1
|
Nain K, Sonar K, Sahoo S, Gupta JC, Grover S, Arulandu A, Talwar GP. Humanized recombinant immunotoxin targeting hCG demonstrates therapeutic potential for advanced stage difficult to treat cancers. J Drug Target 2024:1-14. [PMID: 39394941 DOI: 10.1080/1061186x.2024.2416247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
We report the development of an immunotherapeutic molecule, a Humanized immunotoxin, for treating hCG-expressing advanced-stage cancers. PiPP, a high-affinity anti-hCG monoclonal antibody, is used in the immunotoxin for 'homing' hCG-positive cancer cells. The deimmunized (DI) form of α-Sarcin, a fungal-origin toxin that lacks functional T-cell epitopes, is used in the design to ensure minimal immunogenicity of the immunotoxin for repetitive use in humans. A single-chain variable fragment (scFv) of PiPP was constructed by linking the Humanized VH and VL regions of the antibody. The scFv part of the antibody was further linked to the toxin α-Sarcin (DI) at the gene level and expressed as a recombinant protein in E. coli. The immunotoxin was purified from the bacterial cell lysate and analysed for binding and cytotoxicity to hCG-secreting colorectal and pancreatic cancer cells. The results showed that the scFv(PiPP)-Sarcin immunotoxin was able to bind to colorectal and pancreatic cancer cells and killed approximately 85% of the cells. In vivo testing of the immunotoxin produced results similar to those of in vitro testing against colorectal adenocarcinoma-induced tumours. This immunotoxin could be a promising immunotherapeutic agent for treating colorectal, pancreatic and other terminal-stage hCG-expressing cancers.
Collapse
Affiliation(s)
- Kirti Nain
- Talwar Research Foundation, New Delhi, India
- Jamia Hamdard University, New Delhi, India
| | - Kritika Sonar
- Talwar Research Foundation, New Delhi, India
- Jamia Hamdard University, New Delhi, India
| | - Sibasis Sahoo
- Structural Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Arockiasamy Arulandu
- Structural Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - G P Talwar
- Talwar Research Foundation, New Delhi, India
| |
Collapse
|
2
|
Gill SK, Sugiman-Marangos SN, Beilhartz GL, Mei E, Taipale M, Melnyk RA. An enhanced intracellular delivery platform based on a distant diphtheria toxin homolog that evades pre-existing antitoxin antibodies. EMBO Mol Med 2024; 16:2638-2651. [PMID: 39160301 PMCID: PMC11473700 DOI: 10.1038/s44321-024-00116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Targeted intracellular delivery of therapeutic proteins remains a significant unmet challenge in biotechnology. A promising approach is to leverage the intrinsic capabilities of bacterial toxins like diphtheria toxin (DT) to deliver a potent cytotoxic enzyme into cells with an associated membrane translocation moiety. Despite showing promising clinical efficacy, widespread deployment of DT-based therapeutics is complicated by the prevalence of pre-existing antibodies in the general population arising from childhood DT toxoid vaccinations, which impact the exposure, efficacy, and safety of these potent molecules. Here, we describe the discovery and characterization of a distant DT homolog from the ancient reptile pathogen Austwickia chelonae that we have dubbed chelona toxin (ACT). We show that ACT is comparable to DT structure and function in all respects except that it is not recognized by pre-existing anti-DT antibodies circulating in human sera. Furthermore, we demonstrate that ACT delivers heterologous therapeutic cargos into target cells more efficiently than DT. Our findings highlight ACT as a promising new chassis for building next-generation immunotoxins and targeted delivery platforms with improved pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Shivneet K Gill
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Seiji N Sugiman-Marangos
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Elizabeth Mei
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
3
|
İncir İ, Kaplan Ö. Escherichia coli in the production of biopharmaceuticals. Biotechnol Appl Biochem 2024. [PMID: 39245907 DOI: 10.1002/bab.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Escherichia coli has shouldered a massive workload with the discovery of recombinant DNA technology. A new era began in the biopharmaceutical industry with the production of insulin, the first recombinant protein, in E. coli and its use in treating diabetes. After insulin, many biopharmaceuticals produced from E. coli have been approved by the US Food and Drug Administration and the European Medicines Agency to treat various human diseases. Although E. coli has some disadvantages, such as lack of post-translational modifications and toxicity, it is an important host with advantages such as being a well-known bacterium in recombinant protein production, cheap, simple production system, and high yield. This study examined biopharmaceuticals produced and approved in E. coli under the headings of peptides, hormones, enzymes, fusion proteins, antibody fragments, vaccines, and other pharmaceuticals. The topics on which these biopharmaceuticals were approved for treating human diseases, when and by which company they were produced, and their use and development in the field are included.
Collapse
Affiliation(s)
- İbrahim İncir
- Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Özlem Kaplan
- Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
4
|
Aldoss I, Zhang J, Robbins M, Song J, Al Malki MM, Otoukesh S, Sandhu K, Agrawal V, Herrera AF, Popplewell LL, Ghoda L, Stein A, Marcucci G, Forman S, Pullarkat V. Flotetuzumab as a salvage immunotherapy in advanced CD123-positive hematological malignancies, a phase 1 pilot study. Leuk Lymphoma 2024; 65:1127-1135. [PMID: 38629176 DOI: 10.1080/10428194.2024.2343029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 07/24/2024]
Abstract
CD123 "expression" is common in hematological malignancies, including acute lymphoblastic leukemia (ALL). Flotetuzumab is a novel, investigational CD3/CD123 DART®. We conducted a phase 1 study evaluating safety and efficacy of flotetuzumab in relapsed/refractory ALL (Cohort A) and other advanced CD123-positive hematological malignancies (excluding myeloid malignancies) (cohort B). Thirteen patients (9 in Cohort A and 4 in Cohort B) were treated at dose level 1 (500 ng/kg/day) before early closure due to discontinuation of drug development by sponsor. Two dose limiting toxicities (Grade 4 thrombocytopenia and neutropenia) occurred in one patient in Cohort B. Cytokine release syndrome occurred in most patients (85%), all being grade ≤2. Responses only occurred in Cohort B, with a partial response in one patient with Hodgkin's lymphoma and morphological complete remission in the bone marrow in one patient with blastic plasmacytoid dendritic cell neoplasm. In conclusion, flotetuzumab had a manageable safety profile in advanced CD123-positive hematological malignancies.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Jianying Zhang
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California, USA
| | - Marjorie Robbins
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Alex F Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical center, Duarte, California, USA
| | - Leslie L Popplewell
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical center, Duarte, California, USA
| | - Lucy Ghoda
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
5
|
Dhakal P, Sy M, Sutamtewagul G, Mou E, Yu N, Pemmaraju N. Overcoming Tagraxofusp-Erzs Monotherapy Resistance in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) in a Real-World Clinical Setting. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:205-209. [PMID: 39219995 PMCID: PMC11361340 DOI: 10.36401/jipo-23-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 09/04/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and clinically aggressive hematologic malignancy with limited treatment options. Currently, standard treatment strategies include clinical trials; chemotherapy regimens such as hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (HCVAD); and tagraxofusp-erzs (TAG, previously SL-401) which is the first-in-class targeted therapy against CD123. TAG received Food and Drug Administration approval for frontline BPDCN treatment in December 2018 and has increasingly become an alternative to chemotherapy, offering potentially more effective and less toxic options. However, despite promising results, there are still patients who may be resistant to TAG monotherapy and/or who respond but eventually relapse. Herein, we discuss an important patient case of BPDCN treated with TAG and review BPDCN treatment strategies.
Collapse
Affiliation(s)
- Prajwal Dhakal
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mario Sy
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Grerk Sutamtewagul
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Eric Mou
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nanmeng Yu
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Araki D, Hong S, Linde N, Fisk B, Redekar N, Salisbury-Ruf C, Krouse A, Engels T, Golomb J, Dagur P, Magnani DM, Wang Z, Larochelle A. cMPL-Based Purification and Depletion of Human Hematopoietic Stem Cells: Implications for Pre-Transplant Conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581887. [PMID: 38464076 PMCID: PMC10925094 DOI: 10.1101/2024.02.24.581887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPLhigh LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Nathaniel Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Bryan Fisk
- Integrated Data Science Services, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- Integrated Data Science Services, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christi Salisbury-Ruf
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Theresa Engels
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
- Priority One Services, Inc., Alexandria, VA 22310, USA
| | - Justin Golomb
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
- Priority One Services, Inc., Alexandria, VA 22310, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Diogo M. Magnani
- Nonhuman Primate Reagent Resource, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, and Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Lane AA, Garcia JS, Raulston EG, Garzon JL, Galinsky I, Baxter EW, Leonard R, DeAngelo DJ, Luskin MR, Reilly CR, Stahl M, Stone RM, Vedula RS, Wadleigh MM, Winer ES, Mughal T, Brooks C, Gupta IV, Stevenson KE, Neuberg DS, Ren S, Keating J, Konopleva M, Stein A, Pemmaraju N. Phase 1b trial of tagraxofusp in combination with azacitidine with or without venetoclax in acute myeloid leukemia. Blood Adv 2024; 8:591-602. [PMID: 38052038 PMCID: PMC10837492 DOI: 10.1182/bloodadvances.2023011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT CD123, a subunit of the interleukin-3 receptor, is expressed on ∼80% of acute myeloid leukemias (AMLs). Tagraxofusp (TAG), recombinant interleukin-3 fused to a truncated diphtheria toxin payload, is a first-in-class drug targeting CD123 approved for treatment of blastic plasmacytoid dendritic cell neoplasm. We previously found that AMLs with acquired resistance to TAG were re-sensitized by the DNA hypomethylating agent azacitidine (AZA) and that TAG-exposed cells became more dependent on the antiapoptotic molecule BCL-2. Here, we report a phase 1b study in 56 adults with CD123-positive AML or high-risk myelodysplastic syndrome (MDS), first combining TAG with AZA in AML/MDS, and subsequently TAG, AZA, and the BCL-2 inhibitor venetoclax (VEN) in AML. Adverse events with 3-day TAG dosing were as expected, without indication of increased toxicity of TAG or AZA+/-VEN in combination. The recommended phase 2 dose of TAG was 12 μg/kg/day for 3 days, with 7-day AZA +/- 21-day VEN. In an expansion cohort of 26 patients (median age 71) with previously untreated European LeukemiaNet adverse-risk AML (50% TP53 mutated), triplet TAG-AZA-VEN induced response in 69% (n=18/26; 39% complete remission [CR], 19% complete remission with incomplete count recovery [CRi], 12% morphologic leukemia-free state [MLFS]). Among 13 patients with TP53 mutations, 7/13 (54%) achieved CR/CRi/MLFS (CR = 4, CRi = 2, MLFS = 1). Twelve of 17 (71%) tested responders had no flow measurable residual disease. Median overall survival and progression-free survival were 14 months (95% CI, 9.5-NA) and 8.5 months (95% CI, 5.1-NA), respectively. In summary, TAG-AZA-VEN shows encouraging safety and activity in high-risk AML, including TP53-mutated disease, supporting further clinical development of TAG combinations. The study was registered on ClinicalTrials.gov as #NCT03113643.
Collapse
Affiliation(s)
- Andrew A. Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Evangeline G. Raulston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jada L. Garzon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Emilie W. Baxter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rebecca Leonard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Christopher R. Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rahul S. Vedula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Martha M. Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eric S. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tariq Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA
- Stemline Therapeutics, New York, NY
| | | | | | | | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Siyang Ren
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Keating
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anthony Stein
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Marsh MC, Owen SC. Therapeutic Fusion Proteins. AAPS J 2023; 26:3. [PMID: 38036919 DOI: 10.1208/s12248-023-00873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.
Collapse
Affiliation(s)
- Morgan C Marsh
- Department of Molecular Pharmaceutics, University of Utah, 30 South 2000 East, Room 301, Salt Lake City, Utah, 84112, USA
| | - Shawn C Owen
- Department of Molecular Pharmaceutics, University of Utah, 30 South 2000 East, Room 301, Salt Lake City, Utah, 84112, USA.
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
9
|
He J, Garcia MB, Connors JS, Nuñez CA, Quesada AE, Gibson A, Roth M, Cuglievan B, Pemmaraju N, McCall D. Frontline Hyper-CVAD Plus Venetoclax for Pediatric Blastic Plasmacytoid Dendritic Cell Neoplasm. J Pediatr Hematol Oncol 2023; 45:e1001-e1004. [PMID: 37661300 DOI: 10.1097/mph.0000000000002748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/27/2023] [Indexed: 09/05/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy, especially in pediatrics, that can involve the bone marrow, skin, lymph nodes, and central nervous system (CNS). Given its variable clinical presentation, coupled with an immunohistochemistry pattern (CD4, CD56, TCF4, TCL-1, and CD123 positivity) that differs from other myeloid neoplasms, the diagnosis of BPDCN can be missed. Limited data are available to guide the treatment of pediatric BPDCN. Herein, we report a case of a pediatric patient who had BPDCN with central nervous system, orbital, and skin involvement. This patient achieved complete remission after receiving modified hyper-CVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone with venetoclax and intrathecal chemotherapy. He remains disease-free 200 days after receiving a stem cell transplant. This represents the first known published pediatric case using a modified hyper-CVAD plus venetoclax regimen for treating a pediatric BPDCN patient in the frontline setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
10
|
Yang J, Bae H. Drug conjugates for targeting regulatory T cells in the tumor microenvironment: guided missiles for cancer treatment. Exp Mol Med 2023; 55:1996-2004. [PMID: 37653036 PMCID: PMC10545761 DOI: 10.1038/s12276-023-01080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
Within the tumor microenvironment (TME), regulatory T cells (Tregs) play a key role in suppressing anticancer immune responses; therefore, various strategies targeting Tregs are becoming important for tumor therapy. To prevent the side effects of nonspecific Treg depletion, such as immunotherapy-related adverse events (irAEs), therapeutic strategies that specifically target Tregs in the TME are being investigated. Tumor-targeting drug conjugates are efficient drugs in which a cytotoxic payload is assembled into a carrier that binds Tregs via a linker. By allowing the drug to act selectively on target cells, this approach has the advantage of increasing the therapeutic effect and minimizing the side effects of immunotherapy. Antibody-drug conjugates, immunotoxins, peptide-drug conjugates, and small interfering RNA conjugates are being developed as Treg-targeting drug conjugates. In this review, we discuss key themes and recent advances in drug conjugates targeting Tregs in the TME, as well as future design strategies for successful use of drug conjugates for Treg targeting in immunotherapy.
Collapse
Affiliation(s)
- Juwon Yang
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu Bae
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Okamoto K, Imamura T, Tanaka S, Urata T, Yoshida H, Shiba N, Iehara T. The Nup98::Nsd1 fusion gene induces CD123 expression in 32D cells. Int J Hematol 2023:10.1007/s12185-023-03612-z. [PMID: 37173550 DOI: 10.1007/s12185-023-03612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The NUP98::NSD1 fusion gene is associated with extremely poor prognosis in patients with acute myeloid leukemia (AML). NUP98::NSD1 induces self-renewal and blocks differentiation of hematopoietic stem cells, leading to development of leukemia. Despite its association with poor prognosis, targeted therapy for NUP98::NSD1-positive AML is lacking, as the details of NUP98::NSD1 function are unknown. Here, we generated 32D cells (a murine interleukin-3 (IL-3)-dependent myeloid progenitor cell line) expressing mouse Nup98::Nsd1 to explore the function of NUP98::NSD1 in AML, including comprehensive gene expression analysis. We identified two properties of Nup98::Nsd1 + 32D cells in vitro. First, Nup98::Nsd1 promoted blocking of AML cell differentiation, consistent with a previous report. Second, Nup98::Nsd1 increased dependence on IL-3 for cell proliferation, due to overexpression of the alpha subunit of the IL-3 receptor (IL3-RA, also known as CD123). Consistent with our in vitro data, IL3-RA was also upregulated in samples from patients with NUP98::NSD1-positive AML. These results highlight CD123 as a potential new therapeutic target in NUP98::NSD1-positive AML.
Collapse
Affiliation(s)
- Kenji Okamoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Seiji Tanaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takayo Urata
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
North American Blastic Plasmacytoid Dendritic Cell Neoplasm Consortium: position on standards of care and areas of need. Blood 2023; 141:567-578. [PMID: 36399715 DOI: 10.1182/blood.2022017865] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with historically poor outcomes and no worldwide consensus treatment approach. Unique among most hematologic malignancies for its frequent cutaneous involvement, BPDCN can also invade other extramedullary compartments, including the central nervous system. Generally affecting older adults, many patients are unfit to receive intensive chemotherapy, and although hematopoietic stem cell transplantation is preferred for younger, fit individuals, not all are eligible. One recent therapeutic breakthrough is that all BPDCNs express CD123 (IL3Rα) and that this accessible surface marker can be pharmacologically targeted. The first-in-class agent for BPDCN, tagraxofusp, which targets CD123, was approved in December 2018 in the United States for patients with BPDCN aged ≥2 years. Despite favorable response rates in the frontline setting, many patients still relapse in the setting of monotherapy, and outcomes in patients with relapsed/refractory BPDCN remain dismal. Therefore, novel approaches targeting both CD123 and other targets are actively being investigated. To begin to formally address the state of the field, we formed a new collaborative initiative, the North American BPDCN Consortium (NABC). This group of experts, which includes a multidisciplinary panel of hematologists/oncologists, hematopoietic stem cell transplant physicians, pathologists, dermatologists, and pediatric oncologists, was tasked with defining the current standard of care in the field and identifying the most important research questions and future directions in BPDCN. The position findings of the NABC's inaugural meetings are presented herein.
Collapse
|
13
|
Suárez A, Soler N, Calderon A, Martinez B, Piña M. Pediatric Blastic Plasmacytoid Dendritic Cell Neoplasm, Clinical Features and Immunophenotype: A Case Report. Cureus 2023; 15:e34549. [PMID: 36879711 PMCID: PMC9985430 DOI: 10.7759/cureus.34549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare but aggressive malignancy with high mortality involving the skin and hematopoietic system. Clinical suspicion is difficult, and management of skin lesions is challenging due to their indolent course prior to dissemination. We describe a patient with isolated skin involvement who progressed to CD4+/CD56+ and CD123+ acute leukemia.
Collapse
Affiliation(s)
- Amaranto Suárez
- Pediatric Oncology, Instituto Nacional de Cancerología, Bogotá, COL
| | - Nathalie Soler
- Pediatric Oncology, Instituto Nacional de Cancerología, Bogota, COL
| | | | - Bibiana Martinez
- Bacteriologist, specialising in Haematology, Instituto Nacional de Cancerología, Bogota, COL
| | - Martha Piña
- Pediatric Oncology, Instituto Nacional de Cancerología, Bogota, COL
| |
Collapse
|
14
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
15
|
Tumor-specific intracellular delivery: peptide-guided transport of a catalytic toxin. Commun Biol 2023; 6:60. [PMID: 36650239 PMCID: PMC9845330 DOI: 10.1038/s42003-022-04385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
There continues to be a need for cancer-specific ligands that can deliver a wide variety of therapeutic cargos. Ligands demonstrating both tumor-specificity and the ability to mediate efficient cellular uptake of a therapeutic are critical to expand targeted therapies. We previously reported the selection of a peptide from a peptide library using a non-small cell lung cancer (NSCLC) cell line as the target. Here we optimize our lead peptide by a series of chemical modifications including truncations, N-terminal capping, and changes in valency. The resultant 10 amino acid peptide has an affinity of <40 nM on four different NSCLC cell lines as a monomer and is stable in human serum for >48 h. The peptide rapidly internalizes upon cell binding and traffics to the lysosome. The peptide homes to a tumor in an animal model and is retained up to 72 h. Importantly, we demonstrate that the peptide can deliver the cytotoxic protein saporin specifically to cancer cells in vitro and in vivo, resulting in an effective anticancer agent.
Collapse
|
16
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
17
|
Higgins MJ, Harrop S, Lade S, Prince HM, McCormack C, Campbell BA. Unifocal cutaneous blastic plasmacytoid dendritic cell neoplasm with a favorable response following high-dose radiotherapy alone. Leuk Lymphoma 2022; 63:3004-3007. [PMID: 35904420 DOI: 10.1080/10428194.2022.2105326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martin J Higgins
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sean Harrop
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Lade
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - H Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Christopher McCormack
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Belinda A Campbell
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Sibai J, Chen R, Nabhani IA, Perusini MA, Sibai H. Foot gangrene following Tagraxofusp treatment for blastic plasmacytoid dendritic cell neoplasm: Case report. EJHAEM 2022; 3:1374-1376. [PMID: 36467820 PMCID: PMC9713045 DOI: 10.1002/jha2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/30/2022] [Accepted: 07/23/2022] [Indexed: 06/17/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy. It is associated with poor prognosis and heterogenous presentation. The CD123-directed cytotoxin, Tagraxofusp, is a targeted therapy for BPDCN. Here, we report an 81-year-old female diagnosed with BPDCN. The patient was treated with Tagraxofusp and underwent a remarkably long remission (>20 months) without stem-cell transplantation. She, however, experienced blue toe syndrome and left foot gangrene. We postulate that these previously unreported side effects were caused by microembolization. Characterization of the incidence of thrombo- and microembolizations in such a context, as well as prophylactic management options, are warranted.
Collapse
Affiliation(s)
- Jad Sibai
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - RuiQi Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Ibrahim Al Nabhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| |
Collapse
|
19
|
Swinney DC. Why medicines work. Pharmacol Ther 2022; 238:108175. [DOI: 10.1016/j.pharmthera.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|
20
|
Loss of METTL3 attenuates blastic plasmacytoid dendritic cell neoplasm response to PRMT5 inhibition via IFN signaling. Blood Adv 2022; 6:5330-5344. [PMID: 35482445 PMCID: PMC9631685 DOI: 10.1182/bloodadvances.2021006306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with poor clinical outcomes. Dysregulated MYC expression, which is associated with protein arginine methyltransferase 5 (PRMT5) dependency, is a recurrent feature of BPDCN. Although recent studies have reported a PRMT5 gene signature in BPDCN patient samples, the role of PRMT5 in BPDCN remains unexplored. Here, we demonstrate that BPDCN is highly sensitive to PRMT5 inhibition. Consistent with the upregulation of PRMT5 in BPDCN, we show that pharmacological inhibition (GSK3326595) of PRMT5 inhibits the growth of the patient-derived BPDCN cell line CAL-1 in vitro and mitigated tumor progression in our mouse xenograft model. Interestingly, RNA-sequencing (RNA-seq) analysis revealed that PRMT5 inhibition increases intron retention in several key RNA methylation genes, including METTL3, which was accompanied by a dose-dependent decrease in METTL3 expression. Notably, the function of cellular m6A RNA modification of METTL3 was also affected by PRMT5 inhibition in CAL-1 cells. Intriguingly, METTL3 depletion in CAL-1 caused a significant increase in interferon (IFN) signaling, which was further elevated upon PRMT5 inhibition. Importantly, we discovered that this increase in IFN signaling attenuated the sensitivity of METTL3-depleted CAL-1 cells to PRMT5 inhibition. Correspondingly, stimulation of IFN signaling via TLR7 agonists weakened CAL-1 cell sensitivity to PRMT5 inhibition. Overall, our findings implicate PRMT5 as a therapeutic target in BPDCN and provide insight into the involvement of METTL3 and the IFN pathway in regulating the response to PRMT5 inhibition.
Collapse
|
21
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
22
|
Pemmaraju N, Wilson NR, Senapati J, Economides MP, Guzman ML, Neelapu SS, Kazemimood R, Davis RE, Jain N, Khoury JD, Sugita M, Cai T, Smith J, Frattini MG, Garton A, Roboz G, Konopleva M. CD123-directed allogeneic chimeric-antigen receptor T-cell therapy (CAR-T) in blastic plasmacytoid dendritic cell neoplasm (BPDCN): Clinicopathological insights. Leuk Res 2022; 121:106928. [PMID: 35963025 DOI: 10.1016/j.leukres.2022.106928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy associated with overexpression of CD123. Allogeneic chimeric antigen receptor T cells (CAR-T) directed against CD123 in BPDCN have been studied in clinical trials. We performed post-mortem analysis of a patient treated with anti-CD123 CAR-T to elucidate cause of death, development of cytokine release syndrome (CRS), and tissue distribution of UCART123 cells. METHODS A post-mortem multidisciplinary clinicopathologic analysis was performed with digital droplet polymerase chain reaction of isolated blood and tissue ribonucleic acid (RNA) to evaluate tissue distribution of infused CAR-T. Multiparameter flow cytometry for detection of CAR-T was used for whole blood samples. Cytokine levels in plasma were measured using multiplex bead assay. Gene expression profiling on isolated RNA was performed using semi-custom Nanostring immune gene panel and RNA-sequence method. RNA in situ hybridization was performed using CAR-specific probe. RESULTS The patient developed severe clinical CRS refractory to corticosteroids, tocilizumab, and lymphodepletion. Despite significant reduction in BPDCN lesions, the patient passed away on day 9 of CAR-T. Autopsy results show that following lymphodepletion and UCART123 administration, the patient remained severely lymphopenic with few UCART123 cells detected, predominantly localized to spleen. CONCLUSIONS No definitive cause of death was determined, but we hypothesized that the patient may have succumbed to CAR-T-mediated cardiopulmonary toxicity. UCART123 cells displayed low overall distribution, with predominance in immune organs and tissues. Mechanism of CRS development is still poorly understood in patients receiving CAR-T therapy. Future directions in the field developing CD123-targeted agents in BPDCN are discussed.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Minas P Economides
- Department of Hematology and Oncology, New York University, NY, United States
| | - Monica L Guzman
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Kazemimood
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph D Khoury
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mayumi Sugita
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Gail Roboz
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
23
|
Pemmaraju N, Sweet KL, Stein AS, Wang ES, Rizzieri DA, Vasu S, Rosenblat TL, Brooks CL, Habboubi N, Mughal TI, Kantarjian H, Konopleva M, Lane AA. Long-Term Benefits of Tagraxofusp for Patients With Blastic Plasmacytoid Dendritic Cell Neoplasm. J Clin Oncol 2022; 40:3032-3036. [PMID: 35820082 PMCID: PMC9462530 DOI: 10.1200/jco.22.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically on the based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive myeloid malignancy. We report long-term results, including data from the continued access phase, of the largest prospective BPDCN trial evaluating the CD123-targeted therapy tagraxofusp (TAG) in adults with treatment-naive and relapsed/refractory BPDCN. The primary outcome was complete response (CR) + clinical CR (CRc: CR with residual skin abnormality not indicative of active disease). Eighty-four (65 treatment-naive and 19 relapsed/refractory) of 89 patients received TAG 12 μg/kg once daily; the median follow-up was 34.0 months. For treatment-naive patients, the overall response rate was 75%; 57% achieved CR + CRc. The median time to remission was 39 (range, 14-131) days, and the median CR + CRc duration was 24.9 (95% CI, 3.8 to not reached) months. Nineteen patients (51%) with CR + CRc were bridged to stem-cell transplant, with a median CR + CRc duration of 22.2 (range, 1.5-57.4) months. Most common adverse events were increased alanine (64%) or aspartate (60%) aminotransferase and hypoalbuminemia (51%); most occurred in cycle 1 and were transient. Capillary leak syndrome occurred in 21% of patients (grade ≥ 3: 7%). In first-line patients with BPDCN, TAG monotherapy resulted in high and durable responses, allowing many to bridge to stem-cell transplant. TAG was generally well-tolerated with a predictable and manageable safety profile.
Collapse
Affiliation(s)
| | | | | | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - Sumithira Vasu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Todd L Rosenblat
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | | | | | - Tariq I Mughal
- Stemline Therapeutics, New York, NY.,Tufts University School of Medicine, Boston, MA
| | | | | | | |
Collapse
|
24
|
Díaz Acedo R, Domínguez Muñoz MÁ, Navajas Laguna C, Morales Camacho R, Simón Pilo I, Calama Ruiz-Mateos VP, Yébenes Ramírez M, Vahí Sánchez de Medina M, Artacho Criado S, Rodríguez Pérez A, Couto Caro MC. Tagraxofusp as first-line treatment for blastic plasmacytoid dendritic cell neoplasm. Leuk Lymphoma 2022; 63:1762-1764. [PMID: 35200083 DOI: 10.1080/10428194.2022.2042685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Barbullushi K, Rampi N, Serpenti F, Sciumè M, Fabris S, De Roberto P, Fracchiolla NS. Vaccination Therapy for Acute Myeloid Leukemia: Where Do We Stand? Cancers (Basel) 2022; 14:2994. [PMID: 35740657 PMCID: PMC9221207 DOI: 10.3390/cancers14122994] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Immunotherapy is changing the therapeutic landscape of many hematologic diseases, with immune checkpoint inhibitors, bispecific antibodies, and CAR-T therapies being its greatest expression. Unfortunately, immunotherapy in acute myeloid leukemia (AML) has given less brilliant results up to now, and the only approved drug is the antiCD33 antibody-drug conjugate gemtuzumab ozogamicin. A promising field of research in AML therapy relies on anti-leukemic vaccination to induce remission or prevent disease relapse. In this review, we analyze recent evidence on AML vaccines and their biological mechanisms. The principal proteins that have been exploited for vaccination strategies and have reached clinical experimental phases are Wilm's tumor 1, proteinase 3, and RHAMM. the majority of data deals with WT1-base vaccines, given also the high expression and mutation rates of WT1 in AML cells. Stimulators of immune responses such as TLR7 agonist and interleukin-2 have also proven anti-leukemic activity both in vivo and in vitro. Lastly, cellular vaccines mainly based on autologous or allogeneic off-the-shelf dendritic cell-based vaccines showed positive results in terms of T-cell response and safety, also in elderly patients. Compared to other immunotherapeutic strategies, anti-AML vaccines have the advantage of being a less toxic and a more manageable approach, applicable also to elderly patients with poorer performance status, and may be used in combination with currently available therapies. As for the best scenario in which to use vaccination, whether in a therapeutic, prophylactic, or preemptive setting, further studies are needed, but available evidence points to poorer results in the presence of active or high-burden disease. Given the poor prognosis of relapsed/refractory or high-risk AML, further research is urgently needed to better understand the biological pathways that sustain its pathogenesis. In this setting, research on novel frontiers of immunotherapy-based agents, among which vaccines represent important actors, is warranted to develop new and efficacious strategies to obtain long-term disease control by immune patrolling.
Collapse
Affiliation(s)
- Kordelia Barbullushi
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Nicolò Rampi
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Fabio Serpenti
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Mariarita Sciumè
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
| | - Sonia Fabris
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
| | - Pasquale De Roberto
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
| | - Nicola Stefano Fracchiolla
- Hematology & BMT Unit, Fondazione IRCCS Ca’ Granda Policlinico Ospedale Maggiore di Milano, 20122 Milan, Italy; (K.B.); (N.R.); (F.S.); (M.S.); (S.F.); (P.D.R.)
| |
Collapse
|
26
|
Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Far BF, Malik AA, Gupta AK, Sadhu S, Dohare S, Gupta PK. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro 2022; 83:105417. [PMID: 35718257 DOI: 10.1016/j.tiv.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Noura Al-Dayan
- Department of Medical Lab Sciences, Prince Sattam bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ashish Kumar Gupta
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Soumi Sadhu
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Sushil Dohare
- Department of Epidemiology, Faculty of Public Health & Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India; Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
27
|
Buzzatti E, Paterno G, Palmieri R, Esposito F, Pascale MR, Mallegni F, Guarnera L, Pasqualone G, Irno Consalvo MA, Fraboni D, Moretti F, Savi A, Borsellino B, Maurillo L, Buccisano F, Sconocchia G, Venditti A, Del Principe MI. Occult central nervous system involvement guides therapeutic choices in blastic plasmacytoid dendritic cell neoplasms. Leuk Lymphoma 2022; 63:1754-1757. [DOI: 10.1080/10428194.2022.2042687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Giovangiacinto Paterno
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Fabiana Esposito
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Maria Rosaria Pascale
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Flavia Mallegni
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Luca Guarnera
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Maria Antonietta Irno Consalvo
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Daniela Fraboni
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Arianna Savi
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | | | | | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Giuseppe Sconocchia
- Laboratory of Tumor Immunology and Immunotherapy, Institute of Translation Pharmacology, Department of Medicine, National Research Council of Italy (CNR), Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Fondazione Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
28
|
Falgàs A, Garcia-León A, Núñez Y, Serna N, Sánchez-Garcia L, Unzueta U, Voltà-Durán E, Aragó M, Álamo P, Alba-Castellón L, Sierra J, Gallardo A, Villaverde A, Vázquez E, Mangues R, Casanova I. A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4 + lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomed Pharmacother 2022; 150:112940. [PMID: 35421785 DOI: 10.1016/j.biopha.2022.112940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
High rates of relapsed and refractory diffuse large B-cell lymphoma (DLBCL) patients and life-threatening side effects associated with immunochemotherapy make an urgent need to develop new therapies for DLBCL patients. Immunotoxins seem very potent anticancer therapies but their use is limited because of their high toxicity. Accordingly, the self-assembling polypeptidic nanoparticle, T22-DITOX-H6, incorporating the diphtheria toxin and targeted to CXCR4 receptor, which is overexpressed in DLBCL cells, could offer a new strategy to selectively eliminate CXCR4+ DLBCL cells without adverse effects. In these terms, our work demonstrated that T22-DITOX-H6 showed high specific cytotoxicity towards CXCR4+ DLBCL cells at the low nanomolar range, which was dependent on caspase-3 cleavage, PARP activation and an increase of cells in early/late apoptosis. Repeated nanoparticle administration induced antineoplastic effect, in vivo and ex vivo, in a disseminated immunocompromised mouse model generated by intravenous injection of human luminescent CXCR4+ DLBCL cells. Moreover, T22-DITOX-H6 inhibited tumor growth in a subcutaneous immunocompetent mouse model bearing mouse CXCR4+ lymphoma cells in the absence of alterations in the hemogram, liver or kidney injury markers or on-target or off-target organ histology. Thus, T22-DITOX-H6 demonstrates a selective cytotoxicity towards CXCR4+ DLBCL cells without the induction of toxicity in non-lymphoma infiltrated organs nor hematologic toxicity.
Collapse
Affiliation(s)
- Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Annabel Garcia-León
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
| | - Yáiza Núñez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
| | - Naroa Serna
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Laura Sánchez-Garcia
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Marc Aragó
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Lorena Alba-Castellón
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
| | - Jorge Sierra
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain.
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain.
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
29
|
Zou R, Zhao W, Xiao S, Lu Y. A Signature of Three Apoptosis-Related Genes Predicts Overall Survival in Breast Cancer. Front Surg 2022; 9:863035. [PMID: 35769153 PMCID: PMC9235836 DOI: 10.3389/fsurg.2022.863035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background The commonest malignancy in women is known as breast cancer (BC). Numerous studies demonstrated that apoptosis appears to be critical to the management and clinical outcome of BC patients. The purpose of this study is to explore the potential connection between apoptosis and BC and establish the apoptosis-associated gene signature in BC. Methods The data of BC patient transcripts and related clinical information comes from the Cancer Genome Atlas Database (TCGA), and the genes related to apoptosis come from the Molecular Characterization Database (MSigDB). We identified the abnormally expressed apoptosis-related genes in BC samples. The optimal apoptosis-related genes screened by Cox regression analysis were designed to construct a prognostic model for predicting BC patients. Using the Nom Chart to Predict 1-Year, 3-Year, and 5-Year overall survival for BC patients. The gene signature-related functional pathways were explored by gene set enrichment analysis (GSEA). Results Three genes [alpha subunit of the interleukin 3 receptor (IL3RA), apoptosis-inducing factor mitochondrial-associated 1 (AIFM1), and phosphatidylinositol-3 kinase catalytic alpha (PIK3CA)] correlated with apoptosis were shown to be strongly linked to the overall survival of BC. Survival analysis shows that the risk score is directly proportional to the poor prognosis of BC patients. Risk assessment based on three genetic characteristics (age, pathological stage N, and pathological stage M) can independently predict the prognosis of patients with BC. The Nom chart is most suitable for assessing the long-term survival rate of BC patients. The results of GSEA demonstrated that numerous cell cycle-related pathways were abundant in the high-risk group. Conclusion We constructed an apoptosis-associated gene signature in BC, which had a potential clinical application prospect for BC patients.
Collapse
|
30
|
Vidimar V, Park M, Stubbs CK, Ingram NK, Qiang W, Zhang S, Gursel D, Melnyk RA, Satchell KJF. Proteolytic pan-RAS Cleavage Leads to Tumor Regression in Patient-derived Pancreatic Cancer Xenografts. Mol Cancer Ther 2022; 21:810-820. [PMID: 35247912 PMCID: PMC9933180 DOI: 10.1158/1535-7163.mct-21-0550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The lack of effective RAS inhibition represents a major unmet medical need in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we investigate the anticancer activity of RRSP-DTB, an engineered biologic that cleaves the Switch I of all RAS isoforms, in KRAS-mutant PDAC cell lines and patient-derived xenografts (PDX). We first demonstrate that RRSP-DTB effectively engages RAS and impacts downstream ERK signaling in multiple KRAS-mutant PDAC cell lines inhibiting cell proliferation at picomolar concentrations. We next tested RRSP-DTB in immunodeficient mice bearing KRAS-mutant PDAC PDXs. Treatment with RRSP-DTB led to ≥95% tumor regression after 29 days. Residual tumors exhibited disrupted tissue architecture, increased fibrosis and fewer proliferating cells compared with controls. Intratumoral levels of phospho-ERK were also significantly lower, indicating in vivo target engagement. Importantly, tumors that started to regrow without RRSP-DTB shrank when treatment resumed, demonstrating resistance to RRSP-DTB had not developed. Tracking persistence of the toxin activity following intraperitoneal injection showed that RRSP-DTB is active in sera from immunocompetent mice for at least 1 hour, but absent after 16 hours, justifying use of daily dosing. Overall, we report that RRSP-DTB strongly regresses hard-to-treat KRAS-mutant PDX models of pancreatic cancer, warranting further development of this pan-RAS biologic for the management of RAS-addicted tumors.
Collapse
Affiliation(s)
- Vania Vidimar
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Minyoung Park
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Caleb K Stubbs
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Nana K Ingram
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Wenan Qiang
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Department of Obstetrics and Gynecology (Reproductive Science in Medicine), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shanshan Zhang
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Demirkan Gursel
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Roman A Melnyk
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Karla J F Satchell
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Wilson NR, Pemmaraju N. Evaluating tagraxofusp for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN). Expert Opin Pharmacother 2022; 23:431-438. [DOI: 10.1080/14656566.2022.2029846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nathaniel R. Wilson
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas, United States
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
32
|
Boissel N, Rabian F. Immunotherapies in acute leukemia. Therapie 2021; 77:241-250. [PMID: 34924207 DOI: 10.1016/j.therap.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, immunotherapy has emerged as one of the most promising field of therapeutic progress in acute leukemia. Antibody-drug conjugates are now combined to standard chemotherapy backbones in both acute myeloid (AML) and lymphoblastic leukemia (ALL). CD19 targeting immune cell engagers and chimeric antigen receptor (CAR) T-cells have been approved in relapsed/refractory B-cell acute lymphoblastic leukemia and pave the way to promising developments in acute myeloid leukemia. Next generation immune checkpoint inhibitors targeting TIM-3 or CD47 binding by SIRPα on macrophages are tested in combination to hypomethylating agents to improve survival of unfit AML patients with acceptable safety profiles. This review summarizes the antibody-derived strategies developed in the field of acute leukemias with a specific focus on recently approved drugs.
Collapse
Affiliation(s)
- Nicolas Boissel
- Hematology Adolescent and Young Adult Unit, Saint-Louis Hospital, AP-HP, 1, avenue Claude-Vellefaux, 75010 Paris, France; URP-3518, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France.
| | - Florence Rabian
- Hematology Adolescent and Young Adult Unit, Saint-Louis Hospital, AP-HP, 1, avenue Claude-Vellefaux, 75010 Paris, France; URP-3518, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| |
Collapse
|
33
|
Khirehgesh MR, Sharifi J, Akbari B, Mansouri K, Safari F, Soleymani B, Yari K. Design and construction a novel humanized biparatopic nanobody-based immunotoxin against epidermal growth factor receptor (EGFR). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Kan WL, Cheung Tung Shing KS, Nero TL, Hercus TR, Tvorogov D, Parker MW, Lopez AF. Messing with βc: A unique receptor with many goals. Semin Immunol 2021; 54:101513. [PMID: 34836771 DOI: 10.1016/j.smim.2021.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Our understanding of the biological role of the βc family of cytokines has evolved enormously since their initial identification as bone marrow colony stimulating factors in the 1960's. It has become abundantly clear over the intervening decades that this family of cytokines has truly astonishing pleiotropic capacity, capable of regulating not only hematopoiesis but also many other normal and pathological processes such as development, inflammation, allergy and cancer. As noted in the current pandemic, βc cytokines contribute to the cytokine storm seen in acutely ill COVID-19 patients. Ongoing studies to discover how these cytokines activate their receptor are revealing insights into the fundamental mechanisms that give rise to cytokine pleiotropy and are providing tantalizing glimpses of how discrete signaling pathways may be dissected for activation with novel ligands for therapeutic benefit.
Collapse
Affiliation(s)
- Winnie L Kan
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Denis Tvorogov
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia; Department of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Australian Cancer Research Foundation Cancer Genomics Facility, SA Pathology, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
36
|
Abstract
INTRODUCTION Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with historically poor outcomes for patients, often refractory to traditional chemotherapy. Recent research has focused on targeted therapy to improve responses and limit potential toxicity. AREAS COVERED CD123 (also known as IL-3 Rα) is a cell surface marker and attractive therapeutic target for many myeloid malignancies, particularly BPDCN, whose cells ubiquitously overexpress CD123. We review the history of CD123 research regarding BPDCN, recent advances including FDA approval of tagraxofusp (formerly SL-401) for BPDCN, and ongoing clinical studies utilizing novel therapeutic strategies to target CD123. EXPERT OPINION The approval of tagraxofusp for the treatment of BPDCN in December 2018 drastically changed the treatment landscape for patients with this rare neoplasm. While tagraxofusp is better tolerated than traditional multi-agent chemotherapy regimens, it requires close monitoring and sound clinical judgment by providers to prevent and mitigate severe treatment-related complications with special attention to the recognition and management of capillary leak syndrome (CLS). Several other promising strategies for targeting CD123 in BPDCN are currently under investigation, including antibody-drug conjugates, T-cell engagers, and CAR-T cellular therapeutics. These CD123 targeted approaches may soon become standard of care for patients with this difficult to treat malignancy.
Collapse
Affiliation(s)
- Adam J DiPippo
- Clinical Pharmacy Specialist, Pharmacy Clinical Programs, The University of Texas Md Anderson Cancer Center, Houston,Texas US
| | - Nathaniel R Wilson
- Resident Physician, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, US
| | - Naveen Pemmaraju
- Associate Professor, Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, US
| |
Collapse
|
37
|
Tahk S, Vick B, Hiller B, Schmitt S, Marcinek A, Perini ED, Leutbecher A, Augsberger C, Reischer A, Tast B, Humpe A, Jeremias I, Subklewe M, Fenn NC, Hopfner KP. SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells. J Hematol Oncol 2021; 14:155. [PMID: 34579739 PMCID: PMC8477557 DOI: 10.1186/s13045-021-01163-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023] Open
Abstract
Background Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 “don’t eat me signal” is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. Methods SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. Results SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. Conclusions SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01163-6.
Collapse
Affiliation(s)
- Siret Tahk
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Björn Hiller
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Saskia Schmitt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Anetta Marcinek
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Enrico D Perini
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Alexandra Leutbecher
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christian Augsberger
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Anna Reischer
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Tast
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.,Department of Hematology and Oncology, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nadja C Fenn
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany.
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany.
| |
Collapse
|
38
|
Hammond D, Montalban-Bravo G. Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia. Curr Hematol Malig Rep 2021; 16:405-417. [PMID: 34499330 DOI: 10.1007/s11899-021-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Despite recent advances in the treatment of de novo acute myeloid leukemia (AML), AML arising from antecedent chronic myelomonocytic leukemia (CMML) continues to have dismal outcomes. While the unique biological drivers of CMML and subsequent leukemic transformation (LT) have been revealed with advances in molecular characterization, this has not yet translated to the bedside. Here, we review these biologic drivers, outcomes with current therapies, and rationale avenues of future investigation specifically in blast phase CMML (CMML-BP). RECENT FINDINGS CMML-BP outcomes are studied as an aggregate with more common categories of AML with myelodysplasia-related changes (AML-MRCs) or the even broader category of secondary AML (sAML), which illustrates the crux of the problem. While a modest survival advantage with allogeneic hematopoietic stem cell transplant exists, the difficulty is bridging patients to transplant and managing patients that require an allograft-sparing approach. Limited data suggest that short-lived remissions can be obtained employing CPX-351 or venetoclax-based lower intensity combination therapy. Promising future strategies include repurposing cladribine, exploiting the supportive role of dendritic cell subsets with anti-CD123 therapies, MCL-1 inhibition, dual MEK/PLK1 inhibition, FLT3 inhibition in RAS-mutated and CBL-mutated subsets, and immune therapies targeting novel immune checkpoint molecules such as the leukocyte immunoglobulin-like receptor B4 (LILRB4), an immune-modulatory transmembrane protein restrictively expressed on monocytic cells. The successful management of an entity as unique as CMML-BP will require a cooperative, concerted effort to design and conduct clinical trials dedicated to this rare form of sAML.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
39
|
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: review and update. J Drug Target 2021; 29:848-862. [PMID: 33615933 DOI: 10.1080/1061186x.2021.1894435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Collapse
Affiliation(s)
- Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
40
|
Wolf P. Targeted Toxins for the Treatment of Prostate Cancer. Biomedicines 2021; 9:biomedicines9080986. [PMID: 34440190 PMCID: PMC8391386 DOI: 10.3390/biomedicines9080986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common cancer and the fifth leading cause of cancer deaths worldwide. Despite improvements in diagnosis and treatment, new treatment options are urgently needed for advanced stages of the disease. Targeted toxins are chemical conjugates or fully recombinant proteins consisting of a binding domain directed against a target antigen on the surface of cancer cells and a toxin domain, which is transported into the cell for the induction of apoptosis. In the last decades, targeted toxins against prostate cancer have been developed. Several challenges, however, became apparent that prevented their direct clinical use. They comprise immunogenicity, low target antigen binding, endosomal entrapment, and lysosomal/proteasomal degradation of the targeted toxins. Moreover, their efficacy is impaired by prostate tumors, which are marked by a dense microenvironment, low target antigen expression, and apoptosis resistance. In this review, current findings in the development of targeted toxins against prostate cancer in view of effective targeting, reduction of immunogenicity, improvement of intracellular trafficking, and overcoming apoptosis resistance are discussed. There are promising approaches that should lead to the clinical use of targeted toxins as therapeutic alternatives for advanced prostate cancer in the future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; ; Tel.: +49-761-270-28921
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
41
|
Lee SS, Verstovsek S, Pemmaraju N. Novel Therapies in Myeloproliferative Neoplasms: Beyond JAK Inhibitor Monotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:117-128. [PMID: 35663101 PMCID: PMC9138435 DOI: 10.36401/jipo-20-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 06/15/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that consist classically of polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Janus kinase (JAK) inhibitors have become the standard of therapy in treating patients with intermediate- to higher-risk MF. However, JAK inhibitor (JAKi) treatment can be associated with development of resistance, suboptimal response, relapse, or treatment-related adverse effects. With no approved therapies beyond the JAKi class, the estimated median survival, post JAKi failure, is approximately two years or less; therefore, novel therapies are urgently needed in the MF field. In this review, we discuss ruxolitinib use in MPNs as well as causes of ruxolitinib failure or discontinuation. In addition, we review novel therapies being investigated alone or in combination with JAKi administration. We summarize concepts and mechanisms behind emerging novel therapies being studied for MPNs. This review of emerging novel therapies outlines several novel mechanisms of agents, including via promotion of apoptosis, alteration of the microenvironment, activation or inactivation of various pathways, targeting fibrosis, and telomerase inhibition.
Collapse
Affiliation(s)
- Sophia S. Lee
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
43
|
Cheng W, Yu TT, Tang AP, He Young K, Yu L. Blastic Plasmacytoid Dendritic Cell Neoplasm: Progress in Cell Origin, Molecular Biology, Diagnostic Criteria and Therapeutic Approaches. Curr Med Sci 2021; 41:405-419. [PMID: 34218354 DOI: 10.1007/s11596-021-2393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy characterized by recurrent skin nodules, an aggressive clinical course with rapid involvement of hematological organs, and a poor prognosis with poor overall survival. BPDCN is derived from plasmacytoid dendritic cells (pDCs) and its pathogenesis is unclear. The tumor cells show aberrant expression of CD4, CD56, interleukin-3 receptor alpha chain (CD123), blood dendritic cell antigen 2 (BDCA 2/CD303), blood dendritic cell antigen 4 (BDCA4) and transcription factor (E protein) E2-2 (TCF4). The best treatment drugs are based on experience by adopting those used for either leukemia or lymphoma. Relapse with drug resistance generally occurs quickly. Stem cell transplantation after the first complete remission is recommended and tagraxofusp is the first targeted therapy. In this review, we summarize the differentiation of BPDCN from its cell origin, its connection with normal pDCs, clinical characteristics, genetic mutations and advances in treatment of BPDCN. This review provides insights into the mechanisms of and new therapeutic approaches for BPDCN.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Tian Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ai-Ping Tang
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ken He Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, 27710, USA
| | - Li Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
44
|
Fogha J, Bayry J, Diharce J, de Brevern AG. Structural and evolutionary exploration of the IL-3 family and its alpha subunit receptors. Amino Acids 2021; 53:1211-1227. [PMID: 34196789 DOI: 10.1007/s00726-021-03026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-3 (IL-3) is a cytokine belonging to the family of common β (βc) and is involved in various biological systems. Its activity is mediated by the interaction with its receptor (IL-3R), a heterodimer composed of two distinct subunits: IL-3Rα and βc. IL-3 and its receptor, especially IL-3Rα, play a crucial role in pathologies like inflammatory diseases and therefore are interesting therapeutic targets. Here, we have performed an analysis of these proteins and their interaction based on structural and evolutionary information. We highlighted that IL-3 and IL-3Rα structural architectures are conserved across evolution and shared with other proteins belonging to the same βc family interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IL-3Rα/IL-3 interaction is mediated by a large interface in which most residues are surprisingly not conserved during evolution and across family members. In spite of this high variability, we suggested small regions constituted by few residues conserved during the evolution in both proteins that could be important for the binding affinity.
Collapse
Affiliation(s)
- Jade Fogha
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche Des Cordeliers, Institut National de La Santé Et de La Recherche Médicale, Sorbonne Université, Université de Paris, 75006, Paris, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad, 678 557, India
| | - Julien Diharce
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
| | - Alexandre G de Brevern
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
- UMR_S 1134, DSIMB, Université de La Réunion, Inserm, Biologie Intégrée du Globule Rouge, La Réunion, 97744, Saint-Denis, France.
| |
Collapse
|
45
|
Mirgh S, Sharma A, Folbs B, Khushoo V, Kapoor J, Tejwani N, Ahmed R, Agrawal N, Choudhary PS, Mehta P, Bhurani D. Daratumumab-based therapy after prior Azacytidine-Venetoclax in an octagenerian female with BPDCN (blastic plasmacytoid dendritic cell neoplasm) - a new perspective. Leuk Lymphoma 2021; 62:3039-3042. [PMID: 34151693 DOI: 10.1080/10428194.2021.1941938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sumeet Mirgh
- Adult Hematolymphoid and BMT unit, Tata Memorial Centre, ACTREC (Advanced Centre for Treatment, Research, and Education in Cancer), Navi Mumbai, India (Present Affiliation); Homi Bhabha National Institute, Mumbai, India (Present Affiliation); Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Archana Sharma
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Bhaarat Folbs
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Vishvdeep Khushoo
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Jyotsna Kapoor
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Narender Tejwani
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Rayaz Ahmed
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Narendra Agrawal
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Partha S Choudhary
- Department of Nuclear Medicine, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Pallavi Mehta
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Dinesh Bhurani
- Department of Hematology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
46
|
Hamamichi S, Fukuhara T, Hattori N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins (Basel) 2020; 12:toxins12100658. [PMID: 33076544 PMCID: PMC7602748 DOI: 10.3390/toxins12100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.
Collapse
Affiliation(s)
- Shusei Hamamichi
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence: ; Tel.: +81-3-5802-2731; Fax: +81-3-5800-0547
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Abstract
An ideal cell surface target for therapy in leukemia would be: tumor-specific (not expressed on normal cells) or at least enriched on tumor cells, necessary for tumor but not for normal cell survival, internalized efficiently (if the surface-targeted agent is conjugated to chemotherapy or a toxin molecule), and recycled rapidly to the cell surface. While a single target that meets all of these criteria has not yet been discovered in AML, CD123 has emerged as an attractive candidate.1 The first-in-class CD123-targeting agent, tagraxofusp-erzs (SL-401) was approved in 2018 for patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN)2 and is currently in trials for several other hematologic malignancies, including AML. Several other CD123-targeted drugs are in development.
Collapse
Affiliation(s)
- Andrew A Lane
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| |
Collapse
|
48
|
Pemmaraju N, Konopleva M. Approval of tagraxofusp-erzs for blastic plasmacytoid dendritic cell neoplasm. Blood Adv 2020; 4:4020-4027. [PMID: 32841341 PMCID: PMC7448601 DOI: 10.1182/bloodadvances.2019000173] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and clinically challenging hematologic malignancy with dismal outcomes. With a median age of ∼70 years, the majority of patients with BPDCN have experienced historically suboptimal responses with intensive chemotherapy regimens. The major scientific breakthrough in this field was the recognition of overexpression of a surface receptor, CD123/interleukin 3 (IL-3) receptor α, in all patients. Importantly, a novel therapeutic agent consisting of a truncated diphtheria toxin (DT) payload fused to recombinant human IL-3 was being developed, one that targeted CD123, initially known as DT-IL-3 (later known as SL401; tagraxofusp; tagraxofusp-erzs [Elzonris]). The identification of this agent, and subsequent clinical trials specifically dedicated to patients with BPDCN (including a pilot study, followed by a larger phase 1/2 multicenter study [90% overall response rate [ORR] in frontline and 67% ORR in relapsed/refractory setting]), in part led to approval of tagraxofusp-erzs on 21 December 2018. Tagraxofusp-erzs was the first agent approved for BPDCN (for patients ages 2 years and older), and importantly, established this drug as the first CD123-targeted agent ever approved. The most notable toxicity of tagraxofusp-erzs is occurrence of the capillary leak syndrome, which occurs frequently at all grades, and has also been observed to be life-threatening, appropriately leading to a US Food and Drug Administration "black box" warning in the package insert. The preclinical and clinical aspects of drug development of tagraxofusp-erzs as monotherapy leading to drug approval are reviewed herein, with discussion of future directions of this novel agent, including consideration for rational combinations in BPDCN and beyond.
Collapse
Affiliation(s)
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
49
|
Massone C, Raiola AM, Dominietto A, Minetto P, Beltramini S, Cerroni L, Sola S, Angelucci E. Blastic Plasmacytoid Dendritic Cell Neoplasm: Underlining the importance of an early diagnosis and the use of tagraxofusp therapy before wide dissemination. Australas J Dermatol 2020; 62:e316-e318. [PMID: 32757292 DOI: 10.1111/ajd.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Affiliation(s)
| | - Anna Maria Raiola
- UO Ematologia e Centro Trapianti, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alida Dominietto
- UO Ematologia e Centro Trapianti, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Minetto
- UO Ematologia e Centro Trapianti, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Lorenzo Cerroni
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Simona Sola
- Surgical Pathology, Galliera Hospital, Genoa, Italy
| | - Emanuele Angelucci
- UO Ematologia e Centro Trapianti, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
50
|
Aldoss I, Clark M, Song JY, Pullarkat V. Targeting the alpha subunit of IL-3 receptor (CD123) in patients with acute leukemia. Hum Vaccin Immunother 2020; 16:2341-2348. [PMID: 32692611 DOI: 10.1080/21645515.2020.1788299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The IL-3 alpha chain receptor (CD123) is a cell surface protein that is widely expressed by various subtypes of acute leukemia, including acute myeloid leukemia (AML), acute lymphoblastic leukemia and blastic plasmacytoid dendritic cell neoplasm. Notably, CD123 is preferentially overexpressed in leukemia stem cells (LSC) in contrast to normal hematopoietic stem cells, and this differential expression allows for the selective eradication of LSC and leukemic blasts through therapeutic targeting of CD123, with less impact on hematopoietic cells. The level of CD123 expression in AML correlates with both treatment response and outcomes. Therefore, targeting CD123 represents a promising universal therapeutic target in advanced acute leukemias irrespective of the individual leukemia phenotype. There are currently 31 ongoing clinical trials examining the utility of CD123-based targeted therapies. Here we focus our review on current efforts to target CD123 in acute leukemia through various therapeutic constructs.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| | - Mary Clark
- Department of Clinical and Translational Project Development, City of Hope National Medical Center , Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center , Duarte, CA, USA
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| |
Collapse
|