1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Slika H, Shahani A, Gattu K, Mundrathi V, Solan AA, Gonzalez B, Haque TN, Rahman S, Sugandhi VV, Lee J, Velarde E, Alomari S, Pacis VL, Brem H, Tyler B, Xin X, Cho H. Intracranial Nanogel Pellets Carrying Temozolomide and Paclitaxel for Adjuvant Brain Cancer Therapy. Mol Pharm 2025; 22:131-141. [PMID: 39666995 DOI: 10.1021/acs.molpharmaceut.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glioblastoma multiforme is the most frequently diagnosed primary malignant brain tumor. Despite multimodal therapy with surgical resection, radiation therapy, and chemotherapy, recurrence of the tumor is almost always guaranteed due to the infiltrative nature of the disease. Moreover, the blood brain barrier imparts an additional layer of complexity by impeding the delivery of therapeutic agents to the tumor, hence limiting the efficacy of systemically delivered drugs. Hence, to overcome this obstacle and avoid treatment resistance, the local delivery of combination therapies has risen as an appealing adjuvant treatment. The present study describes the creation of a novel PLGA-PEG-PLGA-based nanogel pellet system for the interstitial delivery of Temozolomide (TMZ) and paclitaxel (PTX) to the brain. The nanogel pellet was shown to be stable as a pellet at ambient temperature, absorb water, change to a gel formulation at physiological temperature, and achieve gradual long-term release of TMZ and PTX in vitro. Additionally, in vivo testing of the TMZ/PTX-loaded nanogel pellets in an orthotopic CT2A mouse model and an orthotopic 9L rat model has shown an acceptable safety profile when implanted intracranially and a significant improvement in overall survival.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Kranthi Gattu
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Varsha Mundrathi
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Ameilia A Solan
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Brianna Gonzalez
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Tasmima N Haque
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Sadia Rahman
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Vrashabh V Sugandhi
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Jennifer Lee
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Sciences, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Safwan Alomari
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Victor Lance Pacis
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Henry Brem
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xiaoban Xin
- OncoGone Inc., Frederick, Maryland 21704, United States
| | - Hyunah Cho
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
3
|
Serra R, Smith SJ, Rowlinson J, Gorelick N, Moloney C, McCrorie P, Veal GJ, Berry P, Chalmers AJ, Suk I, Shakesheff KM, Alexander C, Grundy RG, Brem H, Tyler BM, Rahman R. Neurosurgical application of olaparib from a thermo-responsive paste potentiates DNA damage to prolong survival in malignant glioma. Br J Cancer 2024; 131:1858-1868. [PMID: 39433869 PMCID: PMC11589713 DOI: 10.1038/s41416-024-02878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND There is increased pan-cancer specific interest in repurposing the poly adenosine diphosphate-ribose polymerase-1 (PARP-1) inhibitor, olaparib, for newly diagnosed or recurrent isocitrate dehydrogenase wild type glioblastoma. We explore whether intra-cavity delivery of olaparib confers a survival benefit in a pre-clinical high-grade glioma model. METHODS Primary tumor RNA sequencing data was used to determine PARP-1 as a target in the glioblastoma infiltrative margin. We assessed radiosensitization conferred by olaparib alone and concomitant to genotoxic insults in vitro using clonal growth assays, cell cycle analysis and immunocytochemistry, and in vivo upon post-surgical delivery from a temperature-sensitive polymeric paste. RESULTS RNA-sequencing confirmed PARP-1 as a viable therapy target in glioblastoma infiltrative disease. Acute exposure of glioma cells to olaparib impaired proliferation and induced late-stage apoptosis associated with DNA damage in vitro, potentiated by radiation. Using high-grade glioma orthotopic allografts, a long-term overall survival benefit was observed upon interstitial olaparib delivery concomitant with radiotherapy, compared to systemic olaparib and standard glioblastoma treatment. Combined delivery of olaparib with either temozolomide or etoposide increased long-term survival, suggestive of olaparib functioning as DNA damage sensitizer. CONCLUSIONS Collectively, our data support a rationale for localized olaparib delivery concomitant with the current clinical regimen for malignant glioma treatment.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan Rowlinson
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Noah Gorelick
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - Cara Moloney
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Phoebe McCrorie
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
| | - Philip Berry
- Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
| | | | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | | | | | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
- Departments of Biomedical Engineering, Oncology and Ophthalmology, Johns Hopkins University, Baltimore, USA
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
4
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
5
|
Starska-Kowarska K. Role of Mesenchymal Stem/Stromal Cells in Head and Neck Cancer-Regulatory Mechanisms of Tumorigenic and Immune Activity, Chemotherapy Resistance, and Therapeutic Benefits of Stromal Cell-Based Pharmacological Strategies. Cells 2024; 13:1270. [PMID: 39120301 PMCID: PMC11311692 DOI: 10.3390/cells13151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-42-2725237
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
6
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
7
|
Martins C, Araújo M, Malfanti A, Pacheco C, Smith SJ, Ucakar B, Rahman R, Aylott JW, Préat V, Sarmento B. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300029. [PMID: 36852650 DOI: 10.1002/smll.202300029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
| | - Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Stuart J Smith
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Ruman Rahman
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
8
|
Nanomedicine approaches for medulloblastoma therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
10
|
Intracranial In Situ Thermosensitive Hydrogel Delivery of Temozolomide Accomplished by PLGA–PEG–PLGA Triblock Copolymer Blending for GBM Treatment. Polymers (Basel) 2022; 14:polym14163368. [PMID: 36015626 PMCID: PMC9413267 DOI: 10.3390/polym14163368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) recurrence after surgical excision has grown to be a formidable obstacle to conquer. In this research, biodegradable thermosensitive triblock copolymer, poly(D, L–lactic acid–co–glycolic acid)–b–poly(ethylene glycol)–b–poly(D, L–lactic acid–co–glycolic acid (PLGA–PEG–PLGA) was utilized as the drug delivery system, loading with micronized temozolomide(micro-TMZ) to form an in situ drug–gel depot inside the resection cavity. The rheology studies revealed the viscoelastic profile of hydrogel under various conditions. To examine the molecular characteristics that affect gelation temperature, 1H–NMR, inverse gated decoupling 13C–NMR, and GPC were utilized. Cryo-SEM and XRD were intended to disclose the appearance of the hydrogel and the micro-TMZ existence state. We worked out how to blend polymers to modify the gelation point (Tgel) and fit the correlation between Tgel and other dependent variables using linear regression. To simulate hydrogel dissolution in cerebrospinal fluid, a membraneless dissolution approach was used. In vitro, micro-TMZ@PLGA–PEG–PLGA hydrogel exhibited Korsmeyer–Peppas and zero–order release kinetics in response to varying drug loading, and in vivo, it suppressed GBM recurrence at an astoundingly high rate. Micro-TMZ@PLGA–PEG–PLGA demonstrates a safer and more effective form of chemotherapy than intraperitoneal TMZ injection, resulting in a spectacular survival rate (40%, n = 10) that is much more than intraperitoneal TMZ injection (22%, n = 9). By proving the viability and efficacy of micro-TMZ@PLGA–PEG–PLGA hydrogel, our research established a novel chemotherapeutic strategy for treating GBM recurrence.
Collapse
|
11
|
Ma J, Yu DH, Zhao D, Huang T, Dong M, Wang T, Yin HT. Poly-Lactide-Co-Glycolide-Polyethylene Glycol-Ginsenoside Rg3-Ag Exerts a Radio-Sensitization Effect in Non-Small Cell Lung Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiotherapy is an effective anti-cancer therapy for patients with non-small cell lung cancer (NSCLC), however, the prognosis is unsatisfactory owing to radio-resistance and toxicity. It is crucial to improve radiotherapy efficacy. Ag nanoparticles (NPs) and ginsenoside Rg3 (Rg3) exerted
antitumor and radio-sensitization effects. Therefore, we investigated whether poly-lactide-co-glycolide-polyethylene glycol (PLGA-PEG)-Rg3-Ag will function as a noninvasive, tracing, radiotherapy sensitizer. The morphology of NPs was visualized with transmission electron microscopy (TEM).
The drug loading content, encapsulation efficiency, and cumulative drug release of Rg3 was determined by HPLC. Cellular uptake of NPs in A549 and SPCA-1 was measured by immunostaining. The radio-sensitization effect of PLGA-PEG-Rg3-Ag in vitro was determined in A549 by detecting proliferation,
colony formation, and apoptosis with CCK-8, clonogenic survival assay, and flow cytometry, while in vivo was determined in nude mice by testing the body weight and tumor volume. PLGA-PEG-Rg3-Ag exerted radio-sensitization effect by reducing cell proliferation and colony formation while
enhancing cell apoptosis in A549; reduced tumor volume in nude mice. PLGA-PEG-Rg3-Ag exhibits radio-sensitization effects in NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Da-Hai Yu
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Di Zhao
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Teng Huang
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Min Dong
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ting Wang
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Hai-Tao Yin
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu Province, China
| |
Collapse
|
12
|
A Novel Risk Score Model of Lactate Metabolism for Predicting over Survival and Immune Signature in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153727. [PMID: 35954390 PMCID: PMC9367335 DOI: 10.3390/cancers14153727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Since the discovery of the WarBurg effect, the veil of the tumorigenic role of lactic acid has been gradually revealed. Recently, it was proposed that lactic acid that is produced by tumor cells was secreted into the extracellular space to create immunosuppressive tumor microenvironment (TME) in a variety of ways. However, the intersection genes and the association with immunotherapy are unclear. At present, we identified six lactate-metabolism-associated genes, which were thought to enable tumor progression, that were related to LUAD immunotherapy and we constructed an LAR-score risk model. Abstract Background: The role of lactate acid in tumor progression was well proved. Recently, it was found that lactate acid accumulation induced an immunosuppressive microenvironment. However, these results were based on a single gene and it was unclear that lactate acid genes were associated with immunotherapy and able to predict overall survival. Methods: Genes and survival data were acquired from TCGA, GEO and GENECARDS. PCA and TSNE were used to distinguish sample types according to lactate metabolism-associated gene expression. A Wilcox-test examined the expression differences between normal and tumor samples. The distribution in chromatin and mutant levels were displayed by Circo and MAfTools. The lactate metabolism-associated gene were divided into categories by consistent clustering and visualized by Cytoscape. Immune cell infiltration was evaluated by CIBERSORT and LM22 matrix. Enrichment analysis was performed by GSVA. We used the ConsensusClusterPlus package for consistent cluster analysis. A prognostic model was constructed by Univariate Cox regression and Lasso regression analysis. Clinical specimens were detected their expression of genes in model by IHC. Results: Most lactate metabolism-associated gene were significantly differently expressed between normal and tumor samples. There was a strong correlation between the expression of lactate metabolism-associated gene and the abundance of immune cells. We divided them into two clusters (lactate.cluster A,B) with significantly different survival. The two clusters showed a difference in signal, immune cells, immune signatures, chemokines, and clinical features. We identified 162 differential genes from the two clusters, by which the samples were divided into three categories (gene.cluster A,B,C). They also showed a difference in OS and immune infiltration. Finally, a risk score model that was composed of six genes was constructed. There was significant difference in the survival between the high and low risk groups. ROC curves of 1, 3, 5, and 10 years verified the model had good predictive efficiency. Gene expression were correlated with ORR and PFS in patients who received anti-PD-1/L1. Conclusion: The lactate metabolism-associated genes in LUAD were significantly associated with OS and immune signatures. The risk scoring model that was constructed by us was able to well identify and predict OS and were related with anti-PD-1/L1 therapy outcome.
Collapse
|
13
|
Lastakchi S, Olaloko MK, McConville C. A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers (Basel) 2022; 14:2602. [PMID: 35681582 PMCID: PMC9179370 DOI: 10.3390/cancers14112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposed drugs have demonstrated in vitro success against high-grade gliomas; however, their clinical success has been limited due to the in vitro model not truly representing the clinical scenario. In this study, we used two distinct patient-derived tumour fragments (tumour core (TC) and tumour margin (TM)) to generate a heterogeneous, clinically relevant in vitro model to assess if a combination of repurposed drugs (irinotecan, pitavastatin, disulfiram, copper gluconate, captopril, celecoxib, itraconazole and ticlopidine), each targeting a different growth promoting pathway, could successfully treat high-grade gliomas. To ensure the clinical relevance of our data, TC and TM samples from 11 different patients were utilized. Our data demonstrate that, at a concentration of 100µm or lower, all drug combinations achieved lower LogIC50 values than temozolomide, with one of the combinations almost eradicating the cancer by achieving cell viabilities below 4% in five of the TM samples 6 days after treatment. Temozolomide was unable to stop tumour growth over the 14-day assay, while combination 1 stopped tumour growth, with combinations 2, 3 and 4 slowing down tumour growth at higher doses. To validate the cytotoxicity data, we used two distinct assays, end point MTT and real-time IncuCyte life analysis, to evaluate the cytotoxicity of the combinations on the TC fragment from patient 3, with the cell viabilities comparable across both assays. The local administration of combinations of repurposed drugs that target different growth promoting pathways of high-grade gliomas have the potential to be translated into the clinic as a novel treatment strategy for high-grade gliomas.
Collapse
Affiliation(s)
| | | | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.); (M.K.O.)
| |
Collapse
|
14
|
Wanjale MV, Sunil Jaikumar V, Sivakumar KC, Ann Paul R, James J, Kumar GSV. Supramolecular Hydrogel Based Post-Surgical Implant System for Hydrophobic Drug Delivery Against Glioma Recurrence. Int J Nanomedicine 2022; 17:2203-2224. [PMID: 35599751 PMCID: PMC9122075 DOI: 10.2147/ijn.s348559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purpose The brain, protected by the cranium externally and the blood–brain barrier (BBB) internally, poses challenges in chemotherapy of aggressive brain tumors. Maximal tumor resection followed by radiation and chemotherapy is the standard treatment protocol; however, a substantial number of patients suffer from recurrence. Systemic circulation of drugs causes myelodysplasia and other side effects. To address these caveats, we report facile synthesis of a polyester-based supramolecular hydrogel as a brain biocompatible implant for in situ delivery of hydrophobic drugs. Methods Polycaprolactone-diol (PCL) was linked to polyethyleneglycol-diacid (PEG) via an ester bond. In silico modeling indicated micelle-based aggregation of PCL-PEG co-polymer to form a supramolecular hydrogel. Brain biocompatibility was checked in Sprague Dawley rat brain cortex with MRI, motor function test, and histology. Model hydrophobic drugs carmustine and curcumin entrapment propelled glioma cells into apoptosis-based death evaluated by in vitro cytotoxicity assays and Western blot. In vivo post-surgical xenograft glioma model was developed in NOD-SCID mice and evaluated for efficacy to restrict aggressive regrowth of tumors. Results 20% (w/v) PCL-PEG forms a soft hydrogel that can cover the uneven and large surface area of a tumor resection cavity and maintain brain density. The PCL-PEG hydrogel was biocompatible, and well-tolerated upon implantation in rat brain cortex, for a study period of 12 weeks. We report for the first time the combination of carmustine and curcumin entrapped as model hydrophobic drugs, increasing their bioavailability and yielding synergistic apoptotic effect on glioma cells. Further in vivo study indicated PCL-PEG hydrogel with a dual cargo of carmustine and curcumin restricted aggressive regrowth post-resection significantly compared with control and animals with intravenous drug treatment. Conclusion PCL-PEG soft gel-based implant is malleable compared with rigid wafers used as implants, thus providing larger surface area contact. This stable, biocompatible, supramolecular gel without external crosslinking can find wide applications by interchanging formulation of various hydrophobic drugs to ensure and increase site-specific delivery, avoiding systemic circulation.
Collapse
Affiliation(s)
- Mrunal Vitthal Wanjale
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Vishnu Sunil Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Distributed Information Sub-Centre (Bioinformatics Centre), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Riya Ann Paul
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - Jackson James
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Correspondence: GS Vinod Kumar, Tel +91 471 2781217, Fax +91 471 2348096, Email
| |
Collapse
|
15
|
Williams G, Chambers D, Rahman R, Molina-Holgado F. Transcription Profile and Pathway Analysis of the Endocannabinoid Receptor Inverse Agonist AM630 in the Core and Infiltrative Boundary of Human Glioblastoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072049. [PMID: 35408449 PMCID: PMC9000751 DOI: 10.3390/molecules27072049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023]
Abstract
Background: We have previously reported that the endocannabinoid receptor inverse agonist AM630 is a potent inhibitor of isocitrade dehydrogenase-1 wild-type glioblastoma (GBM) core tumour cell proliferation. To uncover the mechanism behind the anti-tumour effects we have performed a transcriptional analysis of AM630 activity both in the tumour core cells (U87) and the invasive margin cells (GIN-8), the latter representing a better proxy of post-surgical residual disease. Results: The core and invasive margin cells exhibited markedly different gene expression profiles and only the core cells had high expression of a potential AM630 target, the CB1 receptor. Both cell types had moderate expression of the HTR2B serotonin receptor, a reported AM630 target. We found that the AM630 driven transcriptional response was substantially higher in the central cells than in the invasive margin cells, with the former driving the up regulation of immune response and the down regulation of cell cycle and metastatic pathways and correlating with transcriptional responses driven by established anti-neoplastics as well as serotonin receptor antagonists. Conclusion: Our results highlight the different gene sets involved in the core and invasive margin cell lines derived from GBM and an associated marked difference in responsiveness to AM630. Our findings identify AM630 as an anti-neoplastic drug in the context of the core cells, showing a high correlation with the activity of known antiproliferative drugs. However, we reveal a key set of similarities between the two cell lines that may inform therapeutic intervention.
Collapse
Affiliation(s)
- Gareth Williams
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
| | - David Chambers
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
| | - Ruman Rahman
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Francisco Molina-Holgado
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
- School of Life & Health Sciences, University of Roehampton, London SW15 4JD, UK
- Correspondence:
| |
Collapse
|
16
|
Detection of Label-Free Drugs within Brain Tissue Using Orbitrap Secondary Ion Mass Spectrometry as a Complement to Neuro-Oncological Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14030571. [PMID: 35335947 PMCID: PMC8953756 DOI: 10.3390/pharmaceutics14030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Historically, pre-clinical neuro-oncological drug delivery studies have exhaustively relied upon overall animal survival as an exclusive measure of efficacy. However, with no adopted methodology to both image and quantitate brain parenchyma penetration of label-free drugs, an absence of efficacy typically hampers clinical translational potential, rather than encourage re-formulation of drug compounds using nanocarriers to achieve greater tissue penetration. OrbiSIMS, a next-generation analytical instrument for label-free imaging, combines the high resolving power of an OrbiTrapTM mass spectrometer with the relatively high spatial resolution of secondary ion mass spectrometry. Here, we develop an ex vivo pipeline using OrbiSIMS to accurately detect brain penetration of drug compounds. Secondary ion spectra were acquired for a panel of drugs (etoposide, olaparib, gemcitabine, vorinostat and dasatinib) under preclinical consideration for the treatment of isocitrate dehydrogenase-1 wild-type glioblastoma. Each drug demonstrated diagnostic secondary ions (all present molecular ions [M-H]− which could be discriminated from brain analytes when spiked at >20 µg/mg tissue. Olaparib/dasatinib and olaparib/etoposide dual combinations are shown as exemplars for the capability of OrbiSIMS to discriminate distinct drug ions simultaneously. Furthermore, we demonstrate the imaging capability of OrbiSIMS to simultaneously illustrate label-free drug location and brain chemistry. Our work encourages the neuro-oncology community to consider mass spectrometry imaging modalities to complement in vivo efficacy studies, as an analytical tool to assess brain distribution of systemically administered drugs, or localised brain penetration of drugs released from micro- or nano-scale biomaterials.
Collapse
|
17
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
18
|
Puca AA, Lopardo V, Montella F, Di Pietro P, Cesselli D, Rolle IG, Bulfoni M, Di Sarno V, Iaconetta G, Campiglia P, Vecchione C, Beltrami AP, Ciaglia E. The Longevity-Associated Variant of BPIFB4 Reduces Senescence in Glioma Cells and in Patients' Lymphocytes Favoring Chemotherapy Efficacy. Cells 2022; 11:294. [PMID: 35053408 PMCID: PMC8774353 DOI: 10.3390/cells11020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer with the median age at diagnosis around 64 years, thus pointing to aging as an important risk factor. Indeed, aging, by increasing the senescence burden, is configured as a negative prognostic factor for GBM stage. Furthermore, several anti-GBM therapies exist, such as temozolomide (TMZ) and etoposide (ETP), that unfortunately trigger senescence and the secretion of proinflammatory senescence-associated secretory phenotype (SASP) factors that are responsible for the improper burst of (i) tumorigenesis, (ii) cancer metastasis, (iii) immunosuppression, and (iv) tissue dysfunction. Thus, adjuvant therapies that limit senescence are urgently needed. The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene previously demonstrated a modulatory activity in restoring age-related immune dysfunction and in balancing the low-grade inflammatory status of elderly people. Based on the above findings, we tested LAV-BPIFB4 senotherapeutic effects on senescent glioblastoma U87-MG cells and on T cells from GBM patients. We interrogated SA-β-gal and HLA-E senescence markers, SASP factors, and proliferation and apoptosis assays. The results highlighted a LAV-BPIFB4 remodeling of the senescent phenotype of GBM cells, enhancement of their sensitivity to temozolomide and a selective reduction of the T cells' senescence from GBM patients. Overall, these findings candidate LAV-BPIFB4 as an adjuvant therapy for GBM.
Collapse
Affiliation(s)
- Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (D.C.); (I.G.R.); (M.B.); (A.P.B.)
| | - Irene Giulia Rolle
- Department of Medicine, University of Udine, 33100 Udine, Italy; (D.C.); (I.G.R.); (M.B.); (A.P.B.)
| | - Michela Bulfoni
- Department of Medicine, University of Udine, 33100 Udine, Italy; (D.C.); (I.G.R.); (M.B.); (A.P.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084 Salerno, Italy; (V.D.S.); (P.C.)
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
- Department of Neurosurgery, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084 Salerno, Italy; (V.D.S.); (P.C.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, 86077 Isernia, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (D.C.); (I.G.R.); (M.B.); (A.P.B.)
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, Baronissi, 84081 Salerno, Italy; (V.L.); (F.M.); (P.D.P.); (G.I.); (C.V.)
| |
Collapse
|
19
|
Wan Z, Li C, Gu J, Qian J, Zhu J, Wang J, Li Y, Jiang J, Chen H, Luo C. Accurately Controlled Delivery of Temozolomide by Biocompatible UiO-66-NH 2 Through Ultrasound to Enhance the Antitumor Efficacy and Attenuate the Toxicity for Treatment of Malignant Glioma. Int J Nanomedicine 2021; 16:6905-6922. [PMID: 34675514 PMCID: PMC8517532 DOI: 10.2147/ijn.s330187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background Glioma is the most common and malignant primary brain tumour in adults and has a dismal prognosis. Temozolomide (TMZ) is the only clinical first-line chemotherapy drug for malignant glioma up to present. Due to poor aqueous solubility and toxic effects, TMZ is still inefficient and limited for clinical glioma treatment. Methods UiO-66-NH2 nanoparticle is a zirconium-based framework, constructed by Zr and 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) with octahedral microporous structure, which can be decomposed by the body into an ionic form to discharge. We prepared the nanoscale metal-organic framework (MOF) of UiO-66-NH2 to load TMZ for therapy of malignant glioma, TMZ is released from UiO-66-NH2 through a porous structure. The ultrasound accelerates its porous percolation and promotes the rapid dissolution of TMZ through low-frequency oscillations and cavitation effect. The biological safety and antitumor efficacy were evaluated both in vitro and in vivo. Results The prepared TMZ@MOF exhibited excellent biocompatibility and biosafety due to minimal drug leakage without ultrasound intervention. We further used the flank model of glioblastoma to verify the in vivo therapeutic effect. TMZ@UiO-66-NH2 nanocomposites could be well delivered to the tumour tissue, which led to local enrichment of the TMZ concentration. Furthermore, TMZ@UiO-66-NH2 nanocomposites under ultrasound demonstrated much more efficient inhibition for tumor growth than TMZ@UiO-66-NH2 nanocomposites and TMZ alone. Meanwhile, the bone marrow suppression side effects of TMZ were significantly reduced by TMZ@UiO-66-NH2 nanocomposites. Conclusion In this work, TMZ@UiO-66-NH2 nanocomposites with ultrasound mediation could effectively improve the killing effect of malignant glioma and decrease TMZ-induced toxicity in normal tissues, demonstrating great potential for the delivery of TMZ in the clinical treatment of malignant gliomas.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinmao Gu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiaqi Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinwen Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiahao Jiang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
20
|
Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Adv Drug Deliv Rev 2021; 177:113951. [PMID: 34461201 DOI: 10.1016/j.addr.2021.113951] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is a particularly aggressive brain cancer associated with high recurrence and poor prognosis. The standard of care, surgical resection followed by concomitant radio- and chemotherapy, leads to low survival rates. The local delivery of active agents within the tumor resection cavity has emerged as an attractive means to initiate oncological treatment immediately post-surgery. This complementary approach bypasses the blood-brain barrier, increases the local concentration at the tumor site while reducing or avoiding systemic side effects. This review will provide a global overview on the local treatment for GBM with an emphasis on the lessons learned from past clinical trials. The main parameters to be considered to rationally design fit-of-purpose biomaterials and develop drug delivery systems for local administration in the GBM resection cavity to prevent the tumor recurrence will be described. The intracavitary local treatment of GBM should i) use materials that facilitate translation to the clinic; ii) be characterized by easy GMP effective scaling up and easy-handling application by the neurosurgeons; iii) be adaptable to fill the tumor-resected niche, mold to the resection cavity or adhere to the exposed brain parenchyma; iv) be biocompatible and possess mechanical properties compatible with the brain; v) deliver a therapeutic dose of rationally-designed or repurposed drug compound(s) into the GBM infiltrative margin. Proof of concept with high translational potential will be provided. Finally, future perspectives to facilitate the clinical translation of the local perisurgical treatment of GBM will be discussed.
Collapse
|
21
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
22
|
Pinheiro L, Perdomo-Pantoja A, Casaos J, Huq S, Paldor I, Vigilar V, Mangraviti A, Wang Y, Witham TF, Brem H, Tyler B. Captopril inhibits Matrix Metalloproteinase-2 and extends survival as a temozolomide adjuvant in an intracranial gliosarcoma model. Clin Neurol Neurosurg 2021; 207:106771. [PMID: 34198223 DOI: 10.1016/j.clineuro.2021.106771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Captopril is a well-characterized, FDA-approved drug that has demonstrated promise as a repurposed oncology therapeutic. Captopril's known anti-cancer effects include inhibition of Matrix Metalloproteinase-2 (MMP-2), an endopeptidase which selectively breaks down the extracellular matrix to promote cell migration. MMP-2 is a known therapeutic target in gliomas, tumors with significant clinical need. Using an aggressive gliosarcoma model, we assessed captopril's effects on MMP-2 expression in vitro and in vivo as well as its efficacy as an adjuvant in combination therapy regimens in vivo. METHODS Following captopril treatment, MMP-2 protein expression and migratory capabilities of 9 L gliosarcoma cells were assessed in vitro via western blots and scratch wound assays, respectively. Rats were intracranially implanted with 9 L gliosarcoma tumors, and survival was assessed in the following groups: control; captopril (30 mg/kg/day); temozolomide (TMZ) (50 mg/kg/day), and captopril+TMZ. In vivo experiments were accompanied by immunohistochemistry for MMP-2 from brain tissue. RESULTS In vitro, captopril decreased MMP-2 protein expression and reduced migratory capacity in 9 L gliosarcoma cells. In a gliosarcoma animal model, captopril decreased MMP-2 protein expression and extended survival as a TMZ adjuvant relative to untreated controls, captopril monotherapy, and TMZ monotherapy groups (27.5 versus 14 (p < 0.001), 16 (p < 0.001), and 23 (p = 0.018) days, respectively). CONCLUSIONS Captopril decreases gliosarcoma cell migration, which may be mediated by reduction in MMP-2 protein expression. Captopril provided a survival advantage as a TMZ adjuvant in a rat intracranial gliosarcoma model. Captopril may represent a promising potential adjuvant to TMZ therapy in gliosarcoma as a modulator of the MMP-2 pathway.
Collapse
Affiliation(s)
- Leon Pinheiro
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Joshua Casaos
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sakibul Huq
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Iddo Paldor
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Veronica Vigilar
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Li H, Liu Q, Chen Z, Wu M, Zhang C, Su J, Li Y, Zhang C. Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p. Cell Death Dis 2021; 12:252. [PMID: 33674567 PMCID: PMC7935991 DOI: 10.1038/s41419-021-03533-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Temozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Zihua Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Chao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
24
|
Chan HY, Choi J, Jackson C, Lim M. Combination immunotherapy strategies for glioblastoma. J Neurooncol 2021; 151:375-391. [PMID: 33611705 DOI: 10.1007/s11060-020-03481-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite recent advances in treatment for a number of cancers with immune checkpoint blockade (ICB), immunotherapy has had limited efficacy in glioblastoma (GBM). The recent multi-centered CheckMate 143 trial in first time recurrent GBM and the Checkmate 498 trial in newly diagnosed unmethylated GBM showed that antibodies against programmed cell death protein 1 (PD-1) failed to improve overall survival in patients with GBM. Recent preclinical and clinical studies have explored combining ICB with several other therapies including additional ICB against alternative checkpoint molecules, activation of costimulatory checkpoint molecules such as 4-1BB, radiation-induced tumor cell lysis and immunogenic recruitment, local chemotherapy, neoadjuvant ICB therapy, and myeloid cell reactivation. METHODS We have reviewed the literature on ICB seminal to the progression of several preclinical studies and clinical trials in order to provide a compendium of the current state of combination immunotherapy for GBM. For ongoing clinical trials without associated publications, we searched clinicaltrials.gov for ongoing studies using the keywords, "GBM" and "glioblastoma", as well as names of checkpoint molecules. RESULTS Recent trends from clinical trials demonstrate that despite a variety of different combination strategies involving ICB, GBM remains largely elusive to current immunotherapies. There is a discordance of survival outcomes between GBM pre-clinical models and clinical trials, likely due to the heterogeneity of GBM in patients as well as other adaptive immune mechanisms not otherwise represented in murine models. However, in clinical studies, neoadjuvant ICB in GBM was found to diversify the T cell receptor (TCR) repertoire and increase chemokine mRNA transcripts when comparing pre- and post- surgical time points. Moreover, an increase in peripheral and tumor-infiltrating lymphocyte (TIL) clonotypes were also observed when comparing adjuvant and neoadjuvant cohorts. DISCUSSION Despite the lack of clinical survival benefit, immune modulation was observed in multiple different combination strategies for GBM in both preclinical and clinical studies, indicating that ICB combination therapy results in a significant immunological impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Hok Yee Chan
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - Christina Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA.
| |
Collapse
|
25
|
Vasey CE, Cavanagh RJ, Taresco V, Moloney C, Smith S, Rahman R, Alexander C. Polymer Pro-Drug Nanoparticles for Sustained Release of Cytotoxic Drugs Evaluated in Patient-Derived Glioblastoma Cell Lines and In Situ Gelling Formulations. Pharmaceutics 2021; 13:pharmaceutics13020208. [PMID: 33546301 PMCID: PMC7913572 DOI: 10.3390/pharmaceutics13020208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less than 15 months from diagnosis. Low penetration of drugs across the blood-brain barrier (BBB) is a dose-limiting factor for systemic GBM therapies, and as a result, post-surgical intracranial drug delivery strategies are being developed to ensure local delivery of drugs within the brain. Here we describe the effects of PEGylated poly(lactide)-poly(carbonate)-doxorubicin (DOX) nanoparticles (NPs) on the metabolic activity of primary cancer cell lines derived from adult patients following neurosurgical resection, and the commercially available GBM cell line, U87. The results showed that non-drug-loaded NPs were well tolerated at concentrations of up to 100 µg/mL while tumour cell-killing effects were observed for the DOX-NPs at the same concentrations. Further experiments evaluated the release of DOX from polymer-DOX conjugate NPs when incorporated in a thermosensitive in situ gelling poly(DL-lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) matrix paste, in order to simulate the clinical setting of a locally injected formulation for GBM following surgical tumour resection. These assays demonstrated drug release from the polymer pro-drugs, when in PLGA/PEG matrices of two formulations, over clinically relevant time scales. These findings encourage future in vivo assessment of the potential capability of polymer-drug conjugate NPs to penetrate brain parenchyma efficaciously, when released from existing interstitial delivery systems.
Collapse
Affiliation(s)
- Catherine E Vasey
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert J Cavanagh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cara Moloney
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, UK
| | - Stuart Smith
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, UK
- School of Medicine, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ruman Rahman
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, UK
- School of Medicine, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
26
|
Shi Y, Jiang J, Cui Y, Chen Y, Dong T, An H, Liu P. MSH6 Aggravates the Hypoxic Microenvironment via Regulating HIF1A to Promote the Metastasis of Glioblastoma Multiforme. DNA Cell Biol 2020; 40:93-100. [PMID: 33181035 DOI: 10.1089/dna.2020.5442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by diffuse infiltration of the brain, active regional recurrence, low cure proportion, and limited chemotherapy efficiency. MutS homolog 6 (MSH6) is a component of the mismatch repair system related to the oncogenesis, tumor evolution, and recurrence of GBM. The impact of MSH6 upregulation on the tumor microenvironment (TME) of GBM and the feasibility of MSH6 as a potential target to improve the prognosis remain unknown. The expression of MSH6 at mRNA level indicated that MSH6 expressed higher in GBM tissues than that in normal ones. The transwell assay and expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) suggested that the capability of invasion and migration in U251-MSH6 was more stubborn. The intracranial tumor model was established with nude mice to further explore in vivo. The time-weight curve, overall survival, tumor volumes, expression levels of MMP-2 and MMP-9 in tissue, and hematoxylin and eosin staining all indicated that MSH6 had a positive effect on metastasis. The expression levels of related proteins suggested that the hypoxia TME induced by MSH6 may promote metastasis via epithelial to mesenchymal transition, stemness, and angiogenesis progress. MSH6 is an overexpressed oncogene in human GBM tissues, which accelerated metastasis by regulating hypoxia inducible factor-1A (HIF1A) to form a hypoxic TME in GBM. The MSH6 was a vital marker of GBM, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Ying Shi
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Jiang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingzhe Cui
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongda An
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pengfei Liu
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Zhao G, Jia J, Wang L, Zhang Y, Yang H, Lu Y, Yu R, Liu H, Zhu Y. Local Delivery of Minocycline and Vorinostat Targets the Tumor Microenvironment to Inhibit the Recurrence of Glioma. Onco Targets Ther 2020; 13:11397-11409. [PMID: 33192073 PMCID: PMC7655508 DOI: 10.2147/ott.s273527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Postoperative recurrence is the main reason for poor clinical outcomes in glioma patients, so preventing tumor recurrence is crucial in the management of gliomas. Methods In this study, the expression of matrix metalloproteinases (MMPs) in normal tissues was detected via RNA-seq analysis. Glioma cases from the public databases (The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA)) were included in this study. The hydrogel contains minocycline (Mino) and vorinostat (Vor) (G/Mino+Vor) was formed under 365 nm when the photoinitiator was added. High-performance liquid chromatography (HPLC) was used to assess the release of drugs in the G/Mino+Vor hydrogel. An MTT assay was used to explore the biosecurity of GelMA. Immunohistochemistry, ELISA, and TUNEL assays were used to demonstrate the antitumor effect of the G/Mino+Vor hydrogel. Results We successfully developed a G/Mino+Vor hydrogel. The experiments in vitro and in vivo confirmed the MMPs-responsive delivery of minocycline and vorinostat in hydrogel and the anti-glioma effect on an incomplete tumor operation model, which indicated that the G/Mino+Vor hydrogel effectively inhibited the recurrence of glioma after surgery. Conclusion In summary, the G/Mino+Vor hydrogel could continuously release drugs and improve the therapy effects against recurrent glioma.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Han Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yang Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Third People's Hospital Affiliated of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
28
|
Griffin M, Khan R, Basu S, Smith S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers (Basel) 2020; 12:cancers12103068. [PMID: 33096667 PMCID: PMC7589494 DOI: 10.3390/cancers12103068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is an aggressive grade IV lethal brain tumour with a median survival of 14 months. Despite surgery to remove the tumour, and subsequent concurrent chemotherapy and radiotherapy, there is little in terms of effective treatment options. Because of this, exploring new treatment avenues is vital. Brain tumours are intrinsically electrically active; expressing unique patterns of ion channels, and this is a characteristic we can exploit. Ion channels are specialised proteins in the cell’s membrane that allow for the passage of positive and negatively charged ions in and out of the cell, controlling membrane potential. Membrane potential is a crucial biophysical signal in normal and cancerous cells. Research has identified that specific classes of ion channels not only move the cell through its cell cycle, thus encouraging growth and proliferation, but may also be essential in the development of brain tumours. Inhibition of sodium, potassium, calcium, and chloride channels has been shown to reduce the capacity of glioblastoma cells to grow and invade. Therefore, we propose that targeting ion channels and repurposing commercially available ion channel inhibitors may hold the key to new therapeutic avenues in high grade gliomas. Abstract Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Collapse
Affiliation(s)
- Michaela Griffin
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Raheela Khan
- Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Surajit Basu
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2RD, UK;
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
- Correspondence:
| |
Collapse
|
29
|
McCrorie P, Mistry J, Taresco V, Lovato T, Fay M, Ward I, Ritchie AA, Clarke PA, Smith SJ, Marlow M, Rahman R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur J Pharm Biopharm 2020; 157:108-120. [PMID: 33068736 DOI: 10.1016/j.ejpb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 02/09/2023]
Abstract
Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tumour burden immediately post-surgery, we propose a localised drug delivery system comprising of a spray device, bioadhesive hydrogel (pectin) and drug nanocrystals coated with polylactic acid-polyethylene glycol (NCPPs), to be administered directly into brain parenchyma adjacent to the surgical cavity. We have repurposed pectin for use within the brain, showing in vitro and in vivo biocompatibility, bio-adhesion to mammalian brain and gelling at physiological brain calcium concentrations. Etoposide and olaparib NCPPs with high drug loading have shown in vitro stability and drug release over 120 h. Pluronic F127 stabilised NCPPs to ensure successful spraying, as determined by dynamic light scattering and transmission electron microscopy. Successful delivery of Cy5-labelled NCPPs was demonstrated in a large ex vivo mammalian brain, with NCPP present in the tissue surrounding the resection cavity. Our data collectively demonstrates the pre-clinical development of a novel localised delivery device based on a sprayable hydrogel containing therapeutic NCPPs, amenable for translation to intracranial surgical resection models for the treatment of malignant brain tumours.
Collapse
Affiliation(s)
- Phoebe McCrorie
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Jatin Mistry
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Vincenzo Taresco
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Tatiana Lovato
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Michael Fay
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Ian Ward
- School of Life Sciences Imaging, School of Life Sciences, University of Nottingham, NG7 2RD, UK
| | - Alison A Ritchie
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Philip A Clarke
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Maria Marlow
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
30
|
Serris I, Serris P, Frey KM, Cho H. Development of 3D-Printed Layered PLGA Films for Drug Delivery and Evaluation of Drug Release Behaviors. AAPS PharmSciTech 2020; 21:256. [PMID: 32888114 DOI: 10.1208/s12249-020-01790-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
3D printing has been widely used to rapidly manufacture a variety of solid dosage forms on-demand, without sacrificing precision. This study used extrusion-based 3D printing to prepare single-layered, tri-layered, and core-in-shell poly(lactic-co-glycolic acid) (PLGA) films carrying paclitaxel and rapamycin in combination or lidocaine alone. Each layer was composed of either low molecular weight (MW) PLGA or high MW PLGA. In vitro drug release kinetics of paclitaxel, rapamycin, and lidocaine for PLGA films were assessed and compared with PLGA-polyethylene glycol (PEG)-PLGA hydrogel discs. Regardless of the structure of PLGA film, paclitaxel (half-time: 54-63 days) was released faster than when compared with rapamycin (half-time: 74-80 days). In contrast, single-layered PLGA-PEG-PLGA discs released rapamycin (half-time 5.7 h) at a more rapid rate than paclitaxel (half-time: 7.3 h). Single-layered PLGA-PEG-PLGA discs enabled a faster drug release than PLGA films, noting that the disc matrices dissolve in water in 24 h. Similarly, lidocaine incorporated in PLGA films (half-time: 13-36 days) exhibited slower release patterns than that in PLGA-PEG-PLGA discs (half-time: 2.6 h). In vitro drug release patterns were explained using molecular models that simulate drug-polymer interactions. Analysis of models suggested that drug-polymer interactions, location of each drug in the polymeric matrix, and solubility of drugs in water were major factors that determine drug release behaviors from the polymeric films and discs.
Collapse
|
31
|
A novel podophyllotoxin derivative with higher anti-tumor activity produced via 4′-demethylepipodophyllotoxin biotransformation by Penicillium purpurogenum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Zheng W, Chen Q, Wang C, Yao D, Zhu L, Pan Y, Zhang J, Bai Y, Shao C. Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy. Mol Carcinog 2020; 59:651-660. [PMID: 32253787 DOI: 10.1002/mc.23194] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Postoperative radiotherapy combined with chemotherapy is a commonly used treatment for glioblastoma (GBM) but radiotherapy often fails to achieve the expected results mainly due to tumor radioresistance. In this study, we established a radioresistant subline from human glioma cell line U251 and found that Cathepsin D (CTSD), a gene closely related to the clinical malignancy and prognosis in glioma, had higher expression level in radioresistant clones than that in parental cells, and knocking down CTSD by small interfering RNA (siRNA) or its inhibitor Pepstatin-A increased the radiosensitivity. The level of autophagy was enhanced in the radioresistant GBM cells compared with its parent cells, and silencing autophagy by light chain 3 (LC3) siRNA significantly sensitized GBM cells to ionizing radiation (IR). Moreover, the protein expression level of CTSD was positively correlated with the autophagy marker LC3 II/I and negatively correlated with P62 after IR in radioresistant cells. As expected, through the combination of Western blot and immunofluorescence assays, inhibition of CTSD increased the formation of autophagosomes, while decreased the formation of autolysosomes, which indicating an attenuated autophagy level, leading to radiosensitization ultimately. Our results revealed for the first time that CTSD regulated the radiosensitivity of glioblastoma by affecting the fusion of autophagosomes and lysosomes. In significance, CTSD might be a potential molecular biomarker and a new therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianping Chen
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Yao
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Zhu
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Pan
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Bai
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunlin Shao
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol 2020; 8:43. [PMID: 32117924 PMCID: PMC7013101 DOI: 10.3389/fbioe.2020.00043] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.
Collapse
Affiliation(s)
- Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Bernat Soria
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,School of Medicine, Miguel Hernández University, Alicante, Spain.,Pablo de Olavide University, Seville, Spain
| | - Vivian Capilla-Gonzalez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| |
Collapse
|
35
|
Jiang N, Larrazabal R, Alsunbul W, Lu JQ. Angiosarcomatous component in gliosarcoma: case report and consideration of diagnostic challenge and hemorrhagic propensity. J Biomed Res 2019; 34:143-148. [PMID: 32305969 DOI: 10.7555/jbr.33.20190080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An angiosarcomatous component in gliosarcoma may be associated with an increased intraoperative hemorrhagic risk and preoperative diagnostic challenge. We report a unique case of gliosarcoma with an angiosarcomatous component in a 61-year-old man. His brain MRI demonstrated a well-demarcated right occipital tumor with multiple flow voids and rim-like enhancement as well as intratumoral strip and nodular enhancements. He underwent a craniotomy for tumor resection. Intraoperatively, significant tumor hemorrhage required greater efforts to control intraoperative bleeding and to maintain hemostasis. Pathological examination of the tumor revealed alternating gliomatous and sarcomatous/angiosarcomatous components with intratumoral hemorrhage. He was postoperatively treated with chemoradiation. The tumor recurred at 9 months, for which the second resection was performed with similarly greater efforts to achieve hemostasis. The recurrent tumor was pathologically similar despite treatment-associated changes. Awareness of this angiosarcomatous component in gliosarcoma with the hemorrhagic risk is important for both the preoperative diagnosis and surgical management.
Collapse
|
36
|
Jia KZ, Zhu LW, Qu X, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Enzymatic O-Glycosylation of Etoposide Aglycone by Exploration of the Substrate Promiscuity for Glycosyltransferases. ACS Synth Biol 2019; 8:2718-2725. [PMID: 31774653 DOI: 10.1021/acssynbio.9b00318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 4-O-β-d-glucopyranoside of DMEP ((-)-4'-desmethylepipodophyllotoxin) (GDMEP), a natural product from Podophyllum hexandrum, is the direct precursor to the topoisomerase inhibitor etoposide, used in dozens of chemotherapy regimens for various malignancies. The biosynthesis pathway for DMEP has been completed, while the enzyme for biosynthesizing GDMEP is still unclear. Here, we report the enzymatic O-glycosylation of DMEP with 53% conversion by exploring the substrate promiscuity and entrances of glycosyltransferases. Notably, we found 6 essential amino acid residues surrounding the putative substrate entrances exposed to the protein surface in UGT78D2, CsUGT78D2, and CsUGT78D2-like, and these residues may determine substrate specificity and high O-glycosylation activity toward DMEP. Our results provide an effective route for one-step synthesis of GDMEP. Identification of the key residues and entrances of glycosyltransferases will promote precise identification of glycosyltransferase biocatalysts for novel substrates and provide a rational basis for glycosyltransferase engineering.
Collapse
Affiliation(s)
- Kai-Zhi Jia
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Li-Wen Zhu
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ya-Jie Tang
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
37
|
Multi-layered core-sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci Rep 2019; 9:17936. [PMID: 31784666 PMCID: PMC6884550 DOI: 10.1038/s41598-019-54283-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Interstitial chemotherapy plays a pivotal role in the treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer, by enhancing drug biodistribution to the tumor and avoiding systemic toxicities. The use of new polymer structures that extend the release of cytotoxic agents may therefore increase survival and prevent recurrence. A novel core-sheath fiber loaded with the drug carmustine (BCNU) was evaluated in an in vivo brain tumor model. Three-dimensional discs were formed from coaxially electrospun fiber membranes and in vitro BCNU release kinetics were measured. In vivo survival was assessed following implantation of discs made of compressed core-sheath fibers (NanoMesh) either concurrently with or five days after intracranial implantation of 9L gliosarcoma. Co-implantation of NanoMesh and 9L gliosarcoma resulted in statistically significant long-term survival (>150 days). Empty control NanoMesh confirmed the safety of these novel implants. Similarly, Day 5 studies showed significant median, overall, and long-term survival rates, suggesting optimal control of tumor growth, confirmed with histological and immunohistochemical analyses. Local chemotherapy by means of biodegradable NanoMesh implants is a new treatment paradigm for the treatment for brain tumors. Drug delivery with coaxial core-sheath structures benefits from high drug loading, controlled long-term release kinetics, and slow polymer degradation. This represents a promising evolution for the current treatment of GBM.
Collapse
|