1
|
Li X, Yi H, Jin Z, Jiang K, Xue K, Wang J, Qian Y, Xiang Q, Zhu S, Yan R, Yang Y, Sun S, Li K, Zhou Z, Yu W, Jiang N, Ding C, Lin X, Zhong J, Dong Y, Liu Y, Yu X. MCRS1 sensitizes T cell-dependent immunotherapy by augmenting MHC-I expression in solid tumors. J Exp Med 2024; 221:e20240959. [PMID: 39545935 PMCID: PMC11572484 DOI: 10.1084/jem.20240959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Dampened antigen presentation underscores the resistance of pancreatic cancer to T cell-mediated anti-tumor immunity, rendering immunotherapy largely ineffective. By high-throughput CRISPR activation perturbation, we discovered that the transcriptional regulator MCRS1 significantly augmented the sensitivity of mouse pancreatic cancer cells to T cell immunity in vitro and in vivo. Mechanistically, MCRS1 interacted with the transcription factor and genome organizer YY1 to coordinately increase the chromatin accessibility and expression of MHC-I genes. Elevated MCRS1 subverted MHC-I suppression and activated anti-tumor T cells, which sensitized mouse pancreatic cancer to α-PD-1 therapy. Remarkably, high MCRS1 expression was associated with increased T cell infiltration and extended survival of patients with pancreatic cancer and was predictive of favorable responses to α-PD-1 therapy in patients with lung cancer. Together, our study uncovers that MCRS1 sensitizes cancer cells to T cell immunity by transcriptionally subverting MHC-I suppression, which enhances the effectiveness of α-PD-1 therapy in mice and humans, paving the way to further improve immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheyu Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Kaitao Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Kangkang Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuping Qian
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Xiang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sijing Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Runhe Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Yang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shenfei Sun
- Zhongshan Hospital, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zichu Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinhua Lin
- Zhongshan Hospital, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
| |
Collapse
|
2
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowskyj KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl Hydrocarbon Receptor Knockout Accelerates PanIN Formation and Fibro-Inflammation in a Mutant Kras -Driven Pancreatic Cancer Model. Pancreas 2024; 53:e670-e680. [PMID: 38696422 PMCID: PMC11321943 DOI: 10.1097/mpa.0000000000002357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
OBJECTIVES The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the development of several cancers and can be targeted for therapeutic effect. However, its involvement in the pathogenesis of PDAC remains unclear. To address this gap, we evaluated the role of AHR in the development of PDAC precancerous lesions in vivo . MATERIALS AND METHODS We created a global AHR-null, mutant Kras -driven PDAC mouse model (A -/- KC) and evaluated the changes in PDAC precursor lesion formation (PanIN-1, 2, and 3) and associated fibro-inflammation between KC and A -/- KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. RESULTS We identified a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A -/- KC versus KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. CONCLUSIONS These findings show the loss of AHR results in heightened Kras -induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Patrick B Schwartz
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Noah D Carrillo
- McArdle Laboratory for Cancer Research, University of Wisconsin
| | | | | | | | | |
Collapse
|
3
|
Bidan N, Dunsmore G, Ugrinic M, Bied M, Moreira M, Deloménie C, Ginhoux F, Blériot C, de la Fuente M, Mura S. Multicellular tumor spheroid model to study the multifaceted role of tumor-associated macrophages in PDAC. Drug Deliv Transl Res 2024; 14:2085-2099. [PMID: 38062286 DOI: 10.1007/s13346-023-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 06/27/2024]
Abstract
While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.
Collapse
Affiliation(s)
- Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Martina Ugrinic
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Mathilde Bied
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Marco Moreira
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Claudine Deloménie
- Inserm US31, CNRS UAR3679, Ingénierie Et Plateformes Au Service de L'Innovation Thérapeutique (UMS-IPSIT), Université Paris-Saclay, 91400, Orsay, France
| | | | - Camille Blériot
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
- CNRS UMR8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela SERGAS, 15706, Santiago de Compostela, Spain
- Biomedical Research Networking Center On Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies SL, 15782, Santiago de Compostela, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
4
|
Liu Y, Guo X, Xu P, Song Y, Huang J, Chen X, Zhu W, Hao J, Gao S. Clinical outcomes of second-line chemotherapy in patients with advanced pancreatic adenocarcinoma: a real-world study. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0036. [PMID: 39066473 DOI: 10.20892/j.issn.2095-3941.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Little progress has been made in recent years using first-line chemotherapy, including gemcitabine combined with nab-paclitaxel, FOLFIRINOX, and NALIRIFOX, for advanced pancreatic adenocarcinoma (APC). In addition, the optimal second-line chemotherapy regimen has not been determined. This study aimed to compare the effectiveness of different types of second-line chemotherapy for APC. METHODS Patients with APC who received first-line treatment from January 2008 to January 2021 were considered eligible for this retrospective analysis. The primary and secondary endpoints were overall survival (OS) and progression-free survival (PFS), respectively. RESULTS Four hundred and thirty-seven and 617 patients were treated with 5-fluorouracil- and gemcitabine-based chemotherapy as first-line treatment, respectively. Demographic and clinical features, except age and liver metastasis, were comparable between the two groups (P < 0.05). The median OS was 8.8 and 7.8 months in patients who received a 5-fluorouracil- and gemcitabine-based combined regimen for first-line therapy, respectively (HR = 1.244, 95% CI = 1.090-1.419; P < 0.001). The median OS was 5.6 and 1.9 months in patients who received second-line chemotherapy and supportive care, respectively (HR = 0.766, 95% CI = 0.677-0.867; P < 0.001). The median PFS was not significantly differently between gemcitabine or 5-fluorouracil monotherapy and combination therapy. CONCLUSIONS A 5-fluorouracil- or gemcitabine-based combined regimen was shown to be as effective as a single 5-fluorouracil or gemcitabine regimen as second-line therapy for patients with APC.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaofan Guo
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peijun Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuning Song
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jing Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xingyun Chen
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenbo Zhu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Chanda B, Azophi Moffat, Shah N, Khan A, Quaye M, Fakhry J, Soma S, Nguyen A, Eroy M, Malkoochi A, Brekken R, Hasan T, Ferruzzi J, Obaid G. PD-L1 Immune Checkpoint Targeted Photoactivable Liposomes (iTPALs) Prime the Stroma of Pancreatic Tumors and Promote Self-Delivery. Adv Healthc Mater 2024; 13:e2304340. [PMID: 38324463 PMCID: PMC11281872 DOI: 10.1002/adhm.202304340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/09/2024]
Abstract
Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented. iTPALs also improve phototoxicity in PDAC cells and induce immunogenic cell death. PDP using iTPALs reduces collagen density, thereby promoting self-delivery by 5.4-fold in collagen hydrogels, and by 2.4-fold in syngeneic CT1BA5 murine PDAC tumors. PDP also reduces tumor fibroblast content by 39.4%. Importantly, iTPALs also block the PD-1/PD-L1 immune checkpoint more efficiently than free α-PD-L1 antibodies. Only a single sub-curative priming dose using iTPALs provides 54.1% tumor growth inhibition and prolongs overall survival in mice by 42.9%. Overall survival directly correlates with the extent of tumor iTPAL self-delivery following PDP (Pearson's r = 0.670, p = 0.034), while no relationship is found for sham non-specific IgG constructs activated with light. When applied over multiple cycles, as is typical for immune checkpoint therapy, PDP using iTPALs promises to offer durable tumor growth delay and significant survival benefit in PDAC patients, especially when used to promote self-delivery of integrated chemo-immunotherapy regimens.
Collapse
Affiliation(s)
- Bhandari Chanda
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Nimit Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Adil Khan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Maxwell Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Siddharth Soma
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rolf Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
6
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Gianluca Mucciolo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Cecilia Roux
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Giorgia Guadagnin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dario Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Demis Grosso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Judith A Varner
- Moores Cancer Center, Department of Pathology, University of California, San Diego, CA, USA
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy.
- Molecular Biotechnology Center, University of Torino, Turin, Italy.
| |
Collapse
|
7
|
Singh G, Kutcher D, Lally R, Rai V. Targeting Neoantigens in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:2101. [PMID: 38893220 PMCID: PMC11171042 DOI: 10.3390/cancers16112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is currently the third leading cause of cancer-related death in the United States after lung and colon cancer. PDAC is estimated to be the second leading cause of cancer-related death by 2030. The diagnosis at a late stage is the underlying cause for higher mortality and poor prognosis after surgery. Treatment resistance to chemotherapy and immunotherapy results in recurrence after surgery and poor prognosis. Neoantigen burden and CD8+ T-cell infiltration are associated with clinical outcomes in PDAC and paucity of neoantigen-reactive tumor-infiltrating lymphocytes may be the underlying cause for treatment resistance for immunotherapy. This suggests a need to identify additional neoantigens and therapies targeting these neoantigens to improve clinical outcomes in PDAC. In this review, we focus on describing the pathophysiology, current treatment strategies, and treatment resistance in PDAC followed by the need to target neoantigens in PDAC.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (G.S.); (D.K.); (R.L.)
| |
Collapse
|
8
|
Gigante L, Gaudillière-Le Dain G, Bertaut A, Truntzer C, Ghiringhelli F. Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer. Biomedicines 2024; 12:1216. [PMID: 38927423 PMCID: PMC11200603 DOI: 10.3390/biomedicines12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonardo Gigante
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Gwladys Gaudillière-Le Dain
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Aurélie Bertaut
- Biostatistics and Methodology Unit, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000 Dijon, France
| |
Collapse
|
9
|
Wang Y, Zhang A, Li Q, Liu C. Modulating pancreatic cancer microenvironment: The efficacy of Huachansu in mouse models via TGF-β/Smad pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117872. [PMID: 38325667 DOI: 10.1016/j.jep.2024.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huachansu (HCS) is a traditional Chinese medicine obtained from the dried skin glands of Bufo gargarizans and clinical uses of HCS have been approved in China to treat malignant tumors. The traditional Chinese medicine theory states that HCS relieves patients with cancer by promoting blood circulation to remove blood stasis. Clinical observation found that local injection of HCS given to pancreatic cancer patients can significantly inhibit tumor progression and assist in enhancing the efficacy of chemotherapy. However, the material basis and underlying mechanism have not yet been elucidated. AIM OF THE STUDY To investigate the therapeutic potential of HCS for the treatment of pancreatic cancer in in situ transplanted tumor nude mouse model. Furthermore, this study sought to elucidate the molecular mechanisms underlying its efficacy and assess the impact of HCS on the microenvironment of pancreatic cancer. To identify the antitumor effect of HCS in in situ transplanted tumor nude mouse model and determine the Chemopreventive mechanism of HCS on tumor microenvironment (TME). METHODS Using the orthotopic transplantation nude mouse model with fluorescently labeled pancreatic cancer cell lines SW1990 and pancreatic stellate cells (PSCs), we examined the effect of HCS on the pancreatic ductal adenocarcinoma (PDAC) microenvironment based on the transforming growth factor β (TGF-β)/Smad pathway. The expression of TGF-β, smad2, smad3, smad4, collagen type-1 genes and proteins in nude mouse model were detected by qRT-PCR and Western blot. RESULTS HCS significantly reduced tumor growth rate, increased the survival rate, and ameliorated the histopathological changes in the pancreas. It was found that HCS concentration-dependently reduced the expression of TGF-β1 and collagen type-1 genes and proteins, decreased the expression of Smad2 and Smad3 genes, and downregulated the phosphorylation level of Smad2/3. Additionally, the gene and protein expression of Smad4 were promoted by HCS. Further, the promoting effect gradually enhanced with the rise of HCS concentration. CONCLUSIONS The results demonstrated HCS could regulate the activity of the TGF-β/Smad pathway in PDAC, improved the microenvironment of PDAC and delayed tumor progression. This study not only indicated that the protective mechanism of HCS on PDAC might be attributed partly to the inhibition of cytokine production and the TGF-β/Smad pathway, but also provided evidence for HCS as a potential medicine for PDAC treatment.
Collapse
Affiliation(s)
- Yuehui Wang
- Beijing University of Chinese Medicine, Beijing, 100105, China.
| | - Arun Zhang
- Beijing University of Chinese Medicine, Beijing, 100105, China.
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Chuanbo Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
10
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Zhang H, Li Y, Kang H, Lan J, Hou L, Chen Z, Li F, Liu Y, Zhao J, Li N, Wan Y, Zhu Y, Zhao Z, Zhang H, Zhuang J, Huang X. Genetically engineered membrane-based nanoengagers for immunotherapy of pancreatic cancer. J Nanobiotechnology 2024; 22:104. [PMID: 38468289 PMCID: PMC10926568 DOI: 10.1186/s12951-024-02369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.
Collapse
Affiliation(s)
- Haoqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Lin Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhengbang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Han HV, Efem R, Rosati B, Lu K, Maimouni S, Jiang YP, Montoya V, Van Der Velden A, Zong WX, Lin RZ. Propionyl-CoA carboxylase subunit B regulates anti-tumor T cells in a pancreatic cancer mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550301. [PMID: 37546948 PMCID: PMC10402106 DOI: 10.1101/2023.07.24.550301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca-/- KPC (named αKO) cancer cells induces clonal expansion of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally expanded CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally expanded T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.
Collapse
|
13
|
Sini MC, Doro MG, Frogheri L, Zinellu A, Paliogiannis P, Porcu A, Scognamillo F, Delogu D, Santeufemia DA, Persico I, Palomba G, Maestrale GB, Cossu A, Palmieri G. Combination of mutations in genes controlling DNA repair and high mutational load plays a prognostic role in pancreatic ductal adenocarcinoma (PDAC): a retrospective real-life study in Sardinian population. J Transl Med 2024; 22:108. [PMID: 38280995 PMCID: PMC10821545 DOI: 10.1186/s12967-024-04923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDCA) carrying impaired mismatch repair mechanisms seem to have an outcome advantage under treatment with conventional chemotherapy, whereas the role for the tumor mutation burden on prognosis is controversial. In this study, we evaluated the prognostic role of the mutated genes involved in genome damage repair in a real-life series of PDAC patients in a hospital-based manner from the main Institution deputed to surgically treat such a disease in North Sardinia. METHODS A cohort of fifty-five consecutive PDAC patients with potentially resectable/border line resectable PDAC (stage IIB-III) or oligometastatic disease (stage IV) and tumor tissue availability underwent next-generation sequencing (NGS)-based analysis using a panel containing driver oncogenes and tumor suppressor genes as well as genes controlling DNA repair mechanisms. RESULTS Genes involved in the both genome damage repair (DR) and DNA mismatch repair (MMR) were found mutated in 17 (31%) and 15 (27%) cases, respectively. One fourth of PDAC cases (14/55; 25.5%) carried tumors presenting a combination of mutations in repair genes (DR and MMR) and the highest mutation load rates (MLR-H). After correction for confounders (surgery, adjuvant therapy, stage T, and metastasis), multivariate Cox regression analysis indicated that mutations in DR genes (HR = 3.0126, 95% CI 1.0707 to 8.4764, p = 0.0367) and the MLR (HR = 1.0018, 95%CI 1.0005 to 1.0032, p = 0.009) were significantly related to worse survival. CONCLUSIONS The combination of mutated repair genes and MLR-H, which is associated with a worse survival in our series of PDAC patients treated with conventional chemotherapy protocols, might become a predictive biomarker of response to immunotherapy in addition to its prognostic role in predicting survival.
Collapse
Affiliation(s)
- Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Maria Grazia Doro
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Laura Frogheri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Alberto Porcu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Fabrizio Scognamillo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Daniele Delogu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | | | - Ivana Persico
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Grazia Palomba
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Giovanni Battista Maestrale
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy.
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Sassari, Italy.
| |
Collapse
|
14
|
He C, Wang D, Shukla SK, Hu T, Thakur R, Fu X, King RJ, Kollala SS, Attri KS, Murthy D, Chaika NV, Fujii Y, Gonzalez D, Pacheco CG, Qiu Y, Singh PK, Locasale JW, Mehla K. Vitamin B6 Competition in the Tumor Microenvironment Hampers Antitumor Functions of NK Cells. Cancer Discov 2024; 14:176-193. [PMID: 37931287 PMCID: PMC10784745 DOI: 10.1158/2159-8290.cd-23-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Nutritional factors play crucial roles in immune responses. The tumor-caused nutritional deficiencies are known to affect antitumor immunity. Here, we demonstrate that pancreatic ductal adenocarcinoma (PDAC) cells can suppress NK-cell cytotoxicity by restricting the accessibility of vitamin B6 (VB6). PDAC cells actively consume VB6 to support one-carbon metabolism, and thus tumor cell growth, causing VB6 deprivation in the tumor microenvironment. In comparison, NK cells require VB6 for intracellular glycogen breakdown, which serves as a critical energy source for NK-cell activation. VB6 supplementation in combination with one-carbon metabolism blockage effectively diminishes tumor burden in vivo. Our results expand the understanding of the critical role of micronutrients in regulating cancer progression and antitumor immunity, and open new avenues for developing novel therapeutic strategies against PDAC. SIGNIFICANCE The nutrient competition among the different tumor microenvironment components drives tumor growth, immune tolerance, and therapeutic resistance. PDAC cells demand a high amount of VB6, thus competitively causing NK-cell dysfunction. Supplying VB6 with blocking VB6-dependent one-carbon metabolism amplifies the NK-cell antitumor immunity and inhibits tumor growth in PDAC models. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K. Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiao Fu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ryan J. King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kuldeep S. Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V. Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daisy Gonzalez
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Camila G. Pacheco
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yudong Qiu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pankaj K. Singh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Xie J, Mo T, Li R, Zhang H, Liang G, Ma T, Chen J, Xie H, Wen X, Hu T, Xian Z, Pan W. The m 7G Reader NCBP2 Promotes Pancreatic Cancer Progression by Upregulating MAPK/ERK Signaling. Cancers (Basel) 2023; 15:5454. [PMID: 38001714 PMCID: PMC10670634 DOI: 10.3390/cancers15225454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
PDAC is one of the most common malignant tumors worldwide. The difficulty of early diagnosis and lack of effective treatment are the main reasons for its poor prognosis. Therefore, it is urgent to identify novel diagnostic and therapeutic targets for PDAC patients. The m7G methylation is a common type of RNA modification that plays a pivotal role in regulating tumor development. However, the correlation between m7G regulatory genes and PDAC progression remains unclear. By integrating gene expression and related clinical information of PDAC patients from TCGA and GEO cohorts, m7G binding protein NCBP2 was found to be highly expressed in PDAC patients. More importantly, PDAC patients with high NCBP2 expression had a worse prognosis. Stable NCBP2-knockdown and overexpression PDAC cell lines were constructed to further perform in-vitro and in-vivo experiments. NCBP2-knockdown significantly inhibited PDAC cell proliferation, while overexpression of NCBP2 dramatically promoted PDAC cell growth. Mechanistically, NCBP2 enhanced the translation of c-JUN, which in turn activated MEK/ERK signaling to promote PDAC progression. In conclusion, our study reveals that m7G reader NCBP2 promotes PDAC progression by activating MEK/ERK pathway, which could serve as a novel therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Jiancong Xie
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Taiwei Mo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hao Zhang
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tao Ma
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Jing Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hanlin Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaofeng Wen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhenyu Xian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weidong Pan
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| |
Collapse
|
16
|
Karamitopoulou E. Emerging Prognostic and Predictive Factors in Pancreatic Cancer. Mod Pathol 2023; 36:100328. [PMID: 37714333 DOI: 10.1016/j.modpat.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic cancer is a lethal disease with increasing incidence and high recurrence rates and is currently resistant to conventional therapies. Moreover, it displays extensive morphologic and molecular intratumoral and intertumoral heterogeneity and a mostly low mutational burden, failing to induce significant antitumor immunity. Thus, immunotherapy has shown limited effect in pancreatic cancer, except in rare tumors with microsatellite instability, constituting <1% of the cases. Currently, new methods, including single-cell and single-nucleus RNA sequencing, have refined and expanded the 2-group molecular classification based on bulk RNA sequencing (classical and basal-like subtypes), identifying hybrid forms and providing us with a comprehensive map of the tumor cell subsets that drive gene expression during tumor evolution, simultaneously giving us insight into therapy resistance and metastasis. Additionally, deeper profiling of the tumor microenvironment of pancreatic cancer by using spatial analyses and multiplex imaging techniques has improved our understanding of the heterogeneous distribution of both adaptive and innate immune components with their protumor and antitumor properties. By integrating host immune response patterns, as defined by spatial transcriptomic and proteomic analysis and multiplex immunofluorescence, with molecular and morphologic features of the tumors, we can increasingly understand the genetic, immunologic, and morphologic background of pancreatic cancer and recognize the potential predictors for different treatment modalities.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland; Pathology Institute Enge, Zurich, Switzerland.
| |
Collapse
|
17
|
Nagai H, Karube R. Delayed-Type Hypersensitivity: An Excellent Indicator of Anti-tumor Immunity With Wilms' Tumor 1 (WT1) Dendritic Cell Vaccine Therapy. Cureus 2023; 15:e49221. [PMID: 38143707 PMCID: PMC10739387 DOI: 10.7759/cureus.49221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION It is a well-known fact that anti-tumor immunity is a crucial long-term survival factor in cancer. Wilms' tumor 1 (WT1) dendritic cell vaccine therapy (WT1-DC) is an immuno-cell therapy that has been implemented against various cancers as a tumor-specific immunotherapy targeting the common cancer antigen WT1. METHODS Seven doses of WT1-DC vaccine were administered to six patients, three of whom had stage IV lung cancer with metastases and the other three had stage IV pancreatic cancer with metastases, all of whom were receiving chemotherapy and had similar physical conditions. Their immune response was assessed using delayed-type hypersensitivity (DTH) and immune profile status (IPS) such as blood neutrophil percentage, lymphocyte percentage, and neutrophil-to-lymphocyte (N/L) ratio. RESULTS In lung cancer, DTH increased with repeated DC administration, and IPS improved with it, whereas in pancreatic cancer, DTH did not increase, and IPS worsened from the fifth inoculation. Fever in the 37° range was observed after DC administration in lung cancer, but not in pancreatic cancer. CONCLUSION These results suggest that DTH and IPS are correlated in dynamics and that DTH is a good indicator of the state of anti-tumor immunity. Since IPS is a prognostic factor in advanced cancer, the magnitude of DTH due to WT1-DC inoculation is a useful indicator to estimate the patient's prognosis. Although DTH is an extremely simple test, its clinical significance has not been fully investigated. The present study demonstrates the importance of DTH in cancer treatment with WT1-DC.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Hiratsuka, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| | | |
Collapse
|
18
|
Schlößer HA, Schmidt T. Stellenwert der Checkpoint Therapie bei viszeral-onkologischen Erkrankungen. Zentralbl Chir 2023; 148:389-391. [PMID: 37846161 DOI: 10.1055/a-2148-1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Affiliation(s)
- Hans Anton Schlößer
- Zentrum für Molekulare Medizin, Uniklinik Köln, Köln
- Klinik für Allgemein-, Viszeral-, Tumor- und Transplantationschirurgie, Uniklinik Köln, Köln
| | - Thomas Schmidt
- Klinik für Allgemein-, Viszeral-, Tumor- und Transplantationschirurgie, Uniklinik Köln, Köln
| |
Collapse
|
19
|
Mekapogu AR, Xu Z, Pothula S, Perera C, Pang T, Hosen SMZ, Damalanka V, Janetka J, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met pathway inhibition combined with chemotherapy increases cytotoxic T-cell infiltration and inhibits pancreatic tumour growth and metastasis. Cancer Lett 2023:216286. [PMID: 37354984 DOI: 10.1016/j.canlet.2023.216286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic cancer (PC) is a deadly cancer with a high mortality rate. The unique characteristics of PC, including desmoplasia and immunosuppression, have made it difficult to develop effective treatment strategies. Pancreatic stellate cells (PSCs) play a crucial role in the progression of the disease by interacting with cancer cells. One of the key mediators of PSC - cancer cell interactions is the hepatocyte growth factor (HGF)/c-MET pathway. Using an immunocompetent in vivo model of PC as well as in vitro experiments, this study has shown that a combined approach using HGF/c-MET inhibitors to target stromal-tumour interactions and chemotherapy (gemcitabine) to target cancer cells effectively decreases tumour volume, EMT, and stemness, and importantly, eliminates metastasis. Notably, HGF/c-MET inhibition decreases TGF-β secretion by cancer cells, resulting in an increase in cytotoxic T-cell infiltration, thus contributing to cancer cell death in tumours. HGF/c-MET inhibition + chemotherapy was also found to normalise the gut microbiome and improve gut microbial diversity. These findings provide a strong platform for assessment of this triple therapy (HGF/c-MET inhibition + chemotherapy) approach in the clinical setting.
Collapse
Affiliation(s)
- Alpha Raj Mekapogu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Srinivasa Pothula
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia; AbCellera, Beaconsfield, New South Wales, United Kingdom
| | - Chamini Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Tony Pang
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia; Surgical Innovations Unit, Westmead Hospital, Sydney, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - S M Zahid Hosen
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Vishnu Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - James Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - David Goldstein
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Romano Pirola
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Minoti Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia.
| |
Collapse
|
20
|
Lin X, Cui C, Cui Q. Combating pancreatic cancer with ovarian cancer cells. Aging (Albany NY) 2023; 15:2189-2207. [PMID: 36961421 PMCID: PMC10085619 DOI: 10.18632/aging.204608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
With overall five-year survival rate less than 10%, pancreatic cancer (PC) represents the most lethal one in all human cancers. Given that the incidence of PC is still increasing and current cancer treatment strategies are often inefficacious, its therapy is still a huge challenge. Here, we first revealed ovarian serous carcinoma is mostly anti-correlated with pancreatic cancer in gene expression signatures. Based on this observation, we proposed that ovarian cancer cells could defend PC. To confirm this strategy, we first showed that ovarian cancer cell SKOV3 can significantly inhibit the proliferation of pancreatic cancer cell SW1990 when they were co-cultured. We further validated this strategy by an animal model of pancreatic cancer xenografts. The result showed that the injection of SKOV3 significantly inhibits pancreatic cancer xenografts. Moreover, we found that SKOV3 with transgenic African elephant TP53 gene further enhances the therapeutic effect. RNA-sequencing analysis revealed that the ovarian cancer cell treatment strikingly induced changes of genes being involved in pancreas function and phenotype (e.g. enhancing pancreas function, pancreas regeneration, and cell adhesion) but not immune and inflammation-related functions, suggesting that the proposed strategy is different from immunotherapy and could be a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunmei Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowsky KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl hydrocarbon receptor knockout accelerates PanIN formation and fibro-inflammation in a mutant Kras-driven pancreatic cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526625. [PMID: 36778364 PMCID: PMC9915668 DOI: 10.1101/2023.02.01.526625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the pathogenesis of several cancers, and can be targeted for therapeutic effect. However, its involvement in PDAC remains unclear. Therefore, we evaluated the role of AHR in the development of PDAC in vivo. Methods We created a global AHR-null, mutant Kras-driven PDAC mouse model (A-/-KC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and A-/-KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. Results We found a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A-/-KC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. Conclusion These findings show the loss of AHR results in heightened Kras-induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Patrick B Schwartz
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Noah D Carrillo
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Kristina A Matkowsky
- University of Wisconsin School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, L5/183 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Manabu Nukaya
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Christopher A Bradfield
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Sean M Ronnekleiv-Kelly
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| |
Collapse
|
22
|
Kang Y, Xu X, Liu J. System Analysis Based on Pancreatic Cancer Progression Identifies BRINP2 as a Novel Prognostic Biomarker. Crit Rev Eukaryot Gene Expr 2023; 33:1-16. [PMID: 37602449 DOI: 10.1615/critreveukaryotgeneexpr.2023048337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the digestive system, which develops rapidly and has no obvious early symptoms. This study aims to discover the biomarkers associated with PAAD development. We obtained RNA expression of PAAD patient samples and corresponding clinical data from The cancer genome atlas (TCGA), and screened out BMP/RA-inducible neural-specific protein 2 (BRINP2) gene which is highly associated with PAAD severity. Then, gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and single-sample gene set enrichment analysis (ssGSEA) analysis were performed to explore the biological functions of BRINP2. Subsequently, long non-coding RNA (lncRNAs) associated with BRINP2 were screened out via correlation analysis, and Cox regression analysis and least absolute shrinkage selection operator (LASSO) regression analysis were used to construct the risk prediction model. We further validated the expression level of BRINP2 and its associated lncRNAs in BRINP2-associated lncRNAs prognostic model in vitro. We proposed that BRINP2 might be correlated to the tumor immune microenvironment and could also be used as a biomarker for PAAD progression. GO enrichment analysis and KEGG pathway analysis showed that the prognostic model was highly correlated to immune microenvironment-related pathways. Additionally, we established a BRINP2-associated lncRNAs prognostic model consisting of three lncRNAs. We validated the expression trends of BRINP2 and its associated lncRNAs in BRINP2-associated lncRNAs prognostic model in PAAD cells with various severity of metastatic potential using the quantitative real-time PCR (qRT-PCR). Meanwhile, pRRophetic R package was employed to predict potential therapeutic drugs for BRINP2-associated lncRNAs prognostic model of PAAD. The results suggest that BRINP2 can be used as a novel prognostic biomarker for PAAD.
Collapse
Affiliation(s)
- Yixing Kang
- Department of Clinical Medicine, Weifang Medical University, Weifang 261031, China
| | - Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
23
|
Zhao X, He Y, Pan Y, Ye L, Liu L, Mou X, Fu L. Integrated clinical analysis and data mining assessed the impact of NOX4 on the immune microenvironment and prognosis of pancreatic cancer. Front Oncol 2023; 13:1044526. [PMID: 36874093 PMCID: PMC9978331 DOI: 10.3389/fonc.2023.1044526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background The tumor microenvironment (TME) of pancreatic cancer is complex. which forms forms a microenvironment with high immunosuppression, ischemia and hypoxia, which promotes tumor proliferation and migration, inhibit the anti-tumor immune response. NOX4 plays an important role in tumor microenvironment and has a significant relationship with the occurrence, development and drug resistance of tumor. Methods Firstly, NOX4 expression in pancreatic cancer tissues under different pathological conditions was detected by applying immunohistochemical staining of tissue microarray (TMA). Transcriptome RNA sequencing data and clinical data of 182 pancreatic cancer samples were downloaded and collated from the UCSC xena database. 986 NOX4-related lncRNAs were filtered by Spearman correlation analysis. prognosis-related NOX4-related lncRNAs and NRlncSig Score were finally obtained by univariate and multivariate Cox regression with Least Absolute Shrinkage and Selection Operator (Lasso) analysis in pancreatic cancer patients. we plotted Kaplan -Meier and time-dependent ROC curves (ROC) to assess the validity in predicting the prognosis of pancreatic cancer. The ssGSEA analysis was applied to explore the immune microenvironment of pancreatic cancer patients as well as to discuss the immune cells and immune status separately. Results We found that a mature tumor marker, NOX4, play different roles in different clinical subgroups by immunohistochemical analysis and clinical data. Finally, 2 NOX4-related lncRNAs were determined by least absolute shrinkage and selection operator (LASSO) analysis, univariate Cox analysis and multivariate COX analysis. The ROC curve and DCA curve showed that NRS Score had better predictive ability than independent prognosis-related lncRNA and other clinicopathologic indicators. We obtained the relative abundance of 28 infiltrating immune cells by ssGSEA analysis and found a significant positive correlation between the abundance of anti-tumor immune cells and tumor-promoting immune cells in the risk-classified microenvironment. No matter NRS Score or AC092667.2, RP11-349A8.3 was significantly correlated with immune infiltrating cells. Meanwhile, the IC50 of conventional chemotherapeutic agents in high-score group were significantly lower than those in low-score group. Conclusion As a mature tumor marker, NOX4-related lncRNAs provide new research strategies for prognostic evaluation, molecular mechanism and clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yichen He
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi Pan
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Luyi Ye
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Longcai Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luoqin Fu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zhao Z, Lin Z, Guo X, Al-danakh A, He H, Qin H, Ma C, Zhang N, Tan G. Ubiquitin-Specific Protease 43 Impacts Pancreatic Ductal Adenocarcinoma Prognosis by Altering Its Proliferation and Infiltration of Surrounding Immune Cells. J Immunol Res 2023; 2023:4311388. [PMID: 37050932 PMCID: PMC10083889 DOI: 10.1155/2023/4311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer, and the therapy options for PDAC remain restricted. The distinctive tumor immunological microenvironment (TIME) of PDAC, comprising a high number of stromal cells and a limited infiltration of cytotoxic T lymphocytes (CTLs), rendered immunotherapy ineffective. The protein level of ubiquitin-specific protease 43 (USP43) was a prognostic predictor in numerous cancers; however, its function in PDAC is limited. This article focuses on the influence of USP43 expression on PDAC prognosis and TIME alteration. Methods Based on TCGA database and tissue microarray staining, the expression of USP43 in PDAC was evaluated. The association between USP43 and prognosis was then investigated using tissue samples and online databases. In PDAC tumor tissues, the correlation between USP43 expression and clinicopathological characteristics, immune cell infiltration, and prognosis was investigated. The expression of USP43 in PDAC cell lines was evaluated using quantitative polymerase chain reaction. Using a cell counting kit-8 (CCK-8) and a cell colony formation test, the viability of the cells was determined. On the basis of online databases and tissue samples, the link between USP43 and immune cell infiltration around PDAC was also examined. For statistical analyses, the software GraphPad, R, and SPSS 26.0 were utilized. Results The expression of USP43 was considerably higher in PDAC compared to normal pancreatic tissue in both the TCGA database and the tissue microarrays of PDAC patients (P < 0.001). High USP43 expression was associated with poor overall survival in both the TCGA database and the tissue microarray of PDAC patients (P = 0.046 and 0.021, respectively). USP43 overexpression promoted PANC-1 cell proliferation (P = 0.0018), but USP43 knockdown decreased PANC02 cell proliferation (P < 0.001). According to the TCGA database, USP43 is associated with T cell activation and inhibits CD8+ T cell activation in PDAC, as proven by a study of cell lines. Moreover, in both TCGA and PDAC cell lines, USP43 expression was negatively linked with the chemokine signaling pathway. Conclusions Overexpression of USP43 is a potential prognostic indicator for PDAC patients. USP43 is a potential biomarker associated with T cell activation, suppression of CD8+ T cell enrichment, and the cytokine signal pathway. Future multicenter studies are needed to confirm our findings and their potential application in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, China
| | - Xin Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chi Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ningning Zhang
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, China
| |
Collapse
|
25
|
Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3124122. [PMID: 36567857 PMCID: PMC9780013 DOI: 10.1155/2022/3124122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184 immune features, molecular subtypes of pancreatic cancer were found by the "ConsensusClusterPlus" package, and the association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes. In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.
Collapse
|
26
|
Buhe H, Ma JX, Ye FZ, Song CY, Chen XY, Liu Y, Lin H, Han X, Ma LX, Saiyin H. IDO-1 inhibitor INCB24360 elicits distant metastasis of basal extruded cancer cells in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 44:1277-1289. [DOI: 10.1038/s41401-022-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractNeoplastic cells of non-immunogenic pancreatic ductal adenocarcinoma (PDAC) express indoleamine 2,3-dioxygenase 1 (IDO-1), an immunosuppressive enzyme. The metabolites of IDO-1 in cancers provide one-carbon units that annihilate effector T cells, and recruit immunosuppressive cells. In this study we investigated how IDO-1 affected the neoplastic cell behaviors in PDACs. Using multiple markers co-labeling method in 45-µm-thick tissue sections, we showed that IDO-1 expression was uniquely increased in the neoplastic cells extruded from ducts’ apical or basal domain, but decreased in lymph metastatic cells. IDO-1+ extruding neoplastic cells displayed increased vimentin expression and decreased cytokeratin expression in PDACs, characteristics of epithelial-mesenchymal transition (EMT). However, IDO-1 expression was uncorrelated with immunosuppressive infiltrates and clinicopathological characteristics of grim outcome. We replicated basal extrusion with EMT in murine KPIC PDAC organoids by long-term IFN-γ induction; application of IDO-1 inhibitor INCB24360 or 1-MT partially reversed basal extrusion coupled EMT. Ido-1 deletion in KPIC cells deprived its tumorigenicity in immunocompetent mice, decreased cellular proliferation and macropinocytic ability, and increased immunogenicity. KPIC organoids with IFN-γ-induced basal extrusion did not accelerate distant metastasis, whereas inhibition IFN-γ-induced IDO-1 with INB24360 but not 1-MT in KPIC organoids elicited liver metastasis of subcutaneous KPIC organoid tumors, suggesting that lower IDO-1 activity accelerated distant metastasis, whereas IDO-1 was indispensable for tumorigenicity of PDAC cells and supports the survival of extruding cells.
Collapse
|
27
|
Zarour HM. Microbiome-derived metabolites counteract tumor-induced immunosuppression and boost immune checkpoint blockade. Cell Metab 2022; 34:1903-1905. [PMID: 36476933 DOI: 10.1016/j.cmet.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor and gut microbiome regulate antitumor immunity and modulate responses to immune checkpoint blockade, although the mechanisms of action remain uncertain. A recent study in Science Immunology by Mirji et al. describes that the microbiota-generated metabolite trimethylamine N-oxide (TMAO) plays a critical role in mediating the effects of the microbiome on antitumor immunity.
Collapse
Affiliation(s)
- Hassane M Zarour
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
28
|
Bannoura SF, Khan HY, Azmi AS. KRAS G12D targeted therapies for pancreatic cancer: Has the fortress been conquered? Front Oncol 2022; 12:1013902. [PMID: 36531078 PMCID: PMC9749787 DOI: 10.3389/fonc.2022.1013902] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
KRAS mutations are among the most commonly occurring mutations in cancer. After being deemed undruggable for decades, KRAS G12C specific inhibitors showed that small molecule inhibitors can be developed against this notorious target. At the same time, there is still no agent that could target KRAS G12D which is the most common KRAS mutation and is found in the majority of KRAS-mutated pancreatic tumors. Nevertheless, significant progress is now being made in the G12D space with the development of several compounds that can bind to and inhibit KRAS G12D, most notably MRTX1133. Exciting advances in this field also include an immunotherapeutic approach that uses adoptive T-cell transfer to specifically target G12D in pancreatic cancer. In this mini-review, we discuss recent advances in KRAS G12D targeting and the potential for further clinical development of the various approaches.
Collapse
Affiliation(s)
- Sahar F. Bannoura
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, United States
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asfar S. Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
29
|
Sarhan D, Eisinger S, He F, Bergsland M, Pelicano C, Driescher C, Westberg K, Benitez II, Humoud R, Palano G, Li S, Carannante V, Muhr J, Önfelt B, Schlisio S, Ravetch JV, Heuchel R, Löhr MJ, Karlsson MCI. Targeting myeloid suppressive cells revives cytotoxic anti-tumor responses in pancreatic cancer. iScience 2022; 25:105317. [PMID: 36310582 PMCID: PMC9615326 DOI: 10.1016/j.isci.2022.105317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy for cancer that aims to promote T cell anti-tumor activity has changed current clinical practice, where some previously lethal cancers have now become treatable. However, clinical trials with low response rates have been disappointing for pancreatic ductal adenocarcinoma (PDAC). One suggested explanation is the accumulation of dominantly immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells in the tumor microenvironment (TME). Using retrospectively collected tumor specimens and transcriptomic data from PDAC, we demonstrate that expression of the scavenger receptor MARCO correlates with poor prognosis and a lymphocyte-excluding tumor phenotype. PDAC cell lines produce IL-10 and induce high expression of MARCO in myeloid cells, and this was further enhanced during hypoxic conditions. These myeloid cells suppressed effector T and natural killer (NK) cells and blocked NK cell tumor infiltration and tumor killing in a PDAC 3D-spheroid model. Anti-human MARCO (anti-hMARCO) antibody targeting triggered the repolarization of tumor-associated macrophages and activated the inflammasome machinery, resulting in IL-18 production. This in turn enhanced T cell and NK cell functions. The targeting of MARCO thus remodels the TME and represents a rational approach to make immunotherapy more efficient in PDAC patients.
Collapse
Affiliation(s)
- Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden, SE-141 521
| | - Silke Eisinger
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden, SE-141 521
| | - Maria Bergsland
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Catarina Pelicano
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Caroline Driescher
- Department of Pathology, Heinrich-Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kajsa Westberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Itziar Ibarlucea Benitez
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Rawan Humoud
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Giorgia Palano
- Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Björn Önfelt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Rainer Heuchel
- Pancreatic Cancer Research Lab, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Matthias J Löhr
- Pancreatic Cancer Research Lab, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
30
|
Li K, Tandurella JA, Gai J, Zhu Q, Lim SJ, Thomas DL, Xia T, Mo G, Mitchell JT, Montagne J, Lyman M, Danilova LV, Zimmerman JW, Kinny-Köster B, Zhang T, Chen L, Blair AB, Heumann T, Parkinson R, Durham JN, Narang AK, Anders RA, Wolfgang CL, Laheru DA, He J, Osipov A, Thompson ED, Wang H, Fertig EJ, Jaffee EM, Zheng L. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 2022; 40:1374-1391.e7. [PMID: 36306792 PMCID: PMC9669212 DOI: 10.1016/j.ccell.2022.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization and maintenance of activated effector T cells (Teff). We prospectively collected and applied multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid aggregates become immune-regulatory sites in response to GVAX + nivolumab. Higher densities of tumor-associated neutrophils (TANs) following GVAX + nivolumab portend poorer overall survival (OS). Increased T cells expressing CD137 associated with cytotoxic Teff signatures and correlated with increased OS. Bulk and single-cell RNA sequencing found that nivolumab alters CD4+ T cell chemotaxis signaling in association with CD11b+ neutrophil degranulation, and CD8+ T cell expression of CD137 was required for optimal T cell activation. These findings provide insights into PD-1-regulated immune pathways in PDAC that should inform more effective therapeutic combinations that include TAN regulators and T cell activators.
Collapse
Affiliation(s)
- Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Joseph A Tandurella
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Gai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacob T Mitchell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle Montagne
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Melissa Lyman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ludmila V Danilova
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benedict Kinny-Köster
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tengyi Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Linda Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex B Blair
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thatcher Heumann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer N Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amol K Narang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
31
|
Panebianco C, Ciardiello D, Villani A, Maiorano BA, Latiano TP, Maiello E, Perri F, Pazienza V. Insights into the role of gut and intratumor microbiota in pancreatic ductal adenocarcinoma as new key players in preventive, diagnostic and therapeutic perspective. Semin Cancer Biol 2022; 86:997-1007. [PMID: 34838957 DOI: 10.1016/j.semcancer.2021.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species involved in a number of vital functions spanning from the digestion of carbohydrates, vitamin synthesis, involvement in immune system to drug metabolism. More than 95 % of microbiota resides within the gut and it is essential for maintaining gut homeostasis. Dysregulation of gut microbiota contributes to the onset of several non-communicable diseases including cancer. Among the latter, pancreatic cancer is catching the attention of scientists around the globe being one of the most aggressive and resistant to therapies positioning the pancreatic cancer as one of the leading causes of death from cancer worldwide. In recent years, several studies have shown that the gut and tumor microbiota play a key role in the development, progression and prognosis of PDAC, mainly due to microbial ability to modulate host immune system and metabolize drugs. This review will focus on the new insights into the role of the microbiota as a new key player in pancreatic cancer PDAC development and prognosis by enlightening the microbial potential to interact with chemo/immunotherapeutic drugs and to modulate tumor microenvironment, thus impacting on cancer therapy success with the aim to pave the way to new integrative and interventional diagnostics or therapeutics approaches to prevent, diagnose and treat pancreatic cancer.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Davide Ciardiello
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Brigida Anna Maiorano
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Tiziana Pia Latiano
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Evaristo Maiello
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
32
|
Ravindranathan S, Passang T, Li JM, Wang S, Dhamsania R, Ware MB, Zaidi MY, Zhu J, Cardenas M, Liu Y, Gumber S, Robinson B, Sen-Majumdar A, Zhang H, Chandrakasan S, Kissick H, Frey AB, Thomas SN, El-Rayes BF, Lesinski GB, Waller EK. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun 2022; 13:6418. [PMID: 36302761 PMCID: PMC9613684 DOI: 10.1038/s41467-022-34242-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.
Collapse
Affiliation(s)
- Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rohan Dhamsania
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael Brandon Ware
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mohammad Y Zaidi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jingru Zhu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Haydn Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Centre, Emory University, Atlanta, GA, USA
| | | | - Susan N Thomas
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Lu SY, Hua J, Liu J, Wei MY, Liang C, Meng QC, Zhang B, Yu XJ, Wang W, Xu J. Turning up the heat on non-immunoreactive tumors: autophagy influences the immune microenvironment in pancreatic cancer. BMC Med Genomics 2022; 15:218. [PMID: 36261830 PMCID: PMC9580150 DOI: 10.1186/s12920-022-01371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Autophagy regulators play important roles in the occurrence and development of a variety of tumors and are involved in immune regulation and drug resistance. However, the modulatory roles and prognostic value of autophagy regulators in pancreatic cancer have not been identified. Methods Transcriptomic data and survival information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to construct a risk score model. Important clinical features were analyzed to generate a nomogram. In addition, we used various algorithms, including ssGSEA, CIBERSORT, XCELL, EPIC, TIMER, and QUANTISEQ, to evaluate the roles of autophagy regulators in the pancreatic cancer immune microenvironment. Furthermore, the mutation landscape was compared between different risk groups. Results Pan cancer analysis indicated that most of the autophagy regulators were upregulated in pancreatic cancer and were correlated with methylation and CNV level. MET, TSC1, and ITGA6 were identified as the prognostic autophagy regulators and used to construct a risk score model. Some critical clinical indicators, such as age, American Joint Committee on Cancer (AJCC) T stage, AJCC N stage, alcohol and sex, were combined with the risk model to establish the nomogram, which may offer clinical guidance. In addition, our study demonstrated that the low score groups exhibited high immune activity and high abundances of various immune cells, including T cells, B cells, and NK cells. Patients with high risk scores exhibited lower half inhibitory concentration (IC50) values for paclitaxel and had downregulated expression profiles of PD1, CTLA4, and LAG3. Mutation investigation indicated that the high risk groups exhibited a higher mutation burden and higher mutation number compared to the low risk groups. additionally, we verified our risk stratification method using cytology and histology data from our center, and the results are satisfactory. Conclusion We speculated that autophagy regulators have large effects on the prognosis, immune landscape and drug sensitivity of pancreatic cancer. Our model, which combines critical autophagy regulators and clinical indicators, will provide guidance for clinical treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01371-0.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Yu W, Diao Y, Zhang Y, Shi Y, Lv X, Zhang C, Zhang K, Yao W, Huang D, Zhang J. Bioinformatic analysis of FOXN3 expression and prognostic value in pancreatic cancer. Front Oncol 2022; 12:1008100. [PMID: 36324573 PMCID: PMC9619050 DOI: 10.3389/fonc.2022.1008100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
In most cancers, forkhead box N3 (FOXN3) acts as a transcriptional inhibitor to suppress tumor proliferation, but in pancreatic cancer, the opposite effect is observed. To confirm and investigate this phenomenon, FOXN3 expression in various carcinomas was determined using GEPIA2 and was found to be highly expressed in pancreatic cancer. Kaplan-Meier plotter was then used for survival analysis, revealing that high FOXN3 expression in pancreatic cancer might be associated with a poor prognosis. Similarly, clinical samples collected for immunohistochemical staining and survival analysis showed consistent results. The RNA-seq data of pancreatic cancer patients from the TCGA were then downloaded, and the differential expression gene set was obtained using R for gene set enrichment analysis (GSEA). The intersection of the above gene sets and FOXN3-related genes was defined as related differentially expressed gene sets (DEGs), and enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we analyzed the relationship between FOXN3 and immune infiltration in pancreatic cancer. Collectively, our findings reveal that FOXN3 is involved in the occurrence and progression of pancreatic cancer and may be useful as a prognostic tool in pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Postgraduates, Bengbu Medical College, Bengbu, China
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongkang Diao
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ying Shi
- Obstetrics and Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangkang Lv
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chengwu Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kangjun Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weifeng Yao
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jungang Zhang, ; Dongsheng Huang,
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jungang Zhang, ; Dongsheng Huang,
| |
Collapse
|
35
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
36
|
Duan F, Jin W, Zhang T, Zhang F, Gong L, Liu X, Deng X, Gao W. Self-Activated Cascade Biocatalysis of Glucose Oxidase-Polycation-Iron Nanoconjugates Augments Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32823-32835. [PMID: 35849733 DOI: 10.1021/acsami.2c04894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biocatalytic therapy by reactive-oxygen-species-generating enzymes not only kills cancer cells directly but also stimulates an anticancer immune response and inverses the immunosuppressive microenvironment of a variety of solid tumors, which is potentially beneficial to overcoming the limitations of cancer immunotherapy. Herein, we report the in situ growth of polycation chains from glucose oxidase to generate glucose oxidase-polycation conjugates, which can be used as a template for the in situ reduction of ferrous ions into iron nanoparticles to yield glucose oxidase-polycation-iron nanoconjugates. The nanoconjugates exhibit enhanced cellular uptake and cancer retention as well as self-activated cascade biocatalysis that consumes glucose and generates highly toxic hydroxyl radicals, leading to enhanced starvation-like and chemodynamic cancer therapy. The cancer treatment with the nanoconjugates efficiently triggers the program of immunogenic cell death for enhanced immune checkpoint blockade therapy. The synergy of self-activated cascade biocatalysis and immune checkpoint blockade not only eradicates primary cancers but also inhibits the progression of distant cancers, which leads to the abscopal effect on cancers. Our findings provide a method for the in situ synthesis of self-activated cascade nano-biocatalysts for cascade biocatalysis-enhanced immunotherapy of cancer.
Collapse
Affiliation(s)
- Fei Duan
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| | - Wei Jin
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| | - Tong Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fan Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Like Gong
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Peking University International Cancer Institute, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Masugi Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14133293. [PMID: 35805064 PMCID: PMC9265767 DOI: 10.3390/cancers14133293] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic cancer is a highly malignant disease with treatment resistance to standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular alterations, clinicopathological factors, and patient outcomes. This review describes an overview of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment opportunities of stroma-modifying therapies against this hard-to-treat cancer. Abstract Pancreatic cancer remains one of the most lethal malignancies and is becoming a dramatically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity, and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcriptomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically engineered mouse models. In this review, we describe recent advances in the understanding of the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell interactions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities for stroma-targeted therapies against this lethal malignancy.
Collapse
Affiliation(s)
- Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 1608582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Department of Pathology, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
38
|
Choi JI, Rim JH, Jang SI, Park JS, Park H, Cho JH, Lim JB. The role of Jagged1 as a dynamic switch of cancer cell plasticity in PDAC assembloids. Theranostics 2022; 12:4431-4445. [PMID: 35673567 PMCID: PMC9169352 DOI: 10.7150/thno.71364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC), which commonly relapses due to chemotherapy resistance, has a poor 5-year survival rate (< 10%). The ability of PDAC to dynamically switch between cancer-initiating cell (CIC) and non-CIC states, which is influenced by both internal and external events, has been suggested as a reason for the low drug efficacy. However, cancer cell plasticity using patient-derived PDAC organoids remains poorly understood. Methods: First, we successfully differentiated CICs, which were the main components of PDAC organoids, toward epithelial ductal carcinomas. We further established PDAC assembloids of organoid-derived differentiated ductal cancer cells with endothelial cells (ECs) and autologous immune cells. To investigate the mechanism for PDAC plasticity, we performed single-cell RNA sequencing analysis after culturing the assembloids for 7 days. Results: In the PDAC assembloids, the ECs and immune cells acted as tumor-supporting cells and induced plasticity in the differentiated ductal carcinomas. We also observed that the transcriptome dynamics during PDAC re-programming were related to the WNT/beta-catenin pathway and apoptotic process. Interestingly, we found that WNT5B in the ECs was highly expressed by trans interaction with a JAG1. Furthermore, JAG1 was highly expressed on PDAC during differentiation, and NOTCH1/NOTCH2 were expressed on the ECs at the same time. The WNT5B expression level correlated positively with those of JAG1, NOTCH1, and NOTCH2, and high JAG1 expression correlated with poor survival. Additionally, we experimentally demonstrated that neutralizing JAG1 inhibited cancer cell plasticity. Conclusions: Our results indicate that JAG1 on PDAC plays a critical role in cancer cell plasticity and maintenance of tumor heterogeneity.
Collapse
Affiliation(s)
- Jae-Il Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ill Jang
- Institute of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Seong Park
- Pancreatobiliary Cancer Clinic, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cho
- Institute of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Gartrell RD, Enzler T, Kim PS, Fullerton BT, Fazlollahi L, Chen AX, Minns HE, Perni S, Weisberg SP, Rizk EM, Wang S, Oh EJ, Guo XV, Chiuzan C, Manji GA, Bates SE, Chabot J, Schrope B, Kluger M, Emond J, Rabadán R, Farber D, Remotti HE, Horowitz DP, Saenger YM. Neoadjuvant chemoradiation alters the immune microenvironment in pancreatic ductal adenocarcinoma. Oncoimmunology 2022; 11:2066767. [PMID: 35558160 PMCID: PMC9090285 DOI: 10.1080/2162402x.2022.2066767] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a grim prognosis despite complete surgical resection and intense systemic therapies. While immunotherapies have been beneficial with many different types of solid tumors, they have almost uniformly failed in the treatment of PDAC. Understanding how therapies affect the tumor immune microenvironment (TIME) can provide insights for the development of strategies to treat PDAC. We used quantitative multiplexed immunofluorescence (qmIF) quantitative spatial analysis (qSA), and immunogenomic (IG) analysis to analyze formalin-fixed paraffin embedded (FFPE) primary tumor specimens from 44 patients with PDAC including 18 treated with neoadjuvant chemoradiation (CRT) and 26 patients receiving no treatment (NT) and compared them with tissues from 40 treatment-naïve melanoma patients. We find that relative to NT tumors, CD3+ T cell infiltration was increased in CRT treated tumors (p = .0006), including increases in CD3+CD8+ cytotoxic T cells (CTLs, p = .0079), CD3+CD4+FOXP3- T helper cells (Th, p = .0010), and CD3+CD4+FOXP3+ regulatory T cells (Tregs, p = .0089) with no difference in CD68+ macrophages. IG analysis from micro-dissected tissues indicated overexpression of genes involved in antigen presentation, T cell activation, and inflammation in CRT treated tumors. Among treated patients, a higher ratio of Tregs to total T cells was associated with shorter survival time (p = .0121). Despite comparable levels of infiltrating T cells in CRT PDACs to melanoma, PDACs displayed distinct spatial profiles with less T cell clustering as defined by nearest neighbor analysis (p < .001). These findings demonstrate that, while CRT can achieve high T cell densities in PDAC compared to melanoma, phenotype and spatial organization of T cells may limit benefit of T cell infiltration in this immunotherapy-resistant tumor.
Collapse
Affiliation(s)
- Robyn D. Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Enzler
- Rogel Cancer Center, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Pan S. Kim
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Benjamin T. Fullerton
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew X. Chen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hanna E. Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Subha Perni
- Harvard Radiation Oncology Program, Massachusetts General Hospital and Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stuart P. Weisberg
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emanuelle M. Rizk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Eun Jeong Oh
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinzheng V. Guo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Codruta Chiuzan
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A. Manji
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan E. Bates
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - John Chabot
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Beth Schrope
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Kluger
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Emond
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Raul Rabadán
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Helen E. Remotti
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David P. Horowitz
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
40
|
Jiang C, Wang M, Yao W, Lv G, Liu X, Wang G. Comprehensive Analysis on Prognosis and Immune Infiltration of Lysyl Oxidase Family Members in Pancreatic Adenocarcinoma With Experimental Verification. Front Mol Biosci 2022; 9:778857. [PMID: 35433829 PMCID: PMC9010946 DOI: 10.3389/fmolb.2022.778857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PDAC) is the most aggressive among all solid malignancies with delayed disease detection and limited effective treatment. However, due to the intricate heterogeneity and exclusive tumor microenvironment (TME), the development of effective therapy has been facing enormous challenges. The lysyl oxidases (LOXs) underpin the shaping of the TME to promote cancer growth, metastasis and modulate response to treatment.Materials and Methods: The mRNA expression, prognostic, and clinicopathological data for LOXs in PDAC from multiple open-access databases were summarized and analyzed. The protein expression was verified by immunohistochemistry (IHC). Co-expressed genes of LOXs were predicted and elaborated by LinkedOmics. Functional enrichment analysis of LOXs co-expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). TIMER and TISIDB were applied to analyze the relationship between LOXs expression and immune infiltration.Results: The mRNA expression levels of LOX, LOXL1 and LOXL2 were significantly higher in PDAC, the expression levels of LOXL3 and LOXL4 were contrary in different databases. High mRNA levels of LOX and LOXL2 were associated with advanced PDAC stage, while elevated LOX and LOXL3 expression correlated with high tumor grade. The IHC staining showed higher expression levels of LOX, LOXL1 and LOXL2, lower expression level of LOXL3 in PDAC tissues, while the protein expression of LOXL4 made no difference. Functional enrichment analysis showed a close relationship with extracellular matrix (ECM) regulation, except that LOXL3 and its ligands were highly associated with immune-related functions. Further analysis suggested that LOX and LOXL3 strongly correlated with tumor-infiltrating lymphocytes (TILs), various immune signatures, and immune checkpoints. Finally, survival analysis revealed high LOX and LOXL2 expression predicted worse overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS).Conclusion: These findings indicated that the LOX family, especially LOX and LOXL2, might have a prospective value in PDAC oncogenesis, and they may become prognostic biomarkers, revealing a promising field in targeted therapy.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Meng Wang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
| | - Weikai Yao
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Cardiovascular Department, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xueyan Liu, ; Guangyi Wang,
| | - Guangyi Wang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xueyan Liu, ; Guangyi Wang,
| |
Collapse
|
41
|
Garnier J, Turrini O, Chretien AS, Olive D. Local Ablative Therapy Associated with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome the Double Trouble?-A Comprehensive Review. J Clin Med 2022; 11:1948. [PMID: 35407555 PMCID: PMC8999652 DOI: 10.3390/jcm11071948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a major killer and is a challenging clinical research issue with abysmal survival due to unsatisfactory therapeutic efficacy. Two major issues thwart the treatment of locally advanced nonresectable pancreatic cancer (LAPC): high micrometastasis rate and surgical inaccessibility. Local ablative therapies induce a systemic antitumor response (i.e., abscopal effect) in addition to local effects. Thus, the incorporation of additional therapies could be key to improving immunotherapy's clinical efficacy. In this systematic review, we explore recent applications of local ablative therapies combined with immunotherapy to overcome immune resistance in PDAC and discuss future perspectives and challenges. Particularly, we describe four chemoradiation studies and nine reports on irreversible electroporation (IRE). Clinically, IRE is the ablative therapy of choice, utilized in all but two clinical trials, and may create a favorable microenvironment for immunotherapy. Various immunotherapies have been used in combination with IRE, such as NK cell- or γδ T cell-based therapy, as well as immune checkpoint inhibitors. The results of the clinical trials presented in this review and the advancement potential of these therapies to phase II/III trials remain unknown. A multiple treatment approach involving chemotherapy, local ablation, and immunotherapy holds promise in overcoming the double trouble of LAPC.
Collapse
Affiliation(s)
- Jonathan Garnier
- Departement of Surgical Oncology, Institut Paoli-Calmettes, 232 Boulevard de Sainte Marguerite, 13009 Marseille, France
| | - Olivier Turrini
- Departement of Surgical Oncology, Institut Paoli-Calmettes, 232 Boulevard de Sainte Marguerite, 13009 Marseille, France
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, 58 Boulevard Charles Livon, 13007 Marseille, France
| | - Anne-Sophie Chretien
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, 58 Boulevard Charles Livon, 13007 Marseille, France
- Team Immunity and Cancer, U1068 Inserm, UMR7258 Centre National de la Recherche Scientifique, 13009 Marseille, France
- Departement of Immunomonitoring, Institut Paoli-Calmettes, 232 Boulevard de Sainte Marguerite, 13009 Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, 58 Boulevard Charles Livon, 13007 Marseille, France
- Team Immunity and Cancer, U1068 Inserm, UMR7258 Centre National de la Recherche Scientifique, 13009 Marseille, France
- Departement of Immunomonitoring, Institut Paoli-Calmettes, 232 Boulevard de Sainte Marguerite, 13009 Marseille, France
| |
Collapse
|
42
|
Minici C, Testoni S, Della-Torre E. B-Lymphocytes in the Pathophysiology of Pancreatic Adenocarcinoma. Front Immunol 2022; 13:867902. [PMID: 35359944 PMCID: PMC8963963 DOI: 10.3389/fimmu.2022.867902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma is highly infiltrated by B lymphocytes but the relevance of these immune cells in tumor development has been surprisingly overlooked until recently. Based on available evidence from other solid tumors, interaction between B lymphocytes and neoplastic cells is probably not uniformly stimulatory or inhibitory. Although presentation of tumor antigens to T cells and production of antitumor immunoglobulins might intuitively suggest a prominent tumor suppressive activity, specific subsets of B lymphocytes can secrete growth factors for neoplastic cells and immunosuppressive cytokines thus promoting escape from immunosurveillance and cancer progression. Because many of these mechanisms might also be implicated in the development of PDAC, and immune-modulation of B-cell activity is nowadays possible at different levels, determining the role of B-lymphocytes in this lethal cancer becomes of utmost importance to design novel therapeutic strategies. This review aims to discuss the emerging role of B cells in PDAC tumorigenesis, progression, and associated stromal reaction.
Collapse
Affiliation(s)
- Claudia Minici
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Della-Torre
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci 2022. [PMID: 34671202 DOI: 10.7150/ijbs.64077.pmid:34671202;pmcid:pmc8495390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.
Collapse
Affiliation(s)
- Ahui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
44
|
Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2022; 21:10-24. [PMID: 34538570 DOI: 10.1016/j.hbpd.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer-related death, and most patients are with advanced disease when diagnosed. At present, despite a variety of treatments have been developed for PDAC, few effective treatment options are available; on the other hand, PDAC shows significant resistance to chemoradiotherapy, targeted therapy, and immunotherapy due to its heterogeneous genetic profile, molecular signaling pathways, and complex tumor immune microenvironment. Nevertheless, over the past decades, there have been many new advances in the key theory and understanding of the intrinsic mechanisms and complexity of molecular biology and molecular immunology in pancreatic cancer, based on which more and more diverse new means and reasonable combination strategies for PDAC treatment have been developed and preliminary breakthroughs have been made. With the continuous exploration, from surgical local treatment to comprehensive medical management, the research-diagnosis-management system of pancreatic cancer is improving. This review focused on the variety of treatments for advanced PDAC, including traditional chemotherapy, targeted therapy, immunotherapy, microenvironment matrix regulation as well as the treatment targeting epigenetics, metabolism and cancer stem cells. We pointed out the current research bottlenecks and future exploration directions.
Collapse
|
45
|
King RJ, Shukla SK, He C, Vernucci E, Thakur R, Attri KS, Dasgupta A, Chaika NV, Mulder SE, Abrego J, Murthy D, Gunda V, Pacheco CG, Grandgenett PM, Lazenby AJ, Hollingsworth MA, Yu F, Mehla K, Singh PK. CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene 2022; 41:971-982. [PMID: 35001076 PMCID: PMC8840971 DOI: 10.1038/s41388-021-02132-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Metabolic alterations regulate cancer aggressiveness and immune responses. Given the poor response of pancreatic ductal adenocarcinoma (PDAC) to conventional immunotherapies, we investigated the link between metabolic alterations and immunosuppression. Our metabolic enzyme screen indicated that elevated expression of CD73, an ecto-5'-nucleotidase that generates adenosine, correlates with increased aggressiveness. Correspondingly, we observed increased interstitial adenosine levels in tumors from spontaneous PDAC mouse models. Diminishing CD73 by genetic manipulations ablated in vivo tumor growth, and decreased myeloid-derived suppressor cells (MDSC) in orthotopic mouse models of PDAC. A high-throughput cytokine profiling demonstrated decreased GM-CSF in mice implanted with CD73 knockdowns. Furthermore, we noted increased IFN-γ expression by intratumoral CD4+ and CD8+ T cells in pancreatic tumors with CD73 knockdowns. Depletion of CD4+ T cells, but not CD8+ T cells abrogated the beneficial effects of decreased CD73. We also observed that splenic MDSCs from Nt5e knockdown tumor-bearing mice were incompetent in suppressing T cell activation in the ex vivo assays. Replenishing GM-CSF restored tumor growth in Nt5e knockout tumors, which was reverted by MDSC depletion. Finally, anti-CD73 antibody treatment significantly improved gemcitabine efficacy in orthotopic models. Thus, targeting the adenosine axis presents a novel therapeutic opportunity for improving the anti-tumoral immune response against PDAC.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Surendra K. Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Chunbo He
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Ravi Thakur
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Kuldeep S. Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Aneesha Dasgupta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Nina V. Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Scott E. Mulder
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Camila G. Pacheco
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Paul M. Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Audrey J. Lazenby
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Michael A. Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| |
Collapse
|
46
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
47
|
Michaud D, Mirlekar B, Steward C, Bishop G, Pylayeva-Gupta Y. B Cell Receptor Signaling and Protein Kinase D2 Support Regulatory B Cell Function in Pancreatic Cancer. Front Immunol 2022; 12:745873. [PMID: 35046933 PMCID: PMC8761795 DOI: 10.3389/fimmu.2021.745873] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
B cells can act as potent suppressors of anti-tumor T cell immunity, presenting a mechanism of resistance to immunotherapy. In pancreatic ductal adenocarcinoma, B cells can display a T cell-suppressive or regulatory phenotype centered on the expression of the cytokine Interleukin 35 (IL-35). While B cell-mediated immunosuppression presents a barrier to anti-tumorigenic T cell function, it is not clear how regulatory B cell function could be targeted, and the signals that promote this suppressive phenotype in B cells are not well understood. Here we use a novel IL-35 reporter model to understand which signaling pathways are important for immunosuppressive properties in B cells. In vitro analysis of IL-35 reporter B cells revealed a synergy between the BCR and TLR4 signaling pathways is sufficient to induce IL-35 expression. However, in vivo, B cell receptor activation, as opposed to MyD88 signaling in B cells, is central to B cell-mediated suppression and promotion of pancreatic cancer growth. Further analysis identified protein kinase D2 (PKD2) as being a key downstream regulator of IL-35 expression in B cells. Regulatory B cells with an inactivating mutation in PKD2 failed to produce IL-35 or fully suppress effector T cell function in vitro. Furthermore, inhibition of PKD in B cells decreased tumor growth and promoted effector T cell function upon adoptive transfer into B cell-deficient mice. Collectively, these data provide insight into how regulatory B cell function is promoted in pancreatic cancer and identify potential therapeutic targets to restrain this function.
Collapse
Affiliation(s)
- Daniel Michaud
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Colleen Steward
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Gail Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
48
|
Lu S, Hua J, Xu J, Wei M, Liang C, Meng Q, Liu J, Zhang B, Wang W, Yu X, Shi S. Turning towards nonimmunoreactive tumors: Evaluation of cancer-associated fibroblasts enables prediction of the immune microenvironment and treatment sensitivity in pancreatic cancer. Comput Struct Biotechnol J 2022; 20:3911-3923. [PMID: 35950187 PMCID: PMC9334218 DOI: 10.1016/j.csbj.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022] Open
Abstract
We identified FGFR4 as a potential oncogene and CAFs target in pancreatic cancer. The study firstly utilized the fusion dataset to improve the prediction accuracy. Our CAF score exhibited ideal predictive competence for immunotherapy.
Increasing evidence has confirmed that cancer-associated fibroblasts (CAFs) recruit and induce regulatory T cells (Tregs) and macrophages but inhibit cytotoxic T lymphocyte infiltration to a certain extent, indicating that CAFs have a significant influence on the immunosuppressive microenvironment. However, the effect of CAFs on the immune microenvironment and immunotherapy response in pancreatic cancer remains unclear. Our research identified remarkable variation in CAF-associated molecules in multiple cancer types at the genetic and transcriptome levels. Two phenotypes were identified for 476 pancreatic cancer samples, and the different phenotypes exhibited significant variation in immune and inflammatory characteristics. Phenotype 1 exhibited higher levels of immune infiltration and lower expression of tumor-associated gene signatures than phenotype 2. We used a multipart approach to assess the prognostic value of CAF-associated molecules and constructed a CAF score model that could accurately predict patient prognosis. The CAF score accurately predicted infiltrating immune cell abundance, chemosensitivity, and the response to immunotherapy. Additionally, we found that the CAF-associated molecule FGFR4 may promote the proliferation and migration and inhibit the apoptosis of pancreatic cancer cells and is correlated with immune infiltration, suggesting its potential role as an oncogene. CAFs may promote the malignant biological behavior of pancreatic cancer through FGFR4. In summary, our research highlights potential relationships of the dysregulation of CAF-associated molecules with genome alterations and carcinogenesis in multiple malignancies. Our CAF-associated phenotypes and scoring system may enhance the understanding of pancreatic cancer chemotherapy sensitivity and immunotherapy response, providing new insights for personalized chemotherapy and immunotherapy.
Collapse
|
49
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Goulart MR, Stasinos K, Fincham REA, Delvecchio FR, Kocher HM. T cells in pancreatic cancer stroma. World J Gastroenterol 2021; 27:7956-7968. [PMID: 35046623 PMCID: PMC8678814 DOI: 10.3748/wjg.v27.i46.7956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with a dismal 5-year survival rate. PDAC has a complex tumour microenvironment; characterised by a robust desmoplastic stroma, extensive infiltration of immunesuppressive cells such as immature myeloid cells, tumour-associated macrophages, neutrophils and regulatory T cells, and the presence of exhausted and senescent T cells. The cross-talk between cells in this fibrotic tumour establishes an immune-privileged microenvironment that supports tumour cell escape from immune-surveillance, disease progression and spread to distant organs. PDAC tumours, considered to be non-immunogenic or cold, express low mutation burden, low infiltration of CD8+ cytotoxic lymphocytes that are localised along the invasive margin of the tumour border in the surrounding fibrotic tissue, and often display an exhausted phenotype. Here, we review the role of T cells in pancreatic cancer, examine the complex interactions of these crucial effector units within pancreatic cancer stroma and shed light on the increasingly attractive use of T cells as therapy.
Collapse
Affiliation(s)
- Michelle R Goulart
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Konstantinos Stasinos
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Rachel Elizabeth Ann Fincham
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Francesca R Delvecchio
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|