing mice. In the CT26.WT-bearing mouse model, the efficacy of the combination of hIL-7/mIL-12-VV plus the anti-programmed cell death protein (PD)-1 antibody was determined to be correlated with the timing of administration: greater efficacy was observed when hIL-7/mIL-12-VV was administered before the anti-PD-1 agent instead of simultaneous administration. To identify an optimal dosing regimen for first-in-human clinical trials, a multiple model-informed drug-development (MIDD) approach was used through development of a quantitative systems pharmacology (QSP) model and an agent-based model (ABM). All models were built and verified using available literature and preclinical study data. Multiple dosing scenarios were explored using virtual populations by altering the interval between hIL-7/hIL-12-VV and pembrolizumab administration. In contrast with observations from preclinical studies, both the QSP and the ABM models demonstrated no antagonistic effect on the dose-dependent antitumor efficacy of hIL-7/hIL-12-VV by pembrolizumab in simulations of clinical therapy. Based on the MIDD strategy, it was recommended that the highest dose of hIL-7/hIL-12-VV and pembrolizumab should be administered on the same day, but with pembrolizumab administration following hIL-7/hIL-12-VV administration. Multiple different modeling approaches uniquely supported and informed the first-in-human clinical trial design by guiding the optimal dose and regimen selection.
Collapse
|
3
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Revealing the therapeutic properties of gut microbiota: transforming cancer immunotherapy from basic to clinical approaches. Med Oncol 2024; 41:175. [PMID: 38874788 DOI: 10.1007/s12032-024-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
4
|
Kurokawa C, Agrawal S, Mitra A, Galvani E, Burke S, Varshine A, Rothstein R, Schifferli K, Monks NR, Foloppe J, Silvestre N, Quemeneur E, Demeusoit C, Kleinpeter P, Sapra P, Barrett C, Hammond SA, Kelly EJ, Laliberte J, Durham NM, Oberst M, Broggi MA. Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200758. [PMID: 38596304 PMCID: PMC10869731 DOI: 10.1016/j.omton.2023.200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Oncolytic viruses are engineered to selectively kill tumor cells and have demonstrated promising results in early-phase clinical trials. To further modulate the innate and adaptive immune system, we generated AZD4820, a vaccinia virus engineered to express interleukin-12 (IL-12), a potent cytokine involved in the activation of natural killer (NK) and T cells and the reprogramming of the tumor immune microenvironment. Testing in cultured human tumor cell lines demonstrated broad in vitro oncolytic activity and IL-12 transgene expression. A surrogate virus expressing murine IL-12 demonstrated antitumor activity in both MC38 and CT26 mouse syngeneic tumor models that responded poorly to immune checkpoint inhibition. In both models, AZD4820 significantly upregulated interferon-gamma (IFN-γ) relative to control mice treated with oncolytic vaccinia virus (VACV)-luciferase. In the CT26 study, 6 of 10 mice had a complete response after treatment with AZD4820 murine surrogate, whereas control VACV-luciferase-treated mice had 0 of 10 complete responders. AZD4820 treatment combined with anti-PD-L1 blocking antibody augmented tumor-specific T cell immunity relative to monotherapies. These findings suggest that vaccinia virus delivery of IL-12, combined with immune checkpoint blockade, elicits antitumor immunity in tumors that respond poorly to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Cheyne Kurokawa
- Virology and Vaccine Discovery, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sonia Agrawal
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Abhisek Mitra
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Elena Galvani
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Shannon Burke
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ankita Varshine
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Raymond Rothstein
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kevin Schifferli
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Noel R. Monks
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Johann Foloppe
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | | | - Eric Quemeneur
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | | | | | - Puja Sapra
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Scott A. Hammond
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Elizabeth J. Kelly
- Clinical Virology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jason Laliberte
- Virology and Vaccine Discovery, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicholas M. Durham
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Oberst
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Maria A.S. Broggi
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
5
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
6
|
Costa-Garcia M, Rojas JJ, Ramos MD, Barlabé P, Calvo P, Navas J, Alemany R, Moreno R. Oncolytic adenovirus coding for shedding-resistant MICA enhances immune responses against tumors. Cancer Immunol Immunother 2024; 73:5. [PMID: 38180524 PMCID: PMC10770194 DOI: 10.1007/s00262-023-03611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cancer immunotherapies strive to overcome tumor-induced immune suppression and activate antitumor immune responses. Although cytotoxic T lymphocytes (CTLs) play a pivotal role in this process, natural killer (NK) cells have also demonstrated remarkable tumor-killing abilities, given their ability to discriminate tumor cells from normal cells and mediate specific antitumoral cytotoxicity. NK cells activation depends on a balance between activation and inhibition signals from several ligands/receptors. Among them, MICA/NKG2D axis is a master regulator of NK activation. MHC class I chain-related polypeptide A (MICA) expression is upregulated by many tumor cell lines and primary tumors and serves as a ligand for the activating NK group 2D (NKG2D) receptor on NK cells and subpopulations of T cells. However, cancer cells can cleave MICA, making it soluble and de-targeting tumor cells from NK cells, leading to tumor immune escape.In this study, we present ICOVIR15KK-MICAMut, an oncolytic adenovirus (OAdv) armed with a transgene encoding a non-cleavable MICA to promote NK-mediated cell-killing capacity and activate the immune response against cancer cells. We first demonstrated the correct MICA overexpression from infected cells. Moreover, our MICA-expressing OAdv promotes higher NK activation and killing capacity than the non-armed virus in vitro. In addition, the armed virus also demonstrated significant antitumor activity in immunodeficient mice in the presence of human PBMCs, indicating the activation of human NK cells. Finally, OAdv-MICA overexpression in immunocompetent tumor-bearing mice elicits tumor-specific immune response resulting in a greater tumor growth control.In summary, this study highlights the significance of NK cells in cancer immunotherapy and presents an innovative approach using a modified oncolytic virus to enhance NK cell activation and antitumor immune response. These findings suggest promising potential for future research and clinical applications.
Collapse
Affiliation(s)
- M Costa-Garcia
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - J J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - M D Ramos
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - P Barlabé
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Pamplona, 31008, Spain
| | - P Calvo
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - J Navas
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - R Alemany
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - R Moreno
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
7
|
Hu CY, Hung CF, Chen PC, Hsu JY, Wang CT, Lai MD, Tsai YS, Shiau AL, Shieh GS, Wu CL. Oct4 and Hypoxia Dual-Regulated Oncolytic Adenovirus Armed with shRNA-Targeting Dendritic Cell Immunoreceptor Exerts Potent Antitumor Activity against Bladder Cancer. Biomedicines 2023; 11:2598. [PMID: 37892972 PMCID: PMC10604824 DOI: 10.3390/biomedicines11102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy has emerged as a promising modality for cancer treatment. Dendritic cell immunoreceptor (DCIR), a C-type lectin receptor, is expressed mainly by dendritic cells (DCs) and mediates inhibitory intracellular signaling. Inhibition of DCIR activation may enhance antitumor activity. DCIR is encoded by CLEC4A in humans and by Clec4a2 in mice. Gene gun-mediated delivery of short hairpin RNA (shRNA) targeting Clec4a2 into mice bearing bladder tumors reduces DCIR expression in DCs, inhibiting tumor growth and inducing CD8+ T cell immune responses. Various oncolytic adenoviruses have been developed in clinical trials. Previously, we have developed Ad.LCY, an oncolytic adenovirus regulated by Oct4 and hypoxia, and demonstrated its antitumor efficacy. Here, we generated a Clec4a2 shRNA-expressing oncolytic adenovirus derived from Ad.LCY, designated Ad.shDCIR, aimed at inducing more robust antitumor immune responses. Our results show that treatment with Ad.shDCIR reduced Clec4a expression in DCs in cell culture. Furthermore, Ad.shDCIR exerted cytolytic effects solely on MBT-2 bladder cancer cells but not on normal NIH 3T3 mouse fibroblasts, confirming the tumor selectivity of Ad.shDCIR. Compared to Ad.LCY, Ad.shDCIR induced higher cytotoxic T lymphocyte (CTL) activity in MBT-2 tumor-bearing immunocompetent mice. In addition, Ad.shDCIR and Ad.LCY exhibited similar antitumor effects on inhibiting tumor growth. Notably, Ad.shDCIR was superior to Ad.LCY in prolonging the survival of tumor-bearing mice. In conclusion, Ad.shDCIR may be further explored as a combination therapy of virotherapy and immunotherapy for bladder cancer and likely other types of cancer.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
| | - Chi-Feng Hung
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Jia-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (A.-L.S.)
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
| | - Yuh-Shyan Tsai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (A.-L.S.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| |
Collapse
|
8
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
10
|
Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J Gastrointest Surg 2023; 15:495-519. [PMID: 37206081 PMCID: PMC10190721 DOI: 10.4240/wjgs.v15.i4.495] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/22/2023] Open
Abstract
Colorectal cancer (CRC) affects 1 in 23 males and 1 in 25 females, making it the third most common cancer. With roughly 608000 deaths worldwide, CRC accounts for 8% of all cancer-related deaths, making it the second most common cause of death due to cancer. Standard and conventional CRC treatments include surgical expurgation for resectable CRC and radiotherapy, chemotherapy, immunotherapy, and their combinational regimen for non-resectable CRC. Despite these tactics, nearly half of patients develop incurable recurring CRC. Cancer cells resist the effects of chemotherapeutic drugs in a variety of ways, including drug inactivation, drug influx and efflux modifications, and ATP-binding cassette transporter overexpression. These constraints necessitate the development of new target-specific therapeutic strategies. Emerging therapeutic approaches, such as targeted immune boosting therapies, non-coding RNA-based therapies, probiotics, natural products, oncolytic viral therapies, and biomarker-driven therapies, have shown promising results in preclinical and clinical studies. We tethered the entire evolutionary trends in the development of CRC treatments in this review and discussed the potential of new therapies and how they might be used in conjunction with conventional treatments as well as their advantages and drawbacks as future medicines.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
11
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Dong H, Li M, Yang C, Wei W, He X, Cheng G, Wang S. Combination therapy with oncolytic viruses and immune checkpoint inhibitors in head and neck squamous cell carcinomas: an approach of complementary advantages. Cancer Cell Int 2023; 23:1. [PMID: 36604694 PMCID: PMC9814316 DOI: 10.1186/s12935-022-02846-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Squamous cell carcinomas are the most common head and neck malignancies. Significant progress has been made in standard therapeutic methods combining surgery, radiation, and chemotherapy. Nevertheless, the 5-year survival rate remains at 40-50%. Immune checkpoint inhibitors (ICIs) are a new strategy for treating head and neck squamous cell carcinomas (HNSCCs). Still, the overall response and effective rates are poor, as HNSCCs are 'cold' tumors with an immunosuppressive tumor microenvironment (TME), limiting ICI's beneficial effects. In this case, transforming the tumor suppression microenvironment before using ICIs could be helpful. Oncolytic viruses (OVs) can transform cold tumors into hot tumors, improving the situation. Talimogene laherparepvec (T-VEC), oncolytic immunotherapy authorized for advanced melanoma, also showed good safety and antitumor activity in treating head and neck cancer and pancreatic cancer. In combination with pembrolizumab, T-Vec may have more anticancer efficacy than either drug alone. Therefore, understanding the mechanisms underpinning OVs and their potential synergism with ICIs could benefit patients with HNSCC.
Collapse
Affiliation(s)
- Hui Dong
- grid.252957.e0000 0001 1484 5512Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China ,grid.417401.70000 0004 1798 6507Department of Stomatology, Center for Plastic and Reconstructive Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| | - Mengli Li
- grid.252957.e0000 0001 1484 5512Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China ,grid.417401.70000 0004 1798 6507Department of Stomatology, Center for Plastic and Reconstructive Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| | - Chen Yang
- grid.417401.70000 0004 1798 6507Department of Ultrasound Medicine, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| | - Wei Wei
- grid.506977.a0000 0004 1757 7957Postgraduate Training Base of Jinzhou Medical University (Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Xianglei He
- grid.417401.70000 0004 1798 6507Department of Pathology, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| | - Gang Cheng
- grid.252957.e0000 0001 1484 5512Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China ,grid.417401.70000 0004 1798 6507Department of Stomatology, Center for Plastic and Reconstructive Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| | - Shibing Wang
- grid.417401.70000 0004 1798 6507Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014 Zhejiang China
| |
Collapse
|
13
|
Li SJ, Sun ZJ. Fueling immune checkpoint blockade with oncolytic viruses: Current paradigms and challenges ahead. Cancer Lett 2022; 550:215937. [DOI: 10.1016/j.canlet.2022.215937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
14
|
Ling Q, Zheng B, Chen X, Ye S, Cheng Q. The employment of vaccinia virus for colorectal cancer treatment: A review of preclinical and clinical studies. Hum Vaccin Immunother 2022; 18:2143698. [PMID: 36369829 DOI: 10.1080/21645515.2022.2143698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading malignancies that causes death worldwide. Cancer vaccines and oncolytic immunotherapy bring new hope for patients with advanced CRC. The capability of vaccinia virus (VV) in carrying foreign genes as antigens or immunostimulatory factors has been demonstrated in animal models. VV of Wyeth, Western Reserve, Lister, Tian Tan, and Copenhagen strains have been engineered for the induction of antitumor response in multiple cancers. This paper summarized the preclinical and clinical application and development of VV serving as cancer vaccines and oncolytic vectors in CRC treatment. Additionally, the remaining challenges and future direction are also discussed.
Collapse
Affiliation(s)
- Qiaoyun Ling
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xudong Chen
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shaoshun Ye
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Quan Cheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Optimal timing of PD-1 blockade in combination with oncolytic virus therapy. Semin Cancer Biol 2022; 86:971-980. [PMID: 34033895 DOI: 10.1016/j.semcancer.2021.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023]
Abstract
Anti-PD-1 and oncolytic viruses (OVs) have non-overlapping anti-tumor mechanisms, since each agent works at different steps of the cancer-immunity cycle. Evidence suggests that OVs improve therapeutic responses to anti-PD-1 therapy by reversing immunosuppressive factors, increasing the number and diversity of infiltrating lymphocytes, and promoting PD-L1 expression in both injected and non-injected tumors. Many studies in preclinical models suggest that the timing of anti-PD-1 administration influences the therapeutic success of the combination therapy (anti-PD-1 + OV). Therefore, determining the appropriate sequencing of agents is of critical importance to designing a rationale OV-based combinational clinical trial. Currently, the combination of anti-PD-1 and OVs are being delivered using various schedules, and we have classified the timing of administration of anti-PD-1 and OVs into five categories: (i) anti-PD-1 lead-in → OV; (ii) concurrent administration; (iii) OV lead-in → anti-PD-1; (iv) concurrent therapy lead-in → anti-PD-1; and (v) OV lead-in → concurrent therapy. Based on the reported preclinical and clinical literature, the most promising treatment strategy to date is hypothesized to be OV lead-in → concurrent therapy. In the OV lead-in → concurrent therapy approach, initial OV treatment results in T cell priming and infiltration into tumors and an immunologically hot tumor microenvironment (TME), which can be counterbalanced by engagement of PD-L1 to PD-1 receptor on immune cells, leading to T cell exhaustion. Therefore, after initial OV therapy, concurrent use of both OV and anti-PD-1 is critical through which OV maintains T cell priming and an immunologically hot TME, whereas PD-1 blockade helps to overcome PD-L1/PD-1-mediated T cell exhaustion. It is important to note that the hypothetical conclusion drawn in this review is based on thorough literature review on current understanding of OV + anti-PD-1 combination therapies and rhythm of treatment-induced cancer-immunity cycle. A variety of confounding factors such as tumor types, OV types, presence or absence of cytokine transgenes carried by an OV, timing of treatment initiation, varying dosages and treatment frequencies/duration of OV and anti-PD-1, etc. may affect the validity of our conclusion that will need to be further examined by future research (such as side-by-side comparative studies using all five treatment schedules in a given tumor model).
Collapse
|
16
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
17
|
Semenova AV, Sivolobova GF, Grazhdantseva AA, Agafonov AP, Kochneva GV. Reporter Transgenes for Monitoring the Antitumor Efficacy of Recombinant Oncolytic Viruses. Acta Naturae 2022; 14:46-56. [PMID: 36348722 PMCID: PMC9611865 DOI: 10.32607/actanaturae.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Accurate measurement of tumor size and margins is crucial for successful oncotherapy. In the last decade, non-invasive imaging modalities, including optical imaging using non-radioactive substrates, deep-tissue imaging with radioactive substrates, and magnetic resonance imaging have been developed. Reporter genes play the most important role among visualization tools; their expression in tumors and metastases makes it possible to track changes in the tumor growth and gauge therapy effectiveness. Oncolytic viruses are often chosen as a vector for delivering reporter genes into tumor cells, since oncolytic viruses are tumor-specific, meaning that they infect and lyse tumor cells without damaging normal cells. The choice of reporter transgenes for genetic modification of oncolytic viruses depends on the study objectives and imaging methods used. Optical imaging techniques are suitable for in vitro studies and small animal models, while deep-tissue imaging techniques are used to evaluate virotherapy in large animals and humans. For optical imaging, transgenes of fluorescent proteins, luciferases, and tyrosinases are used; for deep-tissue imaging, the most promising transgene is the sodium/iodide symporter (NIS), which ensures an accumulation of radioactive isotopes in virus-infected tumor cells. Currently, NIS is the only reporter transgene that has been shown to be effective in monitoring tumor virotherapy not only in preclinical but also in clinical studies.
Collapse
Affiliation(s)
- A. V. Semenova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. F. Sivolobova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. A. Grazhdantseva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. P. Agafonov
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. V. Kochneva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
18
|
Inoue M, Kim M, Inoue T, Tait M, Byrne T, Nitschké M, Murer P, Cha H, Subramanian A, De Silva N, Chiaverotti T, McDonald DM. Oncolytic vaccinia virus injected intravenously sensitizes pancreatic neuroendocrine tumors and metastases to immune checkpoint blockade. Mol Ther Oncolytics 2022; 24:299-318. [PMID: 35118189 PMCID: PMC8783073 DOI: 10.1016/j.omto.2021.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
This study determined the influence of intravenous (i.v.) oncolytic vaccinia virus mpJX-594 (mpJX) on antitumor activity of anti-programmed death receptor-1 antibody (aPD1) in functional and metastatic pancreatic neuroendocrine tumors (PanNETs). One i.v. dose of mpJX, engineered for mice with the same plasmid design as clinical virus Pexa-Vec, was administered alone or with repeated dosing of aPD1 (mpJX+aPD1) to two contrasting genetic models of PanNET: one developing benign insulin-secreting tumors (RIP1-Tag2;C57BL/6J mice) and the other developing liver metastases (RIP1-Tag2;AB6F1 mice). Experiments revealed that aPD1 had synergistic actions with mpJX on CD8+ T cell and natural killer (NK) cell influx, apoptosis, and suppression of proliferation in PanNETs. After mpJX+aPD1, the 53-fold increase in apoptosis (5 days) and 85% reduction in proliferation (20 days) exceeded the sum of mpJX and aPD1 given separately. mpJX+aPD1 also stabilized blood insulin and glucose in mice with functional PanNETs, regressed liver metastases in mice with aggressive PanNETs, and prolonged survival of both. The findings revealed that mpJX+aPD1 converted “cold” PanNETs into immunogenic tumors with widespread cytotoxic T cell influx, tumor cell killing, and suppression of proliferation. Reduction of tumor insulin secretion from functional PanNETs prolonged survival, and anti-metastatic actions on aggressive PanNETs reduced the metastatic burden to less than before treatment. The findings support the efficacy of the vaccinia virus with aPD1 for functional and metastatic PanNETs.
Collapse
Affiliation(s)
- Mitsuko Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Minah Kim
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Tomoyoshi Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Madeline Tait
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Thomas Byrne
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Maximilian Nitschké
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Patrizia Murer
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Howard Cha
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Aishwarya Subramanian
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| | - Naomi De Silva
- SillaJen Biotherapeutics Inc., San Francisco, CA 94111, USA
| | | | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA 94143-0452, USA
| |
Collapse
|
19
|
Fukuda N, Horita N, Namkoong H, Kaneko A, Somekawa K, Tagami Y, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Best regimens for treating chemo-naïve incurable squamous non-small cell lung cancer with a programmed death-ligand 1 tumor proportion score of 1%-49%: A network meta-analysis. Thorac Cancer 2021; 13:84-94. [PMID: 34791815 PMCID: PMC8720615 DOI: 10.1111/1759-7714.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is the leading cause of cancer‐related mortality worldwide. It is advisable to select the appropriate treatment based on characteristics of the cancer such as pathology, mutations, and programmed death‐ligand 1 (PD‐L1) levels. In this study, by remarking squamous NSCLC with low PD‐L1 expression without mutations, we investigated the efficacy and safety of regimens that included molecularly targeted drugs such as immune checkpoint inhibitors (ICIs) through a network meta‐analysis. Methods Databases were searched systematically to identify appropriate articles, in which randomized trials with incurable squamous NSCLC were described. Suitable studies were manually checked by two reviewers. A random model network meta‐analysis was conducted, in which the primary outcome was the overall survival rate. Results We identified 48 studies, which included 16 391 patients. When a platinum + third‐generation cytotoxic agent regimen (platinum regimen) was a reference, the platinum regimen + pembrolizumab (Pemb) yielded the best results in regard to the overall survival rate when compared with chemotherapy (hazard ratio [HR] = 0.57, 95% confidence interval [CI] = 0.36–0.90, p = 0.016) followed by the platinum regimen + nivolumab (Niv) + ipilimumab (Ipi) (HR = 0.61, 95% CI = 0.44–0.84, p = 0.003). However, the efficacy of ICI monotherapy was not statistically different from that of the platinum regimen. Conclusions The combination therapies, which were the platinum regimen + Pemb and the platinum regimen + Niv + Ipi, rather than ICI monotherapy were effective first‐line agents for treating squamous NSCLC with low PD‐L1 levels.
Collapse
Affiliation(s)
- Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
20
|
Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021; 13:1982447. [PMID: 34747345 PMCID: PMC8583164 DOI: 10.1080/19420862.2021.1982447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Vannini A, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G, Gianni T. Towards a Precision Medicine Approach and In Situ Vaccination against Prostate Cancer by PSMA-Retargeted oHSV. Viruses 2021; 13:v13102085. [PMID: 34696515 PMCID: PMC8541339 DOI: 10.3390/v13102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) is a specific high frequency cell surface marker of prostate cancers. Theranostic approaches targeting PSMA show no major adverse effects and rule out off-tumor toxicity. A PSMA-retargeted oHSV (R-405) was generated which both infected and was cytotoxic exclusively for PSMA-positive cells, including human prostate cancer LNCaP and 22Rv1 cells, and spared PSMA-negative cells. R-405 in vivo efficacy against LLC1-PSMA and Renca-PSMA tumors consisted of inhibiting primary tumor growth, establishing long-term T immune response, immune heating of the microenvironment, de-repression of the anti-tumor immune phenotype, and sensitization to checkpoint blockade. The in situ vaccination protected from distant challenge tumors, both PSMA-positive and PSMA-negative, implying that it was addressed also to LLC1 tumor antigens. PSMA-retargeted oHSVs are a precision medicine tool worth being additionally investigated in the immunotherapeutic and in situ vaccination landscape against prostate cancers.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Federico Parenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Daniela Bressanin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| |
Collapse
|
22
|
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021; 184:5309-5337. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Citation(s) in RCA: 856] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Unprecedented advances have been made in cancer treatment with the use of immune checkpoint blockade (ICB). However, responses are limited to a subset of patients, and immune-related adverse events (irAEs) can be problematic, requiring treatment discontinuation. Iterative insights into factors intrinsic and extrinsic to the host that impact ICB response and toxicity are critically needed. Our understanding of the impact of host-intrinsic factors (such as the host genome, epigenome, and immunity) has evolved substantially over the past decade, with greater insights on these factors and on tumor and immune co-evolution. Additionally, we are beginning to understand the impact of acute and cumulative exposures-both internal and external to the host (i.e., the exposome)-on host physiology and response to treatment. Together these represent the current day hallmarks of response, resistance, and toxicity to ICB. Opportunities built on these hallmarks are duly warranted.
Collapse
Affiliation(s)
- Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beth A Helmink
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Sumransub N, Vantanasiri K, Prakash A, Lou E. Advances and new frontiers for immunotherapy in colorectal cancer: Setting the stage for neoadjuvant success? Mol Ther Oncolytics 2021; 22:1-12. [PMID: 34307839 PMCID: PMC8280480 DOI: 10.1016/j.omto.2021.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy in the metastatic setting has drastically altered the landscape of treatment for various types of malignancy, including colorectal cancer. The category of immune checkpoint inhibitors has especially emerged as a class of therapy predicated on a more comprehensive understanding of immune cell-cancer cell regulation and evolution of the tumor microenvironment over time. Strategies including adoptive cellular therapies, tumor vaccines, and antibodies have also demonstrated the ability to enhance antitumor immunity. In this article, we provide a comprehensive review of the current landscape of immunotherapeutic strategies in colorectal cancer and provide insight into how these strategies may evolve in the next decade and be adapted to more localized forms of cancers of the colon and rectum. We provide particular focus on various combination approaches under investigation for reversing cancer-induced immunosuppression, especially in mismatch repair-proficient/microsatellite-stable colorectal tumors. Finally, we summarize current understanding on a recently identified integral factor in local immune regulation, the colonic microbiome. The aim of this article is to identify current challenges and barriers to improvement and to specify opportunities for applying knowledge in the immunotherapy sphere to rational design of clinical trials intended to improve survival and related outcomes in patients treated in the neoadjuvant setting.
Collapse
Affiliation(s)
- Nuttavut Sumransub
- Department of Medicine, University of Minnesota, 420 Delaware St., SE, MMC 480, Minneapolis, MN 55455, USA
| | - Kornpong Vantanasiri
- Department of Medicine, University of Minnesota, 420 Delaware St., SE, MMC 480, Minneapolis, MN 55455, USA
| | - Ajay Prakash
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, 160 E. 34th St., New York, NY 10016, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware St., SE, MMC 480, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:129-142. [PMID: 34514094 PMCID: PMC8413837 DOI: 10.1016/j.omto.2021.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic virus therapy can increase the immunogenicity of tumors and remodel the immunosuppressive tumor microenvironment, leading to an increased antitumor response to immune-checkpoint inhibitors. Here, we investigated the therapeutic potential of G47Δ, a third-generation oncolytic herpes simplex virus type 1, in combination with immune-checkpoint inhibitors using various syngeneic murine subcutaneous tumor models. Intratumoral inoculations with G47Δ and systemic anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody administration caused an enhanced antitumor activity when combined and worked synergistically. Conversely, the efficacy of G47Δ in combination with anti-programmed cell death protein-1 (PD-1) antibody was equivalent to that of the anti-PD-1 antibody alone in all murine models examined. The combination of intratumoral G47Δ and systemic anti-CTLA-4 antibody was shown to recruit effector T cells into the tumor efficiently while decreasing regulatory T cells. Furthermore, a wide range of gene signatures related to inflammation, lymphoid lineage, and T cell activation was highly upregulated with the combination therapy, suggesting the conversion of immune-insusceptible tumors to immune susceptible. The therapeutic effect proved tumor specific and long lasting. Immune cell subset depletion studies demonstrated that CD4+ T cells were required for synergistic curative activity. The results depict the dynamics of immune modulation of the tumor microenvironment and provide a clinical rationale for using G47Δ with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hirotaka Ito
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
25
|
Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity. Mol Ther Oncolytics 2021; 22:98-113. [PMID: 34514092 PMCID: PMC8411207 DOI: 10.1016/j.omto.2021.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic virotherapy has produced promising yet limited results in preclinical and clinical studies. Besides direct oncolytic activity, a significant therapeutic mechanism of oncolytic virotherapy is the induction of tumor-specific immunity. Consequently, the efficacy of oncolytic viruses can be improved by the insertion of immune stimulator genes and rational combinatorial therapy with other immunotherapies. This article reviews recent efforts on arming oncolytic viruses with a variety of immune stimulator molecules, immune cell engagers, and other immune potentiating molecules. We outline what is known about the mechanisms of action and the corresponding results. The review also discusses recent preclinical and clinical studies of combining oncolytic virotherapy with immune-checkpoint inhibitors and the role of oncolytic virotherapy in changing the tumor microenvironment.
Collapse
Affiliation(s)
- Drew Ashton Boagni
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Divya Ravirala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shaun Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
26
|
Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat Rev Urol 2021; 18:543-555. [PMID: 34183833 DOI: 10.1038/s41585-021-00483-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.
Collapse
|
27
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|
28
|
Li F, Sheng Y, Hou W, Sampath P, Byrd D, Thorne S, Zhang Y. CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency. J Immunother Cancer 2021; 8:jitc-2019-000131. [PMID: 32098828 PMCID: PMC7057442 DOI: 10.1136/jitc-2019-000131] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells have potent antitumor activities. Nevertheless, adoptive transfer therapy of NK cells has gained very limited success in patients with solid tumors as most infused NK cells remain circulating in the peripheral blood instead of entering tumor sites. Chemokines and their receptors play important roles in NK cell distribution. Enhancing chemokine receptors on immune cells to match and be driven to tumor-specific chemokines may improve the therapeutic efficacy of NK cells. METHODS The CCR5-CCL5 axis is critical in NK cell homing to tumor sites. Thus, we analyzed CCR5 expression on NK cells from patients with cancer and healthy donors. We then upregulated CCR5 and CCL5 with lentiviruses and oncolytic viruses in NK and tumor cells, respectively. Animal experiments were also carried out to test the efficacy of the combination of oncolytic virus with NK cells. RESULTS In NK cells from patients with various solid tumors or healthy subjects, CCR5 was expressed at low levels before and after expansion in vitro. CCR5-engineered NK cells showed enhanced tumor infiltration and antitumor effects, but no complete regressions were noted in the in vivo tumor models. To further improve therapeutic efficacy, we constructed CCL5-expressing oncolytic vaccinia virus. In vitro data demonstrated that vaccinia virus can produce CCL5 in tumor cells while infectivity remained unaffected. Supernatants from tumor cells infected by CCL5-modified vaccinia virus enhanced the directional movement of CCR5-overexpressed NK cells but not green fluorescent protein (GFP)-expressing cells. More importantly, NK cells were resistant to the vaccinia virus and their functions were not affected after being in contact. In vivo assays demonstrated that CCL5-expressing vaccinia virus induced a greater accumulation of NK cells within tumor lesions compared with that of the prototype virus. CONCLUSION Enhancement of matched chemokines and chemokine receptors is a promising method of increasing NK cell homing and therapeutic effects. Oncolytic vaccinia viruses that express specific chemokines can synergistically augment the efficacies of NK cell-based therapy.
Collapse
Affiliation(s)
- Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuqiao Sheng
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weizhou Hou
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Padma Sampath
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel Byrd
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen Thorne
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
29
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Farrera-Sal M, Moya-Borrego L, Bazan-Peregrino M, Alemany R. Evolving Status of Clinical Immunotherapy with Oncolytic Adenovirus. Clin Cancer Res 2021; 27:2979-2988. [PMID: 33526422 DOI: 10.1158/1078-0432.ccr-20-1565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy targeting immune checkpoint inhibitors shows efficacy in several human cancers, but "cold tumors" that lack immune cells are typically unresponsive. Among the potential therapeutic approaches that could "heat" or promote lymphocyte infiltration of cold tumors, oncolytic viruses have attracted interest for their lytic and immunogenic mechanisms of action. In this article, we review the use of oncolytic adenoviruses in cancer immunotherapy, with a particular focus on preclinical and clinical data of oncolytic adenovirus-triggered immune responses against tumor antigens. We also discuss parameters to consider in clinical trial design and the combination of oncolytic adenoviruses with conventional treatments or other immunotherapies.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain.,VCN Biosciences SL, Barcelona, Spain
| | | | | | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain.
| |
Collapse
|
32
|
Inoue T, Byrne T, Inoue M, Tait ME, Wall P, Wang A, Dermyer MR, Laklai H, Binder JJ, Lees C, Hollingsworth R, Maruri-Avidal L, Kirn DH, McDonald DM. Oncolytic Vaccinia Virus Gene Modification and Cytokine Expression Effects on Tumor Infection, Immune Response, and Killing. Mol Cancer Ther 2021; 20:1481-1494. [PMID: 34045231 DOI: 10.1158/1535-7163.mct-20-0863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
Oncolytic vaccinia viruses have promising efficacy and safety profiles in cancer therapy. Although antitumor activity can be increased by manipulating viral genes, the relative efficacy of individual modifications has been difficult to assess without side-by-side comparisons. This study sought to compare the initial antitumor activity after intravenous administration of five vaccinia virus variants of the same Western Reserve backbone and thymidine kinase gene deletion in RIP-Tag2 transgenic mice with spontaneous pancreatic neuroendocrine tumors. Tumors had focal regions of infection at 5 days after all viruses. Natural killer (NK) cells were restricted to these sites of infection, but CD8+ T cells and tumor cell apoptosis were widespread and varied among the viruses. Antitumor activity of virus VV-A34, bearing amino acid substitution A34K151E to increase viral spreading, and virus VV-IL2v, expressing a mouse IL2 variant (mIL2v) with attenuated IL2 receptor alpha subunit binding, was similar to control virus VV-GFP. However, antitumor activity was significantly greater after virus VV-A34/IL2v, which expressed mIL2v together with A34K151E mutation and viral B18R gene deletion, and virus VV-GMCSF that expressed mouse GM-CSF. Both viruses greatly increased expression of CD8 antigens Cd8a/Cd8b1 and cytotoxicity genes granzyme A, granzyme B, Fas ligand, and perforin-1 in tumors. VV-A34/IL2v led to higher serum IL2 and greater tumor expression of death receptor ligand TRAIL, but VV-GMCSF led to higher serum GM-CSF, greater expression of leukocyte chemokines and adhesion molecules, and more neutrophil recruitment. Together, the results show that antitumor activity is similarly increased by viral expression of GM-CSF or IL2v combined with additional genetic modifications.
Collapse
Affiliation(s)
- Tomoyoshi Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Thomas Byrne
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Mitsuko Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Madeline E Tait
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | | | - Annabel Wang
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Michael R Dermyer
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Hanane Laklai
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Joseph J Binder
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Clare Lees
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Robert Hollingsworth
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | | | | | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
33
|
Abstract
Several non-redundant features of the tumour microenvironment facilitate immunosuppression and limit anticancer immune responses. These include physical barriers to immune infiltration, the recruitment of suppressive immune cells and the upregulation of ligands on tumour cells that bind to inhibitory receptors on immune cells. Recent insights into the importance of the metabolic restrictions imposed by the tumour microenvironment on antitumour T cells have begun to inform immunotherapeutic anticancer strategies. Therapeutics that target metabolic restrictions, such as low glucose levels, a low pH, hypoxia and the generation of suppressive metabolites, have shown promise as combination therapies for different types of cancer. In this Review, we discuss the metabolic aspects of the antitumour T cell response in the context of immune checkpoint blockade, adoptive cell therapy and treatment with oncolytic viruses, and discuss emerging combination strategies.
Collapse
|
34
|
Yang C, Hua N, Xie S, Wu Y, Zhu L, Wang S, Tong X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed Pharmacother 2021; 139:111573. [PMID: 33894623 DOI: 10.1016/j.biopha.2021.111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
The incidence of hematological malignancies such as multiple myeloma, leukemia, and lymphoma has increased over time. Although bone marrow transplantation, immunotherapy and chemotherapy have led to significant improvements in efficacy, poor prognosis in elderly patients, recurrence and high mortality among hematological malignancies remain major challenges, and innovative therapeutic strategies should be explored. Besides directly lyse tumor cells, oncolytic viruses can activate immune responses or be engineered to express therapeutic factors to increase antitumor efficacy, and have gradually been recognized as an appealing approach for fighting cancers. An increasing number of studies have applied oncolytic viruses in hematological malignancies and made progress. In particular, strategies combining immunotherapy and oncolytic virotherapy are emerging. Various phase I clinical trials of oncolytic reovirus with lenalidomide or programmed death 1(PD-1) immune checkpoint inhibitors in multiple myeloma are ongoing. Moreover, preclinical studies of combinations with chimeric antigen receptor T (CAR-T) cells are underway. Thus, oncolytic virotherapy is expected to be a promising approach to cure hematological malignancies. This review summarizes progress in oncolytic virus research in hematological malignancies. After briefly reviewing the development and oncolytic mechanism of oncolytic viruses, we focus on delivery methods of oncolytic viruses, especially systemic delivery that is suitable for hematological tumors. We then discuss the main types of oncolytic viruses applied for hematological malignancies and related clinical trials. In addition, we present several ways to improve the antitumor efficacy of oncolytic viruses. Finally, we discuss current challenges and provide suggestions for future studies.
Collapse
Affiliation(s)
- Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; Department of Clinical Medicine, Qingdao University, Qingdao, PR China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Lifeng Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
35
|
Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov 2021; 11:1368-1397. [PMID: 33811048 DOI: 10.1158/2159-8290.cd-20-1209] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Harnessing the immune system to treat cancer through inhibitors of CTLA4 and PD-L1 has revolutionized the landscape of cancer. Rational combination strategies aim to enhance the antitumor effects of immunotherapies, but require a deep understanding of the mechanistic underpinnings of the immune system and robust preclinical and clinical drug development strategies. We review the current approved immunotherapy combinations, before discussing promising combinatorial approaches in clinical trials and detailing innovative preclinical model systems being used to develop rational combinations. We also discuss the promise of high-order immunotherapy combinations, as well as novel biomarker and combinatorial trial strategies. SIGNIFICANCE: Although immune-checkpoint inhibitors are approved as dual checkpoint strategies, and in combination with cytotoxic chemotherapy and angiogenesis inhibitors for multiple cancers, patient benefit remains limited. Innovative approaches are required to guide the development of novel immunotherapy combinations, ranging from improvements in preclinical tumor model systems to biomarker-driven trial strategies.
Collapse
Affiliation(s)
- Timothy A Yap
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eileen E Parkes
- Oxford Institute of Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Justin T Moyers
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
Kana SI, Essani K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 2021; 25:301-313. [PMID: 33713031 DOI: 10.1007/s40291-021-00517-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.
Collapse
Affiliation(s)
- Sadia Islam Kana
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
37
|
Masemann D, Meissner R, Schied T, Lichty BD, Rapp UR, Wixler V, Ludwig S. Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers. Oncoimmunology 2021; 10:1885778. [PMID: 33643696 PMCID: PMC7894418 DOI: 10.1080/2162402x.2021.1885778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients.
Collapse
Affiliation(s)
- Dörthe Masemann
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Ramona Meissner
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Tanja Schied
- Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ulf R Rapp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Viktor Wixler
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| |
Collapse
|
38
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
39
|
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2021; 12:12/526/eaax7992. [PMID: 31941828 DOI: 10.1126/scitranslmed.aax7992] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator in determining the antitumor effectiveness of immunotherapies. Data support the role of activation and expansion of tumor-infiltrating lymphocytes (TILs) in increasing the benefit of immunotherapies in patients with solid tumors. We found that intratumoral injection of a tumor-selective oncolytic vaccinia virus encoding interleukin-7 (IL-7) and IL-12 into tumor-bearing immunocompetent mice activated the inflammatory immune status of previously poorly immunogenic tumors and resulted in complete tumor regression, even in distant tumor deposits. Mice achieving complete tumor regression resisted rechallenge with the same tumor cells, suggesting establishment of long-term tumor-specific immune memory. Combining this virotherapy with anti-programmed cell death-1 (PD-1) or anti-cytotoxic T lymphocyte antigen 4 (CTLA4) antibody further increased the antitumor activity as compared to virotherapy alone, in tumor models unresponsive to either of the checkpoint inhibitor monotherapies. These findings suggest that administration of an oncolytic vaccinia virus carrying genes encoding for IL-7 and IL-12 has antitumor activity in both directly injected and distant noninjected tumors through immune status changes rendering tumors sensitive to immune checkpoint blockade. The benefit of intratumoral IL-7 and IL-12 expression was also observed in humanized mice bearing human cancer cells. These data support further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan.
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Mamoru Tasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Midori Yamashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Ryuji Murakami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Nobuaki Amino
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Motomu Nakatake
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Takafumi Nakamura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
40
|
Zhang S, Rabkin SD. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin Drug Discov 2020; 16:391-410. [PMID: 33232188 DOI: 10.1080/17460441.2021.1850689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Despite diverse treatment modalities and novel therapies, many cancers and patients are not effectively treated. Cancer immunotherapy has recently achieved breakthrough status yet is not effective in all cancer types or patients and can generate serious adverse effects. Oncolytic viruses (OVs) are a promising new therapeutic modality that harnesses virus biology and host interactions to treat cancer. OVs, genetically engineered or natural, preferentially replicate in and kill cancer cells, sparing normal cells/tissues, and mediating anti-tumor immunity.Areas covered: This review focuses on OVs as cancer therapeutic agents from a historical perspective, especially strategies to boost their immunotherapeutic activities. OVs offer a multifaceted platform, whose activities are modulated based on the parental virus and genetic alterations. In addition to direct viral effects, many OVs can be armed with therapeutic transgenes to also act as gene therapy vectors, and/or combined with other drugs or therapies.Expert opinion: OVs are an amazingly versatile and malleable class of cancer therapies. They tend to target cellular and host physiology as opposed to specific genetic alterations, which potentially enables broad responsiveness. The biological complexity of OVs have hindered their translation; however, the recent approval of talimogene laherparepvec (T-Vec) has invigorated the field.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Zhang H, Zhang Y, Dong J, Li B, Xu C, Wei M, Wu J, Wei J. Recombinant oncolytic adenovirus expressing a soluble PVR elicits long-term antitumor immune surveillance. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:12-22. [PMID: 33575467 PMCID: PMC7851489 DOI: 10.1016/j.omto.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Oncolytic virotherapy (OVT) has been suggested to be effective. However, the suppressive effects of checkpoints and insufficient costimulatory signals limit OVT-induced antitumor immune responses. In this study, we constructed a replicative adenovirus, Ad5sPVR, that expresses the soluble extracellular domain of poliovirus receptor (sPVR). We showed that sPVR can bind to both T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and CD226, and the binding affinity of sPVR to TIGIT is stronger than that of PVR to CD226. In the H22 hepatocellular carcinoma (HCC) ascites model, Ad5sPVR treatment increased the infiltration of CD8+ T cells and the release of interferon (IFN)-γ, exhibiting an antitumor effect with long-term tumor-specific immune surveillance. In line with this, Ad5sPVR also effectively improved antitumor outcomes in solid tumors. In conclusion, while Ad5sPVR plays a role in oncolysis and transforms cold tumors into hot tumors, sPVR expressed by Ad5sPVR can block the PVR/TIGIT checkpoint and activate CD226, thereby greatly improving the efficacy of OVT. This study provides a new way to develop potential oncolytic viral drugs.
Collapse
Affiliation(s)
- Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yonghui Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Binghua Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Min Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| |
Collapse
|
42
|
Zhang B, Cheng P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Mol Cancer 2020; 19:158. [PMID: 33172438 PMCID: PMC7656670 DOI: 10.1186/s12943-020-01275-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
As a promising therapeutic strategy, oncolytic virotherapy has shown potent anticancer efficacy in numerous pre-clinical and clinical trials. Oncolytic viruses have the capacity for conditional-replication within carcinoma cells leading to cell death via multiple mechanisms, including direct lysis of neoplasms, induction of immunogenic cell death, and elicitation of innate and adaptive immunity. In addition, these viruses can be engineered to express cytokines or chemokines to alter tumor microenvironments. Combination of oncolytic virotherapy with other antitumor therapeutic modalities, such as chemotherapy and radiation therapy as well as cancer immunotherapy can be used to target a wider range of tumors and promote therapeutic efficacy. In this review, we outline the basic biological characteristics of oncolytic viruses and the underlying mechanisms that support their use as promising antitumor drugs. We also describe the enhanced efficacy attributed to virotherapy combined with other drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, PR China.
| |
Collapse
|
43
|
Osojnik A, Gaffney EA, Davies M, Yates JWT, Byrne HM. Identifying and characterising the impact of excitability in a mathematical model of tumour-immune interactions. J Theor Biol 2020; 501:110250. [PMID: 32199856 DOI: 10.1016/j.jtbi.2020.110250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour cell death, and tumour cells may inactivate immune cells. Exploiting a separation of timescales in the model, we use the method of matched asymptotics to derive a new two-dimensional, long-timescale, approximation of the full model, which differs from the quasi-steady-state approximation introduced by Kuznetsov et al. (1994), but is validated against numerical solutions of the full model. Through a phase-plane analysis, we show that our reduced model is excitable, a feature not traditionally associated with tumour-immune dynamics. Through a systematic parameter sensitivity analysis, we demonstrate that excitability generates complex bifurcating dynamics in the model. These are consistent with a variety of clinically observed phenomena, and suggest that excitability may underpin tumour-immune interactions. The model exhibits the three stages of immunoediting - elimination, equilibrium, and escape, via stable steady states with different tumour cell concentrations. Such heterogeneity in tumour cell numbers can stem from variability in initial conditions and/or model parameters that control the properties of the immune system and its response to the tumour. We identify different biophysical parameter targets that could be manipulated with immunotherapy in order to control tumour size, and we find that preferred strategies may differ between patients depending on the strength of their immune systems, as determined by patient-specific values of associated model parameters.
Collapse
Affiliation(s)
- Ana Osojnik
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK
| | - Michael Davies
- DMPK, Early Oncology, Oncology R&D, AstraZeneca, Chesterford Research Park, Little Chesterford, Cambridge, CB10 1XL, UK
| | - James W T Yates
- DMPK, Early Oncology, Oncology R&D, AstraZeneca, Chesterford Research Park, Little Chesterford, Cambridge, CB10 1XL, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
44
|
Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, Massard C, Robert C, Ammari S, De Baère T, Marabelle A. Intratumoral Immunotherapy: From Trial Design to Clinical Practice. Clin Cancer Res 2020; 27:665-679. [PMID: 32943460 DOI: 10.1158/1078-0432.ccr-20-0473] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
Systemic immunotherapies such as immune checkpoint blockade targeted at PD(L)1 and CTLA4 have demonstrated their ability to provide durable tumor responses and long-term overall survival benefits for some patients in several solid tumor types. However, a majority of patients remain resistant to these treatments and a significant proportion of them develop severe autoimmune and inflammatory adverse events. Preclinical studies have demonstrated that intratumoral injections of immunostimulatory products (oncolytics, pattern recognition receptor agonists,…) that are able to trigger type I IFN release and enhance tumor antigen presentation on immune cells could generate a strong antitumor immunity and overcome the resistance to systemic immune checkpoint blockade therapies. The intratumoral immunotherapy strategies that are currently in clinical development offer a unique therapeutic and exploratory setting to better understand the immune contexture across tumor lesions of patients with metastatic cancer. Also these local therapeutic products could turn cold tumors into hot and improve the response rates to cancer immunotherapies while diminishing their systemic exposure and toxicities. Intratumoral immunotherapies could prime or boost the immunity against tumors and therefore radically change the combinatorial therapeutic strategies currently pursued for metastatic and local cancers to improve their long-term survival. We aimed to review and discuss the scientific rationale for intratumoral immunotherapy, the challenges raised by this strategy in terms of drug development within clinical trials and the current state-of-the-art regarding the clinical practice of this innovative approach.
Collapse
Affiliation(s)
- Stéphane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France.,Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France.,Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Siham Farhane
- Gustave Roussy Immunotherapy Program (GRIP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Thibault Raoult
- Service de Promotion des Etudes Cliniques (SPEC), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Matthieu Texier
- Service de Biostatistiques et d'Epidémiologie (SBE), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Emilie Lanoy
- Service de Biostatistiques et d'Epidémiologie (SBE), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Caroline Robert
- Département de Médecine Oncologique (DMO), Gustave Roussy, Université Paris Saclay, Villejuif, France.,Université Paris Saclay, Saint-Aubin, France
| | - Samy Ammari
- Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Thierry De Baère
- Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France.,Université Paris Saclay, Saint-Aubin, France
| | - Aurélien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France. .,Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France.,Gustave Roussy Immunotherapy Program (GRIP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
45
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol 2020; 10:1786. [PMID: 33014876 PMCID: PMC7509414 DOI: 10.3389/fonc.2020.01786] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer has always been an enormous threat to human health and survival. Surgery, radiotherapy, and chemotherapy could improve the survival of cancer patients, but most patients with advanced cancer usually have a poor survival or could not afford the high cost of chemotherapy. The emergence of oncolytic viruses provided a new strategy for us to alleviate or even cure malignant tumors. An oncolytic virus can be described as a genetically engineered or naturally existing virus that can selectively replicate in cancer cells and then kill them without damaging the healthy cells. There have been many kinds of oncolytic viruses, such as herpes simplex virus, adenovirus, and Coxsackievirus. Moreover, they have different clinical applications in cancer treatment. This review focused on the clinical application of oncolytic virus and predicted the prospect by analyzing the advantages and disadvantages of oncolytic virotherapy.
Collapse
Affiliation(s)
- Guo-dong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-bo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Jiangsu Key Laboratory of Biological Cancer, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xudong Feng
- Department of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Peng-ping Li
- Department of General Surgery, The First People’s Hospital of Xiaoshan District, Hangzhou, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Muscolini M, Tassone E, Hiscott J. Oncolytic Immunotherapy: Can't Start a Fire Without a Spark. Cytokine Growth Factor Rev 2020; 56:94-101. [PMID: 32826166 DOI: 10.1016/j.cytogfr.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023]
Abstract
Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic ('cold') tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic ('hot') tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics.
Collapse
Affiliation(s)
| | - Evelyne Tassone
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
47
|
Van Hoecke L, Riederer S, Saelens X, Sutter G, Rojas JJ. Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice. Oncoimmunology 2020; 9:1802968. [PMID: 32923163 PMCID: PMC7458643 DOI: 10.1080/2162402x.2020.1802968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccinia viruses (VACV) are a novel class of immune-oncolytic therapeutics and their mechanism of action is based both on their capacity to replicate selectively in cancer cells and to elicit danger signals that can boost anti-tumor immunity. We recently reported that the intratumor expression of MLKL, a necroptosis inducing factor, generates a protective anti-tumor immunity. Here, we combined both approaches to test the use of VACV to deliver MLKL into the tumor. We generated VACV vectors expressing MLKL and evaluated the effects of MLKL on antitumor efficacy. In vitro infection of cancer cells with MLKL-expressing vectors led to cell death with necroptotic hallmarks. In syngeneic mouse tumor models, VACV expressing MLKL induced an outstanding antitumor activity, which was associated with a robust immunity directed against neo-epitopes. In conclusion, delivery of MLKL by VACV vectors boosts the intrinsic anti-tumor properties of these viral vectors by promoting in situ immunogenic cell death of infected cancer cells.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie Riederer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Juan José Rojas
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany.,Department of Pathology and Experimental Therapies, University of Barcelona, L'Hospitalet De Llobregat, Spain
| |
Collapse
|
48
|
Qian L, Shen Y, Xie J, Meng Z. Immunomodulatory effects of ablation therapy on tumors: Potentials for combination with immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188385. [PMID: 32554098 DOI: 10.1016/j.bbcan.2020.188385] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
49
|
Marchica V, Franceschi V, Vescovini R, Storti P, Vicario E, Toscani D, Zorzoli A, Airoldi I, Dalla Palma B, Campanini N, Martella E, Mancini C, Costa F, Donofrio G, Giuliani N. Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. J Hematol Oncol 2020; 13:89. [PMID: 32653014 PMCID: PMC7353805 DOI: 10.1186/s13045-020-00919-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.
Collapse
Affiliation(s)
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emanuela Vicario
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Eugenia Martella
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Cristina Mancini
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy.
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy.
| |
Collapse
|
50
|
Overcoming Tumor Resistance to Oncolyticvaccinia Virus with Anti-PD-1-Based Combination Therapy by Inducing Antitumor Immunity in the Tumor Microenvironment. Vaccines (Basel) 2020; 8:vaccines8020321. [PMID: 32575351 PMCID: PMC7350271 DOI: 10.3390/vaccines8020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) comprises different types of immune cells, which limit the therapeutic efficacy of most drugs. Although oncolytic virotherapy (OVT) boosts antitumor immunity via enhanced infiltration of tumor-infiltrated lymphocytes (TILs), immune checkpoints on the surface of tumors and TILs protect tumor cells from TIL recognition and apoptosis. OVT and immune checkpoint blockade (ICB)-based combination therapy might overcome this issue. Therefore, combination immunotherapies to modify the immunosuppressive nature of TME and block immune checkpoints of immune cells and tumors are considered. In this study, cancer-favoring oncolytic vaccinia virus (CVV) and anti–programmed cell death protein-1 (anti-PD-1) were used to treat mouse colorectal cancer. Weekly-based intratumoral CVV and intraperitoneal anti-PD-1 injections were performed on Balb/c mice with subcutaneous CT26 tumors. Tumor volume, survival curve, and immunohistochemistry-based analysis demonstrated the benefit of co-treatment, especially simultaneous treatment with CVV and anti-PD-1. Infiltration of CD8+PD-1+ T-cells showed correlation with these results. Splenocytes enumeration also suggested CD4+ and CD8+ T-cell upregulation. In addition, upregulated CD8, PD-1, and CD86 messenger RNA expression was observed in this combination therapy. Therefore, CVV+anti-PD-1 combination therapy induces antitumor immunity in the TME, overcoming the rigidity and resistance of the TME in refractory cancers.
Collapse
|