1
|
Salehi N, Alqamish M, Zarnegar R. Perioperative chemotherapy strategies in diffuse gastric cancer. World J Gastrointest Surg 2025; 17:101326. [PMID: 39872775 PMCID: PMC11757181 DOI: 10.4240/wjgs.v17.i1.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/27/2024] Open
Abstract
This study reviews the findings of a recent study by Li et al, which demonstrated that perioperative chemotherapy benefits patients with diffuse-type gastric cancer compared to surgery alone. Despite potential biases, the study supports the inclusion of perioperative chemotherapy in treatment guidelines. Neoadjuvant and adjuvant chemotherapy may also provide similar survival outcomes, allowing for flexible treatment planning.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY 10128, United States
| | - Maria Alqamish
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY 10128, United States
| | - Rasa Zarnegar
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY 10128, United States
| |
Collapse
|
2
|
Shi B, Wang W, Fang S, Wu S, Zhu L, Chen Y, Dong H, Yan F, Yuan F, Ye J, Zhang H, Lin LL. Raman spectroscopy analysis combined with computed tomography imaging to identify microsatellite instability in gastric cancers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125062. [PMID: 39226670 DOI: 10.1016/j.saa.2024.125062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Accurate determination of microsatellite instability (MSI) status is critical for tailoring treatment approaches for gastric cancer patients. Existing clinical techniques for MSI diagnosis are plagued by problems of suboptimal time efficiency, high cost, and burdensome experimental requirements. Here, we for the first time establish the classification model of gastric cancer MSI status based on Raman spectroscopy. To begin with, we reveal that tumor heterogeneity-induced signal variations pose a prominent impact on MSI classification. To eliminate this issue, we develop Euclidean distance-based Raman Spectroscopy (EDRS) algorithm, which establishes a standard spectrum to represent the "most microsatellite stable" status. The similarity between each spectrum of tissues with the standard spectrum is calculated to provide a direct assessment on the MSI status. Compared to machine learning-algorithms including k-Nearest Neighbors, Random Forest, and Extreme Learning Machine, the EDRS method shows the highest accuracy of 94.6 %. Finally, we integrate the EDRS method with the clinical diagnostic modality, computed tomography, to construct an innovative joint classification model with good classification performance (AUC = 0.914, Accuracy = 94.6 %). Our work demonstrates a robust, rapid, non-invasive, and convenient tool in identifying the MSI status, and opens new avenues for Raman techniques to fit into existing clinical workflow.
Collapse
Affiliation(s)
- Bowen Shi
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wenfang Wang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Shiyan Fang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Lan Zhu
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Linley Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
3
|
An Q, Miao L, Wu J, Ma J. Mutant Pattern of p53 as a Feasible Predictor of Distant Metastasis Following Curative Gastrectomy for Advanced-stage Gastric Cancer. J Cancer 2025; 16:860-875. [PMID: 39781338 PMCID: PMC11705056 DOI: 10.7150/jca.98563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 01/12/2025] Open
Abstract
Objective: The TP53 mutation is a poor prognostic factor for malignant tumors in a number of organs. The present study primarily aimed to clarify the impact of the mutant pattern of p53 on the prognosis and recurrence of gastric cancer. Methods: For this purpose, 519 patients who underwent radical gastrectomy for cancer were enrolled in the present study. Immunohistochemistry (IHC) was used to examine p53 expression in tissues and a three-stage classification system was used to divide the patient tissues into three groups according to the expression of p53: Heterogeneous (wild-type), absent and overexpression (mutant). Results: After 5 years of follow-up, recurrence and metastasis occurred in 38.7% of patients with stomach cancer, with a p53 mutant pattern in 48.4% of these patients. Patients with a p53 mutant pattern had lower recurrence-free and overall survival rates at 5 years compared with those who were p53 wild-type (P<0.001). It was found that the p53 pattern differed significantly (P<0.001) between the wild-type and mutant patterns, including the pN0 and pN+ gastric cancer subgroups (P<0.001 and P=0.014, respectively). The p53 mutant pattern was also significant in the determination of the recurrence-free survival of patients with progressive stomach cancer (P<0.0001). The 5-year overall survival rates were 71.7 and 36.2%, and the recurrence-free survival rates were 71.2 and 35.2% in the pN0 and pN+ groups, respectively (P<0.001). The mutant pattern of p53 was a significant prognostic factor for both distant metastasis [relative risk (RR)=2.881, P<0.001] and overall survival (RR=2.809, P<0.001) in the univariate Cox regression analysis. In the multivariate analysis, distant metastasis (RR=2.767, P<0.001) remained significant in the mutant pattern of p53 staining. After propensity score matching, 189 patients with a p53 wild-type and 189 patients with a p53 mutant pattern were extracted for analysis. The 5-year overall survival rate in patients with the p53 mutant pattern (n = 189) was worse than that in the patients with p53 wild-type (n = 189) and with significant differences (log-rank P<0.01). The study was statistically significant after Cox univariate and multivariate regression analysis, which revealed that the mutant pattern of p53 is an independent prognostic factor impacting distant metastases following curative gastrectomy for advanced-stage gastric cancer (p = 0.48).
Collapse
Affiliation(s)
- Quanming An
- Department of Gastrointestinal Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lili Miao
- Department of Respiratory and Critical Care Medicine,The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Wu
- Department of Gastroenterology,The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Junwen Ma
- Department of Gastrointestinal Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| |
Collapse
|
4
|
Bai Z, Wang H, Han J, An J, Yang Z, Mo X. Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer. Sci Rep 2024; 14:31060. [PMID: 39730893 DOI: 10.1038/s41598-024-82233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features. A machine learning model was developed to create the Gastric Cancer Multi-Omics Programmed Cell Death Signature (GMPS), targeting PCD-related genes. We verified the expression of the GMPS hub genes using the RT-qPCR method. The prognostic influence of GMPS on GC was then evaluated. Single-cell analysis was performed to examine the heterogeneity of PCD characteristics in GC. Findings indicate that GMPS notably correlates with patient survival rates, tumor mutational burden (TMB), and copy number variations (CNV), demonstrating substantial prognostic predictive power. Moreover, GMPS is closely associated with the tumor microenvironment (TME) and immune therapy response. This research elucidates the molecular subtypes of GC, highlighting PCD's critical role in prognosis assessment. The relationship between GMPS and immune therapy response, alongside gastric cancer's microenvironmental features, provides insights for personalized treatment.
Collapse
Affiliation(s)
- Zihao Bai
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jingru Han
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jia An
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Xuming Mo
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
5
|
Yi N, Yin X, Feng X, Ren M, Ma C. Identification of gastric cancer subtypes based on disulfidptosis-related genes: GPC3 as a novel biomarker for prognosis prediction. Discov Oncol 2024; 15:810. [PMID: 39695020 DOI: 10.1007/s12672-024-01694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer type. "Disulfidptosis," a distinct form of cell death, is initiated through aberrant intracellular disulfide metabolism. Here, we identified various GC subtypes based on disulfidptosis-related genes (DRGs) and constructed a risk score model to identify relevant genes to help predict patient prognosis and guide treatment. We downloaded RNA sequencing (RNA-seq) data from the TCGA-STAD database, performed a difference analysis, and combined the data with GSE84437 to successfully perform an unsupervised clustering analysis based on DRGs and differentially expressed genes (DEGs). Risk-scoring models were established by screening prognosis-related DEGs. The GC samples were segregated into high-risk (HR) and low-risk (LR) groups according to their risk scores. We then evaluated the genes screened with the model in terms of prognosis, tumor, and immune cell infiltration. The response of patients with GC to immunological therapy was assessed using tumor mutational burden, microsatellite instability, and tumor immune dysfunction and exclusion scores. Using unsupervised cluster analysis, we identified two DRG clusters and two gene clusters that differed in prognosis and tumor microenvironment. A six-gene model was developed for risk score assessment. The LR group demonstrated superior performance compared to the HR group in terms of immunity, exhibiting greater sensitivity to immunotherapy. Thereafter, we selected the model gene GPC3 for single-gene analysis and verified it by experimental validation. The results demonstrated that GPC3 can serve as a standalone biomarker with promising clinical applicability in the prognostic prediction and clinical management of GC.
Collapse
Affiliation(s)
- Nan Yi
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xindong Yin
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiao Feng
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ming Ren
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
6
|
Huang S, Huang L, Jiang Q, Jiang C, Guo G. Predictive significance of MPT-driven necrosis-related genes signature in gastric cancer and their impact on the tumor microenvironment. Clin Transl Oncol 2024:10.1007/s12094-024-03832-7. [PMID: 39690336 DOI: 10.1007/s12094-024-03832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Gastric cancer (GC) presents significant management challenges. MPT-driven necrosis (MPTDN) plays a significant role in various conditions, but its connection with GC is unclear. This study aimed to investigate the predictive significance of MPTDN-related genes (MPTDNRGs) in GC and their effect on the tumor immune microenvironment (TIME). METHODS RNA sequencing data for GC were sourced from TCGA and GEO databases. The mutation profiles and MPTDNRG expression between tumor and normal samples were assessed. Prognostic mRNAs were identified using univariate Cox regression and LASSO regression. GC patients were classified into high- and low-risk groups according to risk scores, followed by survival analysis and evaluation of correlations between MPTDN score and clinicopathological features, functional pathway, TIME, and responses to immunotherapy. RESULTS MPTDNRGs exhibited a 64% mutation rate in GC, with 22 showing significant expression differences. Univariate Cox and LASSO regression identified 15 independently prognostic MPTDNRGs. The prognostic risk model stratified patients into two groups, revealing significant differences in overall and disease-free survival. A nomogram incorporating the signature and clinical characteristics showed strong specificity and sensitivity in predicting prognosis. The MPTDN score was significantly associated with clinical characteristics, functional pathways, and TIME. scRNA-seq analysis indicated higher MPTDN-signature expression in CD8 + T cells, malignant cells, and myofibroblasts. TIDE analysis suggested high-risk patients have reduced responses to immunotherapy, while low-risk patients could benefit more. Importantly, validation using urothelial carcinoma data confirmed a better prognosis for low-risk patients with immunotherapy. CONCLUSION This study highlights the importance of MPTDN-related signatures in predicting GC prognosis and guiding therapeutic decisions.
Collapse
Affiliation(s)
- Silan Huang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lingli Huang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qi Jiang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang Jiang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guifang Guo
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Bu Y, Liang J, Li Z, Wang J, Wang J, Yu G. Cancer molecular subtyping using limited multi-omics data with missingness. PLoS Comput Biol 2024; 20:e1012710. [PMID: 39724112 PMCID: PMC11709273 DOI: 10.1371/journal.pcbi.1012710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Diagnosing cancer subtypes is a prerequisite for precise treatment. Existing multi-omics data fusion-based diagnostic solutions build on the requisite of sufficient samples with complete multi-omics data, which is challenging to obtain in clinical applications. To address the bottleneck of collecting sufficient samples with complete data in clinical applications, we proposed a flexible integrative model (CancerSD) to diagnose cancer subtype using limited samples with incomplete multi-omics data. CancerSD designs contrastive learning tasks and masking-and-reconstruction tasks to reliably impute missing omics, and fuses available omics data with the imputed ones to accurately diagnose cancer subtypes. To address the issue of limited clinical samples, it introduces a category-level contrastive loss to extend the meta-learning framework, effectively transferring knowledge from external datasets to pretrain the diagnostic model. Experiments on benchmark datasets show that CancerSD not only gives accurate diagnosis, but also maintains a high authenticity and good interpretability. In addition, CancerSD identifies important molecular characteristics associated with cancer subtypes, and it defines the Integrated CancerSD Score that can serve as an independent predictive factor for patient prognosis.
Collapse
Affiliation(s)
- Yongqi Bu
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Jiaxuan Liang
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Wang
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Li J, He L, Zhang X, Li X, Wang L, Zhu Z, Song K, Wang X. GCclassifier: An R package for the prediction of molecular subtypes of gastric cancer. Comput Struct Biotechnol J 2024; 23:752-758. [PMID: 38304548 PMCID: PMC10831507 DOI: 10.1016/j.csbj.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies, threatening millions of lives worldwide each year. Importantly, GC is a heterogeneous disease, posing a significant challenge to the selection of patients for more optimized therapy. Over the last decades, extensive community effort has been spent on dissecting the heterogeneity of GC, leading to the identification of distinct molecular subtypes that are clinically relevant. However, so far, no tool is publicly available for GC subtype prediction, hindering the research into GC subtype-specific biological mechanisms, the design of novel targeted agents, and potential clinical applications. To address the unmet need, we developed an R package GCclassifier for predicting GC molecular subtypes based on gene expression profiles. To facilitate the use by non-bioinformaticians, we also provide an interactive, user-friendly web server implementing the major functionalities of GCclassifier. The predictive performance of GCclassifier was demonstrated using case studies on multiple independent datasets.
Collapse
Affiliation(s)
- Jiang Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lingli He
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xianrui Zhang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xiang Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Lishi Wang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhongxu Zhu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Kai Song
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Region of China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Region of China
| |
Collapse
|
9
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Guo P, Yang Y, Wang L, Zhang Y, Zhang B, Cai J, de Melo FF, Strickland MR, Huang M, Liu B. Development of a streamlined NGS-based TCGA classification scheme for gastric cancer and its implications for personalized therapy. J Gastrointest Oncol 2024; 15:2053-2066. [PMID: 39554576 PMCID: PMC11565108 DOI: 10.21037/jgo-24-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/16/2024] [Indexed: 11/19/2024] Open
Abstract
Background The Cancer Genome Atlas (TCGA) has identified four distinct molecular subtypes of gastric cancer (GC) with prognostic significance: Epstein-Barr virus (EBV)-positive, microsatellite instability (MSI)-high, genomically stable (GS), and chromosomal instability (CIN). Unfortunately, the complex analysis required for TCGA classification limits its practical use in clinical settings. Our study sought to devise a next-generation sequencing (NGS)-based method to classify GC more efficiently, serving as a promising biomarker for prognosis and immunotherapy efficacy. Methods This study was a retrospective observation study, and we employed 2 independent GC cohorts. The 3DMed cohort (n=765), comprising data on 733 cancer-related genes along with 4 EBV-encoded genes, was utilized to develop the new NGS classification. Additionally, the secondary Korean cohort (n=55), which includes both genomic data and information on immune checkpoint inhibitor (ICI) treatment, was employed to establish a correlation between NGS subtypes and ICI responsiveness. Results In the 3DMed cohort, we identified 5.2% EBV, 4.6% MSI, 30.6% GS, and 59.6% CIN subtypes. The MSI subtype exhibited the highest number of mutation events, along with the highest tumor mutational burden (TMB) and strong programmed cell death ligand 1 (PD-L1) expression. CIN tumors showed extensive copy number variations (CNVs) and genomic heterogeneity. The EBV subtype presented recurrent ARID1A and PIK3CA mutations and fewer TP53 mutations. GS tumors exhibited specific mutations in CDH1 and ARID1A. In the Korean cohort, ICIs were most effective in MSI and EBV cases, showing disease control rates of 100%, compared to 62.9% in GS and 12.5% in CIN subtypes. Conclusions The NGS method successfully maps the mutational landscape of GC, providing a practical TCGA classification surrogate to optimize patient-specific treatment strategies.
Collapse
Affiliation(s)
- Pengda Guo
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yang Yang
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Lu Wang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Zhang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bei Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jinping Cai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Fabrício Freire de Melo
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil
| | - Matthew R Strickland
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Min Huang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- General Practice Section, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Biao Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
11
|
Shahi A, Kidane D. Aberrant DNA polymerase beta expression is associated with dysregulated tumor immune microenvironment and its prognostic value in gastric cancer. Clin Exp Med 2024; 24:239. [PMID: 39402431 PMCID: PMC11473650 DOI: 10.1007/s10238-024-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Gastric cancer is caused by different exogenous risk factors. Polymerase beta (POLB) is critical to repair oxidative and alkylating-induced DNA damage in genome maintenance. It is unknown whether overexpression of POLB genes in GC modulates tumor immunogenicity and plays a role in its prognostic value. METHODS RNA-Seq of GC data retrieved from TCGA and GEO database and patient survival were compared using Kaplan-Meier statistical test. The TIMER algorithm was used to calculate the abundance of tumor-infiltrating immune cells. Furthermore, ROC analysis was applied to evaluate the prognostic value of POLB overexpression. RESULTS Our data analysis of TCGA and GEO gastric cancer genomics datasets reveals that POLB overexpression is significantly associated with intestinal subtypes of stomach cancer. In addition, POLB overexpression is associated with low expression of innate immune signaling genes. In contrast, POLB-overexpressed tumor harbors high mutation frequency and MSI score. Furthermore, POLB-overexpressed tumor with high immune score exhibits a better prognosis. Interestingly, our ROC analysis results suggested that POLB overexpression has a potential for prognostic markers for stomach cancer. CONCLUSIONS Our analysis suggests that aberrant POLB overexpression in stomach cancer impacts the diverse aspects of tumor immune microenvironment. In addition, POLB might be a potential prognosis marker and/or an attractive target for immune-based therapy in GC. However, our observation still requires further experimental-based scientific validation studies.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Physiology & Biophysics, College of Medicine, Howard University, 520 W Street NW, Washington, DC, 20059, USA
| | - Dawit Kidane
- Department of Physiology & Biophysics, College of Medicine, Howard University, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
12
|
Shi D, Yang Z, Cai Y, Li H, Lin L, Wu D, Zhang S, Guo Q. Research advances in the molecular classification of gastric cancer. Cell Oncol (Dordr) 2024; 47:1523-1536. [PMID: 38717722 PMCID: PMC11466988 DOI: 10.1007/s13402-024-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 06/27/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor with one of the lowest five-year survival rates. Traditional first-line treatment regimens, such as platinum drugs, have limited therapeutic efficacy in treating advanced GC and significant side effects, greatly reducing patient quality of life. In contrast, trastuzumab and other immune checkpoint inhibitors, such as nivolumab and pembrolizumab, have demonstrated consistent and reliable efficacy in treating GC. Here, we discuss the intrinsic characteristics of GC from a molecular perspective and provide a comprehensive review of classification and treatment advances in the disease. Finally, we suggest several strategies based on the intrinsic molecular characteristics of GC to aid in overcoming clinical challenges in the development of precision medicine and improve patient prognosis.
Collapse
Affiliation(s)
- Dike Shi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Zihan Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanna Cai
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongbo Li
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lele Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Dan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Qingqu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Yim SY, Lee SH, Baek SW, Sohn B, Jeong YS, Kang SH, Park K, Park H, Lee SS, Kaseb AO, Park YN, Leem SH, Curran MA, Kim JH, Lee JS. Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial. Clin Mol Hepatol 2024; 30:807-823. [PMID: 39038962 PMCID: PMC11540371 DOI: 10.3350/cmh.2024.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND/AIMS Combination immunotherapy, exemplified by atezolizumab plus bevacizumab, has become the standard of care for inoperable hepatocellular carcinoma (HCC). However, the lack of predictive biomarkers and limited understanding of response mechanisms remain a challenge. METHODS Using data from the IMbrave150plus cohort, we applied an immune signature score (ISS) predictor to stratify HCC patients treated with atezolizumab plus bevacizumab or with sorafenib alone into potential high and low response groups. By applying multiple statistical approaches including a Bayesian covariate prediction algorithm, we refined the signature to 10 key genes (ISS10) for clinical use while maintaining similar predictive power to the full model. We further validated ISS10 in an independent HCC cohort treated with nivolumab plus ipilimumab. RESULTS The study identified a significant association between the ISS and treatment response. Among patients classified as high responders, those treated with the atezolizumab plus bevacizumab combination exhibited improved overall and progression-free survival as well as better objective response rate compared to those treated with sorafenib. We also observed a significant correlation between ISS10 and response to nivolumab plus ipilimumab treatment. Analysis of immune cell subpopulations revealed distinct characteristics associated with ISS subtypes. In particular, the ISS10 high subtype displayed a more favorable immune environment with higher proportions of antitumor macrophages and activated T-cells, potentially explaining its better response. CONCLUSION Our study suggests that ISS and ISS10 are promising predictive biomarkers for enhanced therapeutic outcomes in HCC patients undergoing combination immunotherapy. These markers are crucial for refining patient stratification and personalized treatment approaches to advance the effectiveness of standard-of-care regimens.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Seung-Woo Baek
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Bohwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang-Hee Kang
- Department of Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Kena Park
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hyewon Park
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Alfahed A. Cell Migration-Proliferation Dichotomy in Cancer: Biological Fact or Experimental Artefact? BIOLOGY 2024; 13:753. [PMID: 39452063 PMCID: PMC11504154 DOI: 10.3390/biology13100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024]
Abstract
The migration-proliferation dichotomy (MPD) has long been observed in cultured cancer cells. This phenomenon is not only relevant to tumour progression but may also have therapeutic significance in clinical cancer. However, MPD has rarely been investigated in primary cancer. This study aimed to either confirm or disprove the existence of MPD in primary cancer. Using primary gastric, colorectal and prostate cancer (GC, CRC and PCa) cohorts from the Cancer Genome Atlas and Memorial Sloan Kettering Cancer Center, this study interrogated the MPD phenomenon by utilising RNA-Seq-based proliferation (CIN70 signature) and migration (epithelial-mesenchymal transition) indices, as well as gene set enrichment analyses (GSEA). Alternative hypothetical migration-proliferation models-The simultaneous migration-proliferation (SMP) and phenotype-refractory (PR) models-were compared to the MPD model by probing the migration-proliferation relationships within cancer stages and between early- and late-stage diseases using chi-square and independent T tests, z-score statistics and GSEA. The results revealed an inverse relationship between migration and proliferation signatures overall in the GC, CRC and PCa cohorts, as well as in early- and late-stage diseases. Additionally, a shift in proliferation- to migration dominance was observed from early- to late-stage diseases in the GC and CRC cohorts but not in the PCa cohorts, which showed enhanced proliferation dominance in metastatic tumours compared to primary cancers. The above features exhibited by the cancer cohorts are in keeping with the MPD model of the migration-proliferation relationship at the cellular level and exclude the SMP and PR migration-proliferation models.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Kővári B, Carneiro F, Lauwers GY. Epithelial tumours of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:227-286. [DOI: 10.1002/9781119423195.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
17
|
Ni J, Wang M, Wang T, Yan C, Ren C, Li G, Ding Y, Li H, Du L, Jiang Y, Chen J, Wang Y, Xu D, Zhu M, Dai J, Ma H, Hu Z, Shen H, Wei Q, Jin G. Construction and evaluation of a polygenic hazard score for prognostic assessment in localized gastric cancer. FUNDAMENTAL RESEARCH 2024; 4:1331-1338. [PMID: 39431145 PMCID: PMC11489476 DOI: 10.1016/j.fmre.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
To investigate whether genetic variants may provide additional prognostic value to improve the existing clinical staging system for gastric cancer (GC), we performed two genome-wide association studies (GWASs) of GC survival in the Jiangsu (N = 1049) and Shanghai (N = 1405) cohorts. By using a TCGA dataset, we validated genetic markers identified from a meta-analysis of these two Chinese cohorts to determine GC survival-associated loci. Then, we constructed a weighted polygenic hazard score (PHS) and developed a nomogram in combination with clinical variables. We also evaluated prognostic accuracy with the time-dependent receiver operating characteristic (ROC) curve, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We identified a single nucleotide polymorphism (SNP) of rs1618332 at 15q15.1 that was associated with the survival of GC patients with a P value of 4.12 × 10-8, and we also found additional 25 SNPs having consistent associations among these two Chinese cohort and TCGA cohort. The PHS derived from these 26 SNPs (PHS-26) was an independent prognostic factor for GC survival (all P < 0.001). The 5-year AUC of PHS-26 was 0.68, 0.66 and 0.67 for Jiangsu, Shanghai and their pooled cohorts, respectively, which increased to 0.80, 0.82 and 0.81, correspondingly, after being integrated into a nomogram together with variables of the clinical model. The PHS-26 could improve the NRIs by 16.20%, 4.90% and 8.70%, respectively, and the IDIs by 11.90%, 8.00% and 9.70%, respectively. The 26-SNP based PHS could substantially improve the accuracy of prognostic assessment and might facilitate precision medicine for GC patients.
Collapse
Affiliation(s)
- Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yanbing Ding
- Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Huizhang Li
- Zhejiang Provincial Office for Cancer Prevention and Control, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lingbin Du
- Zhejiang Provincial Office for Cancer Prevention and Control, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiaping Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dazhi Xu
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Zhejiang Provincial Office for Cancer Prevention and Control, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Institute for Precision Cancer Prevention and Medicine, Great Bay Area Institutes of Precision Medicine, Guangzhou 511466, China
- Department of Population Health Sciences, Duke University School of Medicine, Durham 27710, United States
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
18
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
19
|
Mahuron KM, Sullivan KM, Hernandez MC, Chen YJ, Chao J, Melstrom LG, Paz IB, Kim JY, Mannan R, Lin JL, Fong Y, Woo Y. Diffuse-Type Histology Is Prognostic for All Siewert Types of Gastroesophageal Adenocarcinoma. J Gastric Cancer 2024; 24:267-279. [PMID: 38960886 PMCID: PMC11224723 DOI: 10.5230/jgc.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE The optimal treatment for gastroesophageal junction adenocarcinoma (GEJA) remains controversial. We evaluated the treatment patterns and outcomes of patients with locally advanced GEJA according to the histological type. MATERIALS AND METHODS We conducted a single-institution retrospective cohort study of patients with locally advanced GEJA who underwent curative-intent surgical resection between 2010 and 2020. Perioperative therapies as well as clinicopathologic, surgical, and survival data were collected. The results of endoscopy and histopathological examinations were assessed for Siewert and Lauren classifications. RESULTS Among the 58 patients included in this study, 44 (76%) were clinical stage III, and all received neoadjuvant therapy (72% chemoradiation, 41% chemotherapy, 14% both chemoradiation and chemotherapy). Tumor locations were evenly distributed by Siewert Classification (33% Siewert-I, 40% Siewert-II, and 28% Siewert-III). Esophagogastrectomy (EG) was performed for 47 (81%) patients and total gastrectomy (TG) for 11 (19%) patients. All TG patients received D2 lymphadenectomy compared to 10 (21%) EG patients. Histopathological examination showed the presence of 64% intestinal-type and 36% diffuse-type histology. The frequencies of diffuse-type histology were similar among Siewert groups (37% Siewert-I, 36% Siewert-II, and 33% Siewert-III). Regardless of Siewert type and compared to intestinal-type, diffuse histology was associated with increased intraabdominal recurrence rates (P=0.03) and decreased overall survival (hazard ratio, 2.33; P=0.02). With a median follow-up of 31.2 months, 29 (50%) patients had a recurrence, and the median overall survival was 50.5 months. CONCLUSIONS Present in equal proportions among Siewert types of esophageal and gastric cancer, a diffuse-type histology was associated with high intraabdominal recurrence rates and poor survival. Histopathological evaluation should be considered in addition to anatomic location in the determination of multimodal GEJA treatment strategies.
Collapse
Affiliation(s)
- Kelly M Mahuron
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Kevin M Sullivan
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Matthew C Hernandez
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yi-Jen Chen
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joseph Chao
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - I Benjamin Paz
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jae Yul Kim
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Rifat Mannan
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - James L Lin
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
- Division of Gastroenterology, Department of Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
20
|
Razavi-Mohseni M, Huang W, Guo YA, Shigaki D, Ho SWT, Tan P, Skanderup AJ, Beer MA. Machine learning identifies activation of RUNX/AP-1 as drivers of mesenchymal and fibrotic regulatory programs in gastric cancer. Genome Res 2024; 34:680-695. [PMID: 38777607 PMCID: PMC11216402 DOI: 10.1101/gr.278565.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and is a heterogeneous disease. Among GC subtypes, the mesenchymal phenotype (Mes-like) is more invasive than the epithelial phenotype (Epi-like). Although gene expression of the epithelial-to-mesenchymal transition (EMT) has been studied, the regulatory landscape shaping this process is not fully understood. Here we use ATAC-seq and RNA-seq data from a compendium of GC cell lines and primary tumors to detect drivers of regulatory state changes and their transcriptional responses. Using the ATAC-seq data, we developed a machine learning approach to determine the transcription factors (TFs) regulating the subtypes of GC. We identified TFs driving the mesenchymal (RUNX2, ZEB1, SNAI2, AP-1 dimer) and the epithelial (GATA4, GATA6, KLF5, HNF4A, FOXA2, GRHL2) states in GC. We identified DNA copy number alterations associated with dysregulation of these TFs, specifically deletion of GATA4 and amplification of MAPK9 Comparisons with bulk and single-cell RNA-seq data sets identified activation toward fibroblast-like epigenomic and expression signatures in Mes-like GC. The activation of this mesenchymal fibrotic program is associated with differentially accessible DNA cis-regulatory elements flanking upregulated mesenchymal genes. These findings establish a map of TF activity in GC and highlight the role of copy number driven alterations in shaping epigenomic regulatory programs as potential drivers of GC heterogeneity and progression.
Collapse
Affiliation(s)
- Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Weitai Huang
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Yu A Guo
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Shamaine Wei Ting Ho
- Laboratory of Cancer Epigenetic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Patrick Tan
- Laboratory of Cancer Epigenetic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593
| | - Anders J Skanderup
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
21
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Zeng Z, Zhu Q. Progress and prospects of biomarker-based targeted therapy and immune checkpoint inhibitors in advanced gastric cancer. Front Oncol 2024; 14:1382183. [PMID: 38947886 PMCID: PMC11211377 DOI: 10.3389/fonc.2024.1382183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Gastric cancer and gastroesophageal junction cancer represent the leading cause of tumor-related death worldwide. Although advances in immunotherapy and molecular targeted therapy have expanded treatment options, they have not significantly altered the prognosis for patients with unresectable or metastatic gastric cancer. A minority of patients, particularly those with PD-L1-positive, HER-2-positive, or MSI-high tumors, may benefit more from immune checkpoint inhibitors and/or HER-2-directed therapies in advanced stages. However, for those lacking specific targets and unique molecular features, conventional chemotherapy remains the only recommended effective and durable regimen. In this review, we summarize the roles of various signaling pathways and further investigate the available targets. Then, the current results of phase II/III clinical trials in advanced gastric cancer, along with the superiorities and limitations of the existing biomarkers, are specifically discussed. Finally, we will offer our insights in precision treatment pattern when encountering the substantial challenges.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhou KI, Hanks BA, Strickler JH. Management of Microsatellite Instability High (MSI-H) Gastroesophageal Adenocarcinoma. J Gastrointest Cancer 2024; 55:483-496. [PMID: 38133871 PMCID: PMC11186732 DOI: 10.1007/s12029-023-01003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Kuwata T. Molecular classification and intratumoral heterogeneity of gastric adenocarcinoma. Pathol Int 2024; 74:301-316. [PMID: 38651937 PMCID: PMC11551831 DOI: 10.1111/pin.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Gastric cancers frequently harbor striking histological complexity and diversity between lesions as well as within single lesions, known as inter- and intratumoral heterogeneity, respectively. The latest World Health Organization Classification of Tumors designated more than 30 histological subtypes for gastric epithelial tumors, assigning 12 subtypes for gastric adenocarcinoma (GAD). Meanwhile, recent advances in genome-wide analyses have provided molecular aspects to the histological classification of GAD, and consequently revealed different molecular traits underlying these histological subtypes. Moreover, accumulating knowledge of comprehensive molecular profiles has led to establishing molecular classifications of GAD, which are often associated with clinical biomarkers for therapeutics and prognosis. However, most of our knowledge of GAD molecular profiles is based on inter-tumoral heterogeneity, and the molecular profiles underlying intratumoral heterogeneity are yet to be determined. In this review, recently established molecular classifications of GAD are introduced in the aspect of pathological diagnosis and are discussed in the context of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Department of Genetic Medicine and ServicesNational Cancer Center Hospital EastKashiwaChibaJapan
| |
Collapse
|
25
|
Chong W, Ren H, Chen H, Xu K, Zhu X, Liu Y, Sang Y, Li H, Liu J, Ye C, Shang L, Jing C, Li L. Clinical features and molecular landscape of cuproptosis signature-related molecular subtype in gastric cancer. IMETA 2024; 3:e190. [PMID: 38898987 PMCID: PMC11183172 DOI: 10.1002/imt2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Recent studies have highlighted the biological significance of cuproptosis in disease occurrence and development. However, it remains unclear whether cuproptosis signaling also has potential impacts on tumor initiation and prognosis of gastric cancer (GC). In this study, 16 cuproptosis-related genes (CRGs) transcriptional profiles were harnessed to perform the regularized latent variable model-based clustering in GC. A cuproptosis signature risk scoring (CSRS) scheme, based on a weighted sum of principle components of the CRGs, was used to evaluate the prognosis and risk of individual tumors of GC. Four distinct cuproptosis signature-based clusters, characterized by differential expression patterns of CRGs, were identified among 1136 GC samples across three independent databases. The four clusters were also associated with different clinical outcomes and tumor immune contexture. Based on the CSRS, GC patients can be divided into CSRS-High and CSRS-Low subtypes. We found that DBT, MTF1, and ATP7A were significantly elevated in the CSRS-High subtype, while SLC31A1, GCSH, LIAS, DLAT, FDX1, DLD, and PDHA1 were increased in the CSRS-Low subtype. Patients with CSRS-Low score were characterized by prolonged survival time. Further analysis indicated that CSRS-Low score also correlated with greater tumor mutation burden (TMB) and higher mutation rates of significantly mutated genes (SMG) in GC. In addition, the CSRS-High subtype harbored more significantly amplified focal regions related to tumorigenesis (3q27.1, 12p12.1, 11q13.3, etc.) than the CSRS-Low tumors. Drug sensitivity analyses revealed the potential compounds for the treatment of gastric cancer with CSRS-High score, which were experimentally validated using GC cells. This study highlights that cuproptosis signature-based subtyping is significantly associated with different clinical features and molecular landscape of GC. Quantitative evaluation of the CSRS of individual tumors will strengthen our understanding of the occurrence and development of cuproptosis and the treatment progress of GC.
Collapse
Affiliation(s)
- Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryZibo Central HospitalZiboChina
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology UnitQilu Hospital of Shandong UniversityJinanChina
| | - Kang Xu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yuan Liu
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yaodong Sang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Han Li
- Department of Gastroenterological SurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Jin Liu
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chunshui Ye
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Changqing Jing
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
26
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
27
|
Wang W, Li C, Dai Y, Wu Q, Yu W. Unraveling metabolic characteristics and clinical implications in gastric cancer through single-cell resolution analysis. Front Mol Biosci 2024; 11:1399679. [PMID: 38831933 PMCID: PMC11145399 DOI: 10.3389/fmolb.2024.1399679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Background: Gastric cancer is a highly prevalent malignant neoplasm. Metabolic reprogramming is intricately linked to both tumorigenesis and cancer immune evasion. The advent of single-cell RNA sequencing technology provides a novel perspective for evaluating cellular metabolism. This study aims to comprehensively investigate the metabolic pathways of various cell types in tumor and normal samples at high resolution and delve into the intricate regulatory mechanisms governing the metabolic activity of malignant cells in gastric cancer. Methods: Utilizing single-cell RNA sequencing data from gastric cancer, we constructed metabolic landscape maps for different cell types in tumor and normal samples. Employing unsupervised clustering, we categorized malignant cells in tumor samples into high and low metabolic subclusters and further explored the characteristics of these subclusters. Results: Our research findings indicate that epithelial cells in tumor samples exhibit significantly higher activity in most KEGG metabolic pathways compared to other cell types. Unsupervised clustering, based on the scores of metabolic pathways, classified malignant cells into high and low metabolic subclusters. In the high metabolic subcluster, it demonstrated the potential to induce a stronger immune response, correlating with a relatively favorable prognosis. In the low metabolic subcluster, a subset of cells resembling cancer stem cells (CSCs) was identified, and its prognosis was less favorable. Furthermore, a set of risk genes associated with this subcluster was discovered. Conclusion: This study reveals the intricate regulatory mechanisms governing the metabolic activity of malignant cells in gastric cancer, offering new perspectives for improving prognosis and treatment strategies.
Collapse
Affiliation(s)
- Wenyue Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Conghui Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuting Dai
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingfa Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiqiang Yu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
28
|
Wei R, Song J, Pan H, Liu X, Gao J. CPT1C-positive cancer-associated fibroblast facilitates immunosuppression through promoting IL-6-induced M2-like phenotype of macrophage. Oncoimmunology 2024; 13:2352179. [PMID: 38746869 PMCID: PMC11093039 DOI: 10.1080/2162402x.2024.2352179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.
Collapse
Affiliation(s)
- Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Sun Y, Shi D, Sun J, Zhang Y, Liu W, Luo B. Regulation mechanism of EBV-encoded EBER1 and LMP2A on YAP1 and the impact of YAP1 on the EBV infection status in EBV-associated gastric carcinoma. Virus Res 2024; 343:199352. [PMID: 38462175 PMCID: PMC10982081 DOI: 10.1016/j.virusres.2024.199352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study aims to explore the role and regulatory mechanism of Yes-associated protein 1 (YAP1) in the development of Epstein-Barr virus-associated gastric cancer (EBVaGC). Here we showed that EBV can upregulate the expression and activity of YAP1 protein through its encoded latent products EBV-encoded small RNA 1 (EBER1) and latent membrane protein 2A (LMP2A), enhancing the malignant characteristics of EBVaGC cells. In addition, we also showed that overexpression of YAP1 induced the expression of EBV encoding latent and lytic phase genes and proteins in the epithelial cell line AGS-EBV infected with EBV, and increased the copy number of the EBV genome, while loss of YAP1 expression reduced the aforementioned indicators. Moreover, we found that YAP1 enhanced EBV lytic reactivation induced by two known activators, 12-O-tetradecanoylhorbol-13-acetate (TPA) and sodium butyrate (NaB). These results indicated a bidirectional regulatory mechanism between EBV and YAP1 proteins, providing new experimental evidence for further understanding the regulation of EBV infection patterns and carcinogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
30
|
Chen X, Zhuang Z, Pen L, Xue J, Zhu H, Zhang L, Wang D. Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer. Abdom Radiol (NY) 2024; 49:1363-1375. [PMID: 38305796 DOI: 10.1007/s00261-023-04165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To investigate the value of intratumoral and peritumoral radiomics based on contrast-enhanced computer tomography (CECT) to preoperatively predict microsatellite instability (MSI) status in gastric cancer (GC) patients. METHODS A total of 189 GC patients, including 63 patients with MSI-high (MSI-H) and 126 patients with MSI-low/stable (MSI-L/S), were randomly divided into the training cohort and validation cohort. Intratumoral and 5-mm peritumoral regions' radiomics features were extracted from CECT images. The features were standardized by Z-score, and the Inter- and intraclass correlation coefficient, univariate logistic regression analysis, and least absolute shrinkage and selection operator (LASSO) were applied to select the optimal radiomics features. Radiomics scores (Rad-score) based on intratumoral regions, peritumoral regions, and intratumoral + 5-mm peritumoral regions were calculated by weighting the linear combination of the selected features with their respective coefficients to construct the intratumoral model, peritumoral model, and intratumoral + peritumoral model. Logistic regression was used to establish a combined model by combining clinical characteristics, CT semantic features, and Rad-score of intratumoral and peritumoral regions. RESULTS Eleven radiomics features were selected to establish a radiomics intratumoral + peritumoral model. CT-measured tumor length and tumor location were independent risk factors for MSI status. The established combined model obtained the highest area under the receiver operating characteristic (ROC) curve (AUC) of 0.830 (95% CI, 0.727-0.906) in the validation cohort. The calibration curve and decision curve demonstrated its good model fitness and clinical application value. CONCLUSION The combined model based on intratumoral and peritumoral CECT radiomics features and clinical factors can predict the MSI status of GS with moderate accuracy before surgery, which helps formulate personalized treatment strategies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Zijian Zhuang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Lin Pen
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Jing Xue
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
- Institute of Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212000, Jiangsu Province, China.
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
- Institute of Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
31
|
Suh YS, Lee J, George J, Seol D, Jeong K, Oh SY, Bang C, Jun Y, Kong SH, Lee HJ, Kim JI, Kim WH, Yang HK, Lee C. RNA expression of 6 genes from metastatic mucosal gastric cancer serves as the global prognostic marker for gastric cancer with functional validation. Br J Cancer 2024; 130:1571-1584. [PMID: 38467827 PMCID: PMC11059174 DOI: 10.1038/s41416-024-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Molecular analysis of advanced tumors can increase tumor heterogeneity and selection bias. We developed a robust prognostic signature for gastric cancer by comparing RNA expression between very rare early gastric cancers invading only mucosal layer (mEGCs) with lymph node metastasis (Npos) and those without metastasis (Nneg). METHODS Out of 1003 mEGCs, all Npos were matched to Nneg using propensity scores. Machine learning approach comparing Npos and Nneg was used to develop prognostic signature. The function and robustness of prognostic signature was validated using cell lines and external datasets. RESULTS Extensive machine learning with cross-validation identified the prognostic classifier consisting of four overexpressed genes (HDAC5, NPM1, DTX3, and PPP3R1) and two downregulated genes (MED12 and TP53), and enabled us to develop the risk score predicting poor prognosis. Cell lines engineered to high-risk score showed increased invasion, migration, and resistance to 5-FU and Oxaliplatin but maintained sensitivity to an HDAC inhibitor. Mouse models after tail vein injection of cell lines with high-risk score revealed increased metastasis. In three external cohorts, our risk score was identified as the independent prognostic factor for overall and recurrence-free survival. CONCLUSION The risk score from the 6-gene classifier can successfully predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Donghyeok Seol
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoungyun Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Chanmi Bang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yukyung Jun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
32
|
Puliga E, De Bellis C, Vietti Michelina S, Capeloa T, Migliore C, Orrù C, Baiocchi GL, De Manzoni G, Pietrantonio F, Reddavid R, Fumagalli Romario U, Ambrogio C, Corso S, Giordano S. Biological and targeting differences between the rare KRAS A146T and canonical KRAS mutants in gastric cancer models. Gastric Cancer 2024; 27:473-483. [PMID: 38261067 PMCID: PMC11016506 DOI: 10.1007/s10120-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related death worldwide, with a poor prognosis for patients with advanced disease. Since the oncogenic role of KRAS mutants has been poorly investigated in GC, this study aims to biochemically and biologically characterize different KRAS-mutated models and unravel differences among KRAS mutants in response to therapy. METHODS Taking advantage of a proprietary, molecularly annotated platform of more than 200 GC PDXs (patient-derived xenografts), we identified KRAS-mutated PDXs, from which primary cell lines were established. The different mutants were challenged with KRAS downstream inhibitors in in vitro and in vivo experiments. RESULTS Cells expressing the rare KRAS A146T mutant showed lower RAS-GTP levels compared to those bearing the canonical G12/13D mutations. Nevertheless, all the KRAS-mutated cells displayed KRAS addiction. Surprisingly, even if the GEF SOS1 is considered critical for the activation of KRAS A146T mutants, its abrogation did not significantly affect cell viability. From the pharmacologic point of view, Trametinib monotherapy was more effective in A146T than in G12D-mutated models, suggesting a vulnerability to MEK inhibition. However, in the presence of mutations in the PI3K pathway, more frequently co-occurrent in A146T models, the association of Trametinib and the AKT inhibitor MK-2206 was required to optimize the response. CONCLUSION A deeper genomic and biological characterization of KRAS mutants might sustain the development of more efficient and long-lasting therapeutic options for patients harbouring KRAS-driven GC.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Chiara De Bellis
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Tania Capeloa
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Claudia Orrù
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Surgery "Santo Spirito Hospital", ASL-AL, Rome, Italy
| | - Giovanni De Manzoni
- Section of Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | | | | | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
33
|
Zhang P, Liu D, Zang Y, Wang J, Liu Z, Zhu J, Li X, Ding Y. USP12 facilitates gastric cancer progression via stabilizing YAP. Cell Death Discov 2024; 10:174. [PMID: 38605077 PMCID: PMC11009230 DOI: 10.1038/s41420-024-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
The dysregulation of Hippo signaling is a crucial factor driving the progression of gastric cancer, making the targeting of the Hippo pathway a promising therapeutic strategy. However, effective drugs targeting the Hippo/YAP axis remain unavailable. Thus, identifying potential therapeutic targets and mechanisms that inhibit the activity of the Hippo/YAP axis in gastric cancer is of paramount importance. The ubiquitination modification of the Hippo/YAP pathway plays a significant role in signaling transduction and cancer progression. In an effort to shed light on effective therapeutic targets, we conducted a screening using a deubiquitinase small interfering RNA library, leading to the identification of USP12 as an important deubiquitinase in the context of Hippo/YAP axis and the progression of gastric cancer. Our bioinformatic analysis further demonstrated a correlation between USP12 and poor survival, as well as a positive association with classical YAP target genes in gastric cancer samples. Notably, USP12 depletion was found to inhibit gastric cancer progression via the Hippo/YAP axis, whereas USP12 overexpression exhibited the opposite effect, promoting gastric cancer growth and enhancing YAP activity. Further studies through immuno-staining and immuno-precipitation assays indicated the nuclear localization of USP12 and its association with YAP to enhance YAP stability. Specifically, our findings revealed that USP12 could inhibit K48-linked poly-ubiquitination of YAP, predominantly at the K315 site. As a result, we have identified a novel regulatory mechanism involving USP12 and Hippo signaling in the progression of gastric cancer, with the potential for blockade of USP12 to materialize as a promising strategy for combating gastric cancer.
Collapse
Affiliation(s)
- Peng Zhang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Dongyi Liu
- Department of Anaesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Yifeng Zang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Jinqing Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Ziping Liu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China.
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, PR China.
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China.
| |
Collapse
|
34
|
Sullivan KM, Li H, Yang A, Zhang Z, Munoz RR, Mahuron KM, Yuan YC, Paz IB, Von Hoff D, Han H, Fong Y, Woo Y. Tumor and Peritoneum-Associated Macrophage Gene Signature as a Novel Molecular Biomarker in Gastric Cancer. Int J Mol Sci 2024; 25:4117. [PMID: 38612926 PMCID: PMC11012629 DOI: 10.3390/ijms25074117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.
Collapse
Affiliation(s)
- Kevin M. Sullivan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Haiqing Li
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Ruben R. Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Kelly M. Mahuron
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yate-Ching Yuan
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
| | - Isaac Benjamin Paz
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Daniel Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
35
|
McDonald HG, Kerekes DM, Kim J, Khan SA. Precision Oncology in Gastrointestinal and Colorectal Cancer Surgery. Surg Oncol Clin N Am 2024; 33:321-341. [PMID: 38401913 DOI: 10.1016/j.soc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Precision medicine is used to treat gastrointestinal malignancies including esophageal, gastric, small bowel, colorectal, and pancreatic cancers. Cutting-edge assays to detect and treat these cancers are active areas of research and will soon become standard of care. Colorectal cancer is a prime example of precision oncology as disease site is no longer the final determinate of treatment. Here, the authors describe how leveraging an understanding of tumor biology translates to individualized patient care using evidence-based practices.
Collapse
Affiliation(s)
- Hannah G McDonald
- Department of General Surgery, Division of Surgical Oncology, The University of Kentucky, 800 Rose Street, Lexington, KY 40508, USA
| | - Daniel M Kerekes
- Department of General Surgery, Division of Surgical Oncology, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Joseph Kim
- Department of General Surgery, Division of Surgical Oncology, The University of Kentucky, 800 Rose Street, Lexington, KY 40508, USA
| | - Sajid A Khan
- Department of Surgery, Yale University, 15 York Street, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Costache S, Baltan A, Diaz McLynn S, Pegoraro M, de Havilland R, Porter M, Lerga A, Thomas T, Chefani AE, Wedden S, Billingham K, D'Arrigo C. Implementing an integrated molecular classification for gastric cancer from endoscopic biopsies using on-slide tests. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:257-265. [PMID: 39020540 PMCID: PMC11384035 DOI: 10.47162/rjme.65.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The availability of more effective biological therapy can improve outcomes of gastric cancer (GC), but most patients do not have access to personalized treatment. GC molecular classification helps identify patients suitable for specific therapies and provides useful prognostic information. To date, only a small number of patients have access to molecular classification. We proposed a working molecular classification that can be delivered using on-slide tests available in most histopathology laboratories. We used eight on-slide tests [in situ hybridization (ISH) for Epstein-Barr virus-encoded small ribonucleic acid (EBER) and immunohistochemistry (IHC) for MutL homolog 1 (MLH1), PMS1 homolog 2 (PMS2), MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), E-cadherin, β-catenin and p53] to classify GC into one of six categories: GC associated with Epstein-Barr virus (GC-EBV), GC mismatch repair deficient (GC-dMMR), GC with epithelial-mesenchymal transition (GC-EMT), GC with chromosomal instability (GC-CIN), GC genomically stable (GC-GS) and GC not otherwise specified (GC-NOS)∕indeterminate. The classification has provision also for current and future on-slide companion diagnostic (CDx) tests necessary to select specific biological therapies and, as proof of principle, in this study we used three CDx tests currently required for the management of GC [human epidermal growth factor receptor 2 (Her2), programmed cell death-ligand 1 (PD-L1) 22C3 and Claudin18.2 (CLDN18.2)]. This paper describes the necessary tissue pathways and laboratory workflow and assesses the feasibility of using this classification prospectively on small endoscopic biopsies of gastric and gastroesophageal junction adenocarcinoma. This work demonstrates that such molecular classification can be implemented in the context of a histopathology diagnostic routine with little impact on turnaround times and laboratory capacity. The widespread adoption of a molecular classification for GC will help refine prognosis and guide the choice of more appropriate biological therapy for these patients.
Collapse
Affiliation(s)
- Simona Costache
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Skubleny D, Ghosh S, Spratlin J, Schiller DE, Rayat GR. Feature-specific quantile normalization and feature-specific mean-variance normalization deliver robust bi-directional classification and feature selection performance between microarray and RNAseq data. BMC Bioinformatics 2024; 25:136. [PMID: 38549046 PMCID: PMC11265146 DOI: 10.1186/s12859-024-05759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Cross-platform normalization seeks to minimize technological bias between microarray and RNAseq whole-transcriptome data. Incorporating multiple gene expression platforms permits external validation of experimental findings, and augments training sets for machine learning models. Here, we compare the performance of Feature Specific Quantile Normalization (FSQN) to a previously used but unvalidated and uncharacterized method we label as Feature Specific Mean Variance Normalization (FSMVN). We evaluate the performance of these methods for bidirectional normalization in the context of nested feature selection. RESULTS FSQN and FSMVN provided clinically equivalent bidirectional model performance with and without feature selection for colon CMS and breast PAM50 classification. Using principal component analysis, we determine that these methods eliminate batch effects related to technological platforms. Without feature selection, no statistical difference was identified between the performance of FSQN and FSMVN of cross-platform data compared to within-platform distributions. Under optimal feature selection conditions, balanced accuracy was FSQN and FSMVN were statistically equivalent to the within-platform distribution performance in multivariable linear regression analysis. FSQN and FSMVN also provided similar performance to within-platform distributions as the number of selected genes used to create models decreases. CONCLUSIONS In the context of generating supervised machine learning classifiers for molecular subtypes, FSQN and FSMVN are equally effective. Under optimal modeling conditions, FSQN and FSMVN provide equivalent model accuracy performance on cross-platform normalization data compared to within-platform data. Using cross-platform data should still be approached with caution as subtle performance differences may exist depending on the classification problem, training, and testing distributions.
Collapse
Affiliation(s)
- Daniel Skubleny
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Sunita Ghosh
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jennifer Spratlin
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Daniel E Schiller
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Gina R Rayat
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
38
|
Wu L, Gao G, Mi H, Luo Z, Wang Z, Liu Y, Wu L, Long H, Shen Y. Validation of CDC45 as a novel biomarker for diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e17130. [PMID: 38515458 PMCID: PMC10956518 DOI: 10.7717/peerj.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background Cell division cycle protein 45 (CDC45) has been demonstrated to play vital roles in the progression of various malignancies. However, the clinical significance of CDC45 in gastric cancer (GC) remains unreported. Method In this study, we employed the TCGA database and the TCGA & GTEx dataset to compare the mRNA expression levels of CDC45 between gastric cancer tissues and adjacent or normal tissues (p < 0.05 was considered statistically significant), which was further validated in multiple datasets including GSE13911, GSE29272, GSE118916, GSE66229, as well as RT-qPCR. Furthermore, we harnessed the Human Protein Atlas (HPA) to evaluate the protein expression of CDC45, which was subsequently verified through immunohistochemistry (IHC). To ascertain the diagnostic utility of CDC45, receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were calculated in TCGA database, and further validated it in TCGA & GTEx and GSE66229 datasets. The Kaplan-Meier method was used to reveal the prognostic importance of CDC45 in The Cancer Genome Atlas (TCGA) database and authenticated through the GSE66229, GSE84433, and GSE84437 datasets. Through cBioPortal, we identified co-expressed genes of CDC45, and pursued enrichment analysis. Additionally, we availed gene set enrichment analysis (GSEA) to annotate the biological functions of CDC45. Results Differential expression analysis revealed that CDC45 was significantly upregulated at both the mRNA and protein levels in GC (all p < 0.05). Remarkably, CDC45 emerged as a promising prognostic indicator and a novel diagnostic biomarker for GC. In a comprehensive the drug susceptibility analysis, we found that patients with high expression of CDC45 had high sensitivity to various chemotherapeutic agents, among which 5-fluorouracil, docetaxel, cisplatin, and elesclomol were most evident. Furthermore, our findings suggested a plausible association between CDC45 and immune cell infiltration. Enrichment analysis revealed that CDC45 and its associated genes may play crucial roles in muscle biofunction, whereas GSEA demonstrated significant enrichment of gene sets pertaining to G protein-coupled receptor ligand binding and G alpha (i) signaling events. Conclusion Our study elucidates that upregulation of CDC45 is intricately associated with immune cell infiltration and holds promising potential as a favorable prognostic marker and a novel diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Lihua Wu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Gan Gao
- Clinical Laboratory, Liuzhou Hospital of Guangzhou Women and Children’s Medical Center, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, liuzhou, Guangxi, China
| | - Hui Mi
- Changzhi People’s Hospital, Changzhi, china
| | - Zhou Luo
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Zheng Wang
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongdong Liu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Liangyan Wu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Haihua Long
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongqi Shen
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
39
|
Kim JH, Kim N, Song DH, Choi Y, Jeon EB, Kim S, Jun YK, Yoon H, Shin CM, Park YS, Lee DH, Oh HJ, Lee HS, Park YS, Ahn SH, Suh YS, Park DJ, Kim HH, Kim JW, Kim JW, Lee KW, Chang W, Park JH, Lee YJ, Lee KH, Kim YH, Ahn S. Sex-dependent different clinicopathological characterization of Epstein-Barr virus-associated gastric carcinoma: a large-scale study. Gastric Cancer 2024; 27:221-234. [PMID: 38212543 PMCID: PMC10896815 DOI: 10.1007/s10120-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) has been reported to account for approximately 5-16% of all GCs with good prognosis compared to EBV-negative GC. We evaluated the clinicopathological characteristics of EBVaGC including survival rate in South Korea. METHODS A total of 4,587 patients with GC who underwent EBV in situ hybridization (EBV-ISH) were prospectively enrolled at the Seoul National University Bundang Hospital from 2003 to 2021. Age, sex, smoking status, cancer type and stage, tumor size and location, histological type, molecular features and survival information were analyzed. RESULTS A total of 456 patients with GC (9.9%) were positive for EBV. The EBVaGC group displayed a higher proportion of males (P < 0.001), a predominant presence in the proximal stomach (P < 0.001), a higher proportion of undifferentiated cancer (P < 0.001), and a lower cancer stage (P = 0.004) than the EBV-negative group. Cox multivariate analyses revealed age (hazard ratio [HR] = 1.025, P < 0.001), tumor size (HR = 1.109, P < 0.001), and cancer stage (stage2 HR = 4.761, P < 0.001; stage3 HR = 13.286, P < 0.001; stage4 HR = 42.528, P < 0.001) as significant risk factors for GC-specific mortality, whereas EBV positivity was inversely correlated (HR = 0.620, P = 0.022). Furthermore, the EBVaGC group displayed statistically significant survival advantages over the EBV-negative cancer group in terms of both overall (P = 0.021) and GC-specific survival (P = 0.007) on the Kaplan-Meier survival curve. However, this effect was evident only in males. CONCLUSIONS EBVaGC patients showed better prognoses despite their association with proximal location and poorly differentiated histology in male, probably due to the difference in immunity between males and females.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Nayoung Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea.
- Departments of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Du Hyun Song
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Yonghoon Choi
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Eun-Bi Jeon
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Sihyun Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Yu Kyung Jun
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Hyuk Yoon
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Cheol Min Shin
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Young Soo Park
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Dong Ho Lee
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
- Departments of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeon Jeong Oh
- Departments of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Seung Lee
- Departments of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Suk Park
- Departments of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sang-Hoon Ahn
- Departments of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun-Suhk Suh
- Departments of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Do Joong Park
- Departments of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Departments of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung Ho Kim
- Departments of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Departments of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Won Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Jin Won Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
| | - Keun-Wook Lee
- Departments of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, South Korea
- Departments of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Won Chang
- Departments of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Hoon Park
- Departments of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yoon Jin Lee
- Departments of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Ho Lee
- Departments of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Departments of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Hoon Kim
- Departments of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Departments of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Soyeon Ahn
- Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
40
|
Ying T, Chen J, Song J, Zhou Y, Bao B, Zheng L. Prognosis of EBV-positive gastric cancer with lymphoid stroma: systematic review and meta-analysis. Scand J Gastroenterol 2024; 59:316-324. [PMID: 38032298 DOI: 10.1080/00365521.2023.2286194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Although gastric cancer with lymphoid stroma (GCLS) presents better prognosis, uncertainty still exists regarding the association of Epstein-Barr virus (EBV) infection with prognosis of GCLS. Therefore, it is urgent to evaluate the outcome and characteristics of EBV-positive GCLS via a systematic review and meta-analysis. METHODS Three medical databases, with a period ranging from 2000 to so far, were searched for observational studies on EBV infection, clinical characteristics and prognosis. Odds ratio (OR) was used to evaluate the mortality and clinical characteristics of EBV-positive GCLS patients. Egger's test and subgroup analysis were conducted to identify the source of heterogeneity. RESULTS Nine retrospective studies were finally identified, which involved 618 EBV-positive and 153 EBV-negative GCLS patients. The forest plot indicated that EBV-positive GCLS patients had lower mortality (p = .009; 95% CI: 0.15-0.77; I2 = 48.6%). Both of funnel plot and Egger's tests suggested that there was no publication bias. Nonetheless, subgroup analysis indicated that T1-2 stage ratio more than 50% (p < .001; I2 = 6.7%) and male ratio more than 80% (p < .001; I2 = 0.0%) were valuable for eliminating the heterogeneity. Seven studies including valid information showed that TNM stage of EBV-positive and negative GCLS patients was not statistically different (p = .644; 95% CI: 0.50-1.53; I2 = 0.0%). CONCLUSIONS EBV-positive GCLS tends to have lower mortality, suggesting that detection of EBV infection is necessary to predict prognosis of GCLS.
Collapse
Affiliation(s)
- Tianxin Ying
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
41
|
Karalis JD, Ju MR, Feig R, Estrella R, Pettigrew MF, Alterio RE, Abreu AA, Farah E, Sawas T, Sanford NN, Sanjeevaiah A, Hammer STG, Porembka MR, Wang SC. Intensifying supportive care is associated with improved survival in gastric cancer patients with malignant ascites. J Surg Oncol 2024; 129:718-727. [PMID: 38063245 DOI: 10.1002/jso.27556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Gastric cancer patients with malignant ascites often have poor functional status and malnutrition that preclude receipt of systemic therapies. Thus, these patients have a very poor prognosis. Beginning in 2019, our multidisciplinary gastric cancer disease-oriented team implemented a more aggressive supportive care plan for gastric cancer patients with malignant ascites. The initiative included measures such as supplemental enteral nutrition, ascites drainage, and initiation of chemotherapy on an inpatient basis. We compared outcomes for gastric cancer patients who presented with synchronous malignant ascites treated before and after the implementation of the care plan. METHODS We performed a retrospective review of our institutional database to identify patients diagnosed with gastric adenocarcinoma and synchronous malignant ascites between 2010 and 2022. We compared overall survival (OS) between patients diagnosed from 2010 to 2018, which will be referred to as the historical control era and patients diagnosed from 2019 to 2022, which will be called the aggressive supportive care era. RESULTS Fifty-four patients were included in our analysis; 31 patients were treated in the historical control time frame, and 23 patients were treated during the aggressive supportive care era. Demographic, clinical, and pathologic characteristics were similar between groups. 3% of historical controls received supplemental tube feeds at diagnosis as compared to 30% of the aggressive supportive care cohort (p < 0.01). 3% of historical controls received their first cycle of chemotherapy in the inpatient setting versus 39% of patients treated during the aggressive supportive care era (p < 0.01). The median number of chemotherapy cycles received was 5 among historical controls and 9.5 among aggressive supportive care era patients (p = 0.02). There was no difference in the number of days spent as an inpatient between the two groups. The median OS for historical control patients was 5.4 months as compared with 10.4 months for patients treated during aggressive supportive care era (p = 0.04). CONCLUSIONS Gastric cancer patients with synchronous malignant ascites treated during a timeframe when our multidisciplinary team implemented more aggressive supportive care measures had improved OS as compared with historic controls. Our results suggest that aggressive supportive measures for these patients with highly challenging clinical issues and poor prognosis can prolong survival. Specifically, initiation of chemotherapy in the inpatient setting and supplemental nutrition should be considered for patients at high risk for treatment intolerance.
Collapse
Affiliation(s)
- John D Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michelle R Ju
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel Feig
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Morgan F Pettigrew
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rodrigo E Alterio
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andres A Abreu
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emile Farah
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarek Sawas
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nina N Sanford
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aravind Sanjeevaiah
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suntrea T G Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew R Porembka
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sam C Wang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
42
|
Petrelli F, Antista M, Marra F, Cribiu’ FM, Rampulla V, Pietrantonio F, Dottorini L, Ghidini M, Luciani A, Zaniboni A, Tomasello G. Adjuvant and neoadjuvant chemotherapy for MSI early gastric cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359241231259. [PMID: 38435432 PMCID: PMC10908229 DOI: 10.1177/17588359241231259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background Perioperative chemotherapy (CT) is an established therapeutic approach for patients diagnosed with stage IB-III gastric cancer (GC). Objectives This study aimed to investigate the efficacy of this approach in individuals with GC exhibiting high microsatellite instability (MSI-H). Design A systematic review was conducted, including studies that provided data on (neo)adjuvant CT outcomes in patients with MSI-H GC. Methods Systematic searches were conducted in PubMed, Cochrane Central of Controlled Trials, and Embase databases. Data were aggregated using hazard ratios (HRs) to compare overall survival between CT and surgery. Results Data analysis from 23 studies, including 22,011 patients, revealed that the prevalence of MSI-H is 9.8%. Administration of adjuvant or perioperative CT did not significantly reduce the risk of death or relapse in patients with MSI-H GC (HR = 0.8, 95% CI 0.54-1.16; p = 0.24 and HR = 0.84, 95% CI 0.59-1.18; p = 0.31, respectively). Conclusion Chemotherapy did not benefit patients diagnosed with MSI-H nonmetastatic GC but rather will be integrated with immune checkpoint inhibitors in the near future.
Collapse
Affiliation(s)
- Fausto Petrelli
- Oncology Unit, ASST Bergamo ovest, Piazzale Ospedale 1, Treviglio (BG) 24047, Italy
| | - Maria Antista
- Oncology Unit, ASST Ospedale Maggiore di Crema, Crema (CR), Italy
| | | | | | | | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Luciani
- Oncology Unit, ASST Bergamo ovest, Treviglio (BG), Italy
| | | | | |
Collapse
|
43
|
Díaz Del Arco C, Fernández Aceñero MJ, Ortega Medina L. Molecular Classifications in Gastric Cancer: A Call for Interdisciplinary Collaboration. Int J Mol Sci 2024; 25:2649. [PMID: 38473896 DOI: 10.3390/ijms25052649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, often diagnosed at advanced stages, with a 5-year survival rate of approximately 20%. Despite notable technological advancements in cancer research over the past decades, their impact on GC management and outcomes has been limited. Numerous molecular alterations have been identified in GC, leading to various molecular classifications, such as those developed by The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG). Other authors have proposed alternative perspectives, including immune, proteomic, or epigenetic-based classifications. However, molecular stratification has not yet transitioned into clinical practice for GC, and little attention has been paid to alternative molecular classifications. In this review, we explore diverse molecular classifications in GC from a practical point of view, emphasizing their relationships with clinicopathological factors, prognosis, and therapeutic approaches. We have focused on classifications beyond those of TCGA and the ACRG, which have been less extensively reviewed previously. Additionally, we discuss the challenges that must be overcome to ensure their impact on patient treatment and prognosis. This review aims to serve as a practical framework to understand the molecular landscape of GC, facilitate the development of consensus molecular categories, and guide the design of innovative molecular studies in the field.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luis Ortega Medina
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
44
|
Li F, Yan J, Leng J, Yu T, Zhou H, Liu C, Huang W, Sun Q, Zhao W. Expression patterns of E2Fs identify tumor microenvironment features in human gastric cancer. PeerJ 2024; 12:e16911. [PMID: 38371373 PMCID: PMC10870925 DOI: 10.7717/peerj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Objective E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Leng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huayou Zhou
- Department of General Surgery, Hanzhong Central Hospital, Hanzhong, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
45
|
Pereira MA, Ramos MFKP, Cardili L, de Moraes RDR, Dias AR, Szor DJ, Zilberstein B, Alves VAF, de Mello ES, Ribeiro U. Prognostic implications of tumor-infiltrating lymphocytes within the tumor microenvironment in gastric cancer. J Gastrointest Surg 2024; 28:151-157. [PMID: 38445936 DOI: 10.1016/j.gassur.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) play a regulatory role in the tumor-associated immune response and are important in the prognosis and treatment response of several cancers. However, because of its heterogeneity, the prognostic value of TILs in gastric cancer (GC) is still controversial. Thus, this study aimed to investigate the association between the density of TILs and patients' outcomes in GC. METHODS Patients with gastric adenocarcinoma who underwent curative intent gastrectomy were retrospectively investigated. The groups for analysis were determined on the basis of TIL intensity and percentage of CD3+ T-cell infiltration by immunohistochemical. Furthermore, Epstein-Barr virus (EBV), microsatellite instability (MSI), T-cell ratio of CD4 to CD8, and programmed death protein ligand 1 (PD-L1) status were evaluated. RESULTS A total of 345 patients were enrolled: 124 patients with GCs (35.9%) were classified as the low-CD3+ TIL group, and 221 patients with GCs (64.1%) were classified as the high-CD3+ TIL group. Poorly differentiated histology (P = .014), EBV-positive status (P < .001), PD-L1-positive status (P = .001), and CD4 < CD8 (P < .001) were associated with high-CD3+ GC. There was no difference regarding MSI status, the degree of tumor invasion (pT), the presence of lymph node metastasis, and pTNM stage between low- and high-CD3+ groups. In survival analysis, the high-CD3+ group had better disease-free survival and overall survival rates than had the low-CD3+ group (P = .055 and P = .041, respectively). In the multivariate analysis, total gastrectomy, lymph node metastasis, advanced pT stage, and low CD3+ levels were independent factors related to worse survival. CONCLUSION High CD3+ TILs levels were significantly associated with improved survival and could serve as prognostic biomarkers in GC. In addition, CD3+ T-cell infiltration was related to both EBV-positive and PD-L1-positive GC and may assist in the investigation of targets in immunotherapy.
Collapse
Affiliation(s)
- Marina Alessandra Pereira
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil.
| | - Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Dyer Rodrigues de Moraes
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - André Roncon Dias
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Jose Szor
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Zilberstein
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Venancio Avancini Ferreira Alves
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Evandro Sobroza de Mello
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Ulysses Ribeiro
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Zheng Q, Gong Z, Li B, Cheng R, Luo W, Huang C, Wang H. Identification and characterization of CLEC11A and its derived immune signature in gastric cancer. Front Immunol 2024; 15:1324959. [PMID: 38348052 PMCID: PMC10859539 DOI: 10.3389/fimmu.2024.1324959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction C-type lectin domain family 11 member A (CLEC11A) was characterized as a growth factor that mainly regulates hematopoietic function and differentiation of bone cells. However, the involvement of CLEC11A in gastric cancer (GC) is not well understood. Methods Transcriptomic data and clinical information pertaining to GC were obtained and analyzed from publicly available databases. The relationships between CLEC11A and prognoses, genetic alterations, tumor microenvironment (TME), and therapeutic responses in GC patients were analyzed by bioinformatics methods. A CLEC11A-derived immune signature was developed and validated, and its mutational landscapes, immunological characteristics as well as drug sensitivities were explored. A nomogram was established by combining CLEC11A-derived immune signature and clinical factors. The expression and carcinogenic effects of CLEC11A in GC were verified by qRT-PCR, cell migration, invasion, cell cycle analysis, and in vivo model analysis. Myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and T cells in tumor samples extracted from mice were analyzed utilizing flow cytometry analysis. Results CLEC11A was over-expressed in GC, and the elevated CLEC11A expression indicated an unfavorable prognosis in GC patients. CLEC11A was involved in genomic alterations and associated with the TME in GC. Moreover, elevated CLEC11A was found to reduce the benefit of immunotherapy according to immunophenoscore (IPS) and the tumor immune dysfunction, exclusion (TIDE). After validation, the CLEC11A-derived immune signature demonstrated a consistent ability to predict the survival outcomes in GC patients. A nomogram that quantifies survival probability was constructed to improve the accuracy of prognosis prediction in GC patients. Using shRNA to suppress the expression of CLEC11A led to significant inhibitions of cell cycle progression, migration, and invasion, as well as a marked reduction of in vivo tumor growth. Moreover, the flow cytometry assay showed that the knock-down of CLEC11A increased the infiltration of cytotoxic CD8+ T cells and helper CD4+ T into tumors while decreasing the percentage of M2 macrophages, MDSCs, and Tregs. Conclusion Collectively, our findings revealed that CLEC11A could be a prognostic and immunological biomarker in GC, and CLEC11A-derived immune signature might serve as a new option for clinicians to predict outcomes and formulate personalized treatment plans for GC patients.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zhenqi Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Baizhi Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Runzi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Weican Luo
- Shantou University Medical College, Shantou, China
| | - Cong Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
47
|
Sun Z, Zhang T, Ahmad MU, Zhou Z, Qiu L, Zhou K, Xiong W, Xie J, Zhang Z, Chen C, Yuan Q, Chen Y, Feng W, Xu Y, Yu L, Wang W, Yu J, Li G, Jiang Y. Comprehensive assessment of immune context and immunotherapy response via noninvasive imaging in gastric cancer. J Clin Invest 2024; 134:e175834. [PMID: 38271117 PMCID: PMC10940098 DOI: 10.1172/jci175834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUNDThe tumor immune microenvironment can provide prognostic and therapeutic information. We aimed to develop noninvasive imaging biomarkers from computed tomography (CT) for comprehensive evaluation of immune context and investigate their associations with prognosis and immunotherapy response in gastric cancer (GC).METHODSThis study involved 2,600 patients with GC from 9 independent cohorts. We developed and validated 2 CT imaging biomarkers (lymphoid radiomics score [LRS] and myeloid radiomics score [MRS]) for evaluating the IHC-derived lymphoid and myeloid immune context respectively, and integrated them into a combined imaging biomarker [LRS/MRS: low(-) or high(+)] with 4 radiomics immune subtypes: 1 (-/-), 2 (+/-), 3 (-/+), and 4 (+/+). We further evaluated the imaging biomarkers' predictive values on prognosis and immunotherapy response.RESULTSThe developed imaging biomarkers (LRS and MRS) had a high accuracy in predicting lymphoid (AUC range: 0.765-0.773) and myeloid (AUC range: 0.736-0.750) immune context. Further, similar to the IHC-derived immune context, 2 imaging biomarkers (HR range: 0.240-0.761 for LRS; 1.301-4.012 for MRS) and the combined biomarker were independent predictors for disease-free and overall survival in the training and all validation cohorts (all P < 0.05). Additionally, patients with high LRS or low MRS may benefit more from immunotherapy (P < 0.001). Further, a highly heterogeneous outcome on objective response rate was observed in 4 imaging subtypes: 1 (-/-) with 27.3%, 2 (+/-) with 53.3%, 3 (-/+) with 10.2%, and 4 (+/+) with 30.0% (P < 0.0001).CONCLUSIONThe noninvasive imaging biomarkers could accurately evaluate the immune context and provide information regarding prognosis and immunotherapy for GC.
Collapse
Affiliation(s)
- Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Zixia Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Kangneng Zhou
- College of Computer Science, Nankai University, Tianjin, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Xie
- Graduate Group of Epidemiology, UCD, Davis, California, USA
| | - Zhicheng Zhang
- JancsiTech and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Wanying Feng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lequan Yu
- The Department of Statistics and Actuarial Science, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
48
|
Wang Y, Huang W, Zheng S, Wang L, Zhang L, Pei X. Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Sci Rep 2024; 14:1422. [PMID: 38228846 PMCID: PMC10791612 DOI: 10.1038/s41598-024-52087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024] Open
Abstract
Early identification of gastric cancer (GC) is associated with a superior survival rate compared to advanced GC. However, the poor specificity and sensitivity of traditional biomarkers suggest the importance of identifying more effective biomarkers. This study aimed to identify novel biomarkers for the prognosis of GC and construct a risk score (RS) signature based on these biomarkers, with to validation of its predictive performance. We used multi-omics data from The Cancer Genome Atlas to analyze the significance of differences in each omics data and combined the data using Fisher's method. Hub genes were subsequently subjected to univariate Cox and LASSO regression analyses and used to construct the RS signature. The RS of each patient was calculated, and the patients were divided into two subgroups according to the RS. The RS signature was validated in two independent datasets from the Gene Expression Omnibus and subsequent analyses were subsequently conducted. Five immune-related genes strongly linked to the prognosis of GC patients were obtained, namely CGB5, SLC10A2, THPO, PDGFRB, and APOD. The results revealed significant differences in overall survival between the two subgroups (p < 0.001) and indicated the high accuracy of the RS signature. When validated in two independent datasets, the results were consistent with those in the training dataset (p = 0.003 and p = 0.001). Subsequent analyses revealed that the RS signature is independent and has broad applicability among various GC subtypes. In conclusion, we used multi-omics data to obtain five immune-related genes comprising the RS signature, which can independently and effectively predict the prognosis of GC patients with high accuracy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China.
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Shanshan Zheng
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liming Wang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Lili Zhang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
49
|
Zheng L, Chen J, Ye W, Fan Q, Chen H, Yan H. An individualized stemness-related signature to predict prognosis and immunotherapy responses for gastric cancer using single-cell and bulk tissue transcriptomes. Cancer Med 2024; 13:e6908. [PMID: 38168907 PMCID: PMC10807574 DOI: 10.1002/cam4.6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Currently, many stemness-related signatures have been developed for gastric cancer (GC) to predict prognosis and immunotherapy outcomes. However, due to batch effects, these signatures cannot accurately analyze patients one by one, rendering them impractical in real clinical scenarios. Therefore, we aimed to develop an individualized and clinically applicable signature based on GC stemness. METHODS Malignant epithelial cells from single-cell RNA-Seq data of GC were used to identify stemness-related signature genes based on the CytoTRACE score. Using two bulk tissue datasets as training data, the enrichment scores of the signature genes were applied to classify samples into two subtypes. Then, using the identified subtypes as criteria, we developed an individualized stemness-related signature based on the within-sample relative expression orderings of genes. RESULTS We identified 175 stemness-related signature genes, which exhibited significantly higher AUCell scores in poorly differentiated GCs compared to differentiated GCs. In training datasets, GC samples were classified into two subtypes with significantly different survival times and genomic characteristics. Utilizing the two subtypes, an individualized signature was constructed containing 47 gene pairs. In four independent testing datasets, GC samples classified as high risk exhibited significantly shorter survival times, higher infiltration of M2 macrophages, and lower immune responses compared to low-risk samples. Moreover, the potential therapeutic targets and corresponding drugs were identified for the high-risk group, such as CD248 targeted by ontuxizumab. CONCLUSIONS We developed an individualized stemness-related signature, which can accurately predict the prognosis and efficacy of immunotherapy for each GC sample.
Collapse
Affiliation(s)
- Linyong Zheng
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Jingyan Chen
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Wenhai Ye
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Qi Fan
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Haifeng Chen
- Department of Gastrointestinal SurgeryFuzhou Second HospitalFuzhouChina
| | - Haidan Yan
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| |
Collapse
|
50
|
Kim IH. Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond. J Gastric Cancer 2024; 24:29-56. [PMID: 38225765 PMCID: PMC10774754 DOI: 10.5230/jgc.2024.24.e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.
Collapse
Affiliation(s)
- In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea,.
| |
Collapse
|