1
|
Stradella A, Johnson M, Goel S, Park H, Lakhani N, Arkenau H, Galsky MD, Calvo E, Baz V, Moreno V, Saavedra O, Luen SJ, Mu S, Wan Q, Chang V, Zhang W, Barve M. Phase 1b study to assess the safety, tolerability, and clinical activity of pamiparib in combination with temozolomide in patients with locally advanced or metastatic solid tumors. Cancer Med 2024; 13:e7385. [PMID: 38970256 PMCID: PMC11226541 DOI: 10.1002/cam4.7385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Pamiparib is a potent, selective, poly (ADP-ribose) polymerase 1/2 inhibitor that demonstrates synthetic lethality in cells with breast cancer susceptibility gene mutations or other homologous recombination deficiency. This two-stage phase 1b study (NCT03150810) assessed pamiparib in combination with temozolomide (TMZ) in adult patients with histologically confirmed locally advanced and metastatic solid tumors. METHODS Oral pamiparib 60 mg was administered twice daily. During the dose-escalation stage, increasing doses of TMZ (40-120 mg once daily pulsed or 20-40 mg once daily continuous) were administered to determine the recommended dose to be administered in the dose-expansion stage. The primary objectives were to determine safety and tolerability, maximum tolerated/administered dose, recommended phase 2 dose and schedule, and antitumor activity of pamiparib in combination with TMZ. Pharmacokinetics of pamiparib and TMZ and biomarkers were also assessed. RESULTS Across stages, 139 patients were treated (dose escalation, n = 66; dose expansion, n = 73). The maximum tolerated dose of TMZ, which was administered during dose expansion, was 7-day pulsed 60 mg once daily. The most common treatment-emergent adverse events (TEAEs) were anemia (dose escalation, 56.1%; dose expansion, 63.0%), nausea (dose escalation, 54.5%; dose expansion, 49.3%), and fatigue (dose escalation, 48.5%; dose expansion, 47.9%). In the dose-escalation stage, four patients experienced dose-limiting toxicities (three neutropenia and one neutrophil count decreased). No TEAEs considered to be related to study drug treatment resulted in death. Antitumor activity was modest, indicated by confirmed overall response rate (dose escalation, 13.8%; dose expansion, 11.6%), median progression-free survival (3.7 and 2.8 months), and median overall survival (10.5 and 9.2 months). Administration of combination therapy did not notably impact pamiparib or TMZ pharmacokinetics. CONCLUSIONS Pamiparib in combination with TMZ had a manageable safety profile. Further investigation of the efficacy of this combination in tumor types with specific DNA damage repair deficiencies is warranted.
Collapse
Affiliation(s)
- Agostina Stradella
- Institut Català d'Oncologia–Hospital Duran I Reynals, L'Hospitalet de LlobregatCatalunyaSpain
| | - Melissa Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, PLLCNashvilleTennesseeUSA
| | - Sanjay Goel
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Haeseong Park
- Washington University School of MedicineSt. LouisMissouriUSA
- Dana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Hendrik‐Tobias Arkenau
- Sarah Cannon Research Institute, UCL Cancer Institute, University College LondonLondonUK
| | - Matthew D. Galsky
- The Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emiliano Calvo
- START Madrid‐HM CIOCC, Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, Calle OñaMadridSpain
| | - Vicente Baz
- Hospital Universitario Virgen MacarenaSevilleSpain
| | - Victor Moreno
- START Madrid‐FJDFundacion Jimenez Diaz University HospitalMadridSpain
| | | | - Stephen J. Luen
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Song Mu
- BeiGene, USA IncRidgefield ParkNew JerseyUSA
| | | | | | - Wa Zhang
- BeiGene (Beijing) Co., LtdBeijingChina
| | | |
Collapse
|
2
|
Kwok M, Agathanggelou A, Stankovic T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 2024; 143:2123-2144. [PMID: 38457665 DOI: 10.1182/blood.2023019963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology-directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5'-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR-immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Frank D, Patnana PK, Vorwerk J, Mao L, Gopal LM, Jung N, Hennig T, Ruhnke L, Frenz JM, Kuppusamy M, Autry R, Wei L, Sun K, Mohammed Ahmed HM, Künstner A, Busch H, Müller H, Hutter S, Hoermann G, Liu L, Xie X, Al-Matary Y, Nimmagadda SC, Cano FC, Heuser M, Thol F, Göhring G, Steinemann D, Thomale J, Leitner T, Fischer A, Rad R, Röllig C, Altmann H, Kunadt D, Berdel WE, Hüve J, Neumann F, Klingauf J, Calderon V, Opalka B, Dührsen U, Rosenbauer F, Dugas M, Varghese J, Reinhardt HC, von Bubnoff N, Möröy T, Lenz G, Batcha AMN, Giorgi M, Selvam M, Wang E, McWeeney SK, Tyner JW, Stölzel F, Mann M, Jayavelu AK, Khandanpour C. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023; 142:2175-2191. [PMID: 37756525 PMCID: PMC10733838 DOI: 10.1182/blood.2022015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
ABSTRACT Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Collapse
Affiliation(s)
- Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lavanya Mokada Gopal
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Noelle Jung
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Leo Ruhnke
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maithreyan Kuppusamy
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Robert Autry
- Hopp Children’s Cancer Center, Heidelberg, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Refined Laser Systems GmbH, Münster, Germany
| | - Jürgen Klingauf
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Virginie Calderon
- Bioinformatic Core Facility, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
- Data Integration for Future Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Marianna Giorgi
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Murugan Selvam
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein Kiel, Christian Albrecht University Kiel, Kiel, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center, Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Kleinberg L, Ye X, Supko J, Stevens GHJ, Shu HK, Mikkelsen T, Lieberman F, Lesser GJ, Lee E, Grossman SA. A multi-site phase I trial of Veliparib with standard radiation and temozolomide in patients with newly diagnosed glioblastoma multiforme (GBM). J Neurooncol 2023; 165:499-507. [PMID: 38015376 DOI: 10.1007/s11060-023-04514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE A multi-site Phase I trial was conducted to determine the safety, maximum tolerated dose, and pharmacokinetics (PK) of Veliparib, a Poly (ADP-ribose) polymerase [PARP] enzyme inhibitor, when administered with temozolomide (TMZ) alone and then with temozolomide and radiation (RT) in patients with newly diagnosed glioblastoma. METHODS Given the potential for myelosuppression when a PARP inhibitor is combined with chemotherapy, the first 6 patients accrued were given Veliparib 10 mg bid and TMZ 75 mg/m2/d daily for six weeks. If this was well tolerated, the same doses of Veliparib and TMZ would be tested along with standard radiation with plans to dose escalate the Veliparib in subsequent patient cohorts. Once a maximal tolerated dose was determined, a 78 patient phase II study was planned. Peripheral blood pharmacokinetics were assessed. RESULTS Twenty-four patients were enrolled. In the first 6 patients who received 6 weeks of TMZ with Veliparib only one dose limiting toxicity (DLT) occurred. The next 12 patients received 6 weeks of RT + TMZ + veliparib and 4/12 (33%) had dose limiting hematologic toxicities. As a result, Veliparib was reduced by 50% to 10 mg BID every other week, but again 3/3 patients had dose limiting hematologic toxicities. The trial was then terminated. The mean clearance (± SD) CL/F of Veliparib for the initial dose (27.0 ± 9.0 L/h, n = 16) and at steady-state for 10 mg BID (23.5 ± 10.4 L/h, n = 18) were similar. Accumulation for BID dosing was 56% (± 33%). CONCLUSIONS Although Veliparib 10 mg BID administered with TMZ 75 mg/m2 for six weeks was well tolerated, when this regimen was combined with standard partial brain irradiation it was severely myelosuppressive even when the dose was reduced by 50%. This study again highlights the potential of localized cranial radiotherapy to significantly increase hematologic toxicity of marginally myelosuppressive systemic therapies.
Collapse
Affiliation(s)
- Lawrence Kleinberg
- Radiation Oncology and Radiation Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cyberknife, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD, 21231, USA.
| | - Xiaobu Ye
- Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeff Supko
- Medicine, Harvard medical School, Boston, MA, USA
| | | | - Hui-Kuo Shu
- Radiation Oncology, Emory University, Atlanta, Georgia
| | - Tom Mikkelsen
- Jeffries Precision Medicine Center, Henry Ford Health, Detroit, MI, USA
| | - Frank Lieberman
- Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Glenn J Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Emerson Lee
- Radiation Oncology and Radiation Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stuart A Grossman
- Radiation Oncology and Radiation Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Ducray F, Ramirez C, Robert M, Fontanilles M, Bronnimann C, Chinot O, Estrade F, Durando X, Cartalat S, Bastid J, Bienayme H, Lemarchand C. A Multicenter Randomized Bioequivalence Study of a Novel Ready-to-Use Temozolomide Oral Suspension vs. Temozolomide Capsules. Pharmaceutics 2023; 15:2664. [PMID: 38140005 PMCID: PMC10747054 DOI: 10.3390/pharmaceutics15122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) oral suspension (Ped-TMZ, KIZFIZO®) is being developed for the treatment of relapsed or refractory neuroblastoma, a rare cancer affecting infants and young children. The study assessed the safety and the bioequivalence of this novel pediatric formulation with existing TMZ oral capsules. METHODS In vitro dissolution profiles and the bioequivalence were evaluated following the European Medicines Agency "Guidelines on the investigation of Bioequivalence". The phase I, multicenter, randomized, open-label, crossover, single-dose bioequivalence study enrolled 36 adult patients with glioblastoma multiforme or lower-grade glioma. Each patient received 200 mg/m2 Ped-TMZ suspension and TMZ capsules (Temodal®) on 2 consecutive days, with the order being randomly assigned. Fourteen blood samples were collected up to 10 h post-dosing. Bioequivalence was assessed by comparing the 90% confidence interval for the ratio of the geometric means of maximum TMZ plasma concentration (Cmax) and the area under the curve (AUCt). Other endpoints included further pharmacokinetic parameters and safety. RESULTS Both formulations exhibited a fast in vitro dissolution profile with more than 85% of TMZ dissolved within 15 min. For the bioequivalence study, thirty patients completed the trial as per the protocol. The ratio of Ped-TMZ/TMZ capsule geometric means (90% CI) for AUCt and Cmax were 97.18% (95.05-99.35%) and 107.62% (98.07-118.09%), respectively, i.e., within the 80-125% bioequivalence limits. No buccal toxicity was associated with Ped-TMZ liquid formulation. CONCLUSIONS This study showed that Ped-TMZ oral suspension and TMZ oral capsule treatment are immediate release and bioequivalent medicines. There were also no unexpected safety signals or local toxicity (funded by ORPHELIA Pharma; ClinicalTrials.gov number, NCT04467346).
Collapse
Affiliation(s)
- François Ducray
- Service de Neuro-Oncologie, Hôpital Neurologique, Hospices Civils de Lyon, Centre de Recherche en Cancérologie UMR INSERM 1052 CNRS 5286, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Carole Ramirez
- Services de Neurologie et D’oncologie Médicale, CHU et ICHUSE de Saint-Etienne, 42055 Saint-Etienne, France;
| | - Marie Robert
- Institut de Cancérologie de l’Ouest, Medical Oncology, 44800 Saint Herblain, France;
| | - Maxime Fontanilles
- INSERM U1245 Unit, Cancer Centre Henri Becquerel, Université Rouen Normandie, 76038 Rouen, France;
- Le Havre Hospital Group, 76083 Le Havre, France
| | - Charlotte Bronnimann
- CHU de Bordeaux, Service D’oncologie Médicale, Hôpital Saint André, 33075 Bordeaux, France;
| | - Olivier Chinot
- Aix-Marseille Université, Neuro-Oncology Department, APHM, CNRS, Institut de Neurophysiopathologie, CHU Timone, Service de Neuro-Oncologie, 13385 Marseille, France;
| | | | - Xavier Durando
- INSERM U1240 IMoST, University of Clermont Auvergne, 63001 Clermont-Ferrand, France;
- UMR 501, Clinical Investigation Centre, 63011 Clermont-Ferrand, France
- Clinical Research and Innovation Department, Centre Jean Perrin, 63011 Clermont-Ferrand, France
- Oncology Department, Centre Jean Perrin, 63011 Clermont-Ferrand, France
| | - Stéphanie Cartalat
- Service de Neuro-Oncologie, Hôpital Neurologique, Hospices Civils de Lyon, Centre de Recherche en Cancérologie UMR INSERM 1052 CNRS 5286, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Jeremy Bastid
- ORPHELIA Pharma, 75005 Paris, France; (J.B.); (H.B.)
| | | | | |
Collapse
|
6
|
Das D, Duncton MAJ, Georgiadis TM, Pellicena P, Clark J, Sobol RW, Georgiadis MM, King-Underwood J, Jobes DV, Chang C, Gao Y, Deacon AM, Wilson DM. A New Drug Discovery Platform: Application to DNA Polymerase Eta and Apurinic/Apyrimidinic Endonuclease 1. Int J Mol Sci 2023; 24:16637. [PMID: 38068959 PMCID: PMC10706420 DOI: 10.3390/ijms242316637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.
Collapse
Affiliation(s)
- Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | | | | | | | - Jennifer Clark
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology & Laboratory Medicine, Warrant Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Millie M. Georgiadis
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - David V. Jobes
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Mid-Atlantic BioTherapeutics, Inc., Doylestown, PA 18902, USA
| | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashley M. Deacon
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | - David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Biomedical Research Institute, Hasselt University, 3500 Diepenbeek, Belgium
- Belgium & Boost Scientific, 3550 Heusden-Zolder, Belgium
| |
Collapse
|
7
|
Kleinberg L, Ye X, Supko J, Stevens GHJ, Shu HK, Mikkelsen T, Lieberman F, Lesser G, Lee E, Grossman S. A Multi-Site Phase I Trial of Veliparib with Standard Radiation and Temozolomide in Patients with Newly Diagnosed Glioblastoma Multiforme (GBM). RESEARCH SQUARE 2023:rs.3.rs-3466927. [PMID: 37961385 PMCID: PMC10635324 DOI: 10.21203/rs.3.rs-3466927/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose A multi-site Phase I trial was conducted to determine the safety, maximum tolerated dose, and pharmacokinetics (PK) of Veliparib, a Poly (ADP-ribose) polymerase [PARP] enzyme inhibitor, when administered with temozolomide (TMZ) alone and then with temozolomide and radiation (RT) in patients with newly diagnosed glioblastoma. Methods Given the potential for myelosuppression when a PARP inhibitor is combined with chemotherapy, the first 6 patients accrued were given Veliparib 10 mg bid and TMZ 75 mg/m2/d daily for six weeks. If this was well tolerated, the same doses of Veliparib and TMZ would be tested along with standard radiation with plans to dose escalate the Veliparib in subsequent patient cohorts. Once a maximal tolerated dose was determined, a 78 patient phase II study was planned. Peripheral blood pharmacokinetics were assessed. Results Twenty-four patients were enrolled. In the first 6 patients who received 6 weeks of TMZ with Veliparib only one dose limiting toxicity (DLT) occurred. The next 12 patients received 6 weeks of RT + TMZ + veliparib and 4/12 (33%) had dose limiting hematologic toxicities. As a result, Veliparib was reduced by 50% to 10 mg BID every other week, but again 3/3 patients had dose limiting hematologic toxicities. The trial was then terminated. The mean clearance (± SD) CL/F of Veliparib for the initial dose (27.0 ± 9.0 L/h, n = 16) and at steady-state for 10 mg BID (23.5 ± 10.4 L/h, n = 18) were similar. Accumulation for BID dosing was 56% (± 33%). Conclusions Although Veliparib 10 mg BID administered with TMZ 75 mg/m2 for six weeks was well tolerated, when this regimen was combined with standard partial brain irradiation it was severely myelosuppressive even when the dose was reduced by 50%. This study again highlights the potential of localized cranial radiotherapy to significantly increase hematologic toxicity of marginally myelosuppressive systemic therapies.
Collapse
|
8
|
Gerke MB, Christodoulou I, Karantanos T. Definitions, Biology, and Current Therapeutic Landscape of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2023; 15:3815. [PMID: 37568631 PMCID: PMC10417399 DOI: 10.3390/cancers15153815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are hematological disorders characterized by both proliferative and dysplastic features. According to the 2022 International Consensus Classification (ICC), MDS/MPN consists of clonal monocytosis of undetermined significance (CMUS), chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (aCML), MDS/MPN with SF3B1 mutation (MDS/MPN-T-SF3B1), MDS/MPN with ring sideroblasts and thrombocytosis not otherwise specified (MDS/MPN-RS-T-NOS), and MDS/MPN-NOS. These disorders exhibit a diverse range of genetic alterations involving various transcription factors (e.g., RUNX1), signaling molecules (e.g., NRAS, JAK2), splicing factors (e.g., SF3B, SRSF2), and epigenetic regulators (e.g., TET2, ASXL1, DNMT3A), as well as specific cytogenetic abnormalities (e.g., 8 trisomies, 7 deletions/monosomies). Clinical studies exploring therapeutic options for higher-risk MDS/MPN overlap syndromes mostly involve hypomethylating agents, but other treatments such as lenalidomide and targeted agents such as JAK inhibitors and inhibitors targeting PARP, histone deacetylases, and the Ras pathway are under investigation. While these treatment modalities can provide partial disease control, allogeneic bone marrow transplantation (allo-BMT) is the only potentially curative option for patients. Important prognostic factors correlating with outcomes after allo-BMT include comorbidities, splenomegaly, karyotype alterations, and the bone marrow blasts percentage at the time of transplantation. Future research is imperative to optimizing therapeutic strategies and enhancing patient outcomes in MDS/MPN neoplasms. In this review, we summarize MDS/MPN diagnostic criteria, biology, and current and future treatment options, including bone marrow transplantation.
Collapse
Affiliation(s)
- Margo B. Gerke
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Ilias Christodoulou
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | |
Collapse
|
9
|
Sun X, Tang H, Chen Y, Chen Z, Hu Z, Cui Z, Tao Y, Yuan J, Fu Y, Zhuang Z, He Q, Li Q, Xu X, Wan X, Jiang Y, Mao Z. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. NATURE CANCER 2023; 4:716-733. [PMID: 37012401 DOI: 10.1038/s43018-023-00535-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is essential for the progression of several types of cancers. However, whether and how PARP1 is stabilized to promote genomic stability in triple-negative breast cancer (TNBC) remains unknown. Here, we demonstrated that the deubiquitinase USP15 interacts with and deubiquitinates PARP1 to promote its stability, thereby stimulating DNA repair, genomic stability and TNBC cell proliferation. Two PARP1 mutations found in individuals with breast cancer (E90K and S104R) enhanced the PARP1-USP15 interaction and suppressed PARP1 ubiquitination, thereby elevating the protein level of PARP1. Importantly, we found that estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) inhibited USP15-mediated PARP1 stabilization through different mechanisms. ER bound to the USP15 promoter to suppress its expression, PR suppressed the deubiquitinase activity of USP15, and HER2 abrogated the PARP1-USP15 interaction. The specific absence of these three receptors in TNBC results in high PARP1 levels, leading to increases in base excision repair and female TNBC cell survival.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Tao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhigang Zhuang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| |
Collapse
|
10
|
Hiroki H, Akahane K, Inukai T, Morio T, Takagi M. Synergistic effect of combined PI3 kinase inhibitor and PARP inhibitor treatment on BCR/ABL1-positive acute lymphoblastic leukemia cells. Int J Hematol 2022; 117:748-758. [PMID: 36575328 DOI: 10.1007/s12185-022-03520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) function by inhibiting base excision repair and inducing synthetic lethality in homologous recombination repair-deficient cells, such as BRCA1/2-mutated cancer cells. The BCR/ABL1 fusion protein causes dysregulated cell proliferation and is responsible for chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). BCR/ABL1 also induces genomic instability by downregulating BRCA1. We investigated the effect of the PARPi, olaparib, against Ph+ALL cell lines and found that they show variable sensitivity, presumably due to cancer-associated genetic alterations other than BCR/ABL1. To investigate the reasons for the variable responses of Ph+ALL cells to PARPi treatment, we analyzed the transcriptomes of olaparib-sensitive and -resistant Ph+ALL cell lines, which revealed that activation of the phosphatidylinositol 3-kinase (PI3K) pathway was a hallmark of PARPi resistance. Based on these findings, we examined the effects of adding a PI3K inhibitor (PI3Ki) to PARPi treatment to overcome PARPi insensitivity in Ph+ALL cell lines. Combination with PI3Ki increased PARPi cytotoxicity in PARPi-resistant Ph+ALL cell lines. Tyrosine kinase inhibitor (TKI) therapy is the gold standard for Ph+ALL, and, based on our findings, we propose that PARPi combined with TKI and PI3K inhibition could be a novel therapeutic strategy for Ph+ALL.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
11
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
12
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
13
|
Guha M, Sobol Z, Martin M, Hemkens M, Sung T, Rubitski E, Spellman R, Finkelstein M, Khan N, Hu W. Comparative Analyses of Poly(ADP-Ribose) Polymerase Inhibitors. Int J Toxicol 2022; 41:442-454. [DOI: 10.1177/10915818221121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are approved as monotherapies in BRCA1/2-mutated (m BRCA1/2) metastatic breast and ovarian cancers, and in advanced pancreatic and metastatic castration-resistant prostate cancers. Differential safety profiles across PARPi necessitate improved mechanistic understanding of inhibitor differences, especially with expansion of PARPi indications and drug combinations. Here, we report in vitro evaluations of PARPi (–/+ PARP trapper temozolomide, TMZ) with reference to total clinical mean concentration average or maximum (tCavg, tCmax), to elucidate contributions of primary pharmacology and structural differences to clinical efficacy and safety. In biochemical assays, rucaparib and niraparib demonstrated off-target secondary pharmacology activities, and in selectivity assays, talazoparib, olaparib, and rucaparib inhibited a broader panel of PARP enzymes. In donor-derived human bone marrow mononuclear cells, only olaparib both increased early apoptosis and decreased the cell viability half inhibitory concentration (IC50) at ≤ tCavg, whereas other PARPi only did so in the presence of TMZ. In cancer cell lines with DNA damage repair mutations, all PARPi decreased cell viability in H1048 but not TK6 cells, and only talazoparib decreased cell growth in DU145 cells at ≤ tCavg concentrations. When combined with low dose TMZ, only talazoparib left-shifted the functional consequences of PARP trapping (S-phase arrest, apoptosis, S-phase double-stranded breaks) and reduced cell viability/growth in TK6 and DU145 cell lines at ≤ tCavg, whereas the other inhibitors required high-dose TMZ. Our study suggests structural differences across PARPi may contribute to differences in PARP selectivity and off-target activities, which along with distinct pharmacokinetic properties, may influence inhibitor-specific toxicities in patients.
Collapse
|
14
|
Manzo J, Puhalla S, Pahuja S, Ding F, Lin Y, Appleman L, Tawbi H, Stoller R, Lee JJ, Diergaarde B, Kiesel BF, Yu J, Tan AR, Belani CP, Chew H, Garcia AA, Morgan RJ, Wahner Hendrickson AE, Visscher DW, Hurley RM, Kaufmann SH, Swisher EM, Oesterreich S, Katz T, Ji J, Zhang Y, Parchment RE, Chen A, Duan W, Giranda V, Shepherd SP, Ivy SP, Chu E, Beumer JH. A phase 1 and pharmacodynamic study of chronically-dosed, single-agent veliparib (ABT-888) in patients with BRCA1- or BRCA2-mutated cancer or platinum-refractory ovarian or triple-negative breast cancer. Cancer Chemother Pharmacol 2022; 89:721-735. [PMID: 35435472 PMCID: PMC9116722 DOI: 10.1007/s00280-022-04430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE BRCA1 or BRCA2 mutated cancers (BRCAmut) have intrinsic sensitivity to PARP inhibitors due to deficiency in homologous recombination-mediated DNA repair. There are similarities between BRCAmut and BRCAwt ovarian and basal-like breast cancers. This phase I study determined the recommended phase II dose (RP2D) and preliminary efficacy of the PARP inhibitor, veliparib (ABT-888), in these patients. PATIENTS AND METHODS Patients (n = 98) were dosed with veliparib 50-500 mg twice daily (BID). The BRCAmut cohort (n = 70) contained predominantly ovarian (53%) and breast (23%) cancers; the BRCAwt cohort (n = 28) consisted primarily of breast cancer (86%). The MTD, DLT, adverse events, PK, PD, and clinical response were assessed. RESULTS DLTs were grade 3 nausea/vomiting at 400 mg BID in a BRCAmut carrier, grade 2 seizure at 400 mg BID in a patient with BRCAwt cancer, and grade 2 seizure at 500 mg BID in a BRCAmut carrier. Common toxicities included nausea (65%), fatigue (45%), and lymphopenia (38%). Grade 3/4 toxicities were rare (highest lymphopenia at 15%). Overall response rate (ORR) was 23% (95% CI 13-35%) in BRCAmut overall, and 37% (95% CI 21-55%) at 400 mg BID and above. In BRCAwt, ORR was 8% (95% CI 1-26%), and clinical benefit rate was 16% (95% CI 4-36%), reflecting prolonged stable disease in some patients. PK was linear with dose and was correlated with response and nausea. CONCLUSIONS Continuous veliparib is safe and tolerable. The RP2D was 400 mg BID. There is evidence of clinical activity of veliparib in patients with BRCAmut and BRCAwt cancers.
Collapse
Affiliation(s)
- Julia Manzo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shannon Puhalla
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shalu Pahuja
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard Appleman
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald Stoller
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - James J Lee
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenda Diergaarde
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Jing Yu
- Department of Pathology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Antoinette R Tan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Levine Cancer Institute, Charlotte, NC, USA
| | - Chandra P Belani
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Helen Chew
- Division of Hematology/Oncology, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Agustin A Garcia
- Department of Medicine, Louisiana State University, New Orleans, LA, USA
| | - Robert J Morgan
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rachel M Hurley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecologic, University of Washington, Seattle, WA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tiffany Katz
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiuping Ji
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yiping Zhang
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Alice Chen
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Wenrui Duan
- Department of Human and Molecular Genetics, The Florida International University, Miami, FL, USA
| | | | | | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
16
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
17
|
PARP Inhibitors and Haematological Malignancies-Friend or Foe? Cancers (Basel) 2021; 13:cancers13215328. [PMID: 34771492 PMCID: PMC8582507 DOI: 10.3390/cancers13215328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary PARP inhibitors are a class of orally active drugs that kill a range of cancer types by inducing synthetic lethality. The usefulness of PARP inhibitors for the treatment of haematological malignancies has begun to be explored in a variety of both pre-clinical models and human clinical trials. Despite being largely considered safe and well tolerated, secondary haematological malignancies have arisen in patients following treatment with PARP inhibitors, raising concerns about their use. In this review, we discuss the potential benefits and risks for using PARP inhibitors as treatments for haematological malignancies. Abstract Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies.
Collapse
|
18
|
Xu J, Keenan TE, Overmoyer B, Tung NM, Gelman RS, Habin K, Garber JE, Ellisen LW, Winer EP, Goss PE, Yeap BY, Chabner BA, Isakoff SJ. Phase II trial of veliparib and temozolomide in metastatic breast cancer patients with and without BRCA1/2 mutations. Breast Cancer Res Treat 2021; 189:641-651. [PMID: 34417675 DOI: 10.1007/s10549-021-06292-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE We evaluated the efficacy and safety of poly-(adenosine diphosphate-ribose) polymerase (PARP) 1 and 2 inhibitor veliparib and temozolomide in metastatic breast cancer patients with and without germline BRCA1/2 mutations. METHODS In this single-arm phase II trial, patients with metastatic breast cancer received veliparib 30 to 40 mg twice daily on days 1 to 7 with concurrent temozolomide 150 mg/m2 on days 1 to 5 of a 28-day cycle. The primary cohort was unselected for BRCA mutation status, and an expansion cohort enrolled only BRCA1/2 carriers. The primary endpoint was objective response rate (ORR) in each cohort. Secondary endpoints included progression-free survival (PFS), clinical benefit rate (CBR), and evaluation of safety and tolerability. RESULTS In the primary cohort of 41 unselected patients, which included 9 BRCA mutation carriers, the ORR was 10% and clinical benefit rate at 4 months (CBR) was 27%. In the expansion cohort of 21 BRCA1/2 carriers, the ORR was 14% and CBR was 43%. Among all 30 BRCA1/2 carriers, the ORR was 23% versus 0% among non-carriers. In the subset of BRCA1/2 carriers, the ORR was 32% among platinum-naïve patients versus 9% among platinum-exposed patients. The median PFS was 3.3 months among BRCA1/2 carriers compared to 1.8 months among non-carriers (HR: 0.48, p = 0.006). A longer median PFS of 6.2 months was observed among BRCA1/2 carriers who had no prior platinum therapy. The most common grade 3 and 4 toxicities were thrombocytopenia (32%) and neutropenia (21%) that generally improved with dose modifications. CONCLUSION Veliparib and temozolomide demonstrated clinical activity in platinum-naïve BRCA-associated metastatic breast cancer with manageable toxicity at doses of veliparib well below the single-agent active dose. Although the study did not meet its primary endpoint in unselected nor BRCA-associated breast cancer, this regimen was further evaluated in the BROCADE 2 study. TRIAL REGISTRATION NCT01009788 (ClinicalTrials.gov), November 9, 2009.
Collapse
Affiliation(s)
- Jing Xu
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA.,Sanofi US, 50 Binney St, Cambridge, MA, 02142, USA
| | - Tanya E Keenan
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Beth Overmoyer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Nadine M Tung
- Beth Israel Deaconess Medical Center, Boston, USA.,Harvard Medical School, Boston, USA
| | - Rebecca S Gelman
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Karleen Habin
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA
| | - Judy E Garber
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Eric P Winer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Paul E Goss
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Beow Y Yeap
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Bruce A Chabner
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA. .,Harvard Medical School, Boston, USA.
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
20
|
Chung C. Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Ann Pharmacother 2021; 56:475-487. [PMID: 34330162 DOI: 10.1177/10600280211036154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To discuss the recent and emerging data for novel targeted therapies in myelodysplastic syndromes (MDS). DATA SOURCES A literature search from January 2015 to June 2021 was performed using the key terms targeted therapies, myelodysplastic syndromes, DNA repair, erythroid differentiation therapy, epigenetic inhibitors, signal transduction inhibitors, and apoptosis-inducing agents. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials and articles in the English language were identified and reviewed. DATA SYNTHESIS MDS are a heterogeneous group of malignant blood disorders affecting the bone marrow (BM), ultimately leading to BM failure, acute leukemia, and death. Selection of treatment is influenced by the severity of symptoms, cytopenia, cytogenetics, prognostic category, medical fitness, and patient preferences. Although current therapies such as erythropoiesis stimulating agents (ESAs) and hypomethylating agents (HMAs) help improve anemia and reduce transfusion burden, limited treatment options exist when patients experience treatment failure to ESAs or HMA. Recent regulatory approval of luspatercept, which targets the erythroid differentiation pathway, represents a major therapeutic advance in the management of anemia in MDS patients who are refractory to ESAs. Many investigational targeted therapies that aim at the myeloid lineage signaling pathway and the immune microenvironment are in active development. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This nonexhaustive review summarizes and describes the recent data for targeted therapies for MDS. CONCLUSION The development of novel and investigational therapeutic agents continues to contribute to an improved understanding of tumor biology. The precise therapeutic role and timing of these agents remain to be elucidated.
Collapse
|
21
|
Schönthal AH, Swenson S, Minea RO, Kim HN, Cho H, Mohseni N, Kim YM, Chen TC. Potentially Curative Therapeutic Activity of NEO212, a Perillyl Alcohol-Temozolomide Conjugate, in Preclinical Cytarabine-Resistant Models of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13143385. [PMID: 34298603 PMCID: PMC8305595 DOI: 10.3390/cancers13143385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Many patients are still dying from acute myeloid leukemia (AML). Initial treatment of this blood-borne cancer consists of chemotherapy, usually with the agent cytarabine (AraC). However, the cancer cells can become drug resistant and unresponsive to AraC, which complicates further treatment and worsens prognosis. More effective treatments are needed. We are developing a novel anticancer compound called NEO212. We investigated its AML-therapeutic potential with the use of AraC-resistant AML cells grown in culture and in mice implanted with such AML cells. We found that NEO212 effectively killed AML cells in culture. The majority of AML mice that received NEO212 treatment survived and thrived without signs of tumor recurrence. At the same time, NEO212 treatment did not result in any detectable side effects, showing that this drug was very well tolerated by these animals. We deem it worthwhile to further develop NEO212 toward its evaluation in AML patients, in particular in those where initial therapy with AraC has failed. Abstract Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
- Correspondence: (A.H.S.); (T.C.C.); Tel.: +1-323-442-1730 (A.H.S.); +1-323-409-7422 (T.C.C.); Fax: +1-323-442-1721 (A.H.S.); +1-323-226-7833 (T.C.C.)
| | - Steve Swenson
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (S.S.); (R.O.M.); (H.C.)
| | - Radu O. Minea
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (S.S.); (R.O.M.); (H.C.)
| | - Hye Na Kim
- Department Pediatrics, Division of Hematology, Oncology, Blood and Bone Marrow Transplantation, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA; (H.N.K.); (Y.-M.K.)
| | - Heeyeon Cho
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (S.S.); (R.O.M.); (H.C.)
| | - Nazleen Mohseni
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yong-Mi Kim
- Department Pediatrics, Division of Hematology, Oncology, Blood and Bone Marrow Transplantation, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA; (H.N.K.); (Y.-M.K.)
| | - Thomas C. Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (S.S.); (R.O.M.); (H.C.)
- Correspondence: (A.H.S.); (T.C.C.); Tel.: +1-323-442-1730 (A.H.S.); +1-323-409-7422 (T.C.C.); Fax: +1-323-442-1721 (A.H.S.); +1-323-226-7833 (T.C.C.)
| |
Collapse
|
22
|
Li J, Li L, Sun X, Deng T, Huang G, Li X, Xie Z, Zhou Z. Role of Tet2 in Regulating Adaptive and Innate Immunity. Front Cell Dev Biol 2021; 9:665897. [PMID: 34222235 PMCID: PMC8247589 DOI: 10.3389/fcell.2021.665897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulated evidence indicates that epigenetic modifications play central roles in gene expression regulation and participate in developing many autoimmune and autoinflammatory diseases. Mechanistically, epigenetic modifications act as a bridge between environmental and cellular factors and susceptibility genes. DNA methylation is a critical epigenetic modification that is regulated by ten-eleven translocation (TET) enzymes. Accumulating evidence has revealed that TET family proteins function as gene regulators and antitumor drug targets mainly because of their ability to oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Recently, the effect of Tet2, an essential TET protein, on the development of autoimmune diseases has been explored. In this review, we summarize the current understanding of Tet2 in immune response regulation, clarify the mechanisms of Tet2 in B and T cell differentiation and function, and discuss the opposing effects of Tet2 on inflammatory gene expression in the immune system to provide new potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021; 19:513-537. [PMID: 32589560 PMCID: PMC8206461 DOI: 10.2174/1570159x18666200626204005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
Collapse
Affiliation(s)
- Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Cristina Jiménez-Luna
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Raquel Luque
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| |
Collapse
|
24
|
Machuldova A, Holubova M, Caputo VS, Cedikova M, Jindra P, Houdova L, Pitule P. Role of Polymorphisms of NKG2D Receptor and Its Ligands in Acute Myeloid Leukemia and Human Stem Cell Transplantation. Front Immunol 2021; 12:651751. [PMID: 33868289 PMCID: PMC8044845 DOI: 10.3389/fimmu.2021.651751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Natural killer cells possess key regulatory function in various malignant diseases, including acute myeloid leukemia. NK cell activity is driven by signals received through ligands binding activating or inhibitory receptors. Their activity towards elimination of transformed or virally infected cells can be mediated through MICA, MICB and ULBP ligands binding the activating receptor NKG2D. Given the efficiency of NK cells, potential target cells developed multiple protecting mechanisms to overcome NK cells killing on various levels of biogenesis of NKG2D ligands. Targeted cells can degrade ligand transcripts via microRNAs or modify them at protein level to prevent their presence at cell surface via shedding, with added benefit of shed ligands to desensitize NKG2D receptor and avert the threat of destruction via NK cells. NK cells and their activity are also indispensable during hematopoietic stem cell transplantation, crucial treatment option for patients with malignant disease, including acute myeloid leukemia. Function of both NKG2D and its ligands is strongly affected by polymorphisms and particular allelic variants, as different alleles can play variable roles in ligand-receptor interaction, influencing NK cell function and HSCT outcome differently. For example, role of amino acid exchange at position 129 in MICA or at position 98 in MICB, as well as the role of other polymorphisms leading to different shedding of ligands, was described. Finally, match or mismatch between patient and donor in NKG2D ligands affect HSCT outcome. Having the information beyond standard HLA typing prior HSCT could be instrumental to find the best donor for the patient and to optimize effects of treatment by more precise patient-donor match. Here, we review recent research on the NKG2D/NKG2D ligand biology, their regulation, description of their polymorphisms across the populations of patients with AML and the influence of particular polymorphisms on HSCT outcome.
Collapse
Affiliation(s)
- Alena Machuldova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Valentina S Caputo
- Hugh & Josseline Langmuir Center for Myeloma Research, Center for Hematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.,Cancer Biology and Therapy Laboratory, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Miroslava Cedikova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Lucie Houdova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
25
|
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia 2020; 35:299-311. [PMID: 33122849 DOI: 10.1038/s41375-020-01069-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a "one size fits all" approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients' genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.
Collapse
Affiliation(s)
- Ramya Nair
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alejandro Salinas-Illarena
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| |
Collapse
|
26
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Li H, Tu J, Zhao Z, Chen L, Qu Y, Li H, Yao H, Wang X, Lee DF, Shen J, Wen L, Huang G, Xie X. Molecular signatures of BRCAness analysis identifies PARP inhibitor Niraparib as a novel targeted therapeutic strategy for soft tissue Sarcomas. Am J Cancer Res 2020; 10:9477-9494. [PMID: 32863940 PMCID: PMC7449912 DOI: 10.7150/thno.45763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Patients with advanced soft tissue sarcomas (STS) have a dismal prognosis with few effective therapeutic options. A defect in the homologous recombination repair (HRR) pathway can accumulate DNA repair errors and gene mutations, which can lead to tumorigenesis. BRCAness describes tumors with an HRR deficiency (HRD) in the absence of a germline BRCA1/2 mutation. However, the characteristics of BRCAness in STS remain largely unknown. Thus, this study aimed to explore the genomic and molecular landscape of BRCAness using whole exome sequencing (WES) in STS, aiming to find a potential target for STS treatment. Methods: WES was performed in 22 STS samples from the First Affiliated Hospital of Sun Yat-sen University to reveal the possible genomic and molecular characteristics. The characteristics were then validated using data of 224 STS samples from The Cancer Genome Atlas (TCGA) database and in vitro data. The analysis of the potential biomarker for BRCAness was performed. Targeted drug susceptibility and combination therapy screening of chemotherapeutics for STS were evaluated in STS cell lines, cell-line-derived xenografts (CDX), and patient-derived xenografts (PDX). Results: Compared with 30 somatic mutation signatures of cancers, high cosine-similarity (0.75) was identified for HRD signatures in the 22 STS samples using nonnegative matrix factorization. Single nucleotide polymorphism indicated a low mutation rate of BRCA1/2 in the 22 STS samples (11.76% and 5.88%, respectively). However, copy number variation analyses demonstrated widespread chromosomal instability; furthermore, 54.55% of STS samples (12/22) carried BRCAness traits. Subsequently, similar genomic and molecular characteristics were also detected in the 224 STS samples from TCGA and in vitro. Poly (ADP-ribose) polymerases (PARP)-1 could be a promising reflection of HRD and therapeutic response. Furthermore, the level of PAR formation was found to be correlated with PARP-1. Subsequently, STS cell lines were determined to be sensitive to PARP inhibitor (PARPi), niraparib. Moreover, based on the screening test of the five common PARPis and combination test among doxorubicin, ifosfamide, dacarbazine, and temozolomide (TMZ), niraparib and TMZ were the most synergistic in STS cell lines. The synergistic effect and safety of niraparib and TMZ combination were also shown in CDX and PDX. Conclusions: BRCAness might be the common genomic and molecular characteristics of majority of STS cases. PARP-1 and PAR could be potential proper and feasible theranostic biomarkers for assessing HRD in patients. STSs were sensitive to PARPi. Moreover, the combination of niraparib and TMZ showed synergistic effect. Niraparib and TMZ could be a promising targeted therapeutic strategy for patients with STS.
Collapse
|
28
|
PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev 2020; 45:100696. [PMID: 32482307 DOI: 10.1016/j.blre.2020.100696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors, which induce synthetic lethality of BRCA mutant breast and ovarian cancers, are now under active exploration for treatment of acute leukemias, specifically acute myeloid leukemia (AML). Experimental data has revealed that DNA repair deficiencies similar to those found in BRCA mutant solid tumors function in malignant hematopoietic cells to enhance cell survival and promote therapy resistance. Preclinical studies have demonstrated that inhibition of PARP with a variety of agents can dramatically enhance the efficacy of other therapeutic approaches including cytotoxic and epigenetic chemotherapy, small molecule inhibitors (IDH and FLT3 inhibitors) and antibody drug conjugates. This has led to early stage clinical trials of multiple PARP inhibitors (PARPi) for AML patients. Despite small patient numbers, evidence of modest clinical efficacy and tolerability in combinatorial regimens support the further development of PARP inhibition as a novel therapeutic strategy for AML, particularly in select molecular subsets (MLL rearranged, FLT3 and IDH1 mutant disease.
Collapse
|
29
|
Kaplan HG, Calip GS, Malmgren JA. Maximizing Breast Cancer Therapy with Awareness of Potential Treatment-Related Blood Disorders. Oncologist 2020; 25:391-397. [PMID: 32073195 PMCID: PMC7216464 DOI: 10.1634/theoncologist.2019-0099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
In this review we summarize the impact of the various modalities of breast cancer therapy coupled with intrinsic patient factors on incidence of subsequent treatment-induced myelodysplasia and acute myelogenous leukemia (t-MDS/AML). It is clear that risk is increased for patients treated with radiation and chemotherapy at younger ages. Radiation is associated with modest risk, whereas chemotherapy, particularly the combination of an alkylating agent and an anthracycline, carries higher risk and radiation and chemotherapy combined increase the risk markedly. Recently, treatment with granulocyte colony-stimulating factor (G-CSF), but not pegylated G-CSF, has been identified as a factor associated with increased t-MDS/AML risk. Two newly identified associations may link homologous DNA repair gene deficiency and poly (ADP-ribose) polymerase inhibitor treatment to increased t-MDS/AML risk. When predisposing factors, such as young age, are combined with an increasing number of potentially leukemogenic treatments that may not confer large risk singly, the risk of t-MDS/AML appears to increase. Patient and treatment factors combine to form a biological cascade that can trigger a myelodysplastic event. Patients with breast cancer are often exposed to many of these risk factors in the course of their treatment, and triple-negative patients, who are often younger and/or BRCA positive, are often exposed to all of them. It is important going forward to identify effective therapies without these adverse associated effects and choose existing therapies that minimize the risk of t-MDS/AML without sacrificing therapeutic gain. IMPLICATIONS FOR PRACTICE: Breast cancer is far more curable than in the past but requires multimodality treatment. Great care must be taken to use the least leukemogenic treatment programs that do not sacrifice efficacy. Elimination of radiation and anthracycline/alkylating agent regimens will be helpful where possible, particularly in younger patients and possibly those with homologous repair deficiency (HRD). Use of colony-stimulating factors should be limited to those who truly require them for safe chemotherapy administration. Further study of a possible leukemogenic association with HRD and the various forms of colony-stimulating factors is badly needed.
Collapse
Affiliation(s)
| | - Gregory S. Calip
- Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at ChicagoChicagoIllinoisUSA
| | - Judith A. Malmgren
- Healthstat Consulting Inc.SeattleWashingtonUSA
- Department of Epidemiology, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
30
|
Gotoh N, Minato Y, Saitoh T, Takahashi N, Kasamatsu T, Souma K, Oda T, Hoshino T, Sakura T, Ishizaki T, Shimizu H, Takizawa M, Yokohama A, Tsukamoto N, Handa H, Murakami H. PARP1 V762A polymorphism affects the prognosis of myelodysplastic syndromes. Eur J Haematol 2020; 104:526-537. [PMID: 32003046 DOI: 10.1111/ejh.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Myelodysplastic syndromes (MDS), caused by various genetic mutations in hematopoietic stem cells, are associated with highly variable outcomes. Poly (ADP-ribose) polymerase-1 (PARP1) plays an important role in DNA damage repair and contributes to the progression of several types of cancer. Here, we investigated the impact of PARP1 V762A polymorphism on the susceptibility to and prognosis of MDS. METHODS Samples collected from 105 MDS patients and 202 race-matched healthy controls were subjected to polymerase chain reaction-restriction fragment length polymorphism for genotyping. RESULTS The allele and genotype frequencies of PARP1 V762A did not differ between MDS patients and the control group. However, MDS patients with the PARP1 V762A non-AA genotype, which is associated with high gene activity, had shorter overall survival rates (P = .01) than those with the AA genotype. Multivariate analysis of overall survival also revealed PARP1 V762A non-AA genotype as a poor prognostic factor (P = .02). When patients were analyzed according to treatment history, the PARP1 V762A non-AA genotype was only associated with poor survival in patients who had received treatment (P = .02). CONCLUSION PARP1 V762A polymorphism may be an independent prognostic factor for MDS, and a predictive biomarker for MDS treatment.
Collapse
Affiliation(s)
- Nanami Gotoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Yusuke Minato
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Anatomy and Cell Biology, Hyogo College of Medicine, Hyogo, Japan
| | - Takayuki Saitoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | | | | | - Kana Souma
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Takumi Hoshino
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Takuma Ishizaki
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroaki Shimizu
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makiko Takizawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion Service, Gunma University Hospital, Gunma, Japan
| | | | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | |
Collapse
|
31
|
Jariyal H, Weinberg F, Achreja A, Nagarath D, Srivastava A. Synthetic lethality: a step forward for personalized medicine in cancer. Drug Discov Today 2020; 25:305-320. [DOI: 10.1016/j.drudis.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
|
32
|
Yi M, Dong B, Qin S, Chu Q, Wu K, Luo S. Advances and perspectives of PARP inhibitors. Exp Hematol Oncol 2019; 8:29. [PMID: 31737426 PMCID: PMC6849303 DOI: 10.1186/s40164-019-0154-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage repair deficiency leads to the increased risk of genome instability and oncogenic transformation. In the meanwhile, this deficiency could be exploited for cancer treatment by inducing excessive genome instability and catastrophic DNA damage. Continuous DNA replication in cancer cells leads to higher demand of DNA repair components. Due to the oncogenic loss of some DNA repair effectors (e.g. BRCA) and incomplete DNA repair repertoire, some cancer cells are addicted to certain DNA repair pathways such as Poly (ADP-ribose) polymerase (PARP)-related single-strand break repair pathway. The interaction between BRCA and PARP is a form of synthetic lethal effect which means the simultaneously functional loss of two genes lead to cell death, while defect in any single gene has a slight effect on cell viability. Based on synthetic lethal theory, Poly (ADP-ribose) polymerase inhibitor (PARPi) was developed aiming to selectively target cancer cells harboring BRCA1/2 mutations. Recently, a growing body of evidence indicated that a broader population of patients could benefit from PARPi therapy far beyond those with germline BRCA1/2 mutated tumors. Numerous biomarkers including homologous recombination deficiency and high level of replication pressure also herald high sensitivity to PARPi treatment. Besides, a series of studies indicated that PARPi-involved combination therapy such as PARPi with additional chemotherapy therapy, immune checkpoint inhibitor, as well as targeted agent had a great advantage in overcoming PARPi resistance and enhancing PARPi efficacy. In this review, we summarized the advances of PARPi in clinical application. Besides, we highlighted multiple promising PARPi-based combination strategies in preclinical and clinical studies.
Collapse
Affiliation(s)
- Ming Yi
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Bing Dong
- 2Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Shuang Qin
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qian Chu
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Kongming Wu
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China.,3Department of Medical Oncology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Suxia Luo
- 3Department of Medical Oncology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
33
|
Molecular pathophysiology of the myelodysplastic syndromes: insights for targeted therapy. Blood Adv 2019; 2:2787-2797. [PMID: 30352953 DOI: 10.1182/bloodadvances.2018015834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022] Open
Abstract
The clinical heterogeneity of the myelodysplastic syndromes (MDSs) relates to the recently discerned panoply of molecular abnormalities extant within this disease spectrum. Despite increasing recognition of these biologic abnormalities, very limited therapeutic options exist to exploit our increasing understanding of the molecular pathophysiology of MDS, with only 1 therapy (lenalidomide) particularly focused on a specific clinical patient subset (del(5q) cytogenetics) and 2 epigenetic modulators (azacitidine and decitabine) having been approved for treating these patients. This article will review the mutational and biologic landscape of these disorders, as well as the targeted therapeutics currently in clinical trials that are focused on attacking these features. Given the molecular complexity of these disorders and the limited repertoire of effective therapeutic agents, we will also discuss novel approaches attempting to determine potentially effective and personalized treatment options through complementary chemosensitivity and computerized signaling network screening for these disparate MDS patient subsets. Translational use of such resources, combined with the rapidly evolving next-generation molecular technologies, should prove useful in effectuating improved and more selective options for therapy.
Collapse
|
34
|
Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H, Tandler C, Mbarga M, Schaefer T, Falcone M, Nievergall E, Dörfel D, Hanns P, Passweg JR, Lutz C, Schwaller J, Zeiser R, Blazar BR, Caligiuri MA, Dirnhofer S, Lundberg P, Kanz L, Quintanilla-Martinez L, Steinle A, Trumpp A, Salih HR, Lengerke C. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 2019; 572:254-259. [PMID: 31316209 PMCID: PMC6934414 DOI: 10.1038/s41586-019-1410-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.
Collapse
Affiliation(s)
- Anna M Paczulla
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany
| | - Simon Raffel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Julia Steinbacher
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Hui Wang
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany
| | - Marcelle Mbarga
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Mattia Falcone
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eva Nievergall
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Daniela Dörfel
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Christoph Lutz
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Juerg Schwaller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- University Children's Hospital Basel, Basel, Switzerland
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
- Beckman Research Institute, Duarte, CA, USA
| | - Stephan Dirnhofer
- Institute for Pathology & Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Pontus Lundberg
- Diagnostic Hematology, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Lothar Kanz
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | | | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany.
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany.
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
35
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
36
|
Feng Y, Li X, Cassady K, Zou Z, Zhang X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front Oncol 2019; 9:210. [PMID: 31001476 PMCID: PMC6454012 DOI: 10.3389/fonc.2019.00210] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, investigation of Ten-Eleven Translocation 2 (TET2) gene function and TET2 mutation have become of increasing interest in the field of hematology. This heightened interest was sparked by the seminal discoveries that (1) TET2 mutation is associated with development of hematological malignancies and that (2) the TET family of proteins is critical in promoting DNA demethylation and immune homeostasis. Since then, additional studies have begun to unravel the question “Does TET2 have additional biological functions in the regulation of hematopoiesis?” Here, we present a mini-review focused on the current understanding of TET2 in hematopoiesis, hematological malignancies, and immune regulation. Importantly, we highlight the critical function that TET2 facilitates in maintaining the stability of the genome. Based on our review of the literature, we provide a new hypothesis that loss of TET2 may lead to dysregulation of the DNA repair response, augment genome instability, and subsequently sensitize myeloid leukemia cells to PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
37
|
Poh W, Dilley RL, Moliterno AR, Maciejewski JP, Pratz KW, McDevitt MA, Herman JG. BRCA1 Promoter Methylation Is Linked to Defective Homologous Recombination Repair and Elevated miR-155 to Disrupt Myeloid Differentiation in Myeloid Malignancies. Clin Cancer Res 2019; 25:2513-2522. [PMID: 30692098 DOI: 10.1158/1078-0432.ccr-18-0179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Defective homologous recombination (HR) has been reported in multiple myeloid disorders, suggesting a shared dysregulated pathway in these diverse malignancies. Because targeting HR-defective cancers with PARP inhibition (PARPi) has yielded clinical benefit, improved understanding of HR defects is needed to implement this treatment modality. EXPERIMENTAL DESIGN We used an ex vivo irradiation-based assay to evaluate HR repair, HR gene promoter methylation, and mRNA expression in primary myeloid neoplastic cells. In vitro BRCA1 gene silencing was achieved to determine the consequences on HR repair, sensitivity to PARPi, and expression of miR-155, an oncogenic miRNA. RESULTS Impaired HR repair was frequently detected in myeloid neoplasm samples (9/21, 43%) and was linked to promoter methylation-mediated transcriptional repression of BRCA1, which was not observed for other members of the HR pathway (BRCA2, ATM, ATR, FANC-A). In vitro BRCA1 knockdown increased sensitivity to PARP inhibition, and BRCA1 expression is inversely correlated with miR-155 expression, a finding reproduced in vitro with BRCA1 knockdown. Increased miR-155 was associated with PU.1 and SHIP1 repression, known myeloid differentiation factors that are frequently downregulated during leukemic transformation. CONCLUSIONS This study demonstrates frequent defective HR, associated with BRCA1 epigenetic silencing, in a broad range of myeloid neoplasms. The increased prevalence of BRCA1 promoter methylation, resulting in repressed BRCA1, may have an additional role in leukemogenesis by increasing miR-155 expression, which then inhibits transcription factors associated with normal myeloid differentiation. Further study of HR defects may facilitate the identification of HR-defective myeloid neoplasms sensitive to PARPi.
Collapse
Affiliation(s)
- Weijie Poh
- Graduate Program in Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert L Dilley
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alison R Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research, Cleveland Clinic/Taussig Cancer Institute, Cleveland, Ohio
| | - Keith W Pratz
- Division of Hematological Malignancy, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Michael A McDevitt
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Hematological Malignancy, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - James G Herman
- Graduate Program in Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland. .,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Patel PR, Senyuk V, Rodriguez NS, Oh AL, Bonetti E, Mahmud D, Barosi G, Mahmud N, Rondelli D. Synergistic Cytotoxic Effect of Busulfan and the PARP Inhibitor Veliparib in Myeloproliferative Neoplasms. Biol Blood Marrow Transplant 2019; 25:855-860. [PMID: 30615982 DOI: 10.1016/j.bbmt.2018.12.841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Patients with high-risk myeloproliferative neoplasms (MPNs), and in particular myelofibrosis (MF), can be cured only with allogeneic hematopoietic stem cell transplantation (HSCT). Because MPNs and JAK2V617F-mutated cells show genomic instability, stalled replication forks, and baseline DNA double-strand breaks, DNA repair inhibition with poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors represents a potential novel therapy. Because the alkylating agent busulfan is integral in conditioning regimens for HSCT and leads to stalled replication forks through DNA strand cross-linking, we hypothesized that PARP inhibition with veliparib in combination with busulfan may lead to synergistic cytotoxicity in MPN cells. We first treated 2 MPN cell lines harboring the JAK2V617F mutation (SET2 and HEL) with veliparib at increasing concentrations and measured cell proliferation. SET2 and HEL cells were relatively sensitive to veliparib (IC50 of 11.3 μM and 74.2 μM, respectively). We next treated cells with increasing doses of busulfan in combination with 4 μM veliparib and found that the busulfan IC50 decreased from 27 μM to 4 μM in SET2 cells and from 45.1 μM to 28.1 μM in HEL cells. The mean combination index was .55 for SET2 cells and .40 for HEL cells. Combination treatment of SET2 cells caused G2M arrest in 53% of cells, compared with 30% with veliparib alone and 35% with busulfan alone. G2M arrest was associated with activation of the ATR-Chk1 pathway, as shown by an immunofluorescence assay for phosphorylated Chk1 (p-Chk1). We then tested in vivo the effect of combined low doses of busulfan and veliparib in a JAK2V617F MPN-AML xenotransplant model. Vehicle- and veliparib-treated mice had similar median survival of 39 and 40 days, respectively. Combination treatment increased median survival from 47 days (busulfan alone) to 50 days (P = .02). Finally, we tested the combined effect of busulfan and veliparib on CD34+ cells obtained from the bone marrow or peripheral blood of 5 patients with JAK2V617F-mutated and 2 patients with CALR-mutated MF. MF cells treated with the combination of veliparib and busulfan showed reduced colony formation compared with busulfan alone (87% versus 68%; P = .001). In contrast, treatment of normal CD34+ cells with veliparib did not affect colony growth. Here we show that in vivo confirmation that treatment with the PARP-1 inhibitor veliparib and busulfan results in synergistic cytotoxicity in MPN cells. Our data provide the rationale for testing novel pretransplantation conditioning regimens with combinations of PARP-1 inhibition and reduced doses of alkylators, such as busulfan and melphalan, for high-risk MPNs or MPN-derived acute myelogenous leukemia.
Collapse
Affiliation(s)
- Pritesh R Patel
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois.
| | - Vitalyi Senyuk
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Annie L Oh
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Elisa Bonetti
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Dolores Mahmud
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Gianni Barosi
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Nadim Mahmud
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois
| | - Damiano Rondelli
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
39
|
Kuhlen M, Klusmann JH, Hoell JI. Molecular Approaches to Treating Pediatric Leukemias. Front Pediatr 2019; 7:368. [PMID: 31555628 PMCID: PMC6742719 DOI: 10.3389/fped.2019.00368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, striking progress has been made in the treatment of pediatric leukemia, approaching 90% overall survival in children with acute lymphoblastic leukemia (ALL) and 75% in children with acute myeloid leukemia (AML). This has mainly been achieved through multiagent chemotherapy including CNS prophylaxis and risk-adapted therapy within collaborative clinical trials. However, prognosis in children with refractory or relapsed leukemia remains poor and has not significantly improved despite great efforts. Hence, more effective and less toxic therapies are urgently needed. Our understanding of disease biology, molecular drivers, drug resistance and, thus, the possibility to identify children at high-risk for treatment failure has significantly improved in recent years. Moreover, several new drugs targeting key molecular pathways involved in leukemia development, cell growth, and proliferation have been developed and approved. These striking achievements are linked to the great hope to further improve survival in children with refractory and relapsed leukemia. This review gives an overview on current molecularly targeted therapies in children with leukemia, including kinase, and proteasome inhibitors, epigenetic and enzyme targeting, as well as apoptosis regulators among others.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica I Hoell
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Li X, Li C, Jin J, Wang J, Huang J, Ma Z, Huang X, He X, Zhou Y, Xu Y, Yu M, Huang S, Yan X, Li F, Pan J, Wang Y, Yu Y, Jin J. High PARP-1 expression predicts poor survival in acute myeloid leukemia and PARP-1 inhibitor and SAHA-bendamustine hybrid inhibitor combination treatment synergistically enhances anti-tumor effects. EBioMedicine 2018; 38:47-56. [PMID: 30472087 PMCID: PMC6306376 DOI: 10.1016/j.ebiom.2018.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023] Open
Abstract
Background PARP-1 plays a critical role in DNA damage repair and contributes to progression of cancer. To explore the role of PARP-1 in acute myeloid leukemia (AML), we analyzed the expression of PARP-1 in AML and its relation to the clinical prognosis. Then, we investigated the efficacy and mechanism of PARP inhibitor BMN673 (Talazoparib) combined with NL101, a novel SAHA-bendamustine hybrid in vitro and in vivo. Methods The expression of PARP-1 in 339 cytogenetically normal AML (CN-AML) cases was evaluated using RT-PCR. According to the expression of PARP-1, the clinical characteristics and prognosis of the patients were grouped and compared. The combination effects of BMN673 and NL101 were studied in AML cells and B-NSG mice xenograft model of MV4-11. Findings We found patients in high PARP-1 expression group had higher levels of blast cells in bone marrow (P = .003) and white blood cells (WBC) in peripheral blood (P = .008), and were associated with a more frequent FLT3-ITD mutation (28.2% vs 17.3%, P = .031). The overall survival (OS) and event free survival (EFS) of the high expression group were significantly shorter than those in the low expression group (OS, P = .005 and EFS, P = .004). BMN673 combined with NL101 had a strong synergistic effect in treating AML. The combination significantly induced cell apoptosis and arrested cell cycle in G2/M phase. Mechanistically, BMN673 and NL101 combinatorial treatment promoted DNA damage. In vivo, the combination effectively delayed the development of AML and prolonged survival. Interpretation High PARP-1 expression predicts poor survival in CN-AML patients. The synergistic effects of PARP inhibitor BMN673 in combination with SAHA-bendamustine hybrid, NL101, provide a new therapeutic strategy against AML. Fund National Natural Science Foundation of China and Zhejiang Provincial Key Innovation Team.
Collapse
Affiliation(s)
- Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Jingrui Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Zhixin Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Xiao He
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, PR China; Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Zhejiang Province, PR China.
| |
Collapse
|
41
|
Singh R, Mehrotra S, Gopalakrishnan M, Gojo I, Karp JE, Greer JM, Chen A, Piekarz R, Kiesel BF, Gobburu J, Rudek MA, Beumer JH. Population pharmacokinetics and exposure-response assessment of veliparib co-administered with temozolomide in patients with myeloid leukemias. Cancer Chemother Pharmacol 2018; 83:319-328. [PMID: 30456480 DOI: 10.1007/s00280-018-3731-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/13/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Veliparib is an oral inhibitor of poly(ADP-ribose) polymerase enzyme. Combination of veliparib and temozolomide was well-tolerated and demonstrated clinical activity in older patients with relapsed or refractory acute myeloid leukemia (AML) or AML arising from pre-existing myeloid malignancies. We aimed to perform quantitative assessments of pharmacokinetics, efficacy, and safety of veliparib in this patient population to inform future trial design. METHODS Population pharmacokinetic analysis was performed using Phoenix® NLME with pharmacokinetic data obtained from 37 subjects after oral administration of veliparib in a Phase I study with and without temozolomide. Effect of covariates (age, sex, BMI, creatinine clearance (CLCR), and co-administration of temozolomide) on the pharmacokinetics of veliparib were evaluated, as well as impact of veliparib exposure on mucositis (dose-limiting toxicity), objective response rate (ORR), and overall survival. RESULTS A two-compartment model with first-order elimination and a first-order absorption with lag-time adequately described veliparib pharmacokinetics. CLCR and body weight were clinically significant covariates for veliparib disposition. The proportion of subjects with all grade mucositis increased with veliparib exposure (AUC). However, no trend in ORR and overall survival was observed with increasing exposure. CONCLUSIONS Veliparib with temozolomide presents a promising combination for older patients with myeloid leukemias. An exposure-safety relationship was established for this combination. Further clinical investigations aimed at elucidating the veliparib exposure-efficacy/safety relationship and optimizing dosing recommendations for maximizing benefit-risk in patients with advanced myeloid malignancies should study veliparib doses ranging up to 120 mg in combination with temozolomide.
Collapse
Affiliation(s)
- Renu Singh
- Center for Translational Medicine, University of Maryland, Baltimore, MD, USA
| | - Shailly Mehrotra
- Center for Translational Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Ivana Gojo
- The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Judith E Karp
- The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Jacqueline M Greer
- The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Alice Chen
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Richard Piekarz
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | | - Jogarao Gobburu
- Center for Translational Medicine, University of Maryland, Baltimore, MD, USA
| | - Michelle A Rudek
- The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Jan H Beumer
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | | |
Collapse
|
42
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Aslostovar L, Boyd AL, Almakadi M, Collins TJ, Leong DP, Tirona RG, Kim RB, Julian JA, Xenocostas A, Leber B, Levine MN, Foley R, Bhatia M. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv 2018; 2:1935-1945. [PMID: 30093531 PMCID: PMC6093733 DOI: 10.1182/bloodadvances.2018015677] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
We completed a phase 1 dose-escalation trial to evaluate the safety of a dopamine receptor D2 (DRD2) antagonist thioridazine (TDZ), in combination with cytarabine. Thirteen patients 55 years and older with relapsed or refractory acute myeloid leukemia (AML) were enrolled. Oral TDZ was administered at 3 dose levels: 25 mg (n = 6), 50 mg (n = 4), or 100 mg (n = 3) every 6 hours for 21 days. Intermediate-dose cytarabine was administered on days 6 to 10. Dose-limiting toxicities (DLTs) included grade 3 QTc interval prolongation in 1 patient at 25 mg TDZ and neurological events in 2 patients at 100 mg TDZ (gait disturbance, depressed consciousness, and dizziness). At the 50-mg TDZ dose, the sum of circulating DRD2 antagonist levels approached a concentration of 10 μM, a level noted to be selectively active against human AML in vitro. Eleven of 13 patients completed a 5-day lead-in with TDZ, of which 6 received TDZ with hydroxyurea and 5 received TDZ alone. During this period, 8 patients demonstrated a 19% to 55% reduction in blast levels, whereas 3 patients displayed progressive disease. The extent of blast reduction during this 5-day interval was associated with the expression of the putative TDZ target receptor DRD2 on leukemic cells. These preliminary results suggest that DRD2 represents a potential therapeutic target for AML disease. Future studies are required to corroborate these observations, including the use of modified DRD2 antagonists with improved tolerability in AML patients. This trial was registered at www.clinicaltrials.gov as #NCT02096289.
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mohammed Almakadi
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Division of Malignant Hematology, Department of Oncology, Juravinski Hospital, Hamilton, ON, Canada
| | | | - Darryl P Leong
- Division of Cardiology, Department of Medicine, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Rommel G Tirona
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Jim A Julian
- Department of Oncology, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada; and
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mark N Levine
- Department of Oncology, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Valdez BC, Li Y, Murray D, Liu Y, Nieto Y, Champlin RE, Andersson BS. Combination of a hypomethylating agent and inhibitors of PARP and HDAC traps PARP1 and DNMT1 to chromatin, acetylates DNA repair proteins, down-regulates NuRD and induces apoptosis in human leukemia and lymphoma cells. Oncotarget 2017; 9:3908-3921. [PMID: 29423093 PMCID: PMC5790510 DOI: 10.18632/oncotarget.23386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Combination of drugs that target different aspects of aberrant cellular processes is an efficacious treatment for hematological malignancies. Hypomethylating agents (HMAs) and inhibitors of poly(ADP-ribose) polymerases (PARPis) and histone deacetylases (HDACis) are clinically active anti-tumor drugs. We hypothesized that their combination would be synergistically cytotoxic to leukemia and lymphoma cells. Exposure of AML and lymphoma cell lines to the combination of the PARPi niraparib (Npb), the HMA decitabine (DAC) and the HDACi romidepsin (Rom) or panobinostat (Pano) synergistically inhibited cell proliferation by up to 70% via activation of the ATM pathway, increased production of reactive oxygen species, decreased mitochondrial membrane potential, and activated apoptosis. Addition of the DNA alkylating agents busulfan (Bu) and/or melphalan enhanced the anti-proliferative/cytotoxic effects of the triple-drug combination. [Npb+DAC+Rom] significantly increased the level of chromatin-bound PARP1 and DNMT1 and caused acetylation of DNA repair proteins, including Ku70, Ku80, PARP1, DDB1, ERCC1 and XPF/ERCC4. This three-drug combination down-regulated the components of the nucleosome-remodeling deacetylase (NuRD) complex, which is involved in DNA-damage repair. Addition of Bu to this combination further enhanced these effects on NuRD. The trapping of PARP1 and DNMT1 to chromatin, acetylation of DNA repair proteins, and down-regulation of NuRD may all have increased double-strand DNA break (DSB) formation as suggested by activation of the DNA-damage response, concomitantly resulting in tumor cell death. Similar synergistic cytotoxicity was observed in blood mononuclear cells isolated from patients with AML and lymphoma. Our results provide a rationale for the development of [Npb+DAC+Rom/Pano] combination therapies for leukemia and lymphoma patients.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Yan Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Thierry S, Jdey W, Alculumbre S, Soumelis V, Noguiez-Hellin P, Dutreix M. The DNA Repair Inhibitor Dbait Is Specific for Malignant Hematologic Cells in Blood. Mol Cancer Ther 2017; 16:2817-2827. [PMID: 28947503 DOI: 10.1158/1535-7163.mct-17-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/26/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways. Dbait have been shown to sensitize resistant solid tumors to radiotherapy and platinum salts. Here, we analyze the efficacy and lack of toxicity of AsiDNA, a cholesterol form of Dbait, in hematologic malignancies. We show that AsiDNA enters cells via LDL receptors and activates its molecular target, the DNA dependent protein kinase (DNA-PKcs) in 10 lymphoma and leukemia cell lines (Jurkat-E6.1, MT-4, MOLT-4, 174xCEM.T2, Sup-T1, HuT-78, Raji, IM-9, THP-1, and U-937) and in normal primary human PBMCs, resting or activated T cells, and CD34+ progenitors. The treatment with AsiDNA induced necrotic and mitotic cell death in most cancer cell lines and had no effect on blood or bone marrow cells, including immune activation, proliferation, or differentiation. Sensitivity to AsiDNA was independent of p53 status. Survival to combined treatment with conventional therapies (etoposide, cyclophosphamides, vincristine, or radiotherapy) was analyzed by isobolograms and combination index. AsiDNA synergized with all treatments, except vincristine, without increasing their toxicity to normal blood cells. AsiDNA is a novel, potent, and wide-range drug with the potential to specifically increase DNA-damaging treatment toxicity in tumor without adding toxicity in normal hematologic cells or inducing immune dysregulation. Mol Cancer Ther; 16(12); 2817-27. ©2017 AACR.
Collapse
Affiliation(s)
- Sylvain Thierry
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Wael Jdey
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.,DNA-Therapeutics, Onxeo, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Patricia Noguiez-Hellin
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.
| |
Collapse
|
46
|
Randomized phase II trial of cytosine arabinoside with and without the CHK1 inhibitor MK-8776 in relapsed and refractory acute myeloid leukemia. Leuk Res 2017; 61:108-116. [PMID: 28957699 DOI: 10.1016/j.leukres.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE Cytosine arabinoside (AraC) remains the backbone of most treatment regimens for acute myeloid leukemia (AML). Incorporation of AraC into DNA activates checkpoint kinase 1 (Chk1), leading to cell-cycle arrest and diminished AraC cytotoxicity, which can be reversed by the selective Chk1 inhibitor MK-8776. Building on a Phase I trial, we conducted a phase II trial comparing timed sequential AraC with or without MK-8776. METHODS Patients with relapsed or primary refractory AML were randomized 1:1 to receive either AraC with MK-8776 (Arm A); or AraC alone (Arm B). RESULTS 32 patients were treated: 14 assigned to Arm A and 18 to Arm B. There were 5 (36%) complete responses (CR/CRi) and 1 (7%) partial response (PR) in Arm A, and 8 (44%) CR/CRis and 1 (6%) PR in Arm B. Median survival did not differ significantly between the two groups (5.9months in Arm A vs. 4.5 months in Arm B). MK-8776 led to a robust increase in DNA damage in circulating leukemic blasts as measured by increased γ-H2AX (16.9%±6.1% prior and 36.4%±6.8% at one hour after MK-8776 infusion, p=0.016). CONCLUSION Response rates and survival were similar between the two groups in spite of evidence that MK-8776 augmented DNA damage in circulating leukemic blasts. Better than expected results in the control arm using timed sequential AraC and truncated patient enrollment may have limited the ability to detect clinical benefit from the combination.
Collapse
|
47
|
Forcina GC, Conlon M, Wells A, Cao JY, Dixon SJ. Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells. Cell Syst 2017; 4:600-610.e6. [PMID: 28601558 DOI: 10.1016/j.cels.2017.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Cytotoxic compounds are important drugs and research tools. Here, we introduce a method, scalable time-lapse analysis of cell death kinetics (STACK), to quantify the kinetics of compound-induced cell death in mammalian cells at the population level. STACK uses live and dead cell markers, high-throughput time-lapse imaging, and mathematical modeling to determine the kinetics of population cell death over time. We used STACK to profile the effects of over 1,800 bioactive compounds on cell death in two human cancer cell lines, resulting in a large and freely available dataset. 79 potent lethal compounds common to both cell lines caused cell death with widely divergent kinetics. 13 compounds triggered cell death within hours, including the metallophore zinc pyrithione. Mechanistic studies demonstrated that this rapid onset lethal phenotype was caused in human cancer cells by metabolic disruption and ATP depletion. These results provide the first comprehensive survey of cell death kinetics and analysis of rapid-onset lethal compounds.
Collapse
Affiliation(s)
- Giovanni C Forcina
- Department of Biology, Stanford University, Room 104, 337 Campus Drive, Stanford, CA 94305, USA
| | - Megan Conlon
- Department of Biology, Stanford University, Room 104, 337 Campus Drive, Stanford, CA 94305, USA
| | - Alex Wells
- Department of Biology, Stanford University, Room 104, 337 Campus Drive, Stanford, CA 94305, USA
| | - Jennifer Yinuo Cao
- Department of Biology, Stanford University, Room 104, 337 Campus Drive, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Room 104, 337 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2017; 175:192-222. [PMID: 28213892 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Constance, Germany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center - University Hospital, University of Florence, Florence, Italy
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Flavio Moroni
- Department of Neuroscience, Università degli Studi di Firenze, Florence, Italy
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue Injury, NIAAA, NIH, Bethesda, USA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francisco Garcia Soriano
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
49
|
Rebechi MT, Pratz KW. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278729 DOI: 10.1080/10428194.2017.1283031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute Myeloid Leukemia with FLT3 ITD mutations are associated with a poor prognosis characterized by a higher relapse rate, shorter relapse free survival, and decreased likelihood of response to therapy at relapse. FLT3 ITD signaling drives cell proliferation and survival. FLT3 ITD AML disease progression is associated with cytogenetic evolution and acquired tyrosine kinase inhibitor (TKI) resistance suggesting a potential role of genomic instability. There is growing evidence demonstrating a relationship between FLT3 signaling and increased DNA damage, specifically through increased reactive oxygen species (ROS) resulting in double-strand breaks (DSB), as well as impaired DNA repair, involving deficiencies in the non-homologous end joining (NHEJ), alternative non-homologous end joining (ALT NHEJ) and homologous recombination (HR) pathways. The role of genomic instability in the pathogenesis of FLT3 ITD AML warrants further examination as it offers potential therapeutic targets.
Collapse
Affiliation(s)
- Melanie T Rebechi
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| | - Keith W Pratz
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
50
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|