1
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Meng Y, Hong C, Yang S, Qin Z, Yang L, Huang Y. Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 2023; 26:506. [PMID: 37920433 PMCID: PMC10618932 DOI: 10.3892/ol.2023.14093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Ubiquitin-specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X-targeted pharmacological therapeutics in cancer development are discussed.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Sifu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
3
|
Hogh-Binder SA, Klein D, Wolfsperger F, Huber SM, Hennenlotter J, Stenzl A, Rudner J. Protein Levels of Anti-Apoptotic Mcl-1 and the Deubiquitinase USP9x Are Cooperatively Upregulated during Prostate Cancer Progression and Limit Response of Prostate Cancer Cells to Radiotherapy. Cancers (Basel) 2023; 15:cancers15092496. [PMID: 37173959 PMCID: PMC10177233 DOI: 10.3390/cancers15092496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Radiotherapy constitutes an important therapeutic option for prostate cancer. However, prostate cancer cells often acquire resistance during cancer progression, limiting the cytotoxic effects of radiotherapy. Among factors regulating sensitivity to radiotherapy are members of the Bcl-2 protein family, known to regulate apoptosis at the mitochondrial level. Here, we analyzed the role of anti-apoptotic Mcl-1 and USP9x, a deubiquitinase stabilizing Mcl-1 protein levels, in prostate cancer progression and response to radiotherapy. METHODS Changes in Mcl-1 and USP9x levels during prostate cancer progression were determined by immunohistochemistry. Neutralization of Mcl-1 and USP9x was achieved by siRNA-mediated knockdown. We analyzed Mcl-1 stability after translational inhibition by cycloheximide. Cell death was determined by flow cytometry using an exclusion assay of mitochondrial membrane potential-sensitive dye. Changes in the clonogenic potential were examined by colony formation assay. RESULTS Protein levels of Mcl-1 and USP9x increased during prostate cancer progression, and high protein levels correlated with advanced prostate cancer stages. The stability of Mcl-1 reflected Mcl-1 protein levels in LNCaP and PC3 prostate cancer cells. Moreover, radiotherapy itself affected Mcl-1 protein turnover in prostate cancer cells. Particularly in LNCaP cells, the knockdown of USP9x expression reduced Mcl-1 protein levels and increased sensitivity to radiotherapy. CONCLUSION Posttranslational regulation of protein stability was often responsible for high protein levels of Mcl-1. Moreover, we demonstrated that deubiquitinase USP9x as a factor regulating Mcl-1 levels in prostate cancer cells, thus limiting cytotoxic response to radiotherapy.
Collapse
Affiliation(s)
- Sophia A Hogh-Binder
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| | - Frederik Wolfsperger
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Justine Rudner
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| |
Collapse
|
4
|
Gorombei P, Guidez F, Ganesan S, Chiquet M, Pellagatti A, Goursaud L, Tekin N, Beurlet S, Patel S, Guerenne L, Le Pogam C, Setterblad N, de la Grange P, LeBoeuf C, Janin A, Noguera ME, Sarda-Mantel L, Merlet P, Boultwood J, Konopleva M, Andreeff M, West R, Pla M, Adès L, Fenaux P, Krief P, Chomienne C, Omidvar N, Padua RA. BCL-2 Inhibitor ABT-737 Effectively Targets Leukemia-Initiating Cells with Differential Regulation of Relevant Genes Leading to Extended Survival in a NRAS/BCL-2 Mouse Model of High Risk-Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms221910658. [PMID: 34638998 PMCID: PMC8508829 DOI: 10.3390/ijms221910658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells. Secondary transplants showed increased survival in treated compared to untreated mice. Unlike the AML model, BCL-2 expression and RAS activity decreased following treatment and the RAS:BCL-2 complex remained in the plasma membrane. Exon-specific gene expression profiling (GEP) of HR-MDS mice showed 1952 differentially regulated genes upon treatment, including genes important for the regulation of stem cells, differentiation, proliferation, oxidative phosphorylation, mitochondrial function, and apoptosis; relevant in human disease. Spliceosome genes, found to be abnormal in MDS patients and downregulated in our HR-MDS model, such as Rsrc1 and Wbp4, were upregulated by the treatment, as were genes involved in epigenetic regulation, such as DNMT3A and B, upregulated upon disease progression and downregulated upon treatment.
Collapse
Affiliation(s)
- Petra Gorombei
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Fabien Guidez
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Saravanan Ganesan
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Mathieu Chiquet
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Haematology Theme, Oxford OX3 9DU, UK; (A.P.); (J.B.)
| | - Laure Goursaud
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Nilgun Tekin
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Stephanie Beurlet
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Satyananda Patel
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Laura Guerenne
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Carole Le Pogam
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Niclas Setterblad
- Imagerie Département, Université de Paris, Institut de la Recherche Saint-Louis, 75010 Paris, France;
| | - Pierre de la Grange
- GenoSplice Technology, Paris Biotech Santé, 29 Rue du Faubourg Saint-Jacques, 75014 Paris, France;
| | - Christophe LeBoeuf
- INSERM UMR-S942, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (C.L.); (A.J.)
| | - Anne Janin
- INSERM UMR-S942, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (C.L.); (A.J.)
| | - Maria-Elena Noguera
- Department of Cytology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France;
| | - Laure Sarda-Mantel
- Radiopharmacie AP-HP, Hôpital Saint-Louis, Service Medicine Nuclear, AP-HP Lariboisiere, 75010 Paris, France;
| | - Pascale Merlet
- Nuclear Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France;
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Haematology Theme, Oxford OX3 9DU, UK; (A.P.); (J.B.)
| | - Marina Konopleva
- M. D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (M.K.); (M.A.)
| | - Michael Andreeff
- M. D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (M.K.); (M.A.)
| | - Robert West
- Department of Public Health, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| | - Marika Pla
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Lionel Adès
- INSERM UMR-S944, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (L.A.); (P.F.)
| | - Pierre Fenaux
- INSERM UMR-S944, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (L.A.); (P.F.)
| | - Patricia Krief
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Christine Chomienne
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Nader Omidvar
- Department of Haematology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| | - Rose Ann Padua
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
- Correspondence: ; Tel.: +33-1-57-27-90-22; Fax: +33-1-57-27-90-13
| |
Collapse
|
5
|
Sulkshane P, Pawar SN, Waghole R, Pawar SS, Rajput P, Uthale A, Oak S, Kalkar P, Wani H, Patil R, Nair S, Rane P, Teni T. Elevated USP9X drives early-to-late-stage oral tumorigenesis via stabilisation of anti-apoptotic MCL-1 protein and impacts outcome in oral cancers. Br J Cancer 2021; 125:547-560. [PMID: 34079080 PMCID: PMC8367974 DOI: 10.1038/s41416-021-01421-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Overexpression of anti-apoptotic MCL-1 protein in oral squamous cell carcinoma (OSCC) is linked to disease progression, therapy resistance and poor outcome. Despite its characteristic short half-life owing to ubiquitin-proteasome-dependent degradation, oral tumours frequently show elevated MCL-1 protein expression. Hence, we investigated the role of deubiquitinase USP9X in stabilising MCL-1 protein and its contribution to oral tumorigenesis. METHODS Expression of MCL-1 and USP9X was assessed by immunoblotting and immunohistochemistry in oral cancer cell lines and tissues. The association between MCL-1 and USP9X was confirmed by coimmunoprecipitation and immunofluorescence. Cell death assessment was performed by MTT, flow cytometry and clonogenic assays. RESULTS Both USP9X and MCL-1 are significantly elevated in oral premalignant lesions and oral tumours versus normal mucosa. USP9X interacts with and deubiquitinates MCL-1, thereby stabilising it. Pharmacological inhibition of USP9X potently induced cell death in OSCC cells in vitro and in vivo. The elevated expression of USP9X and MCL-1 correlated with poor prognosis in OSCC patients. CONCLUSION We demonstrate the oncogenic role of USP9X in driving early-to-late stages of oral tumorigenesis via stabilisation of MCL-1, suggesting its potential as a prognostic biomarker and therapeutic target in oral cancers.
Collapse
Affiliation(s)
- Prasad Sulkshane
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India ,grid.6451.60000000121102151Present Address: Glickman Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sagar N. Pawar
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Rohit Waghole
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Sushil S. Pawar
- KBH Dental College and Hospital, Panchwati, Nashik, Maharashtra India
| | - Priyanka Rajput
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Abhay Uthale
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| | - Swapnil Oak
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| | - Prajakta Kalkar
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Harshada Wani
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Rahul Patil
- KBH Dental College and Hospital, Panchwati, Nashik, Maharashtra India
| | - Sudhir Nair
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India ,grid.410871.b0000 0004 1769 5793Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra India
| | - Pallavi Rane
- grid.410869.20000 0004 1766 7522Clinical Research Secretariat, ACTREC, TMC, Kharghar, Navi Mumbai, Maharashtra India
| | - Tanuja Teni
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| |
Collapse
|
6
|
Co-operation of ABT-199 and gemcitabine in impeding DNA damage repair and inducing cell apoptosis for synergistic therapy of T-cell acute lymphoblastic leukemia. Anticancer Drugs 2020; 30:138-148. [PMID: 30320607 DOI: 10.1097/cad.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia with limited therapeutic options available. Here, we evaluated the therapeutic potential of the combination of the Bcl-2 antagonist ABT-199 and cytotoxic agent gemcitabine in T-ALL cell lines. Our results showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity and induced significant apoptosis in human T-ALL cell lines (Jurkat and Molt4). The augmented apoptosis induced by combination treatment was accompanied by the greater extent of mitochondrial depolarization and enhanced DNA damage. Importantly, single agent induced DNA damage alone but did not inhibit RAD51/BRCA1-mediated repair for DNA double-strand breaks. In contrast, the combination of ABT-199 and gemcitabine disrupted RAD51/BRCA1-dependent DNA repair and remarkably activated caspase-3 and PARP to trigger apoptosis. Moreover, ABT-199 exerted an antagonistic action towards Bcl-2 and Bcl-xL, but to a certain extent moderately increased Mcl-1 level that could be compromised by gemcitabine. In conclusion, our study showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity in T-ALL cells by cooperatively targeting DNA damage repair pathway and Bcl-2 family proteins.
Collapse
|
7
|
ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 2020; 30:383-393. [PMID: 30557204 DOI: 10.1097/cad.0000000000000736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A deeper understanding of the molecular basis of castration-resistant prostate cancer (CRPC) paved the way for the rational design and development of targeted therapies, which yielded promising preclinical results. However, translation of these potentially promising agents into clinics has usually failed, partly because of tumor heterogeneity. In this study, anticancer activities of the Bcl-2 inhibitor ABT-737 and the Akt-inhibitor erufosine (ErPC3) alone and in combination were compared between CRPC (PC-3 and DU-145) and healthy (PNT-1A) cell lines. The combination of ABT-737 and ErPC3 showed synergistic antiproliferative, antimigratory, and apoptotic effects in PC-3 cells. In DU-145 cells, ErPC3 showed a resistant profile, with half-maximal inhibitory concentration (IC50) values more than two-fold of PC-3, and combining ErPC3 with ABT-737 yielded no added benefit for all the incubation periods compared with ErPC3 alone. In PNT-1A cells, ABT-737 and ErPC3 alone and in combination reduced cell survival slightly and only at the highest concentrations. Apoptosis analysis showed that ABT-737 induced increased Akt expression and ErPC3 induced increased Mcl-1 expression in DU-145 cells. In conclusion, the ABT-737 and ErPC3 combination seems to be promising against CRPC, with a favorable safety profile in healthy cells. However, CRPC cell-type-specific resistance may be induced by enhancement of antiapoptotic signaling.
Collapse
|
8
|
Li Y, Zhou D, Xu S, Rao M, Zhang Z, Wu L, Zhang C, Lin N. DYRK1A suppression restrains Mcl-1 expression and sensitizes NSCLC cells to Bcl-2 inhibitors. Cancer Biol Med 2020; 17:387-400. [PMID: 32587776 PMCID: PMC7309455 DOI: 10.20892/j.issn.2095-3941.2019.0380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: Mcl-1 overexpression confers acquired resistance to Bcl-2 inhibitors in non-small cell lung cancer (NSCLC), but no direct Mcl-1 inhibitor is currently available for clinical use. Thus, novel therapeutic strategies are urgently needed to target Mcl-1 and sensitize the anti-NSCLC activity of Bcl-2 inhibitors. Methods: Cell proliferation was measured using sulforhodamine B and colony formation assays, and apoptosis was detected with Annexin V-FITC staining. Gene expression was manipulated using siRNAs and plasmids. Real-time PCR and Western blot were used to measure mRNA and protein levels. Immunoprecipitation and immunofluorescence were used to analyze co-localization of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and Mcl-1. Results: Suppression of DYRK1A resulted in reduced Mcl-1 expression in NSCLC cells, whereas overexpression of DYRK1A significantly increased Mcl-1 expression. Suppression of DYRK1A did not alter Mcl-1 mRNA levels, but did result in an accelerated degradation of Mcl-1 protein in NSCLC cells. Furthermore, DYRK1A mediated proteasome-dependent degradation of Mcl-1 in NSCLC cells, and DYRK1A co-localized with Mcl-1 in NSCLC cells and was co-expressed with Mcl-1 in tumor samples from lung cancer patients, suggesting that Mcl-1 may be a novel DYRK1A substrate. We showed that combined therapy with harmine and Bcl-2 antagonists significantly inhibited cell proliferation and induced apoptosis in NSCLC cell lines as well as primary NSCLC cells. Conclusions: Mcl-1 is a novel DYRK1A substrate, and the role of DYRK1A in promoting Mcl-1 stability makes it an attractive target for decreasing Bcl-2 inhibitor resistance.
Collapse
Affiliation(s)
- Yangling Li
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dongmei Zhou
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Shuang Xu
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Mingjun Rao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zuoyan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linwen Wu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
9
|
Wang Q, Hao S. A-1210477, a selective MCL-1 inhibitor, overcomes ABT-737 resistance in AML. Oncol Lett 2019; 18:5481-5489. [PMID: 31612056 PMCID: PMC6781566 DOI: 10.3892/ol.2019.10891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies. It is difficult to treat since it easily develops resistance to therapeutic drugs. Myeloid cell leukemia 1 (MCL-1), BCL-2 and BCL-XL, which belong to the anti-apoptotic group of proteins in the BCL-2 family, are overexpressed in AML. The effects of inhibitors that target anti-apoptotic proteins of the BCL-2 family in AML were evaluated in the present study. MCL-1 protein levels of HL60, MOLM13, OCI-AML3 and MV4-11 cell lines were investigated. Furthermore, following treatment with MCL-1-selective antagonist A-1210477 and/or BCL-2/BCL-XL antagonist ABT-737, cell viability was detected. The chimera rate of human CD45(+) cells of bone marrow from mouse models was analyzed via flow cytometry and immunohistochemistry using murine tissues (lung, spleen and liver). The data revealed that the HL-60 cell line, which exhibited a low MCL-1 protein level, and MOLM-13 and MV4-11 cell lines, whose MCL level was intermediate, were sensitive to ABT-737, whereas OCI-AML3 cells, which exhibited a high MCL-1 level, were insensitive to ABT-737. However, multiple AML mouse models and AML cell lines were sensitive to the MCL-1-selective antagonist A-1210477. The results of the present study indicated that the MCL-1-selective antagonist could overcome the resistance to the BCL-2/BCL-XL antagonist (ABT-737) in vitro and in vivo.
Collapse
Affiliation(s)
- Qing Wang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
10
|
Wu LW, Zhang JK, Rao M, Zhang ZY, Zhu HJ, Zhang C. Harmine suppresses the proliferation of pancreatic cancer cells and sensitizes pancreatic cancer to gemcitabine treatment. Onco Targets Ther 2019; 12:4585-4593. [PMID: 31354292 PMCID: PMC6580126 DOI: 10.2147/ott.s205097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose Pancreatic carcinoma is one of the most deadliest types of cancer, and relatively insensitive to the currently available chemotherapy. Thus, the discovery of novel therapeutic agents to prolong the survival times of patients with pancreatic cancer is urgently required. Methods Cell proliferation was assessed using the sulforhodamine B and cell clone formation assay, apoptosis was analyzed through Annexin V/PI staining, analysis of cell cycle distribution was determined by PI staining, and the expression of proteins was detected via Western blotting. Results Our data showed that harmine exerted an anti-proliferative effect and cell cycle arrest at G2/M in pancreatic cancer cells. Meanwhile, harmine plus gemcitabine showed strong synergy in inhibiting the proliferation of pancreatic cancer cells. Furthermore, harmine induced apoptosis and enhanced the gemcitabine-induced apoptosis in pancreatic cancer cells. The AKT/mTOR pathway is involved in mechanisms of gemcitabine resistance in pancreatic cancer cells, our data demonstrated that harmine plus gemcitabine significantly suppressed the AKT/mTOR signaling pathway. Conclusion Harmine may be a potential candidate for the treatment of pancreatic cancer. Morever, the combination of harmine with gemcitabine appears to be an attractive option for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Lin-Wen Wu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Mingjun Rao
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Zuo-Yan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hua-Jian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
11
|
Zhang J, Wang J, Luan T, Zuo Y, Chen J, Zhang H, Ye Z, Wang H, Hai B. Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep 2019; 41:3292-3304. [PMID: 31002345 PMCID: PMC6489063 DOI: 10.3892/or.2019.7131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-specific protease 9X (USP9X) is a conserved deubiquitinase that has been investigated in several types of human cancer. However, the clinical significance and the biological roles of USP9X in prostate cancer remain unexplored. In the present study, an investigation into the expression and clinical significance of USP9X in prostate cancer revealed that USP9X expression was downregulated in prostate cancer tissues compared with that in healthy tissues. In addition, decreased USP9X expression was associated with a higher Gleason score and local invasion. Depletion of USP9X in prostate cancer LNCaP and PC-3 cells by small interfering RNA promoted cell invasion and migration. Furthermore, USP9X depletion upregulated matrix metalloproteinase 9 (MMP9) and the phosphorylation of dynamin-related protein 1 (DRP1). Notably, a significant increase in phosphorylated extracellular signal-regulated kinase (ERK), an upstream activator of MMP9 and DRP1, was observed. To investigate whether ERK activation was able to increase MMP9 protein levels and induce DRP1 phosphorylation, an ERK inhibitor was used, demonstrating that ERK-mediated MMP9 production and change in mitochondrial function was critical for the biological function of USP9X in prostate cancer cells. In conclusion, the present study demonstrated that USP9X is downregulated in prostate cancer and functions as an inhibitor of tumor cell invasion, possibly through the regulation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jian Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Heng Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Zhenni Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Bing Hai
- Department of Respiratory Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
12
|
RS 504393 inhibits M-MDSCs recruiting in immune microenvironment of bladder cancer after gemcitabine treatment. Mol Immunol 2019; 109:140-148. [PMID: 30951933 DOI: 10.1016/j.molimm.2019.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/03/2019] [Accepted: 02/15/2019] [Indexed: 11/24/2022]
Abstract
Bladder cancer (BC) is a malignant tumor of urinary epithelium. Gemcitabine is an introduced treatment for BC and also has immunomodulatory function, but the immunoregulation mechanism is not clear. In this study, we found that gemcitabine-treated BC cell recruited more monocyte-myeloid-derived suppressed cells (M-MDSCs), which played a significant role in immune suppression and contributed to cancer progression. We found that this phenomenon was induced by Chemokine (C-C motif) ligand 2 (CCL2), an M-MDSCs recruitment related monomeric polypeptide. Gemcitabine treatment promotes the generation of CCL2 and CCL2 could attach to C-C chemokine receptor type 2 (CCR2) to recruit M-MDSCs. We used RS 504393, a selective CCR2 antagonist, to inhibit the recruitment of M-MDSCs. RS 504393 improved the prognosis by blocking chemotaxis of M-MDSCs, and this finding sheds lights on how to prevent and alleviate the side effects occurred on the gemcitabine-treated BC patients.
Collapse
|
13
|
Wang Q, Wan J, Zhang W, Hao S. MCL-1 or BCL-xL-dependent resistance to the BCL-2 antagonist (ABT-199) can be overcome by specific inhibitor as single agents and in combination with ABT-199 in acute myeloid leukemia cells. Leuk Lymphoma 2019; 60:2170-2180. [PMID: 30626241 DOI: 10.1080/10428194.2018.1563694] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aberrant over-expression of BCL-2 family proteins (BCL-2, BCL-xL, MCL-1) are associated with hematological malignancies. Antagonists of BCL-2 family proteins include BCL-2-selective inhibitor ABT-199, MCL-1-selective inhibitor A-1210477, BCL-xL-selective inhibitor A-1155463. In this study, we evaluated their potential inhibitory effectiveness. Our data showed that OCI-AML3 cells and U937 cells were resistant to BCL-2-selective inhibitor ABT-199 in vitro and in vivo, however, while OCI-AML3 cells were sensitive to MCL-1-selective inhibitor A-1210477 in vitro and in vivo, indicating that A-1210477 could counteract the resistance of AML cells to ABT-199 as a single agent in MCL-1-dependent AML cells. U-937 cell line and mouse model were resistant to A-1210477 or ABT-199, and expressed high level of BCL-xL, indicating that BCL-xL might play an important role in the resistance of A-1210477 or ABT-199. Besides, this study also showed that ABT-199 could synergize with A-1210477 in vitro or in vivo.
Collapse
Affiliation(s)
- Qing Wang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wenhao Zhang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
14
|
Chen W, Zhou Y, Zhi X, Ma T, Liu H, Chen BW, Zheng X, Xie S, Zhao B, Feng X, Dang X, Liang T. Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials 2018; 192:590-600. [PMID: 30553134 DOI: 10.1016/j.biomaterials.2018.11.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a destructive cancer with poor prognosis. Both novel therapeutic targets and approaches are needed to improve the overall survival of PDAC patients. MicroRNA-212 (miR-212) has been reported as a tumor suppressor in multiple cancers, but its definitive role and exact mechanism in the progression of pancreatic cancer is unclear. In this study, we developed a new chimeric peptide (PL-1) composed of plectin-1-targeted PDAC-specific and arginine-rich RNA-binding motifs which could condense miRNA to self-assemble supramolecular nanoparticles. These nanoparticles could deliver miR-212 into PDAC cells specifically and efficiently which also showed good stability in RNase and serum. Moreover, we demonstrated that PL-1/miR-212 nanoparticles could dramatically enhance the chemotherapeutic effect of doxorubicin for PDAC both in vitro and in vivo. In terms of mechanism, combined miR-212 intervention by PL-1/miR-212 nanoparticles resulted in obvious decrease of USP9X expression (ubiquitin specific peptidase 9, X-linked, USP9X) and eventually enhanced the doxorubicin induced apoptosis and autophagy of PDAC cells. These findings provide a new promising anti-cancer strategy via PL-1/miR-212 nanoparticles and identify miR-212/USP9X as a new potential target for future systemic therapy against human PDAC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Brayant Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shangzhi Xie
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhao
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xinhua Feng
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| |
Collapse
|
15
|
Hu X, Wu LW, Weng X, Lin NM, Zhang C. Synergistic antitumor activity of aspirin and erlotinib: Inhibition of p38 enhanced aspirin plus erlotinib-induced suppression of metastasis and promoted cancer cell apoptosis. Oncol Lett 2018; 16:2715-2724. [PMID: 30013667 DOI: 10.3892/ol.2018.8956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
High-dose erlotinib is effective for non-small cell lung cancer patients with brain metastases. The aim of the present study was to investigate whether aspirin could increase the anti-proliferative and anti-metastatic effects of regular erlotinib treatment. The data demonstrated that combining aspirin with erlotinib significantly induced apoptosis and inhibited tumor cell proliferation in several human cancer types. Furthermore, aspirin plus erlotinib significantly induced the activation of E-cadherin and suppression of p38. The data also indicated that the p38/E-cadherin pathway may be involved in the apoptosis caused by the combination of aspirin and erlotinib. As p38 and E-cadherin also serve a key role in epithelial-to-mesenchymal transition (EMT) and cancer metastasis, we hypothesized that the combination of aspirin and erlotinib may significantly inhibit tumor metastasis. First, aspirin plus erlotinib achieved potent inhibition of cancer cell migration and invasion, which are crucial for cancer metastasis. Next, the results demonstrated that aspirin plus erlotinib inhibited angiogenesis by suppressing endothelial cell migration and invasion. Moreover, it was confirmed that aspirin plus erlotinib exerted synergistic anti-angiogenic effects. Finally, the synergistic anti-proliferative and anti-metastatic effects of the combination of aspirin with erlotinib were further validated in an A549 xenograft model in vivo. In conclusion, aspirin plus erlotinib may be an effective combination regimen for patients with metastatic cancer.
Collapse
Affiliation(s)
- Xiu Hu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lin-Wen Wu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xu Weng
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China.,Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China.,Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
16
|
Pal A, Dziubinski M, Di Magliano MP, Simeone DM, Owens S, Thomas D, Peterson L, Potu H, Talpaz M, Donato NJ. Usp9x Promotes Survival in Human Pancreatic Cancer and Its Inhibition Suppresses Pancreatic Ductal Adenocarcinoma In Vivo Tumor Growth. Neoplasia 2017; 20:152-164. [PMID: 29248719 PMCID: PMC5735260 DOI: 10.1016/j.neo.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Usp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2) and four spontaneously immortalized human pancreatic patient-derived tumor (PDX) cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts. Overexpression of Usp9x increased 3D growth and invasion in PANC1 cells and up-regulated the expression of known Usp9x substrates Mcl-1 and ITCH. Usp9x inhibition by shRNA-knockdown or by G9 treatment reduced 3D colony formation in PANC1 and PDX cell lines, induced rapid apoptosis in MIAPACA2 cells, and associated with reduced Mcl-1 and ITCH protein levels. Although G9 treatment reduced human MIAPACA2 tumor burden in vivo, in mouse pancreatic cancer cell lines established from constitutive (8041) and doxycycline-inducible (4668) KrasG12D/Tp53R172H mouse pancreatic tumors, Usp9x inhibition increased and sustained the 3D colony growth and showed no significant effect on tumor growth in 8041-xenografts. Thus, Usp9x inhibition may be therapeutically active in human PDAC, but this activity was not predicted from studies of genetically engineered mouse pancreatic tumor models.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | | | | | - Diane M Simeone
- Department of Surgery, University of Michigan School of Medicine
| | - Scott Owens
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Dafydd Thomas
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Luke Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Nicholas J Donato
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center.
| |
Collapse
|
17
|
Karpel-Massler G, Banu MA, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 2017; 7:12791-805. [PMID: 26872380 PMCID: PMC4914322 DOI: 10.18632/oncotarget.7302] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Matei A Banu
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
18
|
The BET-Bromodomain Inhibitor JQ1 synergized ABT-263 against colorectal cancer cells through suppressing c-Myc-induced miR-1271-5p expression. Biomed Pharmacother 2017; 95:1574-1579. [PMID: 28950657 DOI: 10.1016/j.biopha.2017.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo apoptosis in the presence of the small-molecule inhibitor ABT-263 by up-regulating antiapoptotic Bcl-2 family members. However, the resistance to ABT-263 gradually developed in most solid tumors due to its low affinity to Mcl-1. Here, we found the BET-Bromodomain inhibitor JQ1, when combined with ABT-263, synergistically reduced Mcl-1 protein level, induced apoptosis, and decreased cell viability in the CRC HCT-15, HT-29 and SW620 cells. The subsequent mechanism study revealed that a pathway of c-Myc/miR-1271-5p/Noxa/Mcl-1 underlies the synergistic effect of such combination treatment. We discovered that miR-1271-5p, the key mediator for the synergistic effect, is transcriptionally activated by c-Myc, and binds to the 3'-UTR of noxa to inhibit its protein production. The combination treatment of JQ1 and ABT-263 inhibited c-Myc protein level and also c-Myc-driven expression of miR-1271-5p, subsequently increased the protein level of Noxa, and finally promotes the degradation of Mcl-1. Our findings provide an alternative strategy to resolve the resistance during treatment of CRC by JQ1, and also discovered a novel miR-1271-5p-dependent regulatory mechanism for gene expression of noxa.
Collapse
|
19
|
Karpel-Massler G, Bâ M, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo. Oncotarget 2017; 6:36456-71. [PMID: 26474387 PMCID: PMC4742189 DOI: 10.18632/oncotarget.5505] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Maïmouna Bâ
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
20
|
Fraile JM, Manchado E, Lujambio A, Quesada V, Campos-Iglesias D, Webb TR, Lowe SW, López-Otín C, Freije JMP. USP39 Deubiquitinase Is Essential for KRAS Oncogene-driven Cancer. J Biol Chem 2017; 292:4164-4175. [PMID: 28154181 DOI: 10.1074/jbc.m116.762757] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
KRAS is the most frequently mutated oncogene in human cancer, but its therapeutic targeting remains challenging. Here, we report a synthetic lethal screen with a library of deubiquitinases and identify USP39, which encodes an essential splicing factor, as a critical gene for the viability of KRAS-dependent cells. We show that splicing fidelity inhibitors decrease preferentially the proliferation rate of KRAS-active cells. Moreover, depletion of DHX38, encoding an USP39-interacting splicing factor, also reduces the viability of these cells. In agreement with these results, USP39 depletion caused a significant reduction in pre-mRNA splicing efficiency, as demonstrated through RNA-seq experiments. Furthermore, we show that USP39 is up-regulated in lung and colon carcinomas and its expression correlates with KRAS levels and poor clinical outcome. Accordingly, our work provides critical information for the development of splicing-directed antitumor treatments and supports the potential of USP39-targeting strategies as the basis of new anticancer therapies.
Collapse
Affiliation(s)
- Julia M Fraile
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Eusebio Manchado
- the Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Amaia Lujambio
- the Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Víctor Quesada
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Diana Campos-Iglesias
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Thomas R Webb
- the Division of Biosciences, SRI International, Menlo Park, California 94025
| | - Scott W Lowe
- the Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - José M P Freije
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain, .,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| |
Collapse
|
21
|
YM155 enhances ABT-737-mediated apoptosis through Mcl-1 downregulation in Mcl-1-overexpressed cancer cells. Mol Cell Biochem 2017; 429:91-102. [PMID: 28120212 DOI: 10.1007/s11010-016-2938-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
ABT-737 is a BH3 mimetic inhibitor of Bcl-xL, Bcl-2, and Bcl-w, and it has been reported for anti-cancer effects in various types of cancer cells. However, ABT-737 fails to induce apoptosis in cancer cell with high levels of Mcl-1 expression. The pharmacological survivin inhibitor YM155 has been reported to induce downregulation of Mcl-1 expression. Therefore, we investigated the effect of YM155 to sensitize resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. We found that ABT-737 alone and YM155 alone did not induce apoptosis, but YM155 markedly sensitized ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma cells (U251MG), and human lung carcinoma cells (A549). In contrast, combined treatment with ABT-737 and YM155 did not increase apoptosis in normal mouse kidney cells (TCMK-1) and human mesangial cells (MC). YM155 induced lysosome-dependent downregulation of Mcl-1 expression in Mcl-1-overexpressed Caki cells. In addition, combined treatment with ABT-737 and YM155 induced loss of mitochondrial membrane potential and inhibited interaction of Bcl-xL and Bax. Taken together, our results suggested that YM155 effectively improves sensitivity to ABT-737 through downregulation of Mcl-1 expression.
Collapse
|
22
|
Godfrey L, Kerry J, Thorne R, Repapi E, Davies JOJ, Tapia M, Ballabio E, Hughes JR, Geng H, Konopleva M, Milne TA. MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol 2016; 47:64-75. [PMID: 27856324 PMCID: PMC5333536 DOI: 10.1016/j.exphem.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022]
Abstract
Survival rates for children and adults carrying mutations in the Mixed Lineage Leukemia (MLL) gene continue to have a very poor prognosis. The most common MLL mutation in acute lymphoblastic leukemia is the t(4;11)(q21;q23) chromosome translocation that fuses MLL in-frame with the AF4 gene producing MLL-AF4 and AF4-MLL fusion proteins. Previously, we found that MLL-AF4 binds to the BCL-2 gene and directly activates it through DOT1L recruitment and increased H3K79me2/3 levels. In the study described here, we performed a detailed analysis of MLL-AF4 regulation of the entire BCL-2 family. By measuring nascent RNA production in MLL-AF4 knockdowns, we found that of all the BCL-2 family genes, MLL-AF4 directly controls the active transcription of both BCL-2 and MCL-1 and also represses BIM via binding of the polycomb group repressor 1 (PRC1) complex component CBX8. We further analyzed MLL-AF4 activation of the BCL-2 gene using Capture-C and identified a BCL-2-specific enhancer, consisting of two clusters of H3K27Ac at the 3' end of the gene. Loss of MLL-AF4 activity results in a reduction of H3K79me3 levels in the gene body and H3K27Ac levels at the 3' BCL-2 enhancer, revealing a novel regulatory link between these two histone marks and MLL-AF4-mediated activation of BCL-2.
Collapse
Affiliation(s)
- Laura Godfrey
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Jon Kerry
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Ross Thorne
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Emmanouela Repapi
- Weatherall Institute of Molecular Medicine, Computational Biology Research Group, University of Oxford, Headington, Oxford, UK
| | - James O J Davies
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Marta Tapia
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Erica Ballabio
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Jim R Hughes
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thomas A Milne
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
23
|
Zhang C, Li YL, Weng X, Li LY, Zhou MX, Zhang DY, Lin NM. Nedaplatin enhanced apoptotic effects of ABT-737 in human cancer cells via Mcl-1 inhibition. Oncol Lett 2016; 12:4195-4202. [PMID: 27895791 DOI: 10.3892/ol.2016.5151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/25/2016] [Indexed: 11/06/2022] Open
Abstract
Platinum compounds, such as cisplatin, carboplatin, oxaliplatin and nedaplatin, are widely used to treat a number of solid malignancies. Nedaplatin is a second-generation platinum complex, based on its pronounced anti-cancer activities against several solid tumors being equivalent to that of cisplatin, but with lower nephrotoxicity. In this context, the present study aimed to investigate the potential anti-cancer effect by combining nedaplatin with ABT-737. It was found that nedaplatin greatly increased ABT-737-mediated apoptosis in A549 and 95-D cells, accompanied by enhanced cleavage of poly(ADP-ribose) polymerase and caspase-3. In addition, this enhancement was also paralleled by cytochrome c release and dissipation of mitochondrial membrane potential. Additional mechanistic investigations revealed that nedaplatin plus ABT-737 exerted a synergistic effect on cancer cells through their ability to accelerate the degradation of Mcl-1. The present study has revealed nedaplatin as a pertinent sensitizer to ABT-737, which opens up new avenues for this promising BH3-mimetic molecule in the clinic.
Collapse
Affiliation(s)
- Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Yang-Ling Li
- Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China; Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Weng
- The First Affiliated Hangzhou Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Li-Yan Li
- The First Affiliated Hangzhou Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China; Department of Pharmacy, Yongkang Hospital of Traditional Chinese Medicine, Yongkang, Zhejiang 321300, P.R. China
| | - Ming-Xian Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Da-Yong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China; The First Affiliated Hangzhou Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China; Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
24
|
Wolfsperger F, Hogh-Binder SA, Schittenhelm J, Psaras T, Ritter V, Bornes L, Huber SM, Jendrossek V, Rudner J. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis 2016; 7:e2039. [PMID: 26775694 PMCID: PMC4816183 DOI: 10.1038/cddis.2015.405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
Abstract
Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude that USP9x can control survival and radiosensitivity in glioblastoma cells by Mcl-1-dependent and Mcl-1-independent mechanisms.
Collapse
Affiliation(s)
- F Wolfsperger
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - S A Hogh-Binder
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - J Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - T Psaras
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - V Ritter
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - L Bornes
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - S M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - V Jendrossek
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - J Rudner
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| |
Collapse
|
25
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
26
|
Abstract
The alteration in expression of B cell lymphoma-2 (Bcl-2) family of protein members in cancer is involved mainly in the regulation of apoptosis. Bcl-2 family proteins are currently used as major targets in the development of methods to improve treatment outcomes for cancer patients that underwent clinical trials. Although many agents have been developed for targeting Bcl-2 in the past decade, some previous attempts to target Bcl-2 have not resulted in beneficial clinical outcome for reasons unknown. Here, we propose that this was due in part for not considering the cellular level of a different antiapoptotic protein, i.e., galectin-3 (Gal-3). Gal-3 is a member of the β-galactoside binding protein family and a multifunctional oncogenic protein which regulates cell growth, cell adhesion, cell proliferation, angiogenesis, and apoptosis. Gal-3 is the sole protein that contains the NWGR anti-death motif of the Bcl-2 family and inhibits cell apoptosis induced by chemotherapeutic agents through phosphorylation, translocation and regulation of survival signaling pathways. It is now established that Gal-3 is a candidate target protein to suppress antiapoptotic activity and anticancer drug resistance. In this review, we describe the role and relevance of Gal-3 and Bcl-2 protein family in the regulation of apoptosis and propose a novel combination therapy modality. Combination therapy that targets Gal-3 could be essential for improvement of the efficacy of Bcl-2 targeting therapy in cancers and should be studied in future clinical trials. Otherwise, not considering Gal-3 cellular level could lead to trial failure.
Collapse
|
27
|
Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood 2015; 126:363-72. [PMID: 26045609 DOI: 10.1182/blood-2014-10-604975] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Overexpression of antiapoptotic Bcl-2 proteins such as Bcl-2, Bcl-xL, and Mcl-1 is widely associated with tumor initiation, progression, and chemoresistance. Furthermore, it has been demonstrated that Mcl-1 upregulation renders several types of cancers resistant to the Bcl-2/Bcl-xL inhibitors ABT-737 and ABT-263. The emerging importance of Mcl-1 in pathogenesis and drug resistance makes it a high-priority therapeutic target. In this study, we showed that inhibition of Mcl-1 with a novel pan-Bcl-2 inhibitor (-)BI97D6 potently induced apoptosis in acute myeloid leukemia (AML) cells. (-)BI97D6 induced hallmarks of mitochondrial apoptosis, disrupted Mcl-1/Bim and Bcl-2/Bax interactions, and stimulated cell death via the Bak/Bax-dependent mitochondrial apoptosis pathway, suggesting on-target mechanisms. As a single agent, this pan-Bcl-2 inhibitor effectively overcame AML cell apoptosis resistance mediated by Mcl-1 or by interactions with bone marrow mesenchymal stromal cells. (-)BI97D6 was also potent in killing refractory primary AML cells. Importantly, (-)BI97D6 killed AML leukemia stem/progenitor cells while largely sparing normal hematopoietic stem/progenitor cells. These findings demonstrate that pan-Bcl-2 inhibition by an Mcl-1-targeting inhibitor not only overcomes intrinsic drug resistance ensuing from functional redundancy of Bcl-2 proteins, but also abrogates extrinsic resistance caused by the protective tumor microenvironment.
Collapse
|
28
|
Murtaza M, Jolly LA, Gecz J, Wood SA. La FAM fatale: USP9X in development and disease. Cell Mol Life Sci 2015; 72:2075-89. [PMID: 25672900 PMCID: PMC4427618 DOI: 10.1007/s00018-015-1851-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/12/2022]
Abstract
Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate’s ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an “all-or-none” phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X’s pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson’s and Alzheimer’s disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.
Collapse
Affiliation(s)
- Mariyam Murtaza
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
29
|
Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS NANO 2015; 9:3540-57. [PMID: 25776964 PMCID: PMC4415452 DOI: 10.1021/acsnano.5b00510] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 05/18/2023]
Abstract
Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer.
Collapse
Affiliation(s)
- Huan Meng
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Address correspondence to ,
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huiyu Liu
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Laboratory of Controllable Preparation and Application of Nanomaterials, Research Center for Micro & Nano Materials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Allen Situ
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Bobby Wu
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhaoxia Ji
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Address correspondence to ,
| |
Collapse
|
30
|
Clitocine induces apoptosis and enhances the lethality of ABT-737 in human colon cancer cells by disrupting the interaction of Mcl-1 and Bak. Cancer Lett 2014; 355:253-63. [DOI: 10.1016/j.canlet.2014.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/18/2022]
|
31
|
Zhang C, Shi J, Mao SY, Xu YS, Zhang D, Feng LY, Zhang B, Yan YY, Wang SC, Pan JP, Yang YP, Lin NM. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737. J Cell Mol Med 2014; 19:408-17. [PMID: 25388762 PMCID: PMC4407609 DOI: 10.1111/jcmm.12461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022] Open
Abstract
Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy.
Collapse
Affiliation(s)
- Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Woo SM, Min KJ, Seo BR, Nam JO, Choi KS, Yoo YH, Kwon TK. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression. Cell Death Dis 2014; 5:e1514. [PMID: 25375379 PMCID: PMC4260730 DOI: 10.1038/cddis.2014.472] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
Abstract
Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.
Collapse
Affiliation(s)
- S M Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - K-J Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - B R Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - J-O Nam
- Department of Ecological Environment Conservation, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 742-711, South Korea
| | - K S Choi
- Department of Biochemistry, Ajou University School of Medicine, 5 Woncheon-Dong, Paldal-Gu, Suwon 442-749, South Korea
| | - Y H Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 602-714, South Korea
| | - T K Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
33
|
Martin-Liberal J, Gil-Martín M, Sáinz-Jaspeado M, Gonzalo N, Rigo R, Colom H, Muñoz C, Tirado OM, García del Muro X. Phase I study and preclinical efficacy evaluation of the mTOR inhibitor sirolimus plus gemcitabine in patients with advanced solid tumours. Br J Cancer 2014; 111:858-65. [PMID: 25003665 PMCID: PMC4150275 DOI: 10.1038/bjc.2014.370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 01/10/2023] Open
Abstract
Background: We conducted a phase I study in patients with advanced solid tumours to identify the recommended dose, assess pharmacokinetics (PK), pharmacodynamic activity and preclinical antitumour efficacy of the combination of sirolimus and gemcitabine. Methods: Nineteen patients were treated with sirolimus 2 or 5 mg daily and gemcitabine 800 or 1000 mg m−2 on days 1 and 8. Dose escalation depended on dose-limiting toxicity (DLT) rate during the first 3-week period. Paired skin biopsies were evaluated for phosphorylated S6 (pS6) as marker of mTOR (mammalian target of rapamycin) inhibition. Pharmacokinetics and preclinical evaluation of efficacy using two different sarcoma cell lines and leiomyosarcoma xenografts were also conducted. Results: Three DLTs were observed: grade 3 transaminitis, grade 3 thrombocytopenia and grade 4 thrombocytopenia. Common treatment-related adverse events included anaemia, neutropenia, thrombocytopenia and transaminitis. Pharmacodynamic analyses demonstrated mTOR inhibition with sirolimus 5 mg and PK showed no influence of sirolimus concentrations on gemcitabine clearance. In vitro and in vivo studies suggested mTOR pathway hyperactivation by gemcitabine that was reversed by sirolimus. Tumour growth in leiomyosarcoma xenografts was dramatically inhibited by the treatment. Conclusions: Recommended dose was sirolimus 5 mg per 24 h plus gemcitabine 800 mg m−2. Antitumour activity in preclinical sarcoma models and mTOR signalling inhibition were observed. A phase II study is currently ongoing.
Collapse
Affiliation(s)
| | - M Gil-Martín
- Institut Català d'Oncologia L'Hospitalet, Genitourinary Tumors, Sarcoma and Melanoma Unit, Avda Gran Via 199, L'Hospitalet, 08908 Barcelona, Spain
| | - M Sáinz-Jaspeado
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden
| | - N Gonzalo
- Institut Català d'Oncologia L'Hospitalet, Laboratori de Farmacocinètica, Avda Gran Via 199, L'Hospitalet, 08908 Barcelona, Spain
| | - R Rigo
- Hospital de Bellvitge, Àrea de Bioquímica i Biologia Molecular, Feixa Llarga s/n, L'Hospitalet, 08907 Barcelona, Spain
| | - H Colom
- Universitat de Barcelona, Facultat de Farmàcia, Avda de Joan XXIII 31, 08028 Barcelona, Spain
| | - C Muñoz
- Institut Català d'Oncologia L'Hospitalet, Laboratori de Farmacocinètica, Avda Gran Via 199, L'Hospitalet, 08908 Barcelona, Spain
| | - O M Tirado
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Laboratori d'Oncología Molecular, Sarcoma Research Group, Avda Gran Via 199, L'Hospitalet, 08908 Barcelona, Spain
| | - X García del Muro
- Institut Català d'Oncologia L'Hospitalet, Genitourinary Tumors, Sarcoma and Melanoma Unit, Avda Gran Via 199, L'Hospitalet, 08908 Barcelona, Spain
| |
Collapse
|
34
|
Némati F, de Montrion C, Lang G, Kraus-Berthier L, Carita G, Sastre-Garau X, Berniard A, Vallerand D, Geneste O, de Plater L, Pierré A, Lockhart B, Desjardins L, Piperno-Neumann S, Depil S, Decaudin D. Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts. PLoS One 2014; 9:e80836. [PMID: 24454684 PMCID: PMC3890263 DOI: 10.1371/journal.pone.0080836] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Uveal melanoma (UM) is associated with a high risk of metastases and lack of efficient therapies. Reduced capacity for apoptosis induction by chemotherapies is one obstacle to efficient treatments. Human UM is characterized by high expression of the anti-apoptotic protein Bcl-2. Consequently, regulators of apoptosis such as Bcl-2 family inhibitors may constitute an attractive approach to UM therapeutics. In this aim, we have investigated the efficacy of the Bcl-2/Bcl-XL inhibitor S44563 on 4 UM Patient-Derived Xenografts (PDXs) and derived-cell lines. EXPERIMENTAL DESIGN Four well characterized UM PDXs were used for in vivo experiments. S44563 was administered alone or combined with fotemustine either concomitantly or after the alkylating agent. Bcl-2, Bcl-XL, and Mcl-1 expressions after S44563 administration were evaluated by immunohistochemistry (IHC). RESULTS S44563 administered alone by at 50 and 100 mg/kg i.p. induced a significant tumour growth inhibition in only one xenograft model with a clear dose effect. However, when S44563 was concomitantly administered with fotemustine, we observed a synergistic activity in 3 out of the 4 tested models. In addition, S44563 administered after fotemustine induced a tumour growth delay in 2 out of 3 tested xenografts. Finally, IHC analyses showed that Bcl-2, Bcl-XL, and Mcl-1 expression were not modified after S44563 administration. CONCLUSION The novel anti-apoptotic experimental compound S44563, despite a relative low efficacy when administered alone, increased the efficacy of fotemustine in either concomitant or sequential combinations or indeed subsequent to fotemustine. These data support further exploration of potential therapeutic effect of Bcl-2/Bcl-xl inhibition in human UM.
Collapse
Affiliation(s)
- Fariba Némati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Guillaume Lang
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Guillaume Carita
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Aurélie Berniard
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - David Vallerand
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - Olivier Geneste
- I.R.I.S., Institut de Recherches International Servier, Suresnes, France
| | - Ludmilla de Plater
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - Alain Pierré
- I.D.R.S., Institut de Recherches Servier, Croissy, France
| | - Brian Lockhart
- I.D.R.S., Institut de Recherches Servier, Croissy, France
| | | | | | - Stéphane Depil
- I.D.R.S., Institut de Recherches Servier, Croissy, France
- I.R.I.S., Institut de Recherches International Servier, Suresnes, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
35
|
RC-3095, a gastrin-releasing peptide receptor antagonist, synergizes with gemcitabine to inhibit the growth of human pancreatic cancer CFPAC-1 in vitro and in vivo. Pancreas 2014; 43:15-21. [PMID: 24326363 DOI: 10.1097/mpa.0b013e3182a714cf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Pancreatic cancer remains a lethal disease. In this study, we investigated the efficacy of a combination of gastrin-releasing peptide receptor antagonist RC-3095 and gemcitabine on pancreatic cancer CFPAC-1. METHODS The antiproliferation effects of RC-3095, gemcitabine, or the combination on pancreatic cancer were monitored in vitro. Nude mice bearing xenografts of CFPAC-1 cell received injections of the vehicle (control), RC-3095 (20 μg, subcutaneously, daily), gemcitabine (15 mg/kg, intraperitoneally, every 3 days), or the combination of RC-3095 and gemcitabine for 4 weeks. The histological changes and protein expression were tested using immunohistochemistry and Western blotting. RESULTS Treatment with the combination in culture exhibited a powerful inhibition effect on CFPAC-1 cell proliferation. In xenograft mice model, RC-3095 or gemcitabine significantly reduced the volume and weight of tumors after 4 weeks of treatment, as compared with controls. The combination more potently inhibited the tumor growth than either agent used individually. Immunohistochemistry and Western blotting showed gastrin-releasing peptide receptor/bombesin receptor subtype-3 positive cells and protein expression in tumors decreased by treatment with RC-3095 or gemcitabine alone or greater in combination. CONCLUSIONS Our data suggested that the combination could be considered for the possible new approaches for treatment of pancreatic cancers.
Collapse
|
36
|
BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. Blood 2013; 122:2864-76. [PMID: 23943652 DOI: 10.1182/blood-2012-07-445635] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndrome (MDS) transforms into an acute myelogenous leukemia (AML) with associated increased bone marrow (BM) blast infiltration. Using a transgenic mouse model, MRP8[NRASD12/hBCL-2], in which the NRAS:BCL-2 complex at the mitochondria induces MDS progressing to AML with dysplastic features, we studied the therapeutic potential of a BCL-2 homology domain 3 mimetic inhibitor, ABT-737. Treatment significantly extended lifespan, increased survival of lethally irradiated secondary recipients transplanted with cells from treated mice compared with cells from untreated mice, with a reduction of BM blasts, Lin-/Sca-1(+)/c-Kit(+), and progenitor populations by increased apoptosis of infiltrating blasts of diseased mice assessed in vivo by technicium-labeled annexin V single photon emission computed tomography and ex vivo by annexin V/7-amino actinomycin D flow cytometry, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, caspase 3 cleavage, and re-localization of the NRAS:BCL-2 complex from mitochondria to plasma membrane. Phosphoprotein analysis showed restoration of wild-type (WT) AKT or protein kinase B, extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase patterns in spleen cells after treatment, which showed reduced mitochondrial membrane potential. Exon specific gene expression profiling corroborates the reduction of leukemic cells, with an increase in expression of genes coding for stem cell development and maintenance, myeloid differentiation, and apoptosis. Myelodysplastic features persist underscoring targeting of BCL-2-mediated effects on MDS-AML transformation and survival of leukemic cells.
Collapse
|
37
|
Lam LT, Zhang H, Chyla B. Biomarkers of therapeutic response to BCL2 antagonists in cancer. Mol Diagn Ther 2013; 16:347-56. [PMID: 23023732 DOI: 10.1007/s40291-012-0003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells persist by resisting programmed cell death or apoptosis. In particular, an imbalance of proteins that regulate apoptosis leads to lack of response to apoptotic stimuli. Thus, restoring the ability of cancer cells to undergo apoptosis is highly desirable. One apoptosis pathway, the intrinsic pathway, involves perturbation of the mitochondria. The major players of this pathway are the members of the B cell CLL/lymphoma 2 (BCL2) family. Currently, three BCL2 antagonists are in clinical trials for cancer treatment. While these antagonists show various specificity and potency, the development of companion diagnostics is crucial for developing these compounds into viable cancer treatments. In this review we describe predictive and pharmacodynamic biomarkers for these agents. Future directions on biomarker development for this class of antagonist are also discussed.
Collapse
Affiliation(s)
- Lloyd T Lam
- Department R4CD, Global Pharmaceutical R&D, Abbott Laboratories, Building AP-10, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | |
Collapse
|
38
|
Li G, Zhang S, Fang H, Yan B, Zhao Y, Feng L, Ma X, Ye X. Aspirin overcomes Navitoclax-resistance in hepatocellular carcinoma cells through suppression of Mcl-1. Biochem Biophys Res Commun 2013; 434:809-14. [PMID: 23611778 DOI: 10.1016/j.bbrc.2013.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 12/31/2022]
Abstract
Small-molecule Bcl-2/Bcl-xL inhibitor Navitoclax represents a promising cancer therapeutic since preclinical and clinical studies with Navitoclax have demonstrated strong anticancer activity in several types of cancers. However, because Navitoclax has a low binding affinity to Mcl-1, anticancer activity by Navitoclax is often attenuated by the elevated expression of Mcl-1 in hepatocellular carcinoma (HCC) and other cancers, posing a serious problem for its potential clinical utilities. Therefore, approaches that suppress the expression of Mcl-1 are urgently needed to overcome Navitoclax-resistance in these cancers. Here, we reported that aspirin markedly suppressed Mcl-1 expression, and significantly enhanced Navitoclax-mediated cell viability inhibition and apoptosis induction in HCC cells. We further showed that aspirin robustly enhanced Navitoclax-triggered cytosolic cytochrome c release, activation of initiator caspase-9 and effector caspase-3, and cleavage of PARP. Importantly, the cell death induction by the combination could be rescued by a cell-permeable caspase-9 inhibitor Z-LEHD-FMK, indicative of an indispensable role of mitochondrial apoptosis pathway during the combination effect. Taken together, our study suggests that aspirin can be used to enhance Navitoclax-mediated anticancer activity via suppression of Mcl-1. Since aspirin is one of the most commonly used medicines, our findings therefore have translational impacts on Navitoclax-based therapy for HCC.
Collapse
Affiliation(s)
- Gongquan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol Sin 2013; 34:262-70. [PMID: 23222270 DOI: 10.1038/aps.2012.158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To examine the anti-cancer effects of chamaejasmenin B and neochamaejasmin C, two biflavonones isolated from the root of Stellera chamaejasme L (known as the traditional Chinese herb Rui Xiang Lang Du) in vitro. METHODS Human liver carcinoma cell lines (HepG2 and SMMC-7721), a human non-small cell lung cancer cell line (A549), human osteosarcoma cell lines (MG63, U2OS, and KHOS), a human colon cancer cell line (HCT-116) and a human cervical cancer cell line (HeLa) were used. The anti-proliferative effects of the compounds were measured using SRB cytotoxicity assay. DNA damage was detected by immunofluorescence and Western blotting. Apoptosis and cell cycle distribution were assessed using flow cytometry analysis. The expression of the related proteins was examined with Western blotting analysis. RESULTS Both chamaejasmenin B and neochamaejasmin C exerted potent anti-proliferative effects in the 8 human solid tumor cell lines. Chamaejasmenin B (the IC(50) values ranged from 1.08 to 10.8 μmol/L) was slightly more potent than neochamaejasmin C (the IC(50) values ranged from 3.07 to 15.97 μmol/L). In the most sensitive A549 and KHOS cells, the mechanisms underlying the anti-proliferative effects were characterized. The two compounds induced prominent expression of the DNA damage marker γ-H2AX as well as apoptosis. Furthermore, treatment of the cells with the two compounds caused prominent G(0)/G(1) phase arrest. CONCLUSION Chamaejasmenin B and neochamaejasmin C are potential anti-proliferative agents in 8 human solid tumor cell lines in vitro via inducing cell cycle arrest, apoptosis and DNA damage.
Collapse
|
40
|
Liu Q, Wang HG. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors. Commun Integr Biol 2013; 5:557-65. [PMID: 23336025 PMCID: PMC3541322 DOI: 10.4161/cib.21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulated apoptosis is a hallmark of cancer, and the B-cell lymphoma-2 (Bcl-2) family of proteins is pivotal to mediating the intrinsic pathway of this process. Recent advances have yielded both pan-Bcl-2 small molecule inhibitors (SMIs) that inhibit both the Bcl-2 and the Mcl-1 arm of the Bcl-2 family anti-apoptotic proteins, as well as selective SMIs to differentially target the two arms. Of these SMIs, ABT-263 (navitoclax), AT-101 [(-)-gossypol], and obatoclax (GX15-070) are currently in clinical trials for multiple cancers. While pan-Bcl-2 inhibitors such as AT-101 and obatoclax can be more toxic for inhibiting all members of the anti-apoptotic Bcl-2 family of proteins, resistance can quickly develop for ABT-263, a selective Bcl-2 inhibitor. In this article, we discuss the current status of Bcl-2 family SMIs in preclinical and clinical development. As Mcl-1 upregulation is a major mechanism of ABT-263 resistance, Mcl-1-specific inhibitors are expected to be efficacious both in combination/sequential treatments and as a single agent against cancers resistant to ABT-263.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania University College of Medicine; Hershey, PA USA
| | | |
Collapse
|
41
|
Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. PLoS One 2012; 7:e52333. [PMID: 23284992 PMCID: PMC3527540 DOI: 10.1371/journal.pone.0052333] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/12/2012] [Indexed: 01/21/2023] Open
Abstract
The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.
Collapse
|
42
|
Hall C, Troutman SM, Price DK, Figg WD, Kang MH. Bcl-2 family of proteins as therapeutic targets in genitourinary neoplasms. Clin Genitourin Cancer 2012; 11:10-9. [PMID: 23083798 DOI: 10.1016/j.clgc.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Overexpression of antiapoptotic B-cell lymphoma (Bcl-2) proteins confers the dysregulation of apoptosis and results in drug resistance in a variety of cancers, including those of the genitourinary tract. Inhibitors that target prosurvival Bcl-2 proteins are in preclinical and clinical development. The objective of this review is to assess the involvement of Bcl-2 proteins as well as the preclinical and clinical activity of Bcl-2 inhibitors under evaluation for genitourinary neoplasms. MATERIALS AND METHODS PubMed was used with both medical subject heading terms and free search to identify the relevant literature. Information on clinical trials was obtained using http://Clincaltrials.gov, EU Clinical Trials Register, and meeting abstracts of the American Society of Clinical Oncology. RESULTS To date, 2 Bcl-2 inhibitors have been evaluated in clinical trials for genitourinary tumors (oblimersen and AT-101 (R-(-)-gossypol)). Both agents demonstrated some success in early stages of development, but their clinical activity did not meet expectations. Preclinical studies are under way for other Bcl-2 inhibitors including ABT-737, HA14-1, and Bcl-2 homology 3 inhibitors. CONCLUSION Antiapoptotic Bcl-2 proteins are potential molecular targets in genitourinary cancers. Bcl-2 inhibitors might be effective as single agents or in combination with conventional therapies. However, the biology of the Bcl-2 family in genitourinary cancers remains poorly understood and robust preclinical studies are needed to inform clinical development. Such studies should aim to identify: (1) pharmacodynamic markers that could help guide patient selection for treatment with Bcl-2 inhibitors, and (2) optimal combinations of Bcl-2 inhibitors with other anticancer agents for future clinical investigation.
Collapse
Affiliation(s)
- Connor Hall
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | | | | | | | | |
Collapse
|
43
|
Stamelos VA, Redman CW, Richardson A. Understanding sensitivity to BH3 mimetics: ABT-737 as a case study to foresee the complexities of personalized medicine. J Mol Signal 2012; 7:12. [PMID: 22898329 PMCID: PMC3477050 DOI: 10.1186/1750-2187-7-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/29/2012] [Indexed: 12/17/2022] Open
Abstract
BH3 mimetics such as ABT-737 and navitoclax bind to the BCL-2 family of proteins and induce apoptosis through the intrinsic apoptosis pathway. There is considerable variability in the sensitivity of different cells to these drugs. Understanding the molecular basis of this variability will help to determine which patients will benefit from these drugs. Furthermore, this understanding aids in the design of rational strategies to increase the sensitivity of cells which are otherwise resistant to BH3 mimetics. We discuss how the expression of BCL-2 family proteins regulates the sensitivity to ABT-737. One of these, MCL-1, has been widely described as contributing to resistance to ABT-737 which might suggest a poor response in patients with cancers that express levels of MCL-1. In some cases, resistance to ABT-737 conferred by MCL-1 is overcome by the expression of pro-apoptotic proteins that bind to apoptosis inhibitors such as MCL-1. However, the distribution of the pro-apoptotic proteins amongst the various apoptosis inhibitors also influences sensitivity to ABT-737. Furthermore, the expression of both pro- and anti-apoptotic proteins can change dynamically in response to exposure to ABT-737. Thus, there is significant complexity associated with predicting response to ABT-737. This provides a paradigm for the multiplicity of intricate factors that determine drug sensitivity which must be considered for the full implementation of personalized medicine.
Collapse
Affiliation(s)
- Vasileios A Stamelos
- Institute for Science and Technology in Medicine & School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent, Keele, ST4 7QB, UK.
| | | | | |
Collapse
|
44
|
Song JH, Kraft AS. Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res 2012; 72:294-303. [PMID: 22080570 PMCID: PMC3251634 DOI: 10.1158/0008-5472.can-11-3240] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pim serine/threonine kinases contribute to prostate tumorigenesis and therapeutic resistance, yet Pim kinase inhibitors seem to have only limited effects on prostate cancer cell survival. Because overexpression of Bcl-2 family members are implicated in chemotherapeutic resistance in prostate cancer, we investigated the cooperative effects of Pim kinase inhibition with ABT-737, a small molecule antagonist of Bcl-2 family members. Strikingly, the addition of ABT-737 to Pim inhibitors triggered a robust apoptosis of prostate cancer cells in vitro and in vivo. Pim inhibitors decreased levels of the Bcl-2 family member Mcl-1, both by blocking 5'-cap dependent translation and decreasing protein half life. In addition, Pim inhibition transcriptionally increased levels of the BH3 protein Noxa by activating the unfolded protein response (UPR), lead to eIF-2α phosphorylation and increased expression of CHOP. Increased levels of Noxa also inactivated the remaining levels of Mcl-1 protein activity. Notably, these specific protein changes were essential to the apoptotic process because ABT-737 did not inhibit Mcl-1 protein activity and Mcl-1 overexpression blocked the apoptotic activity of ABT-737. Our results therefore suggest that this combination treatment could be developed as a potential therapy for human prostate cancer where overexpression of Pim kinases and antiapoptotic Bcl-2 family members drives tumor cell resistance to current anticancer therapies.
Collapse
Affiliation(s)
- Jin H. Song
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
| | - Andrew S. Kraft
- Department of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
| |
Collapse
|
45
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
46
|
Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, Oyesanya RA, Dasgupta S, Dent P, Grant S, Rahmani M, Curiel DT, Dmitriev I, Hedvat M, Wei J, Wu B, Stebbins JL, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs 2011; 20:1397-411. [PMID: 21851287 DOI: 10.1517/13543784.2011.609167] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers. AREAS COVERED Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments. EXPERT OPINION We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.
Collapse
Affiliation(s)
- Bridget A Quinn
- Virginia Commonwealth University, School of Medicine, Department of Human and Molecular Genetics, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|