1
|
Solanki R, Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8430-8444. [PMID: 38821861 DOI: 10.1002/jsfa.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Rangaswamy B, An J, Kwak IS. Different recovery patterns of the surviving bivalve Mytilus galloprovincialis based on transcriptome profiling exposed to spherical or fibrous polyethylene microplastics. Heliyon 2024; 10:e30858. [PMID: 38813215 PMCID: PMC11133752 DOI: 10.1016/j.heliyon.2024.e30858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Microplastics (MPs) are pervasive pollutants exuded from anthropogenic activities and ingested by animals in different ecosystems. This transcriptomic profiling study aimed to explore the impact of polyethylene MPs on Mytilus galloprovincialis, an ecologically significant bivalve species. The toxicity of two MPs types was found to result in increased cellular stress when exposed up to 14 days. Moreover, recovery mechanisms were also observed in progress. Mussels exhibited different gene expression patterns and molecular regulation in response to cellular reactive oxygen species (ROS) stress. The transcriptome analysis demonstrated a notable hindrance in cilia movement as MPs ingested through gills. Subsequent entry resulted in a significant disruption in the cytoskeletal organization, cellular projection, and cilia beat frequency. On day 4 (D4), signal transduction and activation of apoptosis evidenced the signs of toxic consequences. Mussels exposed to spherical MPs shown significant recovery on day 14 (D14), characterized by the upregulation of anti-apoptotic genes and antioxidant genes. The expression of P53 and BCL2 genes was pivotal in controlling the apoptotic process and promoting cell survival. Mussels exposed to fibrous MPs displayed a delayed cell survival effect. However, the elevated physiological stress due to fibrous MPs resulted in energy transfer by compensatory regulation of metabolic processes to expedite cellular recovery. These observations highlighted the intricate and varied reaction of cell survival mechanisms in mussels to recover toxicity. This study provides critical evidence of the ecotoxicological impacts of two different MPs and emphasizes the environmental risks they pose to aquatic ecosystems. Our conclusion highlights the detrimental effects of MPs on M. galloprovincialis and the need for more stringent regulations to protect marine ecosystems.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Jinsung An
- Department of Civil and Environmental Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| |
Collapse
|
3
|
Wang Z, Xiong Y, Peng Y, Zhang X, Li S, Peng Y, Peng X, Zhuo L, Jiang W. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship. Eur J Med Chem 2023; 247:115031. [PMID: 36549115 DOI: 10.1016/j.ejmech.2022.115031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
It is a well-known phenomenon that natural products can serve as powerful drug leads to generate new molecular entities with novel therapeutic utility. Evodiamine (Evo), a major alkaloid component in traditional Chinese medicine Evodiae Fructus, is considered a desirable lead scaffold as its multifunctional pharmacological properties. Although natural Evo has suboptimal biological activity, poor pharmacokinetics, low water solubility, and chemical instability, medicinal chemists have succeeded in producing synthetic analogs that overshadow the deficiency of Evo in terms of further clinical application. Recently, several reviews on the synthesis, structural modification, mechanism pharmacological actions, structure-activity relationship (SAR) of Evo have been published, while few reviews that incorporates intensive structural basis and extensive SAR are reported. The purpose of this article is to review the structural basis, anti-cancer activities, and mechanisms of Evo and its derivatives. Emphasis will be placed on the optimizing strategies to improve the anticancer activities, such as structural modifications, pharmacophore combination and drug delivery systems. The current review would benefit further structural modifications of Evo to discover novel anticancer drugs.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Gamage CDB, Kim JH, Yang Y, Taş İ, Park SY, Zhou R, Pulat S, Varlı M, Hur JS, Nam SJ, Kim H. Libertellenone T, a Novel Compound Isolated from Endolichenic Fungus, Induces G2/M Phase Arrest, Apoptosis, and Autophagy by Activating the ROS/JNK Pathway in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15020489. [PMID: 36672439 PMCID: PMC9857212 DOI: 10.3390/cancers15020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel compound, Libertellenone T (B), isolated from crude extracts of the endolichenic fungus from Pseudoplectania sp. (EL000327) and investigated the mechanism of action. CRC cells treated by B were subjected to apoptosis detection assays, immunofluorescence imaging, and molecular analyses such as immunoblotting and QRT-PCR. Our findings revealed that B induced CRC cell death via multiple mechanisms including G2/M phase arrest caused by microtubule stabilization and caspase-dependent apoptosis. Further studies revealed that B induced the generation of reactive oxygen species (ROS) attributed to activating the JNK signaling pathway by which apoptosis and autophagy was induced in Caco2 cells. Moreover, B exhibited good synergistic effects when combined with the well-known anticancer drug, 5-FU, and another cytotoxic novel compound D, which was isolated from the same crude extract of EL000327. Overall, Libertellenone T induces G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK pathway in CRC. Thus, B may be a potential anticancer therapeutic against CRC that is suitable for clinical applications.
Collapse
Affiliation(s)
- Chathurika D. B. Gamage
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Mücahit Varlı
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Correspondence: (S.-J.N.); (H.K.)
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
- Correspondence: (S.-J.N.); (H.K.)
| |
Collapse
|
5
|
Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. Cell Biol Toxicol 2022; 39:1-31. [PMID: 36138312 DOI: 10.1007/s10565-022-09772-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Evodiamine is a major alkaloid component found in the fruit of Evodia rutaecarpa. It shows the anti-proliferative potential against a wide range of cancers by suppressing cell growth, invasion, and metastasis and inducing apoptosis both in vitro and in vivo. Evodiamine shows its anticancer potential by modulating aberrant signaling pathways. Additionally, the review focuses on several therapeutic implications of evodiamine, such as epigenetic modification, cancer stem cells, and epithelial to mesenchymal transition. Moreover, combinatory drug therapeutics along with evodiamine enhances the anticancer efficacy of chemotherapeutic drugs in various cancers by overcoming the chemo resistance and radio resistance shown by cancer cells. It has been widely used in preclinical trials in animal models, exhibiting very negligible side effects against normal cells and effective against cancer cells. The pharmacokinetic and pharmacodynamics-based collaborations of evodiamine are also included. Due to its poor bioavailability, synthetic analogs of evodiamine and its nano capsule have been formulated to enhance its bioavailability and reduce toxicity. In addition, this review summarizes the ongoing research on the mechanisms behind the antitumor potential of evodiamine, which proposes an exciting future for such interests in cancer biology.
Collapse
|
6
|
Yang JY, Woo HJ, Lee P, Kim SH. Induction of Apoptosis and Effect on the FAK/AKT/mTOR Signal Pathway by Evodiamine in Gastric Cancer Cells. Curr Issues Mol Biol 2022; 44:4339-4349. [PMID: 36135210 PMCID: PMC9497533 DOI: 10.3390/cimb44090298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Evodiamine isolated from Evodia rutaecarpa has been known to have anti-tumor activity against various cancer cell types. Although there have been reports showing the inhibitory effect of evodiamine on cell survival of gastric cancer cell, it is not clearly explained how evodiamine affects the expression and modification of proteins associated with apoptosis and upstream signal pathways. We confirmed the cytotoxic activity of evodiamine against AGS and MKN45 cells by a WST assay, cell morphological change, and clonogenic assay. The apoptotic cells were evaluated by Annexin V/PI analysis and Western blot and the expressions of apoptosis-related molecules were confirmed by Western blot. Evodiamine promoted apoptosis of AGS gastric cancer cells through both intrinsic and extrinsic signal pathways in a time- and dose-dependent manner. Evodiamine attenuated the expression of anti-apoptotic proteins, including Bcl-2, XIAP, and survivin, and elevated that of the pro-apoptotic protein Bax. Evodiamine also suppressed the FAK/AKT/mTOR signal pathway. Based on these results, we expect that the results from this study will further elucidate our understanding of evodiamine as an anti-cancer drug.
Collapse
Affiliation(s)
- Ji Yeong Yang
- Crop Foundation Research Division, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Pyeongjae Lee
- School of Industrial Bio-Pharmaceutical Science, Semyung University, Jecheon 27136, Korea
- Correspondence: (P.L.); (S.-H.K.)
| | - Sa-Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (P.L.); (S.-H.K.)
| |
Collapse
|
7
|
Research Advances in Antitumor Mechanism of Evodiamine. J CHEM-NY 2022. [DOI: 10.1155/2022/2784257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evodiamine is a natural alkaloid extracted from Fructus Evodia. This bioactive alkaloid has been reported to have a wide range of biological activities, including anti-injury, antiobesity, vasodilator, and anti-inflammatory effects. In recent years, it has been found that evodiamine has tumor-suppressive effects on a variety of tumors. There is growing evidence that evodiamine can inhibit the rapid proliferation of tumor cells, induce cell cycle arrest at a certain phase, increase the incidence of apoptosis, promote autophagy, inhibit microangiogenesis and migration, and regulate immunotherapy. Evodiamine can inhibit Wnt/β-catenin, mTOR, NF-κB, PI3K/AKT, JAK-STAT, and other signaling pathways in various cancer cells, and it can significantly downregulate the expression of many tumor markers, such as VEGF and COX-2. These facts partially explain the antitumor mechanism of evodiamine. In this article, the antitumor mechanism of evodiamine was reviewed to provide the basis for its clinical application and therapeutic development in the future.
Collapse
|
8
|
Chien CC, Wu MS, Chou SW, Jargalsaikhan G, Chen YC. Roles of reactive oxygen species, mitochondrial membrane potential, and p53 in evodiamine-induced apoptosis and G2/M arrest of human anaplastic thyroid carcinoma cells. Chin Med 2021; 16:134. [PMID: 34886886 PMCID: PMC8656090 DOI: 10.1186/s13020-021-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous studies have shown that evodiamine (EVO) as paclitaxel and nocodazole could trigger apoptosis in various human cancer cells including human renal cell carcinoma cells, colorectal carcinoma cells, and glioblastoma cells. This study aims to investigate the anti-cancer effects of EVO on human anaplastic thyroid carcinoma (ATC) cells, and underlining mechanism. METHODS Two different endogenous p53 status human anaplastic thyroid carcinoma (ATC) cells including SW1736 (wtp53) and KAT4B (mutp53) were applied in the present study. The cytotoxicity of EVO on ATC cells was measured by MTT assay, and apoptosis and G2/M arrest were detected by propidium iodide (PI) staining followed by flow cytometry. Expression of indicated proteins was evaluated by Western blotting analysis, and pharmacological studies using chemical inhibitors and siRNA were performed for elucidating underlying mechanism. The roles of mitochondrial membrane potential and reactive oxygen species were investigated by flow cytometry using DiOC6 and DCFH-DA dye, respectively. RESULTS SW1736 (wtp53) cells showed a higher apoptotic percentage than KAT4B (mutp53) cells in response to EVO stimulation via a flow cytometric analysis. Mechanistic studies showed that increased p53 and its downstream proteins, and disrupted MMP with increased intracellular peroxide production participated in EVO-induced apoptosis and G2/M arrest of SW1736 cells. In EVO-treated KAT4B cells, significant increases in G2/M percentage but little apoptotic events by EVO was observed. Structure-activity analysis showed that an alkyl group at position 14 was critical for induction of apoptosis related to ROS production and MMP disruption in SW1736 cells. CONCLUSION Evidence indicated that the endogenous p53 status affected the sensitivity of ATC cells to EVO-induced apoptosis and G2/M arrest, revealing the potential role of p53 related to increased ROS production and disrupted MMP in the anticancer actions of EVO, and alkylation at position 14 of EVO is a critical substitution for apoptosis of ATC cells.
Collapse
Affiliation(s)
- Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing St, 11031, Taipei, Taiwan
| | - Ganbolor Jargalsaikhan
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan.,Liver Center, 14230, Ulaanbaatar, Mongolia
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing St, 11031, Taipei, Taiwan. .,International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan. .,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Luo C, Ai J, Ren E, Li J, Feng C, Li X, Luo X. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti-cancer activity and bioavailability (Review). Exp Ther Med 2021; 22:1327. [PMID: 34630681 DOI: 10.3892/etm.2021.10762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Evodiae fructus (Wu-Zhu-Yu in Chinese) can be isolated from the dried, unripe fruits of Tetradium ruticarpum and is a well-known traditional Chinese medicine that is applied extensively in China, Japan and Korea. Evodiae fructus has been traditionally used to treat headaches, abdominal pain and menorrhalgia. In addition, it is widely used as a dietary supplement to provide carboxylic acids, essential oils and flavonoids. Evodiamine (EVO) is one of the major bioactive components contained within Evodiae fructus and is considered to be a potential candidate anti-cancer agent. EVO has been reported to exert anti-cancer effects by inhibiting cell proliferation, invasion and metastasis, whilst inducing apoptosis in numerous types of cancer cells. However, EVO is susceptible to metabolism and may inhibit the activities of metabolizing enzymes, such as cytochrome P450. Clinical application of EVO in the treatment of cancers may prove difficult due to poor bioavailability and potential toxicity due to metabolism. Currently, novel drug carriers involving the use of solid dispersion techniques, phospholipids and nanocomplexes to deliver EVO to improve its bioavailability and mitigate side effects have been tested. The present review aims to summarize the reported anti-cancer effects of EVO whilst discussing the pharmacokinetic behaviors, characteristics and effective delivery systems of EVO.
Collapse
Affiliation(s)
- Chaodan Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jingwen Ai
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Erfang Ren
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jianqiang Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Chunmei Feng
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xinrong Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xiaojie Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
10
|
Wang X, Yamamoto Y, Imanishi M, Zhang X, Sato M, Sugaya A, Hirose M, Endo S, Natori Y, Moriwaki T, Yamato K, Hyodo I. Enhanced G1 arrest and apoptosis via MDM4/MDM2 double knockdown and MEK inhibition in wild-type TP53 colon and gastric cancer cells with aberrant KRAS signaling. Oncol Lett 2021; 22:558. [PMID: 34084225 PMCID: PMC8161467 DOI: 10.3892/ol.2021.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Murine double minute homolog 2 (MDM2) is an oncoprotein that induces p53 degradation via ubiquitin-ligase activity. MDM4 cooperates with MDM2-mediated p53 degradation, directly inhibiting p53 transcription by binding to its transactivation domain. Our previous study reported that the simultaneous inhibition of MDM2 and MDM4 using nutlin-3 (an inhibitor of the MDM2-p53 interaction) and chimeric small interfering RNA with DNA-substituted seed arms (named chiMDM2 and chiMDM4) more potently activated p53 than the MDM2 or MDM4 inhibitor alone and synergistically augmented antitumor effects in various types of cancer cells with the wild-type (wt) TP53. Recently, the synergism of MDM2 and mitogen-activated protein kinase kinase (MEK) inhibitors has been demonstrated in wt TP53 colorectal and non-small cell lung cancer cells harboring mutant-type (mt) KRAS. The current study examined whether chiMDM4 augmented the synergistic antitumor effects of MDM2 and MEK inhibition using chiMDM2 or nutlin-3 and trametinib, respectively. ChiMDM2 and trametinib used in combination demonstrated a synergistic antitumor activity in HCT116 and LoVo colon cancer cells, and SNU-1 gastric cancer cells harboring wt TP53 and mt KRAS. Furthermore, chiMDM4 synergistically enhanced this combinational effect. Similar results were observed when nutlin-3 was used instead of chiMDM2. MDM4/MDM2 double knockdown combined with trametinib treatment enhanced G1 arrest and apoptosis induction. This was associated with the accumulation of p53, suppression of phosphorylated-extracellular signal-regulated kinase 2, inhibition of retinoblastoma phosphorylation, suppression of E2F1-activated proteins, and potent activation of pro-apoptotic proteins, such as Fas and p53 upregulated modulator of apoptosis. The results inidcated that the triple inhibition of MDM4, MDM2 and MEK exerted a potent antitumor effect in wt TP53 colon and gastric cancer cells with mt KRAS. Simultaneous activation of p53 and inhibition of aberrant KRAS signaling may be a rational treatment strategy for gastrointestinal tumors.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mamiko Imanishi
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Sato
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akinori Sugaya
- Division of Gastroenterology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309-1793, Japan
| | - Mitsuaki Hirose
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastroenterology, Tsuchiura Clinical Education and Training Center, University of Tsukuba Hospital, Tsuchiura, Ibaraki 300-8585, Japan
| | - Shinji Endo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Matsudo, Chiba 270-0034, Japan
| | | | - Toshikazu Moriwaki
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenji Yamato
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| |
Collapse
|
11
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
12
|
The protective effect of Lavandula officinalis extract on 6-hydroxydopamine-induced reactive oxygen species and apoptosis in PC12 cells. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2020.101233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
14
|
Liu N, Li Y, Chen G, Ge K. Evodiamine induces reactive oxygen species-dependent apoptosis and necroptosis in human melanoma A-375 cells. Oncol Lett 2020; 20:121. [PMID: 32863934 PMCID: PMC7448557 DOI: 10.3892/ol.2020.11983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Melanoma is a common solid malignant tumor with a high frequency of metastasis and relapse. Evodiamine (EVO), a natural small molecule, has recently attracted considerable attention due to its pharmacological action, including its anticancer effects. However, the mechanism of the cytotoxic effect exerted by EVO on tumor cells is not yet fully understood. The present study aimed to evaluate the antitumor effects of evodiamine in human melanoma A-375 cells. The results demonstrated that EVO inhibited cell proliferation and induced cell cycle arrest at the G2/M stage in human melanoma A-375 cells. The results also revealed that EVO exposure induced the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase 1, as well as mitochondrial membrane potential dissipation in a time-dependent manner, indicating that EVO induced intrinsic apoptosis in A-375 cells. Furthermore, the results revealed that receptor-interacting serine/threonine kinase (RIP) and RIP3 were sequentially activated, suggesting that necroptosis may also be involved in EVO-induced cell death in A-375 cells. In addition, co-treatment with catalase was demonstrated to significantly attenuate the EVO-induced cell death in A-375 cells, indicating that reactive oxygen species (ROS) may serve an important role in EVO-induced cell death. In conclusion, the results of the present study unveiled a novel mechanism of drug action by EVO in human melanoma cells and suggested its potential value in treating human melanoma by inducing cell death via ROS activation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266011, P.R. China.,Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Keli Ge
- Institute of Integrated Medicine, Medical College, Qingdao University, Qingdao, Shandong 266023, P.R. China
| |
Collapse
|
15
|
Fang Q, Jiang S, Li C. Evodiamine Selectively Inhibits Multiple Myeloma Cell Growth by Triggering Activation of Intrinsic Apoptosis Pathway. Onco Targets Ther 2019; 12:11383-11391. [PMID: 31920329 PMCID: PMC6935306 DOI: 10.2147/ott.s235730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction Evodiamine (Evo) is one of the main bioactive components derived from the drying mature fruit of the genus Evodia rutaecarpa (Juss.) Benth. Although Evo has shown its anti-cancer activity in several cancers, the effects on multiple myeloma (MM) remain unknown. In this study, we aim to investigate the cytotoxic role of Evo on MM cells. Methods CCK-8 assay, apoptotic cell analysis, xenografted mice model, caspase activity assay and mitochondrial membrane potential assay were performed. Results We found that Evo selectively inhibits cell proliferation and increases apoptosis rate in MM cells, but not in healthy B lymphocytes, in a time and dose-dependent manner. Evo treatment significantly activated caspase-3 and −9 in MM cells. Evo also increased cytochrome C expression and ROS production in cytosol in a dose-dependent manner, which was abolished by MitoTEMPO cotreatment. In addition, co-treatment with bortezomib and Evo showed a more potent reduction of cell viability and a higher apoptosis than that of bortezomib single treatment in U266 and RPMI8226 cells. Conclusion We provided evidence to demonstrate that Evo selectively suppresses cell growth and increases apoptosis rate in MM cells through the intrinsic apoptosis pathway. Application of Evo and bortezomib might enhance the anti-cancer effect on MM cells.
Collapse
Affiliation(s)
- Qing Fang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chengyuan Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
16
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
17
|
Wang CY, Chang CY, Wang CY, Liu K, Kang CY, Lee YJ, Chen WR. N-Dihydrogalactochitosan Potentiates the Radiosensitivity of Liver Metastatic Tumor Cells Originated from Murine Breast Tumors. Int J Mol Sci 2019; 20:ijms20225581. [PMID: 31717306 PMCID: PMC6888949 DOI: 10.3390/ijms20225581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.
Collapse
Affiliation(s)
- Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Chun-Yu Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Kaili Liu
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Chia-Yun Kang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| | - Wei R. Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| |
Collapse
|
18
|
Xiao D, He F, Peng D, Zou M, Peng J, Liu P, Liu Y, Liu Z. Synthesis and Anticancer Activity of 9-O-Pyrazole Alkyl Substituted Berberine Derivatives. Anticancer Agents Med Chem 2019; 18:1639-1648. [PMID: 30014806 DOI: 10.2174/1871520618666180717121208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Berberine (BBR), an isoquinoline plant alkaloid isolated from plants such as Coptis chinensis and Hydrastis canadensis, own multiple pharmacological activities. OBJECTIVE In this study, seven BBR derivatives were synthesized and their anticancer activity against HeLa cervical and A549 human lung cancer cell lines were evaluated in vitro. METHODS The anti-cancer activity was measured by MTT assay, and apoptosis was demonstrated by the annexin V-FITC/PI staining assay. The intracellular oxidative stress was investigated through DCFH-DA assay. The molecular docking study was carried out in molecular operating environment (MOE). RESULTS Compound B3 and B5 showed enhanced anti-cancer activity compared with BBR, the IC50 for compound B3 and B5 were significantly lower than BBR, and compound B3 at the concentration of 64 or 128 µM induced apoptosis in HeLa and A549 cell lines. The reactive oxygen species (ROS) was generated in both cell lines when treated with 100 µM of all the compounds, and compound B3 and B5 induced higher activity in the generation of ROS, while compound B3 exhibited the highest activity, these results are in accordance with the cytotoxicity results, indicating the cytotoxicity were mostly generated from the oxidative stress. In addition, molecular docking analysis showed that compound B3 had the greatest affinity with Hsp90. Upon binding, the protective function of Hsp90 was lost, which might explain its higher cytotoxicity from molecular interaction aspect. CONCLUSION All the results demonstrated that compound B3 and B5 showed significantly higher anti-cancer ability than BBR, and compound B3 is a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Daipeng Xiao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, 410083, Hunan Province, China
| | - Fen He
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, 410083, Hunan Province, China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Min Zou
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Junying Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Pan Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, 410083, Hunan Province, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, 410083, Hunan Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
19
|
Guo XX, Li XP, Zhou P, Li DY, Lyu XT, Chen Y, Lyu YW, Tian K, Yuan DZ, Ran JH, Chen DL, Jiang R, Li J. Evodiamine Induces Apoptosis in SMMC-7721 and HepG2 Cells by Suppressing NOD1 Signal Pathway. Int J Mol Sci 2018; 19:ijms19113419. [PMID: 30384473 PMCID: PMC6274686 DOI: 10.3390/ijms19113419] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular cancer (HCC) is a lethal malignancy with poor prognosis and easy recurrence. There are few agents with minor toxic side effects that can be used for treatment of HCC. Evodiamine (Evo), one of the major bioactive components derived from fructus Evodiae, has long been shown to exert anti-hepatocellular carcinoma activity by suppressing activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). In addition, in the Nucleotide-Binding Oligomerization Domain 1 (NOD1) pathway, NOD1 could initiate NF-κB-dependent and MAPK-dependent gene transcription. Recent experimental studies reported that the NOD1 pathway was related to controlling development of various tumors. Here we hypothesize that Evo exerts anti-hepatocellular carcinoma activity by inhibiting NOD1 to suppress NF-κB and MAPK activation. Therefore, we proved the anti-hepatocellular carcinoma activity of Evo on HCC cells and detected the effect of Evo on the NOD1 pathway. We found that Evo significantly induced cell cycle arrest at the G2/M phase, upregulated P53 and Bcl-2 associated X proteins (Bax) proteins, and downregulated B-cell lymphoma-2 (Bcl-2), cyclinB1, and cdc2 proteins in HCC cells. In addition, Evo reduced levels of NOD1, p-P65, p-ERK, p-p38, and p-JNK, where the level of IκBα of HCC cells increased. Furthermore, NOD1 agonist γ-D-Glu-mDAP (IE-DAP) treatment weakened the effect of Evo on suppression of NF-κB and MAPK activation and cellular proliferation of HCC. In an in vivo subcutaneous xenograft model, Evo also exhibited excellent tumor inhibitory effects via the NOD1 signal pathway. Our results demonstrate that Evo could induce apoptosis remarkably and the inhibitory effect of Evo on HCC cells may be through suppressing the NOD1 signal pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Xian Guo
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Xiao-Peng Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Dan-Yang Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Xiao-Ting Lyu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Yi Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Yan-Wei Lyu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Kuan Tian
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing 400016, China.
| | - De-Zhi Yuan
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jian-Hua Ran
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Three Gorges Medical College, Chongqing 400016, China.
| | - Rong Jiang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Antiproliferative Effects of Alkaloid Evodiamine and Its Derivatives. Int J Mol Sci 2018; 19:ijms19113403. [PMID: 30380774 PMCID: PMC6274956 DOI: 10.3390/ijms19113403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
Alkaloids, a category of natural products with ring structures and nitrogen atoms, include most U.S. Food and Drug Administration approved plant derived anti-cancer agents. Evodiamine is an alkaloid with attractive multitargeting antiproliferative activity. Its high content in the natural source ensures its adequate supply on the market and guarantees further medicinal study. To the best of our knowledge, there is no systematic review about the antiproliferative effects of evodiamine derivatives. Therefore, in this article the review of the antiproliferative activities of evodiamine will be updated. More importantly, the antiproliferative activities of structurally modified new analogues of evodiamine will be summarized for the first time.
Collapse
|
21
|
Damani Shah H, Saranath D, Das S, Kharkar P, Karande A. In‐silico identification of small molecules targeting H‐Ras and in‐vitro cytotoxicity with caspase‐mediated apoptosis in carcinoma cells. J Cell Biochem 2018; 120:5519-5530. [PMID: 30367521 DOI: 10.1002/jcb.27836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Hetal Damani Shah
- Department of Biological Sciences, Sunandan Divatia School of Science Narsee Monjee Institute of Management Studies (deemed‐to‐be) University Mumbai India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science Narsee Monjee Institute of Management Studies (deemed‐to‐be) University Mumbai India
| | - Soma Das
- Department of Biochemistry Indian Institute of Science Bangalore India
| | - Prashant Kharkar
- Department of Pharmaceutical Chemistry Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies (deemed‐to‐be) University Mumbai India
| | - Anjali Karande
- Department of Biochemistry Indian Institute of Science Bangalore India
| |
Collapse
|
22
|
Friedman JR, Nolan NA, Brown KC, Miles SL, Akers AT, Colclough KW, Seidler JM, Rimoldi JM, Valentovic MA, Dasgupta P. Anticancer Activity of Natural and Synthetic Capsaicin Analogs. J Pharmacol Exp Ther 2018; 364:462-473. [PMID: 29246887 PMCID: PMC5803642 DOI: 10.1124/jpet.117.243691] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
The nutritional compound capsaicin is the major spicy ingredient of chili peppers. Although traditionally associated with analgesic activity, recent studies have shown that capsaicin has profound antineoplastic effects in several types of human cancers. However, the applications of capsaicin as a clinically viable drug are limited by its unpleasant side effects, such as gastric irritation, stomach cramps, and burning sensation. This has led to extensive research focused on the identification and rational design of second-generation capsaicin analogs, which possess greater bioactivity than capsaicin. A majority of these natural capsaicinoids and synthetic capsaicin analogs have been studied for their pain-relieving activity. Only a few of these capsaicin analogs have been investigated for their anticancer activity in cell culture and animal models. The present review summarizes the current knowledge of the growth-inhibitory activity of natural capsaicinoids and synthetic capsaicin analogs. Future studies that examine the anticancer activity of a greater number of capsaicin analogs represent novel strategies in the treatment of human cancers.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kathleen C Brown
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Sarah L Miles
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Austin T Akers
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kate W Colclough
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Jessica M Seidler
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - John M Rimoldi
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| |
Collapse
|
23
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Kong XF, Zhan F, He GX, Pan CX, Gu CX, Lu K, Mo DL, Su GF. Gold-Catalyzed Selective 6-exo-dig and 7-endo-dig Cyclizations of Alkyn-Tethered Indoles To Prepare Rutaecarpine Derivatives. J Org Chem 2018; 83:2006-2017. [DOI: 10.1021/acs.joc.7b02956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Fei Kong
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
- College
of Chemistry and Bioengineering, Guilin University of Technology, 12 Jian Gan Road, Guilin 541004, China
| | - Feng Zhan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Guo-Xue He
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cheng-Xue Pan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chen-Xi Gu
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Ke Lu
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Fa Su
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
25
|
Yang D, Li L, Qian S, Liu L. Evodiamine ameliorates liver fibrosis in rats via TGF-β1/Smad signaling pathway. J Nat Med 2017; 72:145-154. [PMID: 28936800 DOI: 10.1007/s11418-017-1122-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is considered to be a result of chronic liver pathological changes, and hepatic stellate cells (HSCs) play an important role during this process. Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities. This study focused on the effects of evodiamine on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and HSCs in vitro via the TGF-β1/Smad signaling pathway. A liver fibrosis rat model was established by the intraperitoneal injection of CCl4 (3 ml/kg, 30% in olive oil). Evodiamine (15 and 25 mg/kg) was administered orally for 8 weeks. HSCs were treated with different evodiamine concentrations. The results indicated that evodiamine could improve the histopathological abnormalities in liver tissues and decrease the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), hydroxyproline, and total bilirubin (TBIL). Concentrations of IL-6, tumor necrosis factor-α (TNF-α), collagen-I (COL-I), and collagen-III (COL-III) were reduced by evodiamine. Western blotting and real-time PCR showed that protein expression of transforming growth factor-β (TGF-β1), p-Smad 2/3 (phosphorylation of Smad 2/3), and smooth muscle alpha-actin (α-SMA) as well as mRNA expression of TGF-β1 and α-SMA in liver tissues were downregulated by evodiamine. The cell proliferation, production of hydroxyproline, and the protein expression of TGF-β1, p-Smad 2/3, and α-SMA in HSCs were dose-dependently reduced by evodiamine. Collectively, evodiamine had an antifibrosis effect in CCl4-induced liver fibrosis, and reduced HSCs proliferation and collagen metabolism in vitro. The major mechanism was downregulation of relative expression of TGF-β1, p-Smad 2/3, and α-SMA.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China
| | - Li Li
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Shanjun Qian
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China
| | - Lixin Liu
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
26
|
Pumiputavon K, Chaowasku T, Saenjum C, Osathanunkul M, Wungsintaweekul B, Chawansuntati K, Wipasa J, Lithanatudom P. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. Altern Ther Health Med 2017; 17:294. [PMID: 28583139 PMCID: PMC5460496 DOI: 10.1186/s12906-017-1811-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
Background Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Artabotrys burmanicus A.DC, Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders and Dasymaschalon sp. have been used for traditional medicine to treat cancer-like symptoms in some ethnic groups of Thailand and Laos. Methods We evaluated the anti-cancer activity of these Annonaceae plants against several human cancer cell lines. The apoptosis induction was detected by Annexin/propidium iodide (PI) staining. Phytochemical screening was tested by standard protocols and bioactive compounds were determined by HPLC. Results The crude extracts from leaves of U. longipes, Dasymaschalon sp., A. burmanicus, and M. modestum showed particular effects that were found to vary depending on the cancer cell line, suggesting that the effect was in a cell-type specific manner. Interestingly, the induction of apoptotic cell death was prominent by the leaves-derived crude extract of M. modestum. This crude was, therefore, subjected to cell cycle analysis by PI staining. Results showed that this crude extract arrested cell cycle and increased the percentage of cells in the SubG1 phase in some cancer cell lines. The phytochemical screening tests indicated that all crude extracts contained tannins and flavonoids. HPLC of flavonoids using standards identified rutin as an active compound in U. longipes and Dasymaschalon sp., whereas quercetin was found in U. longipes and M. modestum. Conclusions These crude extracts provide a new source for rutin and quercetin, which might be capable of inducing cancer cell apoptotic death in a cell-type specific manner. This suggests, by analyzing the major bioactive compounds, the potential use of these crudes for chemotherapy in the future.
Collapse
|
27
|
Wu WS, Chien CC, Liu KH, Chen YC, Chiu WT. Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:879-899. [PMID: 28514905 DOI: 10.1142/s0192415x17500471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited the EVO-induced apoptosis was inhibited. Additionally, EVO treatment induced G2/M arrest with increased polymerized tubulin protein expression in U87 and C6 cells. Elevated expressions of the cyclin B1, p53, and phosphorylated (p)-p53 proteins were detected in EVO-treated glioma cells, and these were inhibited by JNK inhibitors. An in vivo study showed that EVO significantly reduced the growth of gliomas elicited by the subcutaneous injection of U87 cells with increases in cyclin B1, p53, and p-p53 protein expressions in tumors. An analysis of eight EVO-related chemicals showed that alkyl groups at position 14 in EVO are important for its anti-glioma effects which involve both apoptosis and G2/M arrest. Evidence is provided that supports EVO induction of apoptosis and G2/M arrest via the activation of JNK-mediated gene expression and disruption of MMP in glioblastoma cells. EVO was shown to penetrate the blood-brain barrier; EVO is therefore predicted to be a promising compound for the chemotherapy of glioblastomas and deserves further investigations.
Collapse
Affiliation(s)
- Wen-Shin Wu
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,† Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,∥ Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kao-Hui Liu
- ¶ Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,** Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Chou Chen
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,†† Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Ta Chiu
- ‡ Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,§ Department of Neurosurgery, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
28
|
Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells. PLoS One 2017; 12:e0171325. [PMID: 28182713 PMCID: PMC5300218 DOI: 10.1371/journal.pone.0171325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/18/2017] [Indexed: 01/06/2023] Open
Abstract
Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.
Collapse
|
29
|
Bharathiraja S, Seo H, Manivasagan P, Santha Moorthy M, Park S, Oh J. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells. Molecules 2016; 21:molecules21111470. [PMID: 27827890 PMCID: PMC6273603 DOI: 10.3390/molecules21111470] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 01/27/2023] Open
Abstract
C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS) were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.
Collapse
Affiliation(s)
| | - Hansu Seo
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea.
| | | | | | - Suhyun Park
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jungwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 608-737, Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea.
| |
Collapse
|
30
|
The Induction of Apoptosis in A375 Malignant Melanoma Cells by Sutherlandia frutescens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4921067. [PMID: 27656236 PMCID: PMC5021500 DOI: 10.1155/2016/4921067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Sutherlandia frutescens is a medicinal plant indigenous to Southern Africa and is commonly known as the “cancer bush.” This plant has traditionally been used for the treatment of various ailments, although it is best known for its claims of activity against “internal” cancers. Here we report on its effect on melanoma cells. The aim of this study was to investigate whether an extract of S. frutescens could induce apoptosis in the A375 melanoma cell line and to outline the basic mechanism of action. S. frutescens extract induced apoptosis in A375 cells as evidenced by morphological features of apoptosis, phosphatidylserine exposure, nuclear condensation, caspase activation, and the release of cytochrome c from the mitochondria. Studies in the presence of a pan-caspase inhibitor allude to caspase-independent cell death, which appeared to be mediated by the apoptosis inducing factor. Taken together, the results of this study show that S. frutescens extract is effective in inducing apoptosis in malignant melanoma cells and indicates that further in vivo mechanistic studies may be warranted.
Collapse
|
31
|
Wu WS, Chien CC, Chen YC, Chiu WT. Protein Kinase RNA-Like Endoplasmic Reticulum Kinase-Mediated Bcl-2 Protein Phosphorylation Contributes to Evodiamine-Induced Apoptosis of Human Renal Cell Carcinoma Cells. PLoS One 2016; 11:e0160484. [PMID: 27483435 PMCID: PMC4970736 DOI: 10.1371/journal.pone.0160484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated the anticancer mechanism of evodiamine (EVO) against the viability of human A498 renal cell carcinoma (RCC) cells in vitro and in vivo. The in vitro study showed that EVO decreased the viability of A498 cells with the occurrence of apoptotic characteristics such as hypodiploid cells, DNA ladders, chromatin-condensed cells, and cleaved caspase (Casp)-3/poly(ADP ribose) polymerase (PARP) proteins. Pharmacological studies using chemical inhibitors of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) indicated that phosphorylation of the c-Jun N-terminal kinase (JNK) protein participated in EVO-induced cell death of A498 cells, and application of the JNK inhibitor, SP600125 (SP), inhibited EVO-induced cleavage of the Casp-3/PARP proteins and chromatin condensation according to Giemsa staining. EVO disruption of the mitochondrial membrane potential (MMP) with increased protein levels of the phosphorylated Bcl-2 protein (p-Bcl-2) was prevented by JNK inhibitors in A498 cells. A structure-activity relationship study showed that a methyl group at position 14 in EVO was important for its apoptotic effects and increased p-Bcl-2 protein in A498 cells. Furthermore, significant increases in the phosphorylated endoplasmic reticular stress protein, protein kinase RNA-like endoplasmic reticulum kinase (p-PERK at Thr980), by EVO were detected in A498 cells, and the PERK inhibitor, GSK2606414, significantly suppressed EVO-induced apoptosis, p-JNK, p-PERK, and cleaved PARP proteins. The in vivo study showed that EVO significantly reduced RCC growth elicited by a subcutaneous injection of A498 cells, and an increased protein level of p-PERK was observed according to an immunohistochemical analysis. Apoptosis by EVO was also demonstrated in other RCC cells such as 786-O, ACHN, and Caki-1 cells. This is the first study to demonstrate the anti-RCC effect of EVO via apoptosis in vitro and in vivo, and activation of JNK and PERK to induce Bcl-2 protein phosphorylation, which led to disruption of the MMP.
Collapse
Affiliation(s)
- Wen-Shin Wu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 110, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 110, Taiwan
- Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
- * E-mail:
| | - Wen-Ta Chiu
- Department of Neurosurgery, Taipei Municipal Wan-Fang Hospital and Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
32
|
Singh R, Banerjee C, Ray A, Rajamani P, Mazumder S. Fluoride-induced headkidney macrophage cell apoptosis involves activation of the CaMKII g-ERK 1/2-caspase-8 axis: the role of superoxide in initiating the apoptotic cascade. Toxicol Res (Camb) 2016; 5:1477-1489. [PMID: 30090451 DOI: 10.1039/c6tx00206d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
Fluoride is known to induce apoptosis though the mechanisms remain obscure. The aim of the present study was to understand the underlying molecular mechanisms of fluoride-induced apoptosis using fish headkidney macrophages (HKMs). Exposure to fluoride triggered HKM cell apoptosis as evidenced by Hoechst 333432 and AnnexinV-propidium iodide staining, the presence of an internucleosomal DNA ladder and the comet assay. Our results suggest the influx of extra-cellular Ca2+ to be an initial event in fluoride-induced HKM cell apoptosis. We observed persistently elevated levels of superoxide anions and our inhibitor studies with EGTA suggested the primal role of the Ca2+ flux in triggering superoxide production in fluoride-exposed HKM cells. Fluoride exposure led to elevated levels of Ca2+/CaM dependent protein kinase II gamma (CaMKIIg) and pre-treatment with the inhibitor KN-93 but not its inactive structural analogue KN-92 reduced the number of apoptotic cells establishing the pro-apoptotic role of CaMKIIg in fluoride-induced HKM cell apoptosis. We report that the sustained superoxide generation is primarily responsible for the increased CaMKIIg levels observed in fluoride-exposed HKM cells. Our inhibitor studies further implicated CaMKIIg in the activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) culminating in caspase-8/caspase-3 mediated apoptosis of HKM cells. We conclude that fluoride-induced apoptosis is largely dependent on Ca2+ induced superoxide generation leading to elevation in CaMKIIg which in turn induces the phosphorylation of ERK 1/2 and downstream activation of extrinsic caspase cascade in HKM cells.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Chaitali Banerjee
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Atish Ray
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Paulraj Rajamani
- School of Environmental Sciences , Jawaharlal Nehru University , Delhi , India
| | - Shibnath Mazumder
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| |
Collapse
|
33
|
Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models. Molecules 2016; 21:molecules21070954. [PMID: 27455219 PMCID: PMC6273785 DOI: 10.3390/molecules21070954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022] Open
Abstract
Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.
Collapse
|
34
|
Liu H, Huang C, Wu L, Wen B. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. Onco Targets Ther 2016; 9:4121-7. [PMID: 27462166 PMCID: PMC4940014 DOI: 10.2147/ott.s104729] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Loss of epithelial organization and deregulated microRNAs are hallmarks of malignant carcinomas, but the relationship between them has been poorly understood. This study was designed to investigate the changes in the expression of E-cadherin, Par3, and miR-429 during the development of human colorectal cancer (CRC). E-cadherin and Par3 levels were quantitatively detected by immunohistochemistry and Western blotting. An in vitro culture of colorectal tissue was established to analyze the effect of berberine (BER) and evodiamine (EVO) on the level of miR-429. Our results suggested that E-cadherin and Par3 were remarkably decreased in tumor tissues compared with those in normal tissues, and miR-429 was upregulated in tumor tissues. After treatment of BER and EVO, the level of miR-429 was lower in tumor tissues than in normal tissues. This study investigated the potential relationship between miR-429, E-cadherin, and Par3 in CRC. The data suggested that BER and EVO can be potential therapeutic agents for CRC, as they downregulated the expression level of miR-429.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chao Huang
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Liyun Wu
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Bin Wen
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
35
|
Antiproliferative activity and apoptosis inducing effects of nitric oxide donating derivatives of evodiamine. Bioorg Med Chem 2016; 24:2971-2978. [PMID: 27178387 DOI: 10.1016/j.bmc.2016.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 01/01/2023]
Abstract
The first series of nitric oxide donating derivatives of evodiamine were designed and prepared. NO releasing ability of all target derivatives was evaluated in BGC-823, Bel-7402 and L-02 cells. The cytotoxicity was evaluated against three human tumor cell lines (Bel-7402, A549 and BGC-823) and normal human liver cells L-02. The nitrate derivatives 11a and 11b only exhibited moderate activity and furoxan-based derivatives 13a-c, 14a and 14b showed promising activity. 13c showed good cytotoxic selectivity between tumor and normal liver cells and was further investigated for its apoptotic properties on human hepatocarcinoma Bel-7402 cells. The molecular mode of action revealed that 13c caused cell-cycle arrest at S phase and induced apoptosis in Bel-7402 cells through mitochondria-related caspase-dependent pathways.
Collapse
|
36
|
Chen TC, Chien CC, Wu MS, Chen YC. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human ovarian cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:68-78. [PMID: 26902409 DOI: 10.1016/j.phymed.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/30/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Evodiamine (EVO; 8,13,13b,14-tetrahydro-14-methylindolo[2'3'-3,4]pyrido[2,1-b]quinazolin-5-[7H]-one derived from the traditional herbal medicine Evodia rutaecarpa was reported to possess anticancer activity; however, the anticancer mechanism of EVO against the viability of human ovarian cancer cells is still unclear. PURPOSE A number of studies showed that chemotherapeutic benefits may result from targeting the endoplasmic reticular (ER) stress signaling pathway. The objective of the study is to investigate the mechanism by which ER stress protein PERK plays in EVO-induced apoptosis of human ovarian cancer cells. METHODS Cell death analysis was performed by MTT assay, DNA fragmentation assay, and Giemsa staining. DiOC6 staining was used for mitochondrial membrane potential measurement. Protein levels were analyzed by Western blotting. Pharmacological studies using MAPK inhibitors and PERK inhibitor GSK2606414 were involved. RESULTS The viability of human ovarian cancer cells A2780, A2780CP, ES-2, and SKOV-3 was inhibited by EVO at various concentrations in accordance with increases in the percentage of apoptotic cells, DNA ladders, and cleavage of caspase 3 and poly(ADP ribose) polymerase (PARP) proteins. Decreased viability of cells was reversed by adding caspase inhibitors VAD and DEVD in SKOV-3 and A2780CP cells, and incubation of cells with JNK inhibitor SP600125 (SP) and JNKI, but not other MAPK and AKT inhibitors including PD98059, SB203580, significantly prevented the apoptosis elicited by EVO in human ovarian cancer cells. Furthermore, increased expression of phospho-eIF2α (peIF2α) and phospho-PERK (pPERK) proteins was detected in EVO-treated human ovarian cancer cells, and that was inhibited by adding JNK inhibitors SP600125 and JNKI. Application of a PERK inhibitor GSK2606414 showed a significant protection of human ovarian cancer cells A2780 and A2780CP from EVO-induced apoptosis. EVO disruption of mitochondrial membrane potential (MMP) was also inhibited by adding JNK or PERK inhibitors. The structure-activity relationship study indicated that the alkyl group at position 14 in EVO is important for apoptosis induction via activation of JNK and PERK in human ovarian cancer cells. CONCLUSION Evidence supporting EVO induction of apoptosis via activation of JNK and PERK to disrupt MMP in human ovarian cancer cells is provided, and the alkyl at position 14 is a critical substitution for the apoptotic actions of EVO.
Collapse
Affiliation(s)
- Tze-Chien Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan; Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Zhao LC, Li J, Liao K, Luo N, Shi QQ, Feng ZQ, Chen DL. Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells. Int J Mol Sci 2015; 16:27411-21. [PMID: 26580615 PMCID: PMC4661889 DOI: 10.3390/ijms161126031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
Evodiamine (EVO) exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8). Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF) in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53), Bcl-2 Associated X protein (Bax), B cell CLL/lymphoma-2 (Bcl-2), phosphoglucose isomerase (PGI), phosphorylated signal transducers and activators of transcription 3 (p-STAT3) and matrix metalloproteinase 3 (MMP3) were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.
Collapse
Affiliation(s)
- Lv-Cui Zhao
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
- Drug Engineering Research Center of Chongqing Medical University, Chongqing 400016, China.
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Ke Liao
- Department of Respiration, Cheng Du Tumor Hospital, Chengdu 610041, China.
| | - Nian Luo
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Qing-Qiang Shi
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Zi-Qiang Feng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Di-Long Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
38
|
Peng X, Zhang Q, Zeng Y, Li J, Wang L, Ai P. Evodiamine inhibits the migration and invasion of nasopharyngeal carcinoma cells in vitro via repressing MMP-2 expression. Cancer Chemother Pharmacol 2015; 76:1173-84. [PMID: 26546460 DOI: 10.1007/s00280-015-2902-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Evodiamine is one of active alkaloids isolated from the traditional Chinese medicine Evodia rutaecarpa Bentham and has various pharmacological properties. In this study, we investigated its effects on the migration, invasion, and associated mechanism in human nasopharyngeal carcinoma (NPC) cells. METHODS Cell viability was determined by MTT assay after evodiamine treatment. Wound-healing assay and Boyden transwell system were used to evaluate the inhibitory effects of evodiamine on cell migration and invasion. MMP-2/9 activity was determined using commercial detection kits. The levels of associated proteins involved in the regulation of cell migration and invasion were analyzed by Western blotting. RESULTS Evodiamine effectively inhibited the migration and invasion of HONE1 and CNE1 cells, and hardly affected cell proliferation, but significantly suppressed cell adhesion activity in vitro. Additionally, evodiamine treatment significantly decreased mRNA and protein levels of MMP-2 and its activity in the NPC cells, but had little effects on MMP-9 mRNA and protein levels and its activity. Further investigation revealed that evodiamine inhibited the translocation of NF-κB p65, which involves the regulation of MMP-2 expression in cancer invasion. Additionally, evodiamine treatment did not significantly affect the protein levels of JNK, p38, Akt, and their phosphorylated forms and ERK1/2, but strongly attenuated ERK1/2 phosphorylation level, which at least partly accounts for the signal pathway of evodiamine-inhibited migration and invasion of NPC cells. CONCLUSION These findings demonstrate that evodiamine inhibits the migration and invasiveness of NPC cells, and it is probably a potential agent for the treatment of NPC invasion and metastasis.
Collapse
Affiliation(s)
- Xianbing Peng
- Otorhinolaryngologieal Department, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Qun Zhang
- Otorhinolaryngologieal Department, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China.
| | - Yi Zeng
- Otorhinolaryngologieal Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Jin Li
- Otorhinolaryngologieal Department, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Lixin Wang
- Otorhinolaryngologieal Department, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Ping Ai
- Otorhinolaryngologieal Department, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| |
Collapse
|
39
|
Zhang C, Liu K, Yao K, Reddy K, Zhang Y, Fu Y, Yang G, Zykova TA, Shin SH, Li H, Ryu J, Jiang YN, Yin X, Ma W, Bode AM, Dong Z, Dong Z. HOI-02 induces apoptosis and G2-M arrest in esophageal cancer mediated by ROS. Cell Death Dis 2015; 6:e1912. [PMID: 26469961 PMCID: PMC4632281 DOI: 10.1038/cddis.2015.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/28/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules that perform essential functions in living organisms. Accumulating evidence suggests that many types of cancer cells exhibit elevated levels of ROS. Conversely, generation of ROS has become an effective method to kill cancer cells. (E)-3-hydroxy-3-(4-(4-nitrophenyl)-2-oxobut-3-en-1-yl) indolin-2-one, which is an NO2 group-containing compound designated herein as HOI-02, generated ROS and, in a dose-dependent manner, decreased esophageal cancer cell viability and inhibited anchorage-independent growth, followed by apoptosis and G2-M arrest. Moreover, results of an in vivo study using a patient-derived xenograft mouse model showed that HOI-02 treatment suppressed the growth of esophageal tumors, without affecting the body weight of mice. The expression of Ki-67 was significantly decreased with HOI-02 treatment. In addition, the phosphorylation of c-Jun, and expression of p21, cleaved caspase 3, and DCFH-DA were increased in the HOI-02-treated group compared with the untreated control group. In contrast, treatment of cells with (E)-3-(4-(4-aminophenyl)-2-oxobut-3-en-1-yl)-3-hydroxyindolin-2-one, which is an NH2 group-containing compound designated herein as HOI-11, had no effect. Overall, we identified HOI-02 as an effective NO2 group-containing compound that was an effective therapeutic or preventive agent against esophageal cancer cell growth.
Collapse
Affiliation(s)
- C Zhang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - K Liu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - K Yao
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - K Reddy
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Y Zhang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Y Fu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - G Yang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - T A Zykova
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - S H Shin
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - H Li
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J Ryu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Y-n Jiang
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - X Yin
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - W Ma
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - A M Bode
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Z Dong
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Z Dong
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
40
|
Wang G, Liu C, Liu J, Liu B, Li P, Qin G, Xu Y, Chen K, Liu H, Chen K. Exopolysaccharide from Trichoderma pseudokoningii induces the apoptosis of MCF-7 cells through an intrinsic mitochondrial pathway. Carbohydr Polym 2015; 136:1065-73. [PMID: 26572448 DOI: 10.1016/j.carbpol.2015.09.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022]
Abstract
In this study, we reported the anticancer efficacy of exopolysaccharide (EPS) derived from Trichoderma pseudokoningii, on human breast cancer MCF-7 cells. Our results showed that EPS inhibited the proliferation of MCF-7 cells and induced lactic dehydrogenase release by inducing apoptosis and cell arrest at S phase. Further study revealed that EPS-induced apoptosis of MCF-7 cells was associated with alteration of nuclear morphology, disruption of mitochondrial membrane potential and accumulation of intracellular reactive oxygen species. Sequentially, EPS increased the activation of caspase-9 and caspase-3 in a dose-dependent manner; however, caspase-8 remained intact. Western blot analysis revealed that EPS increased the ratio of Bax/Bcl-2 and promoted the release of cytochrome c into the cytoplasm. Taken together, these findings provided evidence that EPS induced the apoptosis of MCF-7 cells through an intrinsic mitochondrial apoptotic pathway and that EPS may therefore be considered as an effective adjuvant agent against human breast cancer.
Collapse
Affiliation(s)
- Guodong Wang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chunyan Liu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jun Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ping Li
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Guozheng Qin
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yanghui Xu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Ke Chen
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China; School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
41
|
Wang S, Fang K, Dong G, Chen S, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C. Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. J Med Chem 2015; 58:6678-96. [PMID: 26226379 DOI: 10.1021/acs.jmedchem.5b00910] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A critical question in natural product-based drug discovery is how to translate the product into drug-like molecules with optimal pharmacological properties. The generation of natural product-inspired scaffold diversity is an effective but challenging strategy to investigate the broader chemical space and identify promising drug leads. Extending our efforts to the natural product evodiamine, a diverse library containing 11 evodiamine-inspired novel scaffolds and their derivatives were designed and synthesized. Most of them showed good to excellent antitumor activity against various human cancer cell lines. In particular, 3-chloro-10-hydroxyl thio-evodiamine (66c) showed excellent in vitro and in vivo antitumor efficacy with good tolerability and low toxicity. Antitumor mechanism and target profiling studies indicate that compound 66c is the first-in-class triple topoisomerase I/topoisomerase II/tubulin inhibitor. Overall, this study provided an effective strategy for natural product-based drug discovery.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China.,School of Pharmacy, Fourth Military Medical University , 169 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Kun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Shuqiang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
42
|
Senthilkumar R, Chen BA, Cai XH, Fu R. Anticancer and multidrug-resistance reversing potential of traditional medicinal plants and their bioactive compounds in leukemia cell lines. Chin J Nat Med 2015; 12:881-94. [PMID: 25556059 DOI: 10.1016/s1875-5364(14)60131-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/11/2023]
Abstract
Multidrug resistance remains a serious clinical problem in the successful therapy of malignant diseases. It occurs in cultured tumor cell lines, as well as in human cancers. Therefore, it is critical to develop novel anticancer drugs with multidrug-resistance modulating potential to increase the survival rate of leukemia patients. Plant-derived natural products have been used for the treatment of various diseases for thousands of years. This review summarizes the anticancer and multidrug-resistance reversing properties of the extracts and bioactive compounds from traditional medicinal plants in different leukemia cell lines. Further mechanistic studies will pave the road to establish the anticancer potential of plant-derived natural compounds.
Collapse
Affiliation(s)
- Ravichandran Senthilkumar
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao-Hui Cai
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
43
|
Evodiamine inhibits the proliferation of human osteosarcoma cells by blocking PI3K/Akt signaling. Oncol Rep 2015; 34:1388-96. [DOI: 10.3892/or.2015.4084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
|
44
|
Vaid M, Katiyar SK. Grape seed proanthocyanidins inhibit cigarette smoke condensate-induced lung cancer cell migration through inhibition of NADPH oxidase and reduction in the binding of p22(phox) and p47(phox) proteins. Mol Carcinog 2015; 54 Suppl 1:E61-71. [PMID: 24798688 DOI: 10.1002/mc.22173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 11/10/2022]
Abstract
Cigarette smoking is the major cause of lung cancer. It is therefore important to develop effective strategies that target molecular abnormalities induced by cigarette smoke condensate (CSC). Cigarette smoking increases oxidative stress particularly via activation of NADPH oxidase (NOX), a key source of superoxide anion production. Here, we report that grape seed proanthocyanidins (GSPs) exert an inhibitory effect on the CSC-induced migration of non-small cell lung cancer (NSCLC) cells (A549, H460, and H1299). Using an in vitro invasion assay, we found that treatment of NSCLC cells with CSC increased NSCLC cell migration by enhancing NOX mediated-oxidative stress. Treatment of NSCLC cells with GSPs inhibited the CSC-induced cell migration through reduction in oxidative stress levels and a reduction in the epithelial-to-mesenchymal transition. To identify the molecular targets of GSPs, we examined the effects of GSPs on CSC-induced alterations in the levels of key NOX components, namely p22(phox) and p47(phox) proteins, using A549 cells. We also determined the effect of GSPs on CSC-induced interaction/binding between these proteins, which is a key event in NOX activation. We found that treatment of A549 cells with GSPs not only inhibited the CSC-induced increase in the expression levels of p22(phox) and p47(phox) , but also reduced the binding of p22(phox) to p47(phox) proteins. This new insight into the anti-lung cancer cell migration activity of GSPs could serve as a basis for development of improved chemopreventive or therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
45
|
Papanikolaou X, Johnson S, Garg T, Tian E, Tytarenko R, Zhang Q, Stein C, Barlogie B, Epstein J, Heuck C. Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis. Oncotarget 2015; 5:4118-28. [PMID: 24948357 PMCID: PMC4147310 DOI: 10.18632/oncotarget.1847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase-mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment.
Collapse
Affiliation(s)
- Xenofon Papanikolaou
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sachita K, Kim Y, Yu HJ, Cho SD, Lee JS. In Vitro Assessment of the Anticancer Potential of Evodiamine in Human Oral Cancer Cell Lines. Phytother Res 2015; 29:1145-51. [PMID: 25903972 DOI: 10.1002/ptr.5359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Abstract
Evodiamine, a bioactive alkaloid, has been regarded as having antioxidant, antiinflammatory, and anticancer properties. In the present study, we explored the effects of evodiamine on cell growth and apoptosis in human oral cancer cell lines. Our data revealed that evodiamine significantly inhibited the proliferation of human oral cancer cells and resulted in the cleavages of PARP (poly (ADP-ribose) polymerase) and caspase-3, in addition to causing the typical characteristics of apoptosis. Evodiamine also increased Bax protein levels and caused translocation of Bax into mitochondria and Bax oligomerization. In addition, evodiamine decreased expression of myeloid cell leukemia (Mcl-1) at the transcriptional modification, and knockdown of Mcl-1 clearly resulted in an increase in expression of Bax and active Bax, resulting in induction of apoptosis. Evodiamine reduced expression of phosphorylated AKT, and LY294002 potentiated evodiamine-induced apoptosis by regulating Mcl-1 protein. Our results suggest that evodiamine induces apoptosis in human oral cancer cells through the AKT pathway. These findings provide a rationale for its clinical application in the treatment of oral cancer.
Collapse
Affiliation(s)
- Khadka Sachita
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Yongsoo Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, Jeonju, 561-756, Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Jeong-Sang Lee
- Food Industry Research Institute, Department of Health and Functional Food, College of Medical Science, Jeonju University, Jeonju, 560-759, Korea
| |
Collapse
|
47
|
Extract of Zuojin Pill ([characters: see text]) induces apoptosis of SGC-7901 cells via mitochondria-dependent pathway. Chin J Integr Med 2015; 21:837-45. [PMID: 25847773 DOI: 10.1007/s11655-015-2043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To observe the effects of water extract of Zuojin Pill ([characters: see text], ZJP) on inhibiting the growth of human gastric cancer cell line SGC-7901 and its potential mechanism. METHODS Effects of ZJP on SGC-7901 cells growth were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, cell apoptosis and cell cycle were determined by flow cytometry, and apoptosis induction was detected by means of DNA gel electrophoresis. The cellular mechanism of drug-induced cell death was unraveled by assaying oxidative injury level of SGC-7901 cell, mitochondrial membrane potentials, expression of apoptosis-related genes, such as B cell lymphoma/lewkmia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and cleaved caspase-3 and caspase-9. RESULTS ZJP exerted evident inhibitory effect on SGC-7901 cells by activating production of reactive oxygen species and elevating Bax/Bcl-2 ratio in SGC-7901 cells, leading to attenuation of mitochondrial membrane potential and DNA fragmentation. CONCLUSIONS ZJP inhibits the cancer cell growth via activating mitochondria-dependent apoptosis pathway. ZJP can potentially serve as an antitumor agent.
Collapse
|
48
|
Lipid from infective L. donovani regulates acute myeloid cell growth via mitochondria dependent MAPK pathway. PLoS One 2015; 10:e0120509. [PMID: 25750993 PMCID: PMC4353703 DOI: 10.1371/journal.pone.0120509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 01/03/2023] Open
Abstract
The microbial source, which includes live, attenuated, or genetically modified microbes or their cellular component(s) or metabolites, has gained increasing significance for therapeutic intervention against several pathophysiological conditions of disease including leukemia, which remains an incurable disease till now despite recent advances in the medical sciences. We therefore took up the present study to explore if the leishmanial lipid (pLLD) isolated from L. donovani can play an anti-neoplastic role in acute myeloid leukemia cells by regulating cellular growth. Indeed pLLD significantly inhibited cell proliferation of four AML cell lines (HL-60, MOLT-4, U937, and K562). Scanning electron microscopy and DNA fragmentation analysis revealed that it significantly induced apoptosis of U937 cells through morphological alteration. Occurrence of apoptosis was checked by using Annexin exposure and this established that the cell cycle was arrested at G0/G1 phase in time-dependent manner. pLLD increased the intracellular ROS with alteration of mitochondrial membrane potential, as detected using DCFDA. It also regulated the expression of apoptosis-related proteins like Bax, Bcl2, Bad and t-Bid besides causing cleavage of PARP as determined by western blot analysis. Treatment of U937 cells with pLLD induced the activation of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK)1/2, p38, and caspases 9/3. The results suggest that pLLD induces apoptosis in acute myeloid leukemia cells possibly via increasing intracellular ROS and regulating the MAPK pathway.
Collapse
|
49
|
KHAN MUHAMMAD, BI YANYING, QAZI JAVEDIQBAL, FAN LIMEI, GAO HONGWEN. Evodiamine sensitizes U87 glioblastoma cells to TRAIL via the death receptor pathway. Mol Med Rep 2014; 11:257-62. [DOI: 10.3892/mmr.2014.2705] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/02/2014] [Indexed: 11/05/2022] Open
|
50
|
Chien CC, Wu MS, Shen SC, Ko CH, Chen CH, Yang LL, Chen YC. Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: a structure-activity study of evodiamine. PLoS One 2014; 9:e99729. [PMID: 24959718 PMCID: PMC4069003 DOI: 10.1371/journal.pone.0099729] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/17/2014] [Indexed: 12/21/2022] Open
Abstract
Evodiamine (EVO; 8,13,13b,14-tetrahydro-14-methylindolo[2′3′-3,4]pyrido[2,1-b]quinazolin-5-[7H]-one derived from the traditional herbal medicine Evodia rutaecarpa was reported to possess anticancer activity; however, the anticancer mechanism is still unclear. In this study, we investigated the anticancer effects of EVO on human colon COLO205 and HT-29 cells and their potential mechanisms. MTT and lactate dehydrogenase (LDH) release assays showed that the viability of COLOL205 and HT-29 cells was inhibited by EVO at various concentrations in accordance with increases in the percentage of apoptotic cells and cleavage of caspase-3 and poly(ADP ribose) polymerase (PARP) proteins. Disruption of the mitochondrial membrane potential by EVO was accompanied by increased Bax, caspase-9 protein cleavage, and cytochrome (Cyt) c protein translocation in COLO205 and HT-29 cells. Application of the antioxidant N-acetyl-L-cysteine (NAC) inhibited H2O2-induced reactive oxygen species (ROS) production and apoptosis, but did not affect EVO-induced apoptosis of COLO205 or HT-29 cells. Significant increases in the G2/M ratio and cyclinB1/cdc25c protein expression by EVO were respectively identified in colon carcinoma cells via a flow cytometric analysis and Western blotting. Induction of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) protein phosphorylation was detected in EVO-treated cells, and the JNK inhibitor, SP600125, but not the ERK inhibitor, U0126, inhibited EVO-induced phosphorylated JNK protein expression, apoptosis, and G2/M arrest of colon carcinoma cells. Data of the structure-activity analysis showed that EVO-related chemicals containing an alkyl group at position 14 were able to induce apoptosis, G2/M arrest associated with increased DNA ladder formation, cleavage of caspase-3 and PARP, and elevated cycB1 and cdc25c protein expressions in COLO205 and HT-29 cells. Evidence supporting JNK activation leading to EVO-induced apoptosis and G2/M arrest in colon carcinoma cells is provided, and alkylation at position 14 of EVO is a critical substitution for treatment of colonic cancer.
Collapse
Affiliation(s)
- Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Huai Ko
- Strategic Business and Innovation Technology Development Division, and Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hung Chen
- Strategic Business and Innovation Technology Development Division, and Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|