1
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
2
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Robinson W, Stone JK, Schischlik F, Gasmi B, Kelly MC, Seibert C, Dadkhah K, Gertz EM, Lee JS, Zhu K, Ma L, Wang XW, Sahinalp SC, Patro R, Leiserson MDM, Harris CC, Schäffer AA, Ruppin E. Identification of intracellular bacteria from multiple single-cell RNA-seq platforms using CSI-Microbes. SCIENCE ADVANCES 2024; 10:eadj7402. [PMID: 38959321 PMCID: PMC11221508 DOI: 10.1126/sciadv.adj7402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response.
Collapse
Affiliation(s)
- Welles Robinson
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Tumour Immunogenomics and Immunosurveillance Laboratory, Department of Oncology, University College London, London, UK
| | - Joshua K. Stone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - Charlie Seibert
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - Kimia Dadkhah
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - E. Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joo Sang Lee
- Department of Artificial Intelligence and Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kaiyuan Zhu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47408, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - S. Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rob Patro
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
| | - Mark D. M. Leiserson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alejandro A. Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, Xu L, Huang K, Lian G. Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles 2024; 13:e12484. [PMID: 39041344 PMCID: PMC11263977 DOI: 10.1002/jev2.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hanming Yao
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jinmao Zou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Weiling Liang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yue Zhao
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Kege Yang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ziyi Zhong
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shurui Zhou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jiajia Li
- Department of NephrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yaqing Li
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Lishu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Kaihong Huang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Guoda Lian
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Wang Y, Seliger B. Identification of RNA-binding protein hnRNP C targeting the 3'UTR of the TAP-associated glycoprotein tapasin in melanoma. Oncoimmunology 2024; 13:2370928. [PMID: 38948930 PMCID: PMC11212565 DOI: 10.1080/2162402x.2024.2370928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Deregulation or loss of the human leukocyte antigen class I (HLA-I) molecules on tumor cells leading to inhibition of CD8+ T cell recognition is an important tumor immune escape strategy, which could be caused by a posttranscriptional control of molecules in the HLA-I pathway mediated by RNA-binding proteins (RBPs). So far, there exists only limited information about the interaction of RBPs with HLA-I-associated molecules, but own work demonstrated a binding of the heterogeneous ribonucleoprotein C (hnRNP C) to the 3' untranslated region (UTR) of the TAP-associated glycoprotein tapasin (tpn). In this study, in silico analysis of pan-cancer TCGA datasets revealed that hnRNP C is higher expressed in tumor specimens compared to corresponding normal tissues, which is negatively correlated to tpn expression, T cell infiltration and the overall survival of tumor patients. Functional analysis demonstrated an upregulation of tpn expression upon siRNA-mediated downregulation of hnRNP C, which is accompanied by an increased HLA-I surface expression. Thus, hnRNP C has been identified to target tpn and its inhibition could improve the HLA-I surface expression on melanoma cells suggesting its use as a possible biomarker for T-cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Yuan Wang
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| |
Collapse
|
6
|
Xu J, Chen S, Hao T, Liu G, Zhang K, Zhang C, He Y. MEX3A promotes colorectal cancer migration, invasion and EMT via regulating the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol 2024; 150:319. [PMID: 38914858 PMCID: PMC11196291 DOI: 10.1007/s00432-024-05845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Mex-3 RNA binding family members are well-established to be important in cancer development and progression. However, the functions of Mex-3 RNA binding family member A (MEX3A) in colorectal cancer (CRC) metastasis remain poorly understood. In this study, we aim to reveal the function and the mechanism of MEX3A in promoting CRC metastasis. METHODS We used multiple databases including TCGA database, UALCAN, LinkedOmics, CancerSEA, GeneMANIA and STRING database to investigate the expression, the functions and underlying molecular mechanism of MEX3A in CRC. Multiple experimental methods were adapted to determine the study, including real-time PCR (qPCR), immunohistochemistry (IHC), western blot (WB), transfection, transwell migration and invasion assays, immunofluorescence (IF). RESULTS We found that MEX3A was significantly upregulated and correlated to tumor stage and lymph nodal metastasis in CRC through bioinformatics analysis and tissue immunohistochemistry (IHC). The higher expression of MEX3A in CRC correlated with poor recurrence-free survival (RFS) and overall survival (OS). In vitro studies showed that knockdown of MEX3A suppressed EMT transition, invasion and metastasis of CRC cells. Mechanistically, we revealed that MEX3A promotes epithelial-mesenchymal transition (EMT), invasion and metastasis of CRC cells by upregulating the Wnt/β-catenin signaling pathway. CONCLUSION In conclusion, our study reveals that MEX3A promotes CRC migration, invasion and EMT via regulating the Wnt/β-catenin signaling pathway and could be a novel therapeutic target for this patient population.
Collapse
Affiliation(s)
- Jiannan Xu
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songyao Chen
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Tengfei Hao
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guangyao Liu
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kai Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Changhua Zhang
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yulong He
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
- Center of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Miliotis C, Ma Y, Katopodi XL, Karagkouni D, Kanata E, Mattioli K, Kalavros N, Pita-Juárez YH, Batalini F, Ramnarine VR, Nanda S, Slack FJ, Vlachos IS. Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci. Nat Commun 2024; 15:4319. [PMID: 38773080 PMCID: PMC11109163 DOI: 10.1038/s41467-024-48436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Yuling Ma
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xanthi-Lida Katopodi
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dimitra Karagkouni
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Kanata
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juárez
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felipe Batalini
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Varune R Ramnarine
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Nanda
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ioannis S Vlachos
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
9
|
Wang J, Lu Q, Chen X, Aifantis I. Targeting MHC-I inhibitory pathways for cancer immunotherapy. Trends Immunol 2024; 45:177-187. [PMID: 38433029 DOI: 10.1016/j.it.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
The MHC-I antigen presentation (AP) pathway is key to shaping mammalian CD8+ T cell immunity, with its aberrant expression closely linked to low tumor immunogenicity and immunotherapy resistance. While significant attention has been given to genetic mutations and downregulation of positive regulators that are essential for MHC-I AP, there is a growing interest in understanding how tumors actively evade MHC-I expression and/or AP through the induction of MHC-I inhibitory pathways. This emerging field of study may offer more viable therapeutic targets for future cancer immunotherapy. Here, we explore potential mechanisms by which cancer cells evade MHC-I AP and function and propose therapeutic strategies that might target these MHC-I inhibitors to restore impaired T cell immunity within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
10
|
Yang K, Chen G, Yu F, Fang X, Zhang J, Zhang Z, Shi Y, Zhang L. Molecular mechanism of specific HLA-A mRNA recognition by the RNA-binding-protein hMEX3B to promote tumor immune escape. Commun Biol 2024; 7:158. [PMID: 38326406 PMCID: PMC10850505 DOI: 10.1038/s42003-024-05845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Immunotherapy, including immune checkpoint inhibitors and adoptive cell transfer, has obtained great progress, but their efficiencies vary among patients due to the genetic and epigenetic differences. Human MEX3B (hMEX3B) protein is an RNA-binding protein that contains two KH domains at the N-terminus and a RING domain at its C-terminus, which has the activity of E3 ubiquitin ligase and is essential for RNA degradation. Current evidence suggests that hMEX3B is involved in many important biological processes, including tumor immune evasion and HLA-A regulation, but the sequence of substrate RNA recognized by hMEX3B and the functional molecular mechanisms are unclear. Here, we first screened the optimized hMEX3B binding sequence on the HLA-A mRNA and reported that the two tandem KH domains can bind with their substrate one hundred times more than the individual KH domains. We systematically investigated the binding characteristics between the two KH domains and their RNA substrates by nuclear magnetic resonance (NMR). Based on this information and the small-angle X-ray scattering (SAXS) data, we used molecular dynamics simulations to obtain structural models of KH domains in complex with their corresponding RNAs. By analyzing the models, we noticed that on the KH domains' variable loops, there were two pairs of threonines and arginines that can disrupt the recognition of the RNA completely, and this influence had also been verified both in vitro and in vivo. Finally, we presented a functional model of the hMEX3B protein, which indicated that hMEX3B regulated the degradation of its substrate mRNAs in many biological processes. Taken together, our research illustrated how the hMEX3B protein played a key role in translation inhibition during the immune response to tumor cells and provided an idea and a lead for the study of the molecular mechanism and function of other MEX3 family proteins.
Collapse
Affiliation(s)
- Kanglong Yang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Fan Yu
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Jiahai Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yunyu Shi
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| | - Liang Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
11
|
Luo J, Zhu WC, Chen QX, Yang CF, Huang BJ, Zhang SJ. A prognostic model based on DNA methylation-related gene expression for predicting overall survival in hepatocellular carcinoma. Front Oncol 2024; 13:1171932. [PMID: 38304027 PMCID: PMC10830715 DOI: 10.3389/fonc.2023.1171932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) continues to increase in morbidity and mortality among all types of cancer. DNA methylation, an important epigenetic modification, is associated with cancer occurrence and progression. The objective of this study was to establish a model based on DNA methylation risk scores for identifying new potential therapeutic targets in HCC and preventing cancer progression. Methods Transcriptomic, clinical, and DNA methylation data on 374 tumor tissues and 50 adjacent normal tissues were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma database. The gene expression profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver tissue samples, were obtained from the Gene Expression Omnibus database. We analyzed the relationship between DNA methylation and gene expression levels after identifying the differentially methylated and expressed genes. Then, we developed and validated a risk score model based on the DNA methylation-driven genes. A tissue array consisting of 30 human hepatocellular carcinoma samples and adjacent normal tissues was used to assess the protein and mRNA expression levels of the marker genes by immunohistochemistry and qRT-PCR, respectively. Results Three methylation-related differential genes were identified in our study: GLS, MEX3B, and GNA14. The results revealed that their DNA methylation levels were negatively correlated with local gene expression regulation. The gene methylation levels correlated strongly with the prognosis of patients with liver cancer. This was confirmed by qRT-PCR and immunohistochemical verification of the expression of these genes or proteins in tumors and adjacent tissues. These results revealed the relationship between the level of relevant gene methylation and the prognosis of patients with liver cancer as well as the underlying cellular and biological mechanisms. This allows our gene signature to provide more accurate and appropriate predictions for clinical applications. Conclusion Through bioinformatics analysis and experimental validation, we obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to predict the prognosis and may be a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Traditional Chinese Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Wan-Cui Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiu-Xia Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang-Fu Yang
- Department of Oncology, The People’s Hospital of Gaozhou, Gaozhou, China
| | - Bi-Jun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
14
|
Hu J, Xiang Y, Zhu X, Hu C, Xu X, Li D, Deng Z, Jiang Z. Grass carp (Ctenopharyngodon idella) Mex3B positively regulates innate immunity by promoting the K63-linked ubiquitination of TLR3. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109023. [PMID: 37625735 DOI: 10.1016/j.fsi.2023.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
As a member of Mex3 (muscle excess protein-3) family, Mex3B (Mex-3 RNA binding family member B) is crucial in cell proliferation and migration in mammals. In this study, an ortholog of mammalian Mex3B (denominated CiMex3B, MT276802.1) was cloned and identified in grass carp (Ctenopharyngodon idella). CiMex3B is 1578 bp in length and encodes a polypeptide of 525 amino acids. Consistent with its mammalian counterpart, CiMex3B also contains one C-terminal RING domain and two N-terminal conserved tandem KH domains. CiMex3B up-regulates the expressions of IFN1, ISG15, MX2, as well as the expressions of inflammatory cytokines such as IL6, IL8 and TNFα in response to poly(I:C). A screening test for identifying potential targets indicated that CiMex3B is associated with TLR3 and TRIF. CiMex3B co-localizes with TLR3 in the late endosome, mitochondria and endoplasmic reticulum after poly(I:C) stimulation, whereas they are rarely discovered in the lysosomes. CiMex3B serves as a positive regulator in the phosphorylation of IRF3 and induces IFN1 expression. In addition, two truncation mutants of CiMex3B (1-220 and 221-525) were constructed to better understand the molecular mechanism of CiMex3B-mediated ubiquitination of TLR3. In line with wild-type protein, CiMex3B mutant (1-220) was found mainly in the cytoplasm; however, CiMex3B mutant (221-525) resided in the cytoplasm and the nucleus as well, and it was further confirmed that CiMex3B mutant (221-525) still interacts with TLR3. We also observed that CiMex3B promotes the K63-linked ubiquitination of TLR3, while neither of the truncation mutants (1-220 or 221-525) retains this activity. To sum up, this study revealed that CiMex3B potentiates the K63-linked ubiquitination of TLR3, and then elicits the IRF3-mediated antiviral innate immune responses.
Collapse
Affiliation(s)
- Jihuan Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, China; Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yang Xiang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xuechun Zhu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zeyin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, China; Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
15
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
16
|
Peng L, Zhao W, Yin T, Xu C, Wang G, Du M. The unique expression pattern of human leukocyte antigen in trophoblasts potentially explains the key mechanism of maternal-fetal tolerance and successful pregnancy. J Reprod Immunol 2023; 158:103980. [PMID: 37390630 DOI: 10.1016/j.jri.2023.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The success of pregnancy mainly depends on immune tolerance of the mother for the semi-allogeneic fetus. The placenta carrying paternal antigens develops in the maternal uterus without suffering immune attack, making the underlying mechanism of maternal tolerance an enduring mystery. As we all know, human leukocyte antigen (HLA) plays an important role in antigen processing and presentation, thus inducing specific immune responses. Therefore, it is reasonable to speculate that the absence of classical HLA class-I(HLA-I) and HLA class-II (HLA-II) molecules in trophoblasts may account for the maternal-fetal tolerance. Here, we review the HLA-involved interactions between trophoblast cells and decidual immune cells, which contribute to the immunotolerance in the development of normal pregnancy. We also compare the similarity between the maternal-fetal interface and tumor-immune microenvironment because the important role of HLA molecules in tumor immune invasion can provide some references to studies of maternal-fetal immune tolerance. Besides, the abnormal HLA expression is likely to be associated with unexplained miscarriage, making HLA molecules potential therapeutic targets. The advances reported by these studies may exert profound influences on other research areas, including tumor immunity, organ transplantation and autoimmune disease in the future.
Collapse
Affiliation(s)
- Lijin Peng
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Weijie Zhao
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Tingxuan Yin
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Guangchuan Wang
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meirong Du
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
17
|
Lee J, Kim EH. Mechanisms underlying response and resistance to immune checkpoint blockade in cancer immunotherapy. Front Oncol 2023; 13:1233376. [PMID: 37614504 PMCID: PMC10443702 DOI: 10.3389/fonc.2023.1233376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer immunotherapies targeting immune checkpoint pathways, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), have achieved unprecedented therapeutic success in treating various types of cancer. The prominent and persistent clinical responses to immune checkpoint blockade (ICB) therapy are currently constrained to a subset of patients. Owing to discrete individual tumor and immune heterogeneity, most patients fail to benefit from ICB treatment, demonstrating either primary or acquired resistance. A thorough comprehension of the mechanisms restricting the efficacy of immune checkpoint inhibitors (ICIs) is required to extend their clinical applicability to a broader spectrum of patients and cancer types. Numerous studies are presently investigating potential prognostic markers of responsiveness, the complex dynamics underlying the therapeutic and adverse effects of ICB, and tumor immune evasion throughout the course of immunotherapy. In this article, we have reviewed the extant literature elucidating the mechanisms underlying the response and resistance to ICB, with a particular emphasis on PD-1 and CTLA-4 pathway blockade in the context of anti-tumor immunity. Furthermore, we aimed to explore potential approaches to overcome cancer therapeutic resistance and develop a rational design for more personalized ICB-based combinational regimens.
Collapse
Affiliation(s)
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Stephan-Falkenau S, Streubel A, Mairinger T, Blum TG, Kollmeier J, Mairinger FD, Bauer T, Pfannschmidt J, Hollmann M, Wessolly M. Integrated Clinical, Molecular and Immunological Characterization of Pulmonary Sarcomatoid Carcinomas Reveals an Immune Escape Mechanism That May Influence Therapeutic Strategies. Int J Mol Sci 2023; 24:10558. [PMID: 37445733 DOI: 10.3390/ijms241310558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) has highly aggressive biological behaviour and poor clinical outcomes, raising expectations for new therapeutic strategies. We characterized 179 PSC by immunohistochemistry, next-generation sequencing and in silico analysis using a deep learning algorithm with respect to clinical, immunological and molecular features. PSC was more common in men, older ages and smokers. Surgery was an independent factor (p < 0.01) of overall survival (OS). PD-L1 expression was detected in 82.1% of all patients. PSC patients displaying altered epitopes due to processing mutations showed another PD-L1-independent immune escape mechanism, which also significantly influenced OS (p < 0.02). The effect was also maintained when only advanced tumour stages were considered (p < 0.01). These patients also showed improved survival with a significant correlation for immunotherapy (p < 0.05) when few or no processing mutations were detected, although this should be interpreted with caution due to the small number of patients studied. Genomic alterations for which there are already approved drugs were present in 35.4% of patients. Met exon 14 skipping was found more frequently (13.7%) and EGFR mutations less frequently (1.7%) than in other NSCLC. In summary, in addition to the divergent genomic landscape of PSC, the specific immunological features of this prognostically poor subtype should be considered in therapy stratification.
Collapse
Affiliation(s)
- Susann Stephan-Falkenau
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Anna Streubel
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Thomas Mairinger
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Torsten-Gerriet Blum
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Jens Kollmeier
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Torsten Bauer
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Joachim Pfannschmidt
- Department of Thoracic Surgery, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Manuel Hollmann
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
19
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Liu JX, Chen AN, Yu Q, Shi KT, Liu YB, Guo CL, Wang ZZ, Yao Y, Pan L, Lu X, Xu K, Wang H, Zeng M, Liu C, Schleimer RP, Wu N, Liao B, Liu Z. MEX3B inhibits collagen production in eosinophilic nasal polyps by downregulating epithelial cell TGFBR3 mRNA stability. JCI Insight 2023; 8:e159058. [PMID: 36976645 PMCID: PMC10243817 DOI: 10.1172/jci.insight.159058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Although the expression of Mex3 RNA-binding family member B (MEX3B) is upregulated in human nasal epithelial cells (HNECs) predominately in the eosinophilic chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) subtype, its functions as an RNA binding protein in airway epithelial cells remain unknown. Here, we revealed the role of MEX3B based on different subtypes of CRS and demonstrated that MEX3B decreased the TGF-β receptor III (TGFBR3) mRNA level by binding to its 3' UTR and reducing its stability in HNECs. TGF-βR3 was found to be a TGF-β2-specific coreceptor in HNECs. Knocking down or overexpressing MEX3B promoted or inhibited TGF-β2-induced phosphorylation of SMAD2 in HNECs, respectively. TGF-βR3 and phosphorylated SMAD2 levels were downregulated in CRSwNP compared with controls and CRS without nasal polyps with a more prominent downregulation in the eosinophilic CRSwNP. TGF-β2 promoted collagen production in HNECs. Collagen abundance decreased and edema scores increased in CRSwNP compared with control, again more prominently in the eosinophilic type. Collagen expression in eosinophilic CRSwNP was negatively correlated with MEX3B but positively correlated with TGF-βR3. These results suggest that MEX3B inhibits tissue fibrosis in eosinophilic CRSwNP by downregulating epithelial cell TGFBR3 expression; consequently, MEX3B might be a valuable therapeutic target against eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Jin-Xin Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Ao-Nan Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Qihong Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Ke-Tai Shi
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Yi-Bo Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Cui-Lian Guo
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Zhe-Zheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Chaohong Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert P. Schleimer
- Division of Allergy-Immunology, Department of Medicine; and
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ning Wu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
- Department of Immunology, School of Basic Medicine, Tongji Medical College, and
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital; and
| |
Collapse
|
21
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
22
|
Cheng Y, Li L, Wei X, Xu F, Huang X, Qi F, Zhang Y, Li X. HNRNPC suppresses tumor immune microenvironment by activating Treg cells promoting the progression of prostate cancer. Cancer Sci 2023; 114:1830-1845. [PMID: 36718950 PMCID: PMC10154801 DOI: 10.1111/cas.15745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Immune microenvironment could affect the biological progress in prostate cancer (PCa) through N6 methyl adenosine (m6A) methylation. The purpose of this study was to investigate the crosstalk between m6A methylation and immune microenvironment and explore potential biomarkers to improve the immunotherapeutic response. Firstly, according to 11 differentially expressed m6A genes between normal and tumor samples, PCa patients were divided into immune microenvironment subtype 1 (IMS1) and IMS2 based on m6A gene profiles extracted from The Cancer Genome Atlas (TCGA) database. IMS2 showed an immune "cold" phenotype with worse prognoses, and HNRNPC was identified as the biomarker of IMS2 by the protein-protein interaction network. Furthermore, through bioinformatics analyses and in vitro experiments, we found that HNRNPC-high patients showed a suppressive immune-infiltrating tumor microenvironment with a higher infiltration of regulatory T (Treg) cells. Finally, we cocultured transfected PCa cells with peripheral blood mononuclear cells (PBMC) and verified that HNRNPC inhibits tumor immunity by elevating the activation of Treg cells and suppression of effector CD8 T cell. In conclusion, we identified a "cold" immune phenotype in PCa, and HNRNPC regulating the activation of Treg cells. Activation of the immune microenvironment through targeting HNRNPC may be a potential therapeutic option for advanced PCa.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., Ltd.NanjingChina
| | - Xiyi Wei
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- The State Key Lab of ReproductiveDepartment of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Fan Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaochen Huang
- Department of PathologyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Feng Qi
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiao Li
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
- Department of Scientific ResearchJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
23
|
Mao Y, Xie H, Lv M, Yang Q, Shuang Z, Gao F, Li S, Zhu L, Wang W. The landscape of objective response rate of anti-PD-1/L1 monotherapy across 31 types of cancer: a system review and novel biomarker investigating. Cancer Immunol Immunother 2023:10.1007/s00262-023-03441-3. [PMID: 37022474 DOI: 10.1007/s00262-023-03441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have dramatically changed the landscape of cancer treatment. However, only a few patients respond to ICI treatment. Thus, uncovering clinically accessible ICI biomarkers would help identify which patients will respond well to ICI treatment. A comprehensive objective response rate (ORR) data of anti-PD-1/PD-L1 monotherapy in pan-cancer would offer the original data to explore the new biomarkers for ICIs. METHODS We systematically searched PubMed, Cochrane, and Embase for clinical trials on July 1, 2021, limited to the years 2017-2021, from which we obtained studies centering around anti-PD-1/PD-L1 monotherapy. Finally, 121 out of 3099 publications and 143 ORR data were included. All of the 31 tumor types/subtypes can be found in the TCGA database. The gene expression profiles and mutation data were downloaded from TCGA. A comprehensive genome-wide screening of ORR highly correlated mutations among 31 cancers was conducted by Pearson correlation analysis based on the TCGA database. RESULTS According to the ORR, we classified 31 types of cancer into high, medium, and low response types. Further analysis uncovered that "high response" cancers had more T cell infiltration, more neoantigens, and less M2 macrophage infiltration. A panel of 28 biomarkers reviewed from recent articles were investigated with ORR. We also found the TMB as a traditional biomarker had a high correlation coefficient with ORR in pan-cancer, however, the correlation between ITH and ORR was low across pan-cancer. Moreover, we primarily identified 1044 ORR highly correlated mutations through a comprehensive screening of TCGA data, among which USH2A, ZFHX4 and PLCO mutations were found to be highly correlated to strengthened tumor immunogenicity and inflamed antitumor immunity, as well as improved outcomes for ICIs treatment among multiple immunotherapy cohorts. CONCLUSION Our study provides comprehensive data on ORR of anti-PD-1/PD-L1 monotherapy across 31 tumor types/subtypes and an essential reference of ORR to explore new biomarkers. We also screened out a list of 1044 immune response related genes and we showed that USH2A, ZFHX4 and PLCO mutations may act as good biomarkers for predicting patient response to anti-PD-1/PD-L1 ICIs.
Collapse
Affiliation(s)
- Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Imaging Center, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Minyi Lv
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Institute of Gastroenterology, Supported By National Key Clinical Discipline, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong Province, China
| | - Qiuxia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Imaging Center, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zeyu Shuang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Feng Gao
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Institute of Gastroenterology, Supported By National Key Clinical Discipline, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong Province, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Lina Zhu
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Wang
- Department of Clinical Laboratory, Haining People's Hospital, Jiaxing, China.
| |
Collapse
|
24
|
Zapata L, Caravagna G, Williams MJ, Lakatos E, AbdulJabbar K, Werner B, Chowell D, James C, Gourmet L, Milite S, Acar A, Riaz N, Chan TA, Graham TA, Sottoriva A. Immune selection determines tumor antigenicity and influences response to checkpoint inhibitors. Nat Genet 2023; 55:451-460. [PMID: 36894710 PMCID: PMC10011129 DOI: 10.1038/s41588-023-01313-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation. Only in immune-edited tumors was immune predation linked to CD8 T cell infiltration. Immune-escaped metastases experienced the best response to immunotherapy, whereas immune-edited patients did not benefit, suggesting a preexisting resistance mechanism. Similarly, in a longitudinal cohort, nivolumab treatment removes neoantigens exclusively in the immunopeptidome of nonimmune-edited patients, the group with the best overall survival response. Our work uses dN/dS to differentiate between immune-edited and immune-escaped tumors, measuring potential antigenicity and ultimately helping predict response to treatment.
Collapse
Affiliation(s)
- Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Giulio Caravagna
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Cancer Data Science Laboratory, Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Trieste, Italy
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan 10 Kettering Cancer Center, New York, NY, USA
| | - Eszter Lakatos
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Benjamin Werner
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chela James
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Lucie Gourmet
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Salvatore Milite
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah, Ankara, Turkey
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
25
|
Liu HT, Chen SY, Peng LL, Zhong L, Zhou L, Liao SQ, Chen ZJ, Wang QL, He S, Zhou ZH. Spatially resolved transcriptomics revealed local invasion-related genes in colorectal cancer. Front Oncol 2023; 13:1089090. [PMID: 36816947 PMCID: PMC9928961 DOI: 10.3389/fonc.2023.1089090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Objective Local invasion is the first step of metastasis, the main cause of colorectal cancer (CRC)-related death. Recent studies have revealed extensive intertumoral and intratumoral heterogeneity. Here, we focused on revealing local invasion-related genes in CRC. Methods We used spatial transcriptomic techniques to study the process of local invasion in four CRC tissues. First, we compared the pre-cancerous, cancer center, and invasive margin in one section (S115) and used pseudo-time analysis to reveal the differentiation trajectories from cancer center to invasive margin. Next, we performed immunohistochemical staining for RPL5, STC1, AKR1B1, CD47, and HLA-A on CRC samples. Moreover, we knocked down AKR1B1 in CRC cell lines and performed CCK-8, wound healing, and transwell assays to assess cell proliferation, migration, and invasion. Results We demonstrated that 13 genes were overexpressed in invasive clusters, among which the expression of CSTB and TM4SF1 was correlated with poor PFS in CRC patients. The ribosome pathway was increased, while the antigen processing and presentation pathway was decreased along CRC progression. RPL5 was upregulated, while HLA-A was downregulated along cancer invasion in CRC samples. Pseudo-time analysis revealed that STC1, AKR1B1, SIRPA, C4orf3, EDNRA, CES1, PRRX1, EMP1, PPIB, PLTP, SULF2, and EGFL6 were unpregulated along the trajectories. Immunohistochemic3al staining showed the expression of STC1, AKR1B1, and CD47 was increased along cancer invasion in CRC samples. Knockdown of AKR1B1 inhibited CRC cells' proliferation, migration, and invasion. Conclusions We revealed the spatial heterogeneity within CRC tissues and uncovered some novel genes that were associated with CRC invasion.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si-Yuan Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling-Long Peng
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhong
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si-Qi Liao
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Ji Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Zhi-Hang Zhou, ; Song He,
| | - Zhi-Hang Zhou
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Zhi-Hang Zhou, ; Song He,
| |
Collapse
|
26
|
Zhang M, Cao L, Hou G, Lv X, Deng J. Investigation of the Potential Correlation Between RNA-Binding Proteins in the Evolutionarily Conserved MEX3 Family and Non-small-Cell Lung Cancer. Mol Biotechnol 2022:10.1007/s12033-022-00638-2. [DOI: 10.1007/s12033-022-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Members of the MEX3 (muscle excess 3) family, uniquely characterised as mRNA binding proteins, play emerging roles in the post-transcriptional regulation of programmed biological processes, including tumour cell death and immune mechanisms, and have been shown to be involved in a variety of diseases. However, the role of MEX3 in non-small cell lung cancer (NSCLC) has not been fully elucidated. In this study, we found no significant changes in the sequence and copy number of the MEX3 gene through analysis using the COSMIC database, revealing its stability during malignancy development. Its expression in NSCLC was examined using the Oncomine™ database, and the prognosis of each member gene was analysed by Kaplan–Meier. The results showed that overexpression of MEX3A, MEX3B, MEX3C and MEX3D was associated with significantly worse OS in patients with LUAD, while overexpression of MEX3D was also associated with significantly worse OS in patients with LUSC. Afterwards, we applied the Tumour Immunology Estimation Resource (TIMER) tool to assess the correlation between different MEX3 and infiltrative immune cell infiltration. Ultimately, we found that most MEX3 members were highly expressed in NSCLC, with high expression suggesting poor prognosis and correlating with immune cell infiltration. The complexity and heterogeneity of NSCLC was understood through MEX3, setting the framework for the prognostic impact of MEX3 in NSCLC patients and the development of new targeted therapeutic strategies in the future.
Collapse
|
27
|
Thelen M, Keller D, Lehmann J, Wennhold K, Weitz H, Bauer E, Gathof B, Brüggemann M, Kotrova M, Quaas A, Mallmann C, Chon SH, Hillmer AM, Bruns C, von Bergwelt-Baildon M, Garcia-Marquez MA, Schlößer HA. Immune responses against shared antigens are common in esophago-gastric cancer and can be enhanced using CD40-activated B cells. J Immunother Cancer 2022; 10:jitc-2022-005200. [PMID: 36600602 PMCID: PMC9743382 DOI: 10.1136/jitc-2022-005200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS RNA expression was assessed by NanoString in tumor samples of 41 treatment-naïve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing, in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion, clonality and cytotoxic activity of expanded T cells. RESULTS 68.3% of patients expressed ≥5 TAAs simultaneously with coregulated clusters, which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ≥1 TAA were detectable in 75.0% and 53.7% of patients, respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal, could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA.
Collapse
Affiliation(s)
- Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Diandra Keller
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hendrik Weitz
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monika Brüggemann
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michaela Kotrova
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Mallmann
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University Munich, München, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maria Alejandra Garcia-Marquez
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany,Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
28
|
Waks AG, Keenan TE, Li T, Tayob N, Wulf GM, Richardson ET, Attaya V, Anderson L, Mittendorf EA, Overmoyer B, Winer EP, Krop IE, Agudo J, Van Allen EM, Tolaney SM. Phase Ib study of pembrolizumab in combination with trastuzumab emtansine for metastatic HER2-positive breast cancer. J Immunother Cancer 2022; 10:jitc-2022-005119. [PMID: 36252998 PMCID: PMC9577940 DOI: 10.1136/jitc-2022-005119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Background Preclinical and clinical data support potential synergy between anti-HER2 therapy plus immune checkpoint blockade. The safety and tolerability of trastuzumab emtansine (T-DM1) combined with pembrolizumab is unknown. Methods This was a single-arm phase Ib trial (registration date January 26, 2017) of T-DM1 plus pembrolizumab in metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Eligible patients had HER2-positive, metastatic breast cancer previously treated with taxane, trastuzumab, and pertuzumab, and were T-DM1-naïve. A dose de-escalation design was used, with a dose-finding cohort followed by an expansion cohort at the recommended phase 2 dose (RP2D), with mandatory baseline biopsies. The primary endpoint was safety and tolerability. Secondary endpoints included objective response rate (ORR) and progression-free survival (PFS). Immune biomarkers were assessed using histology, protein/RNA expression, and whole exome sequencing. Associations between immune biomarkers and treatment response, and biomarker changes before and during treatment, were explored. Results 20 patients received protocol therapy. There were no dose-limiting toxicities. The RP2D was 3.6 mg/kg T-DM1 every 21 days plus 200 mg pembrolizumab every 21 days. 85% of patients experienced treatment-related adverse events (AEs) ≥grade 2, 20% of patients experienced grade 3 AEs, and no patients experienced grade >4 AEs. Four patients (20%) experienced pneumonitis (three grade 2 events; one grade 3 event). ORR was 20% (95% CI 5.7% to 43.7%), and median PFS was 9.6 months (95% CI 2.8 to 16.0 months). Programmed cell death ligand-1 and tumor infiltrating lymphocytes did not correlate with response in this small cohort. Conclusions T-DM1 plus pembrolizumab was a safe and tolerable regimen. Ongoing trials will define if there is a role for checkpoint inhibition in the management of HER2-positive metastatic breast cancer. Trial registration number NCT03032107.
Collapse
Affiliation(s)
- Adrienne G Waks
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tanya E Keenan
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tianyu Li
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nabihah Tayob
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gerburg M Wulf
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA,Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Edward T Richardson
- Harvard Medical School, Boston, Massachusetts, USA,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Elizabeth A Mittendorf
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Beth Overmoyer
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric P Winer
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Yale Cancer Center, New Haven, Connecticut, USA
| | - Ian E Krop
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Yale Cancer Center, New Haven, Connecticut, USA
| | - Judith Agudo
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eliezer M Van Allen
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sara M Tolaney
- Harvard Medical School, Boston, Massachusetts, USA,Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Li J, Wuethrich A, Zhang Z, Wang J, Lin LL, Behren A, Wang Y, Trau M. SERS Multiplex Profiling of Melanoma Circulating Tumor Cells for Predicting the Response to Immune Checkpoint Blockade Therapy. Anal Chem 2022; 94:14573-14582. [PMID: 36222247 DOI: 10.1021/acs.analchem.2c02398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable success in many cancers including melanoma. However, ICB therapy benefits only a small proportion of patients and produces severe side effects for some patients. Thus, there is an urgent need to identify patients who are more likely to respond to ICB therapy to improve outcomes and minimize side effects. To predict ICB therapy responses, we design a surface-enhanced Raman scattering (SERS) assay for multiplex profiling of circulating tumor cells (CTCs) under basal and interferon-γ (IFN-γ) stimulation. Through simultaneous ensemble and single-cell measurements of CTCs, the SERS assay can reveal tumor heterogeneity and offer a comprehensive CTC phenotype for decision-making. Anisotropic gold-silver alloy nanoboxes are utilized as SERS plasmonic substrates for improved signal readouts of CTC surface biomarkers. By generating a unique CTC signature with four surface biomarkers, the developed assay enables the differentiation of CTCs from three different patient-derived melanoma cell lines. Significantly, in a cohort of 14 melanoma patients who received programmed cell death-1 blockade therapy, the changes of CTC signature induced by IFN-γ stimulation to CTCs show the potential to predict responders. We expect that the SERS assay can help select patients for receiving ICB therapy in other cancers.
Collapse
Affiliation(s)
- Junrong Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, P. R. China.,Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou350007, P. R. China
| | - Lynlee L Lin
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD4102, Australia
| | - Andreas Behren
- Oliva Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC3086, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC3010, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
30
|
Integrated Analysis and Identification of Critical RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14153739. [PMID: 35954405 PMCID: PMC9367304 DOI: 10.3390/cancers14153739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The role of RNA-binding proteins (RBPs) in bladder cancer (BC) remains unclear. Therefore, we analyzed the clinical information and RNA sequencing data from patients with BC and identified RBPs that may be promising predictors of BC. Abstract RBPs in the development and progression of BC remains unclear. Here, we elucidated the role of RBPs in predicting the survival of patients with BC. Clinical information and RNA sequencing data of the training and validation cohorts were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. Survival-related differentially expressed RBPs were identified using Cox regression analyses. A total of 113 upregulated and 54 downregulated RBPs were observed, with six showing prognostic values (AHNAK, MAP1B, LAMA2, P4HB, FASN, and GSDMB). In both the GSE32548 and GSE31684 datasets, patients with low-risk scores in survival-related six RBPs-based prognostic model showed longer overall survival than those with high-risk scores. AHNAK, MAP1B, P4HB, and FASN expression were significantly upregulated in both BC tissues and cell lines. BC tissues from high-risk group showed higher proportions of naive CD4+ T cells, M0 and M2 macrophages, and neutrophils and lower proportions of plasma cells, CD8+ T cells, and T-cell follicular helper compared to low-risk group. AHNAK knockdown significantly inhibited the proliferation, invasion, and migration of BC cells in vitro and inhibited the growth of subcutaneous tumors in vivo. We thus developed and functionally validated a novel six RBPs-based prognostic model for BC.
Collapse
|
31
|
Wang X, Kuang W, Ding J, Li J, Ji M, Chen W, Shen H, Shi Z, Wang D, Wang L, Yang P. Systematic Identification of the RNA-Binding Protein STAU2 as a Key Regulator of Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153629. [PMID: 35892886 PMCID: PMC9367319 DOI: 10.3390/cancers14153629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Pancreatic adenocarcinoma (PAAD) is one of the most common tumors of the gastrointestinal tract and is difficult to diagnose and treat due to tumor heterogeneity and the immunosuppressive tumor microenvironment. RNA-binding proteins have been studied and their dysregulation has been found to play a key role in altering RNA metabolism in various malignancies. STAU2 is one of them. To investigate the role of STAU2 in PAAD, we monitored the signaling pathway by regulating substrate mRNA and experimentally confirmed that STAU2 is the most potential biomarker for the occurrence and development of PAAD. Furthermore, we found that high expression of STAU2 not only contributes to immune evasion but also correlates with sensitivity to chemotherapeutic agents, suggesting that STAU2 may be a potential target for combined natural therapy. These results demonstrate that STAU2 is a novel prognostic and diagnostic biomarker for PAAD, revealing STAU2′s utility in cancer therapy and drug development. Abstract Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer. RNA-binding proteins (RBPs) regulate highly dynamic post-transcriptional processes and perform very important biological functions. Although over 1900 RBPs have been identified, most are considered markers of tumor progression, and further information on their general role in PAAD is not known. Here, we report a bioinformatics analysis that identified five hub RBPs and produced a high-value prognostic model based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Among these, the prognostic signature of the double-stranded RNA binding protein Staufen double-stranded RNA (STAU2) was identified. Firstly, we found that it is a highly expressed critical regulator of PAAD associated with poor clinical outcomes. Accordingly, the knockdown of STAU2 led to a profound decrease in PAAD cell growth, migration, and invasion and induced apoptosis of PAAD cells. Furthermore, through multiple omics analyses, we identified the key target genes of STAU2: Palladin cytoskeletal associated protein (PALLD), Heterogeneous nuclear ribonucleoprotein U (HNRNPU), SERPINE1 mRNA Binding Protein 1 (SERBP1), and DEAD-box polypeptide 3, X-Linked (DDX3X). Finally, we found that a high expression level of STAU2 not only helps PAAD evade the immune response but is also related to chemotherapy drug sensitivity, which implies that STAU2 could serve as a potential target for combinatorial therapy. These findings uncovered a novel role for STAU2 in PAAD aggression and resistance, suggesting that it probably represents a novel therapeutic and drug development target.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (X.W.); (P.Y.); Tel.: +86-13681986682 (P.Y.)
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongrui Shi
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (X.W.); (P.Y.); Tel.: +86-13681986682 (P.Y.)
| |
Collapse
|
32
|
Kashikar R, Kotha AK, Shah S, Famta P, Singh SB, Srivastava S, Chougule MB. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Adv Drug Deliv Rev 2022; 185:114257. [PMID: 35381306 DOI: 10.1016/j.addr.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
RNA binding proteins (RBPs) enact a very crucial part in the RNA directive processes. Atypical expression of these RBPs affects many steps of RNA metabolism, majorly altering its expression. Altered expression and dysfunction of RNA binding proteins lead to cancer progression and other diseases. We enumerate various available interventions, and recent findings focused on targeting RBPs for cancer therapy and diagnosis. The treatment, sensitization, chemoprevention, gene-mediated, and virus mediated interventions were studied to treat and diagnose cancer. The application of passively and actively targeted lipidic nanoparticles, polymeric nanoparticles, virus-based particles, and vaccine-based immunotherapy for the delivery of therapeutic agent/s against cancer are discussed. We also discuss the formulation aspect of nanoparticles for achieving delivery at the site of action and ongoing clinical trials targeting RBPs.
Collapse
|
33
|
Xu L, Li W, Yang T, Hu S, Zou Q, Jiao J, Jiang N, Zhang Y. Immune-Related RNA-Binding Protein-Based Signature With Predictive and Prognostic Implications in Patients With Lung Adenocarcinoma. Front Mol Biosci 2022; 9:807622. [PMID: 35647031 PMCID: PMC9136055 DOI: 10.3389/fmolb.2022.807622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Dysregulation of RNA-binding proteins (RBPs) in cancers is associated with immune and cancer development. Here, we aimed to profile immune-related RBPs in lung adenocarcinoma (LUAD) and construct an immune-related RBP signature (IRBPS) to predict the survival and response to immunotherapy.Methods: A correlation analysis was performed to establish a co-expression network of RBPs and immune-related genes (IRGs) to characterize immune-related RBPs in the TCGA–LUAD cohort (n = 497 cases). Then, a combination of the Random survival forest (RSF) and Cox regression analysis was performed to screen the RBPs and establish IRBPS. This was followed by independent validation of IRBPS in GSE72094 (n = 398 cases), GSE31210, (n = 226 cases), and GSE26939 (n = 114 cases). Differences between the low- and high-risk groups were compared in terms of gene mutations, tumor mutation burden, tumor-infiltrating lymphocytes, and biomarkers responsive to immunotherapy.Results: DDX56, CTSL, ZC3H12D, and PSMC5 were selected and used to construct IRBPS. The high-risk scores of patients had a significantly worse prognosis in both training and testing cohorts (p < 0.0001 and p < 0.05, respectively), and they tended to be older and have an advanced TNM stage. Furthermore, IRBPS was a prognostic factor independent of age, gender, smoking history, TNM stage, and EGFR mutation status (p = 0.002). In addition, high-risk scores of IRBPS were significantly correlated with tumor-infiltrating lymphocytes (p < 0.05). They also had a high level of PD-L1 protein expression (p < 0.01), number of neoantigens (p < 0.001), and TMB (p < 0.001), implying the possible prediction of IRBPS in the immunotherapy of LUAD.Conclusion: The currently established IRBPS encompassing immune-related RBPs might serve as a promising tool to predict survival, reflect the immune microenvironment, and predict the efficacy of immunotherapy among LUAD patients.
Collapse
Affiliation(s)
- Lei Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanru Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ju Jiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningyi Jiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Ningyi Jiang, ; Yong Zhang,
| | - Yong Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ningyi Jiang, ; Yong Zhang,
| |
Collapse
|
34
|
High GILT Expression Is Associated with Improved Survival in Metastatic Melanoma Patients Treated with Immune Checkpoint Inhibition. Cancers (Basel) 2022; 14:cancers14092200. [PMID: 35565329 PMCID: PMC9100272 DOI: 10.3390/cancers14092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Skin cancer is the most common type of cancer, with melanoma being among the deadliest of skin cancers due to its propensity to metastasize. Immune checkpoint inhibitors (ICI) generate anti-tumor immune responses resulting in improved outcomes in patients with metastatic melanoma. However, only a subset of melanoma patients responds to these therapies, which are costly and come with a risk of adverse effects. Therefore, there is a need for biomarkers to predict which patients will respond to ICI. We found that ICI-treated metastatic melanoma patients with high GILT mRNA expression in bulk tumor samples had improved survival. Additionally, high GILT protein expression within metastatic melanoma cells was associated with improved survival in patients treated with ICI. This study suggests that GILT may serve as a biomarker to predict which patients will respond to ICI, which could improve patient care, reduce healthcare costs, and facilitate appropriate selection of therapies for patients with metastatic melanoma. Abstract Gamma-interferon-inducible lysosomal thiol reductase (GILT) is critical for MHC class II restricted presentation of multiple melanoma antigens. There is variable GILT protein expression in malignant melanocytes in melanoma specimens. High GILT mRNA expression in melanoma specimens is associated with improved overall survival, before the advent of immune checkpoint inhibitors (ICI). However, the association of GILT in metastatic melanoma with survival in patients treated with ICI and the cell type expressing GILT associated with survival have not been determined. Using RNA sequencing datasets, high GILT mRNA expression in metastatic melanoma specimens was associated with improved progression-free and overall survival in patients treated with ICI. A clinical dataset of metastatic melanoma specimens was generated and annotated with clinical information. Positive GILT immunohistochemical staining in antigen presenting cells and melanoma cells was observed in 100% and 65% of metastatic melanoma specimens, respectively. In the subset of patients treated with ICI in the clinical dataset, high GILT protein expression within melanoma cells was associated with improved overall survival. The association of GILT mRNA and protein expression with survival was independent of cancer stage. These studies support that high GILT mRNA expression in bulk tumor samples and high GILT protein expression in melanoma cells is associated with improved survival in ICI-treated patients. These findings support further investigation of GILT as a biomarker to predict the response to ICI.
Collapse
|
35
|
Kalaora S, Nagler A, Wargo JA, Samuels Y. Mechanisms of immune activation and regulation: lessons from melanoma. Nat Rev Cancer 2022; 22:195-207. [PMID: 35105962 DOI: 10.1038/s41568-022-00442-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Melanoma, a skin cancer that develops from pigment cells, has been studied intensively, particularly in terms of the immune response to tumours, and has been used as a model for the development of immunotherapy. This is due, in part, to the high mutational burden observed in melanomas, which increases both their immunogenicity and the infiltration of immune cells into the tumours, compared with other types of cancers. The immune response to melanomas involves a complex set of components and interactions. As the tumour evolves, it accumulates an increasing number of genetic and epigenetic alterations, some of which contribute to the immunogenicity of the tumour cells and the infiltration of immune cells. However, tumour evolution also enables the development of resistance mechanisms, which, in turn, lead to tumour immune escape. Understanding the interactions between melanoma tumour cells and the immune system, and the evolving changes within the melanoma tumour cells, the immune system and the microenvironment, is essential for the development of new cancer therapies. However, current research suggests that other extrinsic factors, such as the microbiome, may play a role in the immune response to melanomas. Here, we review the mechanisms underlying the immune response in the tumour and discuss recent advances as well as strategies for treatment development.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Shum B, Larkin J, Turajlic S. Predictive biomarkers for response to immune checkpoint inhibition. Semin Cancer Biol 2022; 79:4-17. [PMID: 33819567 DOI: 10.1016/j.semcancer.2021.03.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors have transformed the prognosis and treatment paradigm of many cancer types, through the potential for durable responses. However, the majority of patients still do not benefit. Response to checkpoint inhibition is determined by dynamic host, tumour and tumour microenvironment factors that display spatial and temporal variability, but our understanding of these interactions is incomplete. Through investigating biomarkers of resistance and response, opportunities arise to discover new therapeutic targets and shape personalised treatment strategies. Here we review approved and emerging biomarkers of response to immune checkpoint inhibitors, in particular the recent rapid progress in host and tumour genomics. It is unlikely that a single biomarker will precisely predict response, but multivariate multiomic markers may provide a balanced assessment of these factors and more accurately identify patients who will benefit. Further efforts are required to translate these groundbreaking discoveries into novel therapeutics and biomarker driven clinical trials, to provide durable treatment response to a greater population of patients.
Collapse
Affiliation(s)
- Benjamin Shum
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
37
|
Miyamae J, Okano M, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Haplotype structures and polymorphisms of dog leukocyte antigen (DLA) class I loci shaped by intralocus and interlocus recombination events. Immunogenetics 2022; 74:245-259. [PMID: 34993565 DOI: 10.1007/s00251-021-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
The dog leukocyte antigen (DLA) class I genomic region is located on chromosome 12, and the class I genomic region is composed of at least two distinct haplotypic gene structures, DLA-88-DLA-12 and DLA-88-DLA-88L. However, detailed information of the genomic differences among DLA-88, DLA-12, and DLA-88L are still lacking at the full-length gene level, and therefore, DLA allelic sequences classified for each of these loci are limited in number so far. In this study, we determined the DNA sequence of a 95-kb DLA class I genomic region including DLA-88, DLA-12/88L, and DLA-64 with three DLA homozygous dogs and of 37 full-length allelic gene sequences for DLA-88 and DLA-12/88L loci in 26 DLA class I homozygous dogs. Nucleotide diversity profiles of the 95-kb regions and sequence identity scores of the allelic sequences suggested that DLA-88L is a hybrid gene generated by interlocus and/or intralocus gene conversion between DLA-88 and DLA-12. The putative minimum conversion tract was estimated to be at least an 850-bp segment in length located from the 5´flanking untranslated region to the end of intron 2. In addition, at least one DLA-12 allele (DLA-12*004:01) was newly generated by interlocus gene conversion. In conclusion, the analysis for the occurrence of gene conversion within the dog DLA class I region revealed intralocus gene conversion tracts in 17 of 27 DLA-88 alleles and two of 10 DLA-12 alleles, suggesting that intralocus gene conversion has played an important role in expanding DLA allelic variations.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan.
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Jerzy K Kulski
- Discipline of Psychiatry, Medical School, The University of Western Australia, Crawley, WA, Australia
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
38
|
Shao L, Wang J, Karatas O, Ittmann M. MEX3D is an oncogenic driver in prostate cancer. Prostate 2021; 81:1202-1213. [PMID: 34455614 PMCID: PMC8460603 DOI: 10.1002/pros.24216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common visceral malignancy and the second leading cause of cancer deaths in US men. The two most common genetic alterations in PCa are expression of the TMPRSS2/ERG (TE) fusion gene and loss of the PTEN tumor suppressor. These genetic alterations act cooperatively to transform prostatic epithelium but the exact mechanisms involved are unclear. METHODS Microarray expression analysis of immortalized prostate epithelial cells transformed by loss of PTEN and expression of the TE fusion revealed MEX3D as one of the most highly upregulated genes. MEX3D expression in prostate cancer was examined in patient samples and in silico. In vitro and in vivo studies to characterize the biological impact of MEX3D were carried out. Analysis of the TCGA PanCancer database revealed TCF3 as a major target of MEX3D. The induction of TCF3 by MEX3D was confirmed and the biological impact of TCF3 examined by in vitro studies. RESULTS MEX3D is expressed at increased levels in prostate cancer and is increased by decreased PTEN and/or expression of the TE fusion gene and drives soft agar colony formation, invasion and tumor formation in vivo. The known oncogenic transcription factor TCF3 is highly correlated with MEX3D in prostate cancer. MEX3D expression strongly induces TCF3, which promotes soft agar colony formation and invasion in vitro. CONCLUSIONS Loss of PTEN and expression of the TE fusion gene in prostate cancer strongly upregulates expression of MEX3D and its target TCF3 and promotes transformation associated phenotypes via this pathway.
Collapse
Affiliation(s)
- Longjiang Shao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Jianghua Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Omer Karatas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| |
Collapse
|
39
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Immunotherapy for triple-negative breast cancer: A molecular insight into the microenvironment, treatment, and resistance. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:75-87. [PMID: 39036372 PMCID: PMC11256541 DOI: 10.1016/j.jncc.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Clinicians have very limited options to treat triple-negative breast cancer (TNBC) due to the lack of effective targeted drugs. Recently, the findings of the mechanism underlying tumor-intrinsic immune escape have fueled a wave of studies into immunotherapy in breast cancer (BC). Compared with other BC subtypes, TNBC shows a better response to immunotherapy due to the higher level of tumor mutation burden and lymphocyte infiltration. Thereinto, immune checkpoint inhibitors (ICIs) achieved the first success of immunotherapy for TNBC and are widely utilized with conventional treatments in the neoadjuvant/adjuvant and advanced stages. However, a large number of TNBC patients fail to demonstrate a good response to ICIs, and the acquired resistance to ICI-based therapies is clinically emerging, which is a major challenge for immunotherapy in TNBC. Here we review the latest advances in TNBC immune microenvironment, immunotherapy, and immunotherapeutic resistance and discuss the challenges and potential approaches to improve the clinical benefit of immunotherapy against TNBC.
Collapse
Affiliation(s)
- Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
- Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
- School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
40
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
41
|
Abstract
Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, California 92093, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
| | - Maurizio Zanetti
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
42
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
43
|
Abstract
Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
44
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Abstract
Here we argue in support of the human leukocyte antigen (HLA) supergene as a tumor suppressor. HLA is a recurring mutational target in a large and diverse group of malignancies. The tumor suppressor function of HLA is linked to an embryonic/stemness and drug resistance phenotype. A deeper understanding of the distinct roles of HLA, including immunosurveillance, stemness, and tumor suppressor functions, could illuminate the limited responses in cancer patients. Furthermore, it would provide guidelines for the design of new therapeutic strategies, including the potential of modulating HLA expression in the tumor stem cell compartment.
Collapse
Affiliation(s)
- Elisabet Pujadas
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Lederer M, Müller S, Glaß M, Bley N, Ihling C, Sinz A, Hüttelmaier S. Oncogenic Potential of the Dual-Function Protein MEX3A. BIOLOGY 2021; 10:415. [PMID: 34067172 PMCID: PMC8151450 DOI: 10.3390/biology10050415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
MEX3A belongs to the MEX3 (Muscle EXcess) protein family consisting of four members (MEX3A-D) in humans. Characteristic for MEX3 proteins is their domain structure with 2 HNRNPK homology (KH) domains mediating RNA binding and a C-terminal really interesting new gene (RING) domain that harbors E3 ligase function. In agreement with their domain composition, MEX3 proteins were reported to modulate both RNA fate and protein ubiquitination. MEX3 paralogs exhibit an oncofetal expression pattern, they are severely downregulated postnatally, and re-expression is observed in various malignancies. Enforced expression of MEX3 proteins in various cancers correlates with poor prognosis, emphasizing their oncogenic potential. The latter is supported by MEX3A's impact on proliferation, self-renewal as well as migration of tumor cells in vitro and tumor growth in xenograft studies.
Collapse
Affiliation(s)
- Marcell Lederer
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Simon Müller
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Markus Glaß
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Nadine Bley
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Christian Ihling
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Andrea Sinz
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Stefan Hüttelmaier
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| |
Collapse
|
47
|
Frangieh CJ, Melms JC, Thakore PI, Geiger-Schuller KR, Ho P, Luoma AM, Cleary B, Jerby-Arnon L, Malu S, Cuoco MS, Zhao M, Ager CR, Rogava M, Hovey L, Rotem A, Bernatchez C, Wucherpfennig KW, Johnson BE, Rozenblatt-Rosen O, Schadendorf D, Regev A, Izar B. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet 2021; 53:332-341. [PMID: 33649592 PMCID: PMC8376399 DOI: 10.1038/s41588-021-00779-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)-JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion.
Collapse
Affiliation(s)
- Chris J Frangieh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes C Melms
- Columbia Center for Translational Immunology, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn R Geiger-Schuller
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian Cleary
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Livnat Jerby-Arnon
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Shruti Malu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Immunitas Therapeutics, Waltham, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maryann Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Casey R Ager
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Meri Rogava
- Columbia Center for Translational Immunology, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Lila Hovey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, Waltham, MA, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, South San Francisco, CA, USA.
| | - Benjamin Izar
- Columbia Center for Translational Immunology, New York, NY, USA.
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
49
|
Liu J, Xie Y, Guo J, Li X, Wang J, Jiang H, Peng Z, Wang J, Wang S, Li Q, Ye L, Zhong Y, Zhang Q, Liu X, Lonard DM, Wang J, O'Malley BW, Liu Z. Targeting NSD2-mediated SRC-3 liquid-liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nat Commun 2021; 12:1022. [PMID: 33589584 PMCID: PMC7884723 DOI: 10.1038/s41467-021-21386-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Development of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients. The mechanisms behind acquired resistance to the proteasome inhibitor bortezomib in multiple myeloma remain to be elucidated. Here, the authors show that the histone methyltransferase NSD2 stabilized SRC-3 protein levels, promotes its phase separation and alters H3K36me2 at certain gene promoters resulting in a transcriptional profile that favors resistance of myeloma cells to bortezomib.
Collapse
Affiliation(s)
- Jing Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Guo
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingjing Wang
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Hongmei Jiang
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linquan Ye
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Yuping Zhong
- Department of Hematology, Myeloma Research Center of Beijing, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Qiguo Zhang
- Department of Hematology, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaozhi Liu
- Central Laboratory, Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Zhiqiang Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
50
|
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, Watkins TBK, Rosenthal R, Biswas D, Rowan A, Lim E, Al Bakir M, Turati V, Guerra-Assunção JA, Conde L, Furness AJS, Saini SK, Hadrup SR, Herrero J, Lee SH, Van Loo P, Enver T, Larkin J, Hellmann MD, Turajlic S, Quezada SA, McGranahan N, Swanton C. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021; 184:596-614.e14. [PMID: 33508232 PMCID: PMC7933824 DOI: 10.1016/j.cell.2021.01.002] [Citation(s) in RCA: 481] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Collapse
Affiliation(s)
- Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - James L Reading
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Krupa Thakkar
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emilia Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Virginia Turati
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - José Afonso Guerra-Assunção
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew J S Furness
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Parker Center for Cancer Immunotherapy, 885 2nd Avenue, New York, NY 10017, USA
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|