1
|
Cui Z, Zhou L, An X, Liu W, Li J, Zhang Y, Zhang W. The Combination of circEPSTI1 and MIF Offers Diagnostic Value for Endometrial Cancer. Int J Gen Med 2024; 17:1395-1403. [PMID: 38617055 PMCID: PMC11011707 DOI: 10.2147/ijgm.s441861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
Background Circular RNAs (circRNAs) exhibit unique patterns of expression and high levels of stability in patient plasma samples such that they represent ideal non-invasive biomarkers that can be leveraged to detect a wide array of diseases including endometrial cancer (EC). This study was designed to identify circRNAs with potential diagnostic utility in serum samples from EC patients while also evaluating the utility of macrophage migration inhibitory factor (MIF) as a biomarker when screening for this form of cancer in the clinic. Methods Levels of circEPSTI1 and MIF were assessed in the plasma of EC patients and healthy subjects (n=186 each) through qPCR and ELISAs. The diagnostic utility of these biomarkers was assessed with receiver operating characteristic curve (ROC) analyses. Results Relative to healthy subjects, EC patient serum contained significantly elevated circEPSTI1 and MIF. An association was noted between circEPSTI1 expression in stages, histologic grade, and residual tumor. ROC curves confirmed that serum circEPSTI1 levels distinguished between controls and patients with EC with an Area of 0.835 and serum MIF levels distinguished between controls and patients with EC with an Area of 0.6646. When instead diagnosing patients based on the combination of MIF and circEPSTI1, the Area further rose to 0.8604. Conclusion Assessing the combination of circEPSTI1 and MIF may be a viable approach to reliably diagnosing EC.
Collapse
Affiliation(s)
- Zhili Cui
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Liyuan Zhou
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Xin An
- Department of Pathology, Handan First Hospital, Handan, Hebei, 056000, People’s Republic of China
| | - Wenli Liu
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Jingxia Li
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Yueping Zhang
- Shexian Maternal and Child Health Hospital, Shexian, Hebei, 056004, People’s Republic of China
| | - Wei Zhang
- Department of Gynecology, Handan Traditional Chinese Medicine Hospital, Handan, Hebei, 056001, People’s Republic of China
| |
Collapse
|
2
|
Leblebici A, Sancar C, Tercan B, Isik Z, Arayici ME, Ellidokuz EB, Basbinar Y, Yildirim N. In Silico Approach to Molecular Profiling of the Transition from Ovarian Epithelial Cells to Low-Grade Serous Ovarian Tumors for Targeted Therapeutic Insights. Curr Issues Mol Biol 2024; 46:1777-1798. [PMID: 38534733 DOI: 10.3390/cimb46030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
This paper aims to elucidate the differentially coexpressed genes, their potential mechanisms, and possible drug targets in low-grade invasive serous ovarian carcinoma (LGSC) in terms of the biologic continuity of normal, borderline, and malignant LGSC. We performed a bioinformatics analysis, integrating datasets generated using the GPL570 platform from different studies from the GEO database to identify changes in this transition, gene expression, drug targets, and their relationships with tumor microenvironmental characteristics. In the transition from ovarian epithelial cells to the serous borderline, the FGFR3 gene in the "Estrogen Response Late" pathway, the ITGB2 gene in the "Cell Adhesion Molecule", the CD74 gene in the "Regulation of Cell Migration", and the IGF1 gene in the "Xenobiotic Metabolism" pathway were upregulated in the transition from borderline to LGSC. The ERBB4 gene in "Proteoglycan in Cancer", the AR gene in "Pathways in Cancer" and "Estrogen Response Early" pathways, were upregulated in the transition from ovarian epithelial cells to LGSC. In addition, SPP1 and ITGB2 genes were correlated with macrophage infiltration in the LGSC group. This research provides a valuable framework for the development of personalized therapeutic approaches in the context of LGSC, with the aim of improving patient outcomes and quality of life. Furthermore, the main goal of the current study is a preliminary study designed to generate in silico inferences, and it is also important to note that subsequent in vitro and in vivo studies will be necessary to confirm the results before considering these results as fully reliable.
Collapse
Affiliation(s)
- Asim Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ceren Sancar
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey
| | - Bahar Tercan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Zerrin Isik
- Department of Computer Engineering, Faculty of Engineering, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Mehmet Emin Arayici
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ender Berat Ellidokuz
- Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Nuri Yildirim
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey
| |
Collapse
|
3
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Sun H, Cheng R, Zhang D, Guo Y, Li F, Li Y, Li Y, Bai X, Mo J, Huang C. MIF promotes cell invasion by the LRP1-uPAR interaction in pancreatic cancer cells. Front Oncol 2023; 12:1028070. [PMID: 36703790 PMCID: PMC9871987 DOI: 10.3389/fonc.2022.1028070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is characterized by high aggressiveness and a hypoxic tumour microenvironment. Macrophage migration inhibitory factor (MIF) is a hypoxia-related pleiotropic cytokine that plays important roles in cancer. However, its role in PDAC progression has not been fully elucidated. Methods The clinical significance of MIF and hypoxia inducible factor 1 subunit alpha (HIF1A) in PDAC was analysed using immunohistochemical staining on PDAC tissues and data from KM-Plotter database. Spatial distribution of MIF and HIF1A gene expression was visualized by spatial transcriptomics in PDAC cell xenografts. To monitor the role of MIF in PDAC cell malignancy, immunostaining, lentivirus shRNA, migration assays, flow cytometry, transcriptomics and in vivo tumorigenicity were performed. Results The spatial distribution of MIF and HIF1A was highly correlated and that high MIF expression was associated with poor prognosis of PDAC patients. MIF knockdown impaired cell invasion, with a decrease in the expression of urokinase-type plasminogen activator receptor (uPAR). Although PLAUR transcript was not reduced, a uPAR endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP1), was upregulated at both the mRNA and protein levels after MIF knockdown. The LRP1 antagonist RAP restored uPAR expression and invasiveness. MIF attenuated the nuclear translocation of p53, a transcriptional regulator of LRP1. Furthermore, MIF downregulation blunted the growth of PDAC cell xenografts and inhibited cell proliferation under normoxia and hypoxia. Transcriptome analysis also provided evidence for the role of MIF in cancer-associated pathways. Discussion We demonstrate a novel link between the two pro-invasive agents MIF and uPAR and explain how MIF increases PDAC cell invasion capability. This finding provides a basis for therapeutic intervention of MIF in PDAC progression.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| |
Collapse
|
5
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
6
|
Carvalho RF, do Canto LM, Abildgaard C, Aagaard MM, Tronhjem MS, Waldstrøm M, Jensen LH, Steffensen KD, Rogatto SR. Single-cell and bulk RNA sequencing reveal ligands and receptors associated with worse overall survival in serous ovarian cancer. Cell Commun Signal 2022; 20:176. [DOI: 10.1186/s12964-022-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Serous ovarian carcinoma is the most frequent histological subgroup of ovarian cancer and the leading cause of death among gynecologic tumors. The tumor microenvironment and cancer-associated fibroblasts (CAFs) have a critical role in the origin and progression of cancer. We comprehensively characterized the crosstalk between CAFs and ovarian cancer cells from malignant fluids to identify specific ligands and receptors mediating intercellular communications and disrupted pathways related to prognosis and therapy response.
Methods
Malignant fluids of serous ovarian cancer, including tumor-derived organoids, CAFs-enriched (eCAFs), and malignant effusion cells (no cultured) paired with normal ovarian tissues, were explored by RNA-sequencing. These data were integrated with single-cell RNA-sequencing data of ascites from ovarian cancer patients. The most relevant ligand and receptor interactions were used to identify differentially expressed genes with prognostic values in ovarian cancer.
Results
CAF ligands and epithelial cancer cell receptors were enriched for PI3K-AKT, focal adhesion, and epithelial-mesenchymal transition signaling pathways. Collagens, MIF, MDK, APP, and laminin were detected as the most significant signaling, and the top ligand-receptor interactions THBS2/THBS3 (CAFs)—CD47 (cancer cells), MDK (CAFs)—NCL/SDC2/SDC4 (cancer cells) as potential therapeutic targets. Interestingly, 34 genes encoding receptors and ligands of the PI3K pathway were associated with the outcome, response to treatment, and overall survival in ovarian cancer. Up-regulated genes from this list consistently predicted a worse overall survival (hazard ratio > 1.0 and log-rank P < 0.05) in two independent validation cohorts.
Conclusions
This study describes critical signaling pathways, ligands, and receptors involved in the communication between CAFs and cancer cells that have prognostic and therapeutic significance in ovarian cancer.
Collapse
|
7
|
Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers (Basel) 2022; 14:5099. [PMID: 36291886 PMCID: PMC9600774 DOI: 10.3390/cancers14205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Epithelial Ovarian cancer (OvCa) is the leading cause of death from gynecologic malignancies in the United States, with most patients diagnosed at late stages. High-grade serous cancer (HGSC) is the most common and lethal subtype. Despite aggressive surgical debulking and chemotherapy, recurrence of chemo-resistant disease occurs in ~80% of patients. Thus, developing therapeutics that not only targets OvCa cell survival, but also target their interactions within their unique peritoneal tumor microenvironment (TME) is warranted. Herein, we report therapeutic efficacy of compound C (also known as dorsomorphin) with a novel mechanism of action in OvCa. We found that CC not only inhibited OvCa growth and invasiveness, but also blunted their reciprocal crosstalk with macrophages, and mesothelial cells. Mechanistic studies indicated that compound C exerts its effects on OvCa cells through inhibition of PI3K-AKT-NFκB pathways, whereas in macrophages and mesothelial cells, CC inhibited cancer-cell-induced canonical NFκB activation. We further validated the specificity of the PI3K-AKT-NFκB as targets of compound C by overexpression of constitutively active subunits as well as computational modeling. In addition, real-time monitoring of OvCa cellular bioenergetics revealed that compound C inhibits ATP production, mitochondrial respiration, and non-mitochondrial oxygen consumption. Importantly, compound C significantly decreased tumor burden of OvCa xenografts in nude mice and increased their sensitivity to cisplatin-treatment. Moreover, compound C re-sensitized patient-derived resistant cells to cisplatin. Together, our findings highlight compound C as a potent multi-faceted therapeutic in OvCa.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Abigail Hegarty
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Jemima Adisa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| | - Samuel Lentz
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Freddie Salsbury
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
8
|
Thiele M, Donnelly SC, Mitchell RA. OxMIF: a druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J Immunother Cancer 2022; 10:e005475. [PMID: 36180072 PMCID: PMC9528626 DOI: 10.1136/jitc-2022-005475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with a pleiotropic spectrum of biological functions implicated in the pathogenesis of cancer and inflammatory diseases. MIF is constitutively present in several cell types and non-lymphoid tissues and is secreted after acute stress or inflammation. MIF triggers the release of proinflammatory cytokines, overrides the anti-inflammatory effects of glucocorticoids, and exerts chemokine function, resulting in increased migration and recruitment of leukocytes into inflamed tissue. Despite this, MIF is a challenging target for therapeutic intervention because of its ubiquitous nature and presence in the circulation and tissue of healthy individuals. Oxidized MIF (oxMIF) is an immunologically distinct disease-related structural isoform found in the plasma and tissues of patients with inflammatory diseases and in solid tumor tissues. MIF converts to oxMIF in an oxidizing, inflammatory environment. This review discusses the biology and activity of MIF and the potential for autoimmune disease and cancer modification by targeting oxMIF. Anti-oxMIF antibodies reduce cancer cell invasion/migration, angiogenesis, proinflammatory cytokine production, and ERK and AKT activation. Anti-oxMIF antibodies also elicit apoptosis and alter immune cell function and/or migration. When co-administered with a glucocorticoid, anti-oxMIF antibodies produced a synergistic response in inflammatory models. Anti-oxMIF antibodies therefore counterregulate biological activities attributed to MIF. oxMIF expression has been observed in inflammatory diseases (eg, sepsis, psoriasis, asthma, inflammatory bowel disease, and systemic lupus erythematosus) and oxMIF has been detected in ovarian, colorectal, lung, and pancreatic cancers. In contrast to MIF, oxMIF is specifically detected in plasma and/or tissues of diseased patients, but not in healthy individuals. Therefore, as a druggable isoform of MIF, oxMIF represents a potential new therapeutic target in inflammatory diseases and cancer. Fully human, monoclonal anti-oxMIF antibodies have been shown to selectively bind oxMIF in preclinical and phase I studies; however, additional clinical assessments are necessary to validate their use as either a monotherapy or in combination with standard-of-care regimens (ie, immunomodulatory agents/checkpoint inhibitors, anti-angiogenic drugs, chemotherapeutics, and glucocorticoids).
Collapse
Affiliation(s)
- Michael Thiele
- Biology Research, OncoOne Research & Development GmbH, Vienna, Austria
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Robert A Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Department of Surgery, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Lee HM, Lee HJ, Chang JE. Inflammatory Cytokine: An Attractive Target for Cancer Treatment. Biomedicines 2022; 10:biomedicines10092116. [PMID: 36140220 PMCID: PMC9495935 DOI: 10.3390/biomedicines10092116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment.
Collapse
|
10
|
Watrowski R, Obermayr E, Wallisch C, Aust S, Concin N, Braicu EI, Van Gorp T, Hasenburg A, Sehouli J, Vergote I, Zeillinger R. Biomarker-Based Models for Preoperative Assessment of Adnexal Mass: A Multicenter Validation Study. Cancers (Basel) 2022; 14:cancers14071780. [PMID: 35406551 PMCID: PMC8997061 DOI: 10.3390/cancers14071780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal genital malignancy in women. We aimed to develop and validate new proteomic-based models for non-invasive diagnosis of OC. We also compared them to the modified Risk of Ovarian Malignancy Algorithm (ROMA-50), the Copenhagen Index (CPH-I) and our earlier Proteomic Model 2017. Biomarkers were assessed using bead-based multiplex technology (Luminex®) in 356 women (250 with malignant and 106 with benign ovarian tumors) from five European centers. The training cohort included 279 women from three centers, and the validation cohort 77 women from two other centers. Of six previously studied serum proteins (CA125, HE4, osteopontin [OPN], prolactin, leptin, and macrophage migration inhibitory factor [MIF]), four contributed significantly to the Proteomic Model 2021 (CA125, OPN, prolactin, MIF), while leptin and HE4 were omitted by the algorithm. The Proteomic Model 2021 revealed a c-index of 0.98 (95% CI 0.96, 0.99) in the training cohort; however, in the validation cohort it only achieved a c-index of 0.82 (95% CI 0.72, 0.91). Adding patient age to the Proteomic Model 2021 constituted the Combined Model 2021, with a c-index of 0.99 (95% CI 0.97, 1) in the training cohort and a c-index of 0.86 (95% CI 0.78, 0.95) in the validation cohort. The Full Combined Model 2021 (all six proteins with age) yielded a c-index of 0.98 (95% CI 0.97, 0.99) in the training cohort and a c-index of 0.89 (95% CI 0.81, 0.97) in the validation cohort. The validation of our previous Proteomic Model 2017, as well as the ROMA-50 and CPH-I revealed a c-index of 0.9 (95% CI 0.82, 0.97), 0.54 (95% CI 0.38, 0.69) and 0.92 (95% CI 0.85, 0.98), respectively. In postmenopausal women, the three newly developed models all achieved a specificity of 1.00, a positive predictive value (PPV) of 1.00, and a sensitivity of >0.9. Performance in women under 50 years of age (c-index below 0.6) or with normal CA125 (c-index close to 0.5) was poor. CA125 and OPN had the best discriminating power as single markers. In summary, the CPH-I, the two combined 2021 Models, and the Proteomic Model 2017 showed satisfactory diagnostic accuracies, with no clear superiority of either model. Notably, although combining values of only four proteins with age, the Combined Model 2021 performed comparably to the Full Combined Model 2021. The models confirmed their exceptional diagnostic performance in women aged ≥50. All models outperformed the ROMA-50.
Collapse
Affiliation(s)
- Rafał Watrowski
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, 1090 Vienna, Austria; (E.O.); (S.A.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, 1090 Vienna, Austria; (E.O.); (S.A.)
| | - Christine Wallisch
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefanie Aust
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, 1090 Vienna, Austria; (E.O.); (S.A.)
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, 13353 Berlin, Germany; (E.I.B.); (J.S.)
| | - Toon Van Gorp
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (T.V.G.); (I.V.)
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
- Department of Obstetrics and Gynecology, University Medical Center, 55131 Mainz, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, 13353 Berlin, Germany; (E.I.B.); (J.S.)
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (T.V.G.); (I.V.)
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, 1090 Vienna, Austria; (E.O.); (S.A.)
- Correspondence:
| |
Collapse
|
11
|
Fucikova J, Coosemans A, Orsulic S, Cibula D, Vergote I, Galluzzi L, Spisek R. Immunological configuration of ovarian carcinoma: features and impact on disease outcome. J Immunother Cancer 2021; 9:jitc-2021-002873. [PMID: 34645669 PMCID: PMC8515436 DOI: 10.1136/jitc-2021-002873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- UCLA David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
12
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
13
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
14
|
Su T, Zhang P, Zhao F, Zhang S. A novel immune-related prognostic signature in epithelial ovarian carcinoma. Aging (Albany NY) 2021; 13:10289-10311. [PMID: 33819196 PMCID: PMC8064207 DOI: 10.18632/aging.202792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/21/2021] [Indexed: 01/05/2023]
Abstract
The immune response is associated with the progression and prognosis of epithelial ovarian cancer (EOC). However, the roles of infiltrated immune cells and immune-related genes (IRGs) in EOC have not been reported comprehensively. In the current study, the differentially expressed genes (DEGs) were filtered based on the integrated gene expression data acquired from The University of California at Santa Cruz (UCSC) Genome Browser. Then, IRGs and transcriptional factors (TFs) were screened based on the ImmPort database and Cistrome database. A total of 501 differentially expressed IRGs, and 76 TFs were detected. A TF-mediated network was constructed by univariate Cox analysis to reveal the potential regulatory mechanisms of IRGs. Next, a nine immune-based prognostic risk model using nine IRGs (PI3, CXCL10, CXCL11, LCN6, CCL17, CCL25, MIF, CX3CR1, and CSPG5) was established. Based on the risk score worked out from the signature, the EOC patients could be classified into low-risk and high-risk groups. Furthermore, the immune landscapes, elevated by the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm and the Tumor Immune Estimation Resource (TIMER) database, effectuated different patterns in two groups. Thus, an immune-based prognostic risk model of EOC elucidates the immune status in the tumor microenvironment, and hence, could be used for prognosis.
Collapse
Affiliation(s)
- Tong Su
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Panpan Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
15
|
Walker C, Nguyen TM, Jessel S, Alvero AB, Silasi DA, Rutherford T, Draghici S, Mor G. Automated Assay of a Four-Protein Biomarker Panel for Improved Detection of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13020325. [PMID: 33477343 PMCID: PMC7830619 DOI: 10.3390/cancers13020325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary The survival of patients diagnosed with ovarian cancer depends largely on the extent of the disease upon diagnosis. When confined to the ovaries, patients’ 10-year survival is more than 70%. This drastically drops to less than 5% when patients are diagnosed with far-advanced disease. Unfortunately, more than 80% of patients are diagnosed at advanced stage due to the lack of test for early detection. We report the development of a blood test measuring four proteins (macrophage migration inhibitory factor, osteopontin, prolactin and cancer antigen 125), which can distinguish ovarian cancer samples, even early-stage disease, from healthy samples in the population tested. This study is another step towards the application of a useful test for early detection of ovarian cancer that is both highly accurate and specific. Abstract Background: Mortality from ovarian cancer remains high due to the lack of methods for early detection. The difficulty lies in the low prevalence of the disease necessitating a significantly high specificity and positive-predictive value (PPV) to avoid unneeded and invasive intervention. Currently, cancer antigen- 125 (CA-125) is the most commonly used biomarker for the early detection of ovarian cancer. In this study we determine the value of combining macrophage migration inhibitory factor (MIF), osteopontin (OPN), and prolactin (PROL) with CA-125 in the detection of ovarian cancer serum samples from healthy controls. Materials and Methods: A total of 432 serum samples were included in this study. 153 samples were from ovarian cancer patients and 279 samples were from age-matched healthy controls. The four proteins were quantified using a fully automated, multi-analyte immunoassay. The serum samples were divided into training and testing datasets and analyzed using four classification models to calculate accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results: The four-protein biomarker panel yielded an average accuracy of 91% compared to 85% using CA-125 alone across four classification models (p = 3.224 × 10−9). Further, in our cohort, the four-protein biomarker panel demonstrated a higher sensitivity (median of 76%), specificity (median of 98%), PPV (median of 91.5%), and NPV (median of 92%), compared to CA-125 alone. The performance of the four-protein biomarker remained better than CA-125 alone even in experiments comparing early stage (Stage I and Stage II) ovarian cancer to healthy controls. Conclusions: Combining MIF, OPN, PROL, and CA-125 can better differentiate ovarian cancer from healthy controls compared to CA-125 alone.
Collapse
Affiliation(s)
- Christopher Walker
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
| | - Tuan-Minh Nguyen
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA; (T.-M.N.); (S.D.)
| | - Shlomit Jessel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.); (D.-A.S.)
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.); (D.-A.S.)
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL 33606, USA
- Correspondence: (T.R.); (G.M.)
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA; (T.-M.N.); (S.D.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (T.R.); (G.M.)
| |
Collapse
|
16
|
Batchu RB, Gruzdyn OV, Kolli BK, Dachepalli R, Umar PS, Rai SK, Singh N, Tavva PS, Weaver DW, Gruber SA. IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:51-65. [PMID: 33559854 DOI: 10.1007/978-3-030-55617-4_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Unlike other malignancies, ovarian cancer (OC) creates a complex tumor microenvironment with distinctive peritoneal ascites consisting of a mixture of several immunosuppressive cells which impair the ability of the patient's immune system to fight the disease. The poor survival rates observed in advanced stage OC patients and the lack of effective conventional therapeutic options have been attributed in large part to the immature dendritic cells (DCs), IL-10 secreting regulatory T cells, tumor-associated macrophages, myeloid-derived suppressor cells, and cancer stem cells that secrete inhibitory cytokines. This review highlights the critical role played by the intraperitoneal presence of IL-10 in the generation of an immunosuppressive tumor microenvironment. Further, the effect of antibody neutralization of IL-10 on the efficacy of DC and chimeric antigen receptor T-cell vaccines will be discussed. Moreover, we will review the influence of IL-10 in the promotion of cancer stemness in concert with the NF-κB signaling pathway with regard to OC progression. Finally, understanding the role of IL-10 and its crosstalk with various cells in the ascitic fluid may contribute to the development of novel immunotherapeutic approaches with the potential to kill drug-resistant OC cells while minimizing toxic side effects.
Collapse
Affiliation(s)
- Ramesh B Batchu
- Wayne State University School of Medicine, Detroit, MI, USA. .,John D. Dingell VA Medical Center, Detroit, MI, USA.
| | - Oksana V Gruzdyn
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Bala K Kolli
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA.,Med Manor Organics Pvt. Ltd., Hyderabad, India
| | | | - Prem S Umar
- Med Manor Organics Pvt. Ltd., Hyderabad, India
| | | | | | | | | | - Scott A Gruber
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
17
|
Jäger B, Klatt D, Plappert L, Golpon H, Lienenklaus S, Barbosa PD, Schambach A, Prasse A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal 2020; 73:109672. [DOI: 10.1016/j.cellsig.2020.109672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
18
|
Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 2020; 394:112153. [PMID: 32589888 DOI: 10.1016/j.yexcr.2020.112153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
Wide peritoneal metastasis is the cause of the highest lethality of ovarian cancer in gynecologic malignancies. Ascites play a key role in ovarian cancer metastasis, but involved mechanism is uncertain. Here, we performed a quantitative proteomics of ascites, and found that collagen type I alpha 1 (COL1A1) was notably elevated in ascites from epithelial ovarian cancer patients compared to normal peritoneal fluids, and verified that elevated COL1A1 was mainly originated from fibroblasts. COL1A1 promoted migration and invasion of ovarian cancer cells, but such effects were partially eliminated by COL1A1 antibodies. Intraperitoneally injected COL1A1 accelerated intraperitoneal metastasis of ovarian cancer xenograft in NOD/SCID mice. Further, COL1A1 activated downstream AKT phosphorylation by binding to membrane surface receptor integrin β1 (ITGB1). Knockdown or blockage of ITGB1 reversed COL1A1 enhanced migration and invasion in ovarian cancer cells. Conversely, ovarian cancer ascites and fibrinogen promoted fibroblasts to secrete COL1A1. Elevated fibrinogen in ascites might be associated with increased vascular permeability induced by ovarian cancer. Our findings suggest that microenvironment remodeled by tumor cells and stromal cells promotes fibroblasts to secrete COL1A1 and facilitates the metastasis of ovarian cancer, which may provide a new approach for ovarian cancer therapeutics.
Collapse
|
19
|
Yousefzadeh Y, Hallaj S, Baghi Moornani M, Asghary A, Azizi G, Hojjat-Farsangi M, Ghalamfarsa G, Jadidi-Niaragh F. Tumor associated macrophages in the molecular pathogenesis of ovarian cancer. Int Immunopharmacol 2020; 84:106471. [PMID: 32305830 DOI: 10.1016/j.intimp.2020.106471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
The tumor microenvironment is a critical factor that enhances cancer progression, drug resistance, and failure of therapeutic approaches. Several cellular and non-cellular factors are involved in cancer promotion. Among the several cell populations in the tumor microenvironment, macrophages, as one of the most abundant innate immune cells within the tumor milieu, have attracted extensive attention among several researchers because of their critical role in innate pathophysiology of multiple disorders, as well as ovarian cancer. High plasticity and consequent high ability to adapt to environmental alternations by adjusting their cellular metabolism and immunological phenotype is the notable characteristic of macrophages. Therefore, the critical function of tumor-associated macrophages in ovarian cancer is highlighted in the growing body of recent studies. In this article, we will comprehensively focus on significant impacts of the macrophages on ovarian cancer progression, by discussing the role of macrophages as one of the fundamental immune cells present in tumor milieu, in metabolic reprogramming of transformed cells, and involvement of these cells in the ovarian cancer initiation, progression, invasion, and angiogenesis. Moreover, we will summarise recent studies evaluating the effects of targeting macrophages in ovarian cancer.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Hallaj
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Baghi Moornani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Utispan K, Koontongkaew S. Macrophage migration inhibitory factor modulates proliferation, cell cycle, and apoptotic activity in head and neck cancer cell lines. J Dent Sci 2020; 16:342-348. [PMID: 33384818 PMCID: PMC7770260 DOI: 10.1016/j.jds.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Indexed: 11/20/2022] Open
Abstract
Background/purpose Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that contributes to the progression of several cancers. MIF overexpression has been reported in head and neck squamous cell carcinoma (HNSCC) patients. However, the exact role of MIF in HNSCC is not fully understood. Our aim was to evaluate the amount of secreted MIF and the role of MIF in the proliferation, cell cycle, and apoptosis in HNSCC cell lines. Materials and methods Genetically matched HNSCC cell lines derived from primary (HN18 and HN30) and metastatic sites (HN17 and HN31) from the same patient were used in this study. The MIF levels in conditioned media from the HNSCC cell lines were evaluated using ELISA. The HNSCC cell lines were treated with recombinant MIF at concentrations 25, 50 and 100 ng/ml, and cell proliferation was evaluated by MTT assay. A proliferative dose of MIF was used to treat the cells then, cell cycle, and apoptotic status were determined by flow cytometry. Results The HNSCC-secreted MIF concentration ranged from 49.33 to 973 pg/ml. Exogenous MIF (25 ng/ml) significantly increased HN18, HN30, and HN31 cell proliferation. Moreover, MIF induced cell cycle progression and inhibited apoptosis in these cells. However, MIF did not affect growth or apoptosis in HN17 cell. Conclusion MIF secreted from the HNSCC cell lines were evaluated. Exogenous MIF promotes various effects on proliferation, cell cycle, and apoptosis in HNSCC cells.
Collapse
Affiliation(s)
- Kusumawadee Utispan
- Oral Biology Research Unit, Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Sittichai Koontongkaew
- Oral Biology Research Unit, Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,Walailak University International College of Dentistry, Walailak University, Bangkok, Thailand
| |
Collapse
|
21
|
Emerging Role of the Macrophage Migration Inhibitory Factor Family of Cytokines in Neuroblastoma. Pathogenic Effectors and Novel Therapeutic Targets? Molecules 2020; 25:molecules25051194. [PMID: 32155795 PMCID: PMC7179464 DOI: 10.3390/molecules25051194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial pediatric tumor. Despite the current available multiple therapeutic options, the prognosis for high-risk NB patients remains unsatisfactory and makes the disease a clear unmet medical need. Thus, more tailored therapeutic approaches are warranted to improve both the quality of life and the survival of the patients. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that plays a key role in several diseases, including cancer. Preclinical and clinical studies in NB patients convergently indicate that MIF exerts pro-tumorigenic properties in NB. MIF is upregulated in NB tumor tissues and cell lines and it contributes to NB aggressiveness and immune-escape. To date, there are only a few data about the role of the second member of the MIF family, the MIF homolog d-dopachrome tautomerase (DDT), in NB. Here, we review the preclinical and clinical studies on the role of the MIF family of cytokines in NB and suggest that MIF and possibly DDT inhibitors may be promising novel prognostic and therapeutic targets in NB management.
Collapse
|
22
|
Abu El-Asrar AM, Ahmad A, Siddiquei MM, De Zutter A, Allegaert E, Gikandi PW, De Hertogh G, Van Damme J, Opdenakker G, Struyf S. The Proinflammatory and Proangiogenic Macrophage Migration Inhibitory Factor Is a Potential Regulator in Proliferative Diabetic Retinopathy. Front Immunol 2019; 10:2752. [PMID: 31866994 PMCID: PMC6904364 DOI: 10.3389/fimmu.2019.02752] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF)/CD74 signaling pathway is strongly implicated in inflammation and angiogenesis. We investigated the expression of MIF and its receptor CD74 in proliferative diabetic retinopathy (PDR) to reveal a possible role of this pathway in the pathogenesis of PDR. Levels of MIF, soluble (s)CD74, soluble intercellular adhesion molecule-1 (sICAM-1) and vascular endothelial growth factor (VEGF) were significantly increased in the vitreous from patients with PDR compared to nondiabetic control samples. We detected significant positive correlations between the levels of MIF and the levels of sICAM-1 (r = 0.43; p = 0.001) and VEGF (r = 0.7; p < 0.001). Through immunohistochemical analysis of PDR epiretinal membranes, significant positive correlations were also found between microvessel density (CD31 expression) and the numbers of blood vessels expressing MIF (r = 0.56; p = 0.045) and stromal cells expressing MIF (r = 0.79; p = 0.001) and CD74 (r = 0.59; p = 0.045). Similar to VEGF, MIF was induced in Müller cells cultured under hypoxic conditions and MIF induced phosphorylation of ERK1/2 and VEGF production in Müller cells. Intravitreal administration of MIF in normal rats induced increased retinal vascular permeability and significant upregulation of phospho-ERK1/2, NF-κB, ICAM-1 and vascular cell adhesion molecule-1 expression in the retina. MIF induced migration and proliferation of human retinal microvascular endothelial cells. These results suggest that MIF/CD74 signaling is involved in PDR angiogenesis.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Alexandra De Zutter
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, KU Leuven, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Herbst A, Hoang AN, Woo W, McKenzie D, Aiken JM, Miller RA, Allison DB, Liu N, Wanagat J. Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mech Ageing Dev 2019; 182:111126. [PMID: 31381889 PMCID: PMC6718337 DOI: 10.1016/j.mad.2019.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023]
Abstract
The age-induced, exponential accumulation of mitochondrial DNA (mtDNA) deletion mutations contributes to muscle fiber loss. The causes of these mutations are not known. Systemic inflammation is associated with decreased muscle mass in older adults and is implicated in the formation of sporadic mtDNA deletions. Macrophage migration inhibitory factor knockout (MIF-KO) mice are long-lived with decreased inflammation. We hypothesized that aged MIF-KO mice would have lower mtDNA deletion frequencies and fewer electron transport chain (ETC) deficient fibers. We measured mtDNA copy number and mutation frequency as well as the number and length of ETC deficient fibers in 22-month old MIF-KO and F2 hybrid control mice. We also measured mtDNA copy number and deletion frequency in female UM-HET3 mice, a strain whose lifespan matches the MIF-KO mice. We did not observe a significant effect of MIF ablation on muscle mtDNA deletion frequency. There was a significantly lower mtDNA copy number in the MIF-KO mice and the lifespan-matched UM-HET3 mice compared to the F2 hybrids, suggesting the importance of genetic background in mtDNA copy number control. Our data do not support a definitive role for MIF in age-induced mtDNA deletions.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Wendy Woo
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Taher MY, Davies DM, Maher J. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem Soc Trans 2018; 46:1449-1462. [PMID: 30467123 DOI: 10.1042/bst20180136] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that activates a classic signalling pathway upon binding to its membrane-bound receptor (IL-6R). Alternatively, IL-6 may 'trans-signal' in a manner that is facilitated by its binding to a soluble derivative of the IL-6 receptor (sIL-6R). Resultant signal transduction is, respectively, driven by the association of IL-6/IL-6R or IL-6/sIL-6R complex with the membrane-associated signal transducer, gp130 (Glycoprotein 130). Distinct JAK (Janus tyrosine kinase)/STAT (signal transducers and activators of transcription) and other signalling pathways are activated as a consequence. Of translational relevance, overexpression of IL-6 has been documented in several neoplastic disorders, including but not limited to colorectal, ovarian and breast cancer and several haematological malignancies. This review attempts to summarise our current understanding of the role of IL-6 in cancer development. In short, these studies have shown important roles for IL-6 signalling in tumour cell growth and survival, angiogenesis, immunomodulation of the tumour microenvironment, stromal cell activation, and ultimate disease progression. Given this background, we also consider the potential for therapeutic targeting of this system in cancer.
Collapse
Affiliation(s)
- Mustafa Yassin Taher
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K
- Department of Laboratory Medicine, Taibah University, Medina 42353, Saudi Arabia
| | - David Marc Davies
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K.
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, U.K
- Department of Immunology, Eastbourne Hospital, East Sussex BN21 2UD, U.K
| |
Collapse
|
25
|
The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080251. [PMID: 30061485 PMCID: PMC6116184 DOI: 10.3390/cancers10080251] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC.
Collapse
|
26
|
Ahmed M, Miller E. Macrophage migration inhibitory factor (MIF) in the development and progression of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2018; 2018:14. [PMID: 30083544 PMCID: PMC6062764 DOI: 10.21542/gcsp.2018.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the inflammatory cascade by promoting the release of other inflammatory cytokines such as TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs can synthesize and release MIF, many studies have investigated the potential role of MIF as a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using anti-MIFs as a new therapeutic modality for PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Neonatal-Perinatal Medicine, Pediatrics Department Cohen Children’s Hospital at New York, Northwell Health System
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Edmund Miller
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| |
Collapse
|
27
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 2018; 9:22832-22849. [PMID: 29854318 PMCID: PMC5978268 DOI: 10.18632/oncotarget.25126] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting the female population and at present, stands as the most lethal gynecologic malignancy. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms and below par diagnostic criteria at early phases along with a lack of effective treatment at advanced stages. It is thus of utmost importance to understand ovarian carcinoma through several lenses including its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several important aspects of ovarian cancer pathobiology as a means to provide the necessary background to approach ovarian malignancies in the future.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ziyan Salih
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Cancer Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
28
|
Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer. Oncotarget 2018; 7:73486-73496. [PMID: 27636991 PMCID: PMC5341993 DOI: 10.18632/oncotarget.11970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/02/2016] [Indexed: 01/16/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.
Collapse
|
29
|
Cai DL, Jin LP. Immune Cell Population in Ovarian Tumor Microenvironment. J Cancer 2017; 8:2915-2923. [PMID: 28928882 PMCID: PMC5604442 DOI: 10.7150/jca.20314] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer, the third most common with highest mortality rates gynecological malignancy among women in China, is characterized by a unique tumor immune microenvironment. Immune-cell population infiltrated into the tumor tissue among patients with ovarian cancer are associated positively or negatively with antitumor activity. The imbalance between immune activation and immune suppression can result in oncogenesis and cancer progression. Therefore, intense investigation of the immunologic mechanism of ovarian cancer is urgently needed, and a comprehensive understanding of the network in which immune cells interact with the microenvironment, tumor cells and each other will greatly promote the development of more effective immunotherapies for ovarian cancer. In this review, we will focus on the main immune-cell population in ovarian tumor microenvironment, discuss their role in tumor progression and try to give the readers a new perspective in finding more promising therapeutic targets for cancers.
Collapse
Affiliation(s)
- Dong Li Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
30
|
Kim MJ, Kim WS, Kim DO, Byun JE, Huy H, Lee SY, Song HY, Park YJ, Kim TD, Yoon SR, Choi EJ, Ha H, Jung H, Choi I. Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell Signal 2017; 34:110-120. [PMID: 28323005 DOI: 10.1016/j.cellsig.2017.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Abstract
The nuclear factor kappa B (NF-κB) pathway is pivotal in controlling survival and apoptosis of cancer cells. Macrophage migration inhibitory factor (MIF), a cytokine that regulates the immune response and tumorigenesis under inflammatory conditions, is upregulated in various tumors. However, the intracellular functions of MIF are unclear. In this study, we found that MIF directly interacted with thioredoxin-interacting protein (TXNIP), a tumor suppressor and known inhibitor of NF-κB activity, and MIF significantly induced NF-κB activation. MIF competed with TXNIP for NF-κB activation, and the intracellular MIF induced NF-κB target genes, including c-IAP2, Bcl-xL, ICAM-1, MMP2 and uPA, by inhibiting the interactions between TXNIP and HDACs or p65. Furthermore, we identified the interaction motifs between MIF and TXNIP via site-directed mutagenesis of their cysteine (Cys) residues. Cys57 and Cys81 of MIF and Cys36 and Cys120 of TXNIP were responsible for the interaction. MIF reversed the TXNIP-induced suppression of cell proliferation and migration. Overall, we suggest that MIF induces NF-κB activity by counter acting the inhibitory effect of TXNIP on the NF-κB pathway via direct interaction with TXNIP. These findings reveal a novel intracellular function of MIF in the progression of cancer.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Won Sam Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hangsak Huy
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hae Young Song
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
31
|
del Campo M, Zhong TY, Tampe R, García L, Lagos N. Sublethal doses of dinophysistoxin-1 and okadaic acid stimulate secretion of inflammatory factors on innate immune cells: Negative health consequences. Toxicon 2017; 126:23-31. [DOI: 10.1016/j.toxicon.2016.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
|
32
|
Macrophage Migration Inhibitory Factor (MIF): Biological Activities and Relation with Cancer. Pathol Oncol Res 2016; 23:235-244. [DOI: 10.1007/s12253-016-0138-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022]
|
33
|
Okła K, Wertel I, Polak G, Surówka J, Wawruszak A, Kotarski J. Tumor-Associated Macrophages and Myeloid-Derived Suppressor Cells as Immunosuppressive Mechanism in Ovarian Cancer Patients: Progress and Challenges. Int Rev Immunol 2016; 35:372-385. [PMID: 27644763 DOI: 10.1080/08830185.2016.1206097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancers are complex masses of malignant cells and nonmalignant cells that create the tumor microenvironment (TME). Non-transformed cells of the TME such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) have been observed in the TME of ovarian cancer (OC) patients. Although these subsets may contribute to each step of carcinogenesis and are commonly associated with poor prognosis, still little is known about creation of the protumor microenvironment in OC. In this review, we focused on the nature and prognostic significance of TAMs and MDSCs in OC patients. Moreover, we discuss the main problems and challenges that must be overcome by researchers and clinicians to enrich our knowledge about the immunosuppressive microenvironment of cancers.
Collapse
Affiliation(s)
- Karolina Okła
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Iwona Wertel
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Grzegorz Polak
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Justyna Surówka
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University , Lublin , Poland
| | - Jan Kotarski
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| |
Collapse
|
34
|
Yoshihisa Y, Rehman MU, Kondo T, Shimizu T. Role of macrophage migration inhibitory factor in heat-induced apoptosis in keratinocytes. FASEB J 2016; 30:3870-3877. [PMID: 27528627 DOI: 10.1096/fj.201600408rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
In human skin, keratinocytes are constantly challenged by adverse influences, such as hot and cold temperatures; however, the effects of heat on apoptosis induction in keratinocytes are not well understood. Macrophage migration inhibitory factor (MIF) is a potent cytokine that overcomes p53 function by suppressing its transcriptional activity. Here, we evaluated the effects of MIF on hyperthermia (HT)-induced apoptosis in MIF-deficient [knockout (KO)] and MIF-transgenic (Tg) mouse keratinocytes. Cells were exposed to HT at 44°C, and increased apoptosis was observed in MIF-KO and wild-type (WT) cells compared with MIF-Tg cells. To determine the mechanism, MIF-mediated changes in the cellular p53 level and its effects on p53-dependent death signaling (Bax and p21) and JNK signaling (p-JNK, JNK, p-Bad, and Bad) were investigated. MIF-Tg cells exhibited substantially decreased levels of p53 after HT treatment compared with WT and MIF-KO cells. In addition, HT treatment caused decreased expression of p-JNK and p-Bad in MIF-Tg cells; however, no such changes were observed in MIF-KO and WT cells. These results showed that the activation of JNK (p-JNK and p-Bad) and p53 may be involved in HT-induced apoptosis in keratinocytes and that enhanced endogenous MIF expression suppressed apoptosis.-Yoshihisa, Y., Rehman, M. U., Kondo, T., Shimizu, T. Role of macrophage migration inhibitory factor in heat-induced apoptosis in keratinocytes.
Collapse
Affiliation(s)
- Yoko Yoshihisa
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and
| | - Mati Ur Rehman
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and.,Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and
| |
Collapse
|
35
|
Kindt N, Journe F, Laurent G, Saussez S. Involvement of macrophage migration inhibitory factor in cancer and novel therapeutic targets. Oncol Lett 2016; 12:2247-2253. [PMID: 27698786 DOI: 10.3892/ol.2016.4929] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) was originally identified in 1966 by Bloom and Bennett as a pro-inflammatory cytokine involved in the inhibition of macrophage motility. Since then, studies have investigated the functional contribution of this pro-inflammatory cytokine in several immune diseases, including rheumatoid arthritis and lupus erythematous. Recently, MIF has been reported to be involved in a variety of neoplastic diseases. The present review discusses previous cancer research studies that have investigated the involvement of MIF in carcinogenesis, disease prognosis, tumor cell proliferation and invasion, and tumor-induced angiogenesis. Finally, potential therapeutic approaches based on the use of MIF antagonists and neutralizing antibodies are examined. The review concludes that MIF could be a good prognostic biomarker in several types of cancer, but also that the inhibition of MIF could represent a novel therapy against cancer.
Collapse
Affiliation(s)
- Nadège Kindt
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium
| | - Fabrice Journe
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium; Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Free University of Brussels, Brussels 1000, Belgium
| | - Guy Laurent
- Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium
| | - Sven Saussez
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium; Department of Otorhinolaryngology, Faculty of Medicine, Free University of Brussels, Brussels 1000, Belgium
| |
Collapse
|
36
|
An integrated signal transduction network of macrophage migration inhibitory factor. J Cell Commun Signal 2016; 10:165-70. [PMID: 27139435 DOI: 10.1007/s12079-016-0326-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath ( http://www.netpath.org ), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF.
Collapse
|
37
|
Xiao W, Dong X, Zhao H, Han S, Nie R, Zhang X, An R. Expression of MIF and c-erbB-2 in endometrial cancer. Mol Med Rep 2016; 13:3828-34. [PMID: 26985869 PMCID: PMC4838132 DOI: 10.3892/mmr.2016.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 12/08/2015] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to investigate the expression of c-erbB-2 and macrophage migration inhibitory factor (MIF) in endometrial cancer and to elucidate the significance of the early diagnosis and prognosis of endometrial cancer. The gene copy number of c-erbB-2 and MIF was characterized by reverse transcription quantitative polymerase chain reaction and the reactivity was assessed by immunohistochemistry in 70 patients using a polyclonal antibody, and evaluated semiquantitatively according to the percentage of cells demonstrating membranous or diffuse cytoplasmic staining. A correlation between age, tumor stage, grade, myometrial invasion and lymph node metastasis was observed. The mRNA expression of c-erbB-2 and MIF was high in endometrial carcinoma. The positive expression rate of MIF protein in normal endometrium, atypical hyperplasia and endometrial carcinoma significantly increased along with the degree of aggravation of the disease by 20 (3/15), 45 (9/20) and 70% (35/50), respectively. The positive expression of MIF and c-erbB-2 was highest in endometrial cancer and a significantly higher level of protein was observed in tumors at stage I, stage G1, with a depth of myometrial invasion <0.4 cm and no lymph node metastasis. The protein expression of c-erbB-2 in endometrial cancer was higher in tumors at the G2-3 phase, clinical stage III–IV, lymph node metastasis, and had no association with the depth of myometrial invasion and age. MIF and c-erbB-2 were correlated with the occurrence and the development of endometrial cancer, and thus can be used for the early diagnosis and prognosis of endometrial cancer. The present study laid the foundation for identifying new treatments for endometrial cancer.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiujuan Dong
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Honghui Zhao
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shiyu Han
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ruixue Nie
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiahua Zhang
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ruifang An
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Yildirim N, Dikmen Y, Terek MC, Akman L, Gunel NS, Aktan C, Zekioglu O, Gunduz C. Do preoperative serum vascular endothelial growth factor and migration-inhibitory factor predict the nature of the adnexal masses? A prospective-controlled trial. J OBSTET GYNAECOL 2016; 36:533-7. [PMID: 26758243 DOI: 10.3109/01443615.2015.1121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to identify the role of preoperative serum vascular endothelial growth factor (VEGF) and migration inhibitor factor (MIF) in differentiation of benign and malignant adnexal masses, as well as the relationship between prognostic factors and VEGF and MIF in ovarian cancer patients. This prospective study included 41 patients who were admitted between November 2010 and March 2012. In the malignant group, there were 21 patients, and remaining 20 had benign adnexal masses. Age, CA125 levels, grade, stage, presence of ascites and the degree of cytoreduction performed were noted. There was no significant difference between two groups in preoperative serum VEGF and MIF levels (p = 0.118 and p = 0.297, respectively). CA125 levels were significantly higher in the malignant group (p < 0.0001). There was no significant difference for VEGF and MIF between the groups evaluated for tumour grade, stage, presence of ascites and degree of cytoreduction performed in the malignant group. Preoperative serum, VEGF and MIF levels are not suitable for the differentiation of malignant and benign adnexal masses, and they do not correlate with the prognostic factors of ovarian cancer in this cohort of patients.
Collapse
Affiliation(s)
- Nuri Yildirim
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Ege University , Izmir , Turkey
| | - Yilmaz Dikmen
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Ege University , Izmir , Turkey
| | - Mustafa Cosan Terek
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Ege University , Izmir , Turkey
| | - Levent Akman
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Ege University , Izmir , Turkey
| | - Nur Selvi Gunel
- b Department of Medical Biology, Faculty of Medicine , Ege University , Izmir , Turkey , and
| | - Cagdas Aktan
- b Department of Medical Biology, Faculty of Medicine , Ege University , Izmir , Turkey , and
| | - Osman Zekioglu
- c Department of Pathology, Faculty of Medicine , Ege University , Izmir , Turkey
| | - Cumhur Gunduz
- b Department of Medical Biology, Faculty of Medicine , Ege University , Izmir , Turkey , and
| |
Collapse
|
39
|
Yao J, Leng L, Sauler M, Fu W, Zheng J, Zhang Y, Du X, Yu X, Lee P, Bucala R. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest 2016; 126:732-44. [PMID: 26752645 DOI: 10.1172/jci81937] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.
Collapse
|
40
|
Senchukova MA, Ryabov АB. Modern concepts of factors for gastric cancer progression. ONKOLOGIYA. ZHURNAL IMENI P.A.GERTSENA 2016; 5:82. [DOI: 10.17116/onkolog20165182-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
|
41
|
Patterson AM, Kaabinejadian S, McMurtrey CP, Bardet W, Jackson KW, Zuna RE, Husain S, Adams GP, MacDonald G, Dillon RL, Ames H, Buchli R, Hawkins OE, Weidanz JA, Hildebrand WH. Human Leukocyte Antigen-Presented Macrophage Migration Inhibitory Factor Is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer. Mol Cancer Ther 2015; 15:313-22. [PMID: 26719579 DOI: 10.1158/1535-7163.mct-15-0658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/07/2015] [Indexed: 01/08/2023]
Abstract
T cells recognize cancer cells via HLA/peptide complexes, and when disease overtakes these immune mechanisms, immunotherapy can exogenously target these same HLA/peptide surface markers. We previously identified an HLA-A2-presented peptide derived from macrophage migration inhibitory factor (MIF) and generated antibody RL21A against this HLA-A2/MIF complex. The objective of the current study was to assess the potential for targeting the HLA-A2/MIF complex in ovarian cancer. First, MIF peptide FLSELTQQL was eluted from the HLA-A2 of the human cancerous ovarian cell lines SKOV3, A2780, OV90, and FHIOSE118hi and detected by mass spectrometry. By flow cytometry, RL21A was shown to specifically stain these four cell lines in the context of HLA-A2. Next, partially matched HLA-A*02:01+ ovarian cancer (n = 27) and normal fallopian tube (n = 24) tissues were stained with RL21A by immunohistochemistry to assess differential HLA-A2/MIF complex expression. Ovarian tumor tissues revealed significantly increased RL21A staining compared with normal fallopian tube epithelium (P < 0.0001), with minimal staining of normal stroma and blood vessels (P < 0.0001 and P < 0.001 compared with tumor cells) suggesting a therapeutic window. We then demonstrated the anticancer activity of toxin-bound RL21A via the dose-dependent killing of ovarian cancer cells. In summary, MIF-derived peptide FLSELTQQL is HLA-A2-presented and recognized by RL21A on ovarian cancer cell lines and patient tumor tissues, and targeting of this HLA-A2/MIF complex with toxin-bound RL21A can induce ovarian cancer cell death. These results suggest that the HLA-A2/MIF complex should be further explored as a cell-surface target for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Pure MHC LLC, Oklahoma City, Oklahoma
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ken W Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rosemary E Zuna
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | - Harold Ames
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | | | - Oriana E Hawkins
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Jon A Weidanz
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Pure MHC LLC, Oklahoma City, Oklahoma.
| |
Collapse
|
42
|
Subbannayya T, Leal-Rojas P, Barbhuiya MA, Raja R, Renuse S, Sathe G, Pinto SM, Syed N, Nanjappa V, Patil AH, Garcia P, Sahasrabuddhe NA, Nair B, Guerrero-Preston R, Navani S, Tiwari PK, Santosh V, Sidransky D, Prasad TSK, Gowda H, Roa JC, Pandey A, Chatterjee A. Macrophage migration inhibitory factor - a therapeutic target in gallbladder cancer. BMC Cancer 2015; 15:843. [PMID: 26530123 PMCID: PMC4632274 DOI: 10.1186/s12885-015-1855-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. Methods Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. Results The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. Conclusions Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1855-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Pamela Leal-Rojas
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Adrienne Helis Malvin Research Foundation, New Orleans, LA, 70130, USA.
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India.
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Patricia Garcia
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | | | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, 474011, India. .,School of Studies in Zoology, Jiwaji University, Gwalior, India.
| | - Vani Santosh
- Department of Pathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India. .,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Juan Carlos Roa
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| |
Collapse
|
43
|
Chesney JA, Mitchell RA. 25 Years On: A Retrospective on Migration Inhibitory Factor in Tumor Angiogenesis. Mol Med 2015; 21 Suppl 1:S19-24. [PMID: 26605643 DOI: 10.2119/molmed.2015.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023] Open
Abstract
Twenty-five years ago marked the publication of the first report describing a functional contribution by the cytokine, macrophage migration inhibitory factor (MIF), to tumor-associated angiogenesis and growth. Since first appearing, this report has been cited 304 times (as of this writing), underscoring not only the importance of this landmark study but also the importance of MIF in tumor neovascularization. Perhaps more importantly, this first link between MIF and stromal cell-dependent tumor angiogenesis presaged the subsequent identification of MIF in mediating protumorigenic contributions to several solid tumor stromal cell types, including monocytes, macrophages, T lymphocytes, NK cells, fibroblasts, endothelial progenitors and mesenchymal stem cells. This retrospective review will broadly evaluate both past and present literature stemming from this initial publication, with an emphasis on cellular sources, cellular effectors, signal transduction mechanisms and the clinical importance of MIF-dependent tumor vascularization.
Collapse
Affiliation(s)
- Jason A Chesney
- Molecular Targets Program, JG Brown Cancer Center, and the Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert A Mitchell
- Molecular Targets Program, JG Brown Cancer Center, and the Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
44
|
TSH overcomes Braf(V600E)-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene 2015; 35:1909-18. [PMID: 26477313 DOI: 10.1038/onc.2015.253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/04/2015] [Accepted: 05/22/2015] [Indexed: 01/22/2023]
Abstract
The BRAF(V600E) mutation is found in approximately 40% of papillary thyroid cancers (PTC). Mice with thyroid-specific expression of Braf(V600E) (TPO-Braf(V600E)) develop PTC rapidly with high levels of serum thyroid-stimulating hormone (TSH). It is unclear to what extent the elevated TSH contributes to tumor progression. To investigate the progression of Braf(V600E)-induced PTC (BVE-PTC) under normal TSH, we transplanted BVE-PTC tumors subcutaneously into nude and TPO-Braf(WT) mice. Regression of the transplanted tumors was observed in both nude and TPO-Braf(WT) mice. They were surrounded by heavy lymphocyte infiltration and oncogene-induced senescence (OIS) was demonstrated by strong β-gal staining and absence of Ki-67 expression. In contrast, BVE-PTC transplants continued to grow when transplanted into TPO-Braf(V600E) mice. The expression of Trp53 was increased in tumor transplants undergoing OIS. Trp53 inactivation reversed OIS and enabled tumor transplants to grow in nude mice with characteristic cell morphology of anaplastic thyroid cancer (ATC). PTC-to-ATC transformation was also observed in primary BVE-PTC tumors. ATC cells derived from Trp53 knockout tumors had increased PI3K/AKT signaling and became resistant to Braf(V600E) inhibitor PLX4720, which could be overcome by combined treatment of PI3K inhibitor LY294002 and PLX4720. In conclusion, BVE-PTC progression could be contained via p53-dependent OIS and TSH is a major disruptor of this balance. Simultaneous targeting of both MAPK and PI3K/AKT pathways offer a better therapeutic outcome against ATC. The current study reinforces the importance of rigorous control of serum TSH in PTC patients.
Collapse
|
45
|
Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 2015; 33:17-39. [PMID: 24357056 DOI: 10.1007/s10555-013-9456-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.
Collapse
|
46
|
miR-451a Inhibited Cell Proliferation and Enhanced Tamoxifen Sensitive in Breast Cancer via Macrophage Migration Inhibitory Factor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:207684. [PMID: 26161389 PMCID: PMC4486513 DOI: 10.1155/2015/207684] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/27/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the regulative effects of microRNA-451a (miR-451a) on cell proliferation and sensitivity to tamoxifen in breast cancer cells. In cell culture experiments, the lentiviral vectors of pHBLV-miR-451a and pHBLV-miR-451a sponge were constructed and used to transfect MCF-7 and LCC2 cells. The transfection efficiency was tested by fluorescent observation, and cell lines with stable over- or downregulated expression of miR-451a were established. The expression of miR-451a and the target gene macrophage migration inhibitory factor (MIF) were detected by real-time reverse transcriptase polymerase chain reaction and/or western blot. Moreover, MTT assay, colony formation, and Transwell invasion assays were also performed. Data showed that the recombinant lentiviral vectors were constructed correctly, and the virus titer was 1 × 10(8) CFU/mL. The stable transfected cells were obtained. Overexpression of miR-451a downregulated MIF expression in mRNA and protein levels and inhibited cell proliferation, colony formation, and invasion of breast cancer cells. Downregulation of miR-451a upregulated MIF expression and increased breast cancer cell growth, invasion, and tamoxifen sensitivity. In summary, the miR-451a/MIF pathway may play important roles in the biological properties of breast cancer cells and may be a potential therapeutic target for breast cancer.
Collapse
|
47
|
Huang XH, Jian WH, Wu ZF, Zhao J, Wang H, Li W, Xia JT. Small interfering RNA (siRNA)-mediated knockdown of macrophage migration inhibitory factor (MIF) suppressed cyclin D1 expression and hepatocellular carcinoma cell proliferation. Oncotarget 2015; 5:5570-80. [PMID: 25015194 PMCID: PMC4170598 DOI: 10.18632/oncotarget.2141] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF), a proinflammatory and immunoregulatory chemokine, plays important roles in cancer-related biological processes. However, few studies have focused on the clinical relevance of MIF and cyclin D1 expression in hepatocellular carcinoma cells (HCCs). In this study, MIF and cyclin D1 expression levels in HCC tissues and cell lines were significantly upregulated compared with adjacent normal tissues or a normal liver cell line. In HCC specimens, MIF expression positively correlated with cyclin D1 expression. Additionally, MIF and cyclin D1 expression positively correlated with tumor size. MIF knockdown inhibited the proliferation of PLC and HepG2 cells and promoted apoptosis. However, small interfering RNA (siRNA) against MIF did not influence the cell cycle in these cells. In an in vivo xenograft model, MIF knockdown reduced the tumor growth rate. The expression levels of Bcl-2, p-caspase-3, BIM and Bax were upregulated, while the expression levels of cyclin D1, p-Akt and p-ERK were downregulated in MIF-knockdown cells. These findings indicate that MIF siRNA reduces proliferation and increases apoptosis in HCC cells. MIF knockdown inhibits the expression of growth-related proteins and induces the expression of apoptosis-related proteins, supporting a role for MIF as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao-Hui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Hua Jian
- Department of General Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-Feng Wu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. Department of General Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zhao
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hua Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Tang Xia
- Department of General Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China. Department of General Surgery, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Sauler M, Bucala R, Lee PJ. Role of macrophage migration inhibitory factor in age-related lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1-10. [PMID: 25957294 DOI: 10.1152/ajplung.00339.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022] Open
Abstract
The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease.
Collapse
Affiliation(s)
- Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard Bucala
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
49
|
Xu L, Li Y, Li D, Xu P, Tian S, Sun H, Liu H, Hou T. Exploring the binding mechanisms of MIF to CXCR2 using theoretical approaches. Phys Chem Chem Phys 2014; 17:3370-82. [PMID: 25526079 DOI: 10.1039/c4cp05095a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multi-functional protein that acts as a cytokine and as an enzyme. Recently, MIF was identified as a non-canonical ligand of G protein-coupled chemokine receptor CXCR2 with low nanomolar affinity in leukocyte arrest and chemotaxis, but the precise knowledge of the molecular determinants of the MIF-CXCR2 interface has remained unknown. Therefore, we employed homology modeling, protein-protein docking, molecular dynamics (MD) simulations, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy calculations and MM/GBSA binding free energy decomposition to obtain insights into the molecular recognition of MIF with CXCR2. The predicted binding pattern of MIF-CXCR2 is in good agreement with the experimental data and sheds light on the functional role of important MIF-CXCR2 interface residues in association with binding and signaling. According to our predictions, the R11A/D44A double mutations of MIF exhibit a pronounced defect in the binding affinity of MIF to CXCR2, resulting in large conformational changes. The potential two-site binding model for the MIF-CXCR2 recognition was proposed: initialized primarily by the non-polar interactions including the van der Waals and hydrophobic interactions, the N-terminal region of CXCR2 contacts the N-like loop and β-sheet of MIF (site 1), and then the ECL2 and ECL3 regions of CXCR2 form strong interactions with the pseudo-(E)LR motif and C-terminus of MIF, which induces the molecular thermodynamic motion of TMs for signal transduction (site 2). This study will extend our understanding to the binding mechanisms of MIF to CXCR2 and provide useful information for the rational design of potent inhibitors selectively targeting the MIF-CXCR2 interactions.
Collapse
Affiliation(s)
- Lei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, Malkinson AM, Dwyer-Nield LD. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol 2014; 5:587. [PMID: 25505466 PMCID: PMC4243558 DOI: 10.3389/fimmu.2014.00587] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤50% of control levels after 4–6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.
Collapse
Affiliation(s)
- Jason M Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Meredith A Tennis
- Pulmonary Division, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Hao Lin
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | | | - Kevin S Choo
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Taylor A Staab
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Ronald J Bouchard
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Alvin M Malkinson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|