1
|
Hao S, Hou L, Wang JH, Yan JH, Niu YF, Cai ZH, Li F, Meng FH. Design, synthesis and biological evaluation of novel benzimidazole-derived p21-activited kinase 4 (PAK4) inhibitors bearing a 4-(4-methylpiperazin-1-yl)phenyl scaffold as potential antitumor agents. Eur J Med Chem 2024; 280:116971. [PMID: 39427518 DOI: 10.1016/j.ejmech.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level. Meanwhile, molecular docking and dynamic studies disclosed that compound 12i could bind to PAK4 stably via multiple interactions applied between the compound and the enzyme. Further mechanism studies indicated that compound 12i could inhibit the proliferation and suppress the migratory potential of MDA-MB-231 cells by inhibiting the phosphorylation of PAK4 and LIMK1, arresting cell cycle in the G0/G1 phase, inducing apoptosis and promoting ROS production. Notably, compound 12i could effectively inhibit triple-negative breast cancer (TNBC) growth with little toxicity in the MDA-MB-231 cell xenograft model. Taken together, in vitro and in vivo results demonstrated that compound 12i possessed high drug potential as an inhibitor of PAK4 to inhibit the growth and metastasis of TNBC.
Collapse
Affiliation(s)
- Shuang Hao
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Liang Hou
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jing-Han Yan
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Yi-Fan Niu
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Zheng-Hao Cai
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
2
|
Wang Y, Minden A. Inhibition of NAMPT by PAK4 Inhibitors. Int J Mol Sci 2024; 25:10138. [PMID: 39337621 PMCID: PMC11431865 DOI: 10.3390/ijms251810138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells. Interestingly, although it was first identified as a PAK4 inhibitor, KPT-9274 was also found to inhibit the enzyme NAMPT (nicotinamide phosphoribosyltransferase), which is crucial for NAD (nicotinamide adenine dinucleotide) synthesis and vital for cellular energy and growth. These results made us question whether growth inhibition in response to KPT-9274 was due to PAK4 inhibition, NAMPT inhibition, or both. To address this, we tested several other PAK4 inhibitors that also inhibit cell growth, to determine whether they also inhibit NAMPT activity. Our findings confirm that multiple PAK4 inhibitors also inhibit NAMPT activity. This was assessed both in cell-free assays and in a breast cancer cell line. Molecular docking studies were also used to help us better understand the mechanism by which PAK4 inhibitors block PAK4 and NAMPT activity, and we identified specific residues on the PAK4 inhibitors that interact with NAMPT and PAK4. Our results suggest that PAK4 inhibitors may have a more complex mechanism of action than previously understood, necessitating further exploration of how they influence cancer cell growth.
Collapse
Affiliation(s)
- Yiling Wang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
4
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Liu S, Yang P, Wang L, Zou X, Zhang D, Chen W, Hu C, Xiao D, Ren H, Zhang H, Cai S. Targeting PAK4 reverses cisplatin resistance in NSCLC by modulating ER stress. Cell Death Discov 2024; 10:36. [PMID: 38238316 PMCID: PMC10796919 DOI: 10.1038/s41420-024-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Chemoresistance poses a significant impediment to effective treatments for non-small-cell lung cancer (NSCLC). P21-activated kinase 4 (PAK4) has been implicated in NSCLC progression by invasion and migration. However, the involvement of PAK4 in cisplatin resistance is not clear. Here, we presented a comprehensive investigation into the involvement of PAK4 in cisplatin resistance within NSCLC. Our study revealed enhanced PAK4 expression in both cisplatin-resistant NSCLC tumors and cell lines. Notably, PAK4 silencing led to a remarkable enhancement in the chemosensitivity of cisplatin-resistant NSCLC cells. Cisplatin evoked endoplasmic reticulum stress in NSCLC. Furthermore, inhibition of PAK4 demonstrated the potential to sensitize resistant tumor cells through modulating endoplasmic reticulum stress. Mechanistically, we unveiled that the suppression of the MEK1-GRP78 signaling pathway results in the sensitization of NSCLC cells to cisplatin after PAK4 knockdown. Our findings establish PAK4 as a promising therapeutic target for addressing chemoresistance in NSCLC, potentially opening new avenues for enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pingshan Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Lu Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Zou
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Dongdong Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Wenyou Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Chuang Hu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Duqing Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
- Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, 000465, China.
| | - Hao Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou; The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
6
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Samant C, Kale R, Bokare A, Verma M, Pai KSR, Bhonde M. PAK4 inhibition significantly potentiates Gemcitabine activity in PDAC cells via inhibition of Wnt/β-catenin, p-ERK/MAPK and p-AKT/PI3K pathways. Biochem Biophys Rep 2023; 35:101544. [PMID: 37720313 PMCID: PMC10500449 DOI: 10.1016/j.bbrep.2023.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most difficult to treat cancers. Gemcitabine is still the standard of care treatment for PDAC but with modest survival benefit and well reported resistance. Here we explored potential of inhibiting p21 activated kinase 4 (PAK4), a downstream protein of KRAS oncogenic pathway, in combination with Gemcitabine in PDAC cells. PAK4 inhibition by KPT-9274 led to significant potentiation of Gemcitabine activity in PDAC cells, with an increase in apoptosis, DNA damage and cell cycle arrest. At molecular level, PAK4 inhibition dose dependently inhibited Gemcitabine-induced β-catenin, c-JUN and Ribonucleotide Reductase subunit 2 (RRM2) levels. PAK4 inhibition further inhibited levels of phosphorylated ERK (p-ERK); Gemcitabine-induced phosphorylated AKT (p-AKT), phosphorylated and total c-Myc. These results suggest possible role of β-catenin, p-ERK and p-AKT, key effector proteins of Wnt/β-catenin, MAPK and PI3K pathways respectively, in sensitisation of Gemcitabine activity with PAK4 inhibition. Our data unravel probable molecular mechanisms behind combination of PAK4 inhibition with Gemcitabine to counter PDAC, which may be unequivocally proved further with knock down of PAK4. Our findings provide a strong rationale to exploit the combination therapy of Gemcitabine and PAK4 inhibitor for PDAC at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Anand Bokare
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Mahip Verma
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
8
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Khan HY, Nagasaka M, Aboukameel A, Alkhalili O, Uddin MH, Bannoura S, Mzannar Y, Azar I, Beal E, Tobon M, Kim S, Beydoun R, Baloglu E, Senapedis W, El-Rayes B, Philip PA, Mohammad RM, Shields AF, Al-Hallak MN, Azmi AS. Anticancer efficacy of KRASG12C inhibitors is potentiated by PAK4 inhibitor KPT9274 in preclinical models of KRASG12C mutant pancreatic and lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534309. [PMID: 37034616 PMCID: PMC10081231 DOI: 10.1101/2023.03.27.534309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
KRASG12C inhibitors have revolutionized the treatment landscape for cancer patients harboring the G12C mutant isoform of KRAS. With the recent FDA approval of sotorasib and adagrasib, patients now have access to more promising treatment options. However, patients who receive these agents as a monotherapy usually develop drug resistance. Thus, there is a need to develop logical combination strategies that can delay or prevent the onset of resistance and simultaneously enhance the antitumor effectiveness of the treatment regimen. In this study, we aimed at pharmacologically targeting PAK4 by KPT9274 in combination with KRASG12C inhibitors in KRASG12C mutant pancreatic ductal adenocarcinoma (PDAC) and nonâ€"small cell lung cancer (NSCLC) preclinical models. PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We assessed the cytotoxicity of PAK4 and KRASG12C inhibitors combination in KRASG12C mutant 2D and 3D cellular models. KPT9274 synergized with both sotorasib and adagrasib in inhibiting the growth of KRASG12C mutant cancer cells. The combination was able to reduce the clonogenic potential of KRASG12C mutant PDAC cells. We also evaluated the antitumor activity of the combination in a KRASG12C mutant PDAC cell line-derived xenograft (CDX) model. Oral administration of a sub-optimal dose of KPT9274 in combination with sotorasib (at one-fourth of MTD) demonstrated significant inhibition of the tumor burden ( p = 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model where KPT9274, acting as an adjuvant, prevented tumor relapse following the discontinuation of sotorasib treatment ( p = 0.0001). KPT9274 and sotorasib combination also resulted in enhanced survival. This is the first study showing that KRASG12C inhibitors can synergize with PAK4 inhibitor KPT9274 both in vitro and in vivo resulting in remarkably enhanced antitumor activity and survival outcomes. Significance KRASG12C inhibitors demonstrate limited durable response in patients with KRASG12C mutations. In this study, combining PAK4 inhibitor KPT9274 with KRASG12C inhibitors has resulted in potent antitumor effects in preclinical cancer models of PDAC and NSCLC. Our results bring forward a novel combination therapy for cancer patients that do not respond or develop resistance to KRASG12C inhibitor treatment.
Collapse
|
10
|
Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023; 159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Mechanical cues in the cell microenvironment such as those from extracellular matrix properties, stretching, compression and shear stress, play a critical role in maintaining homeostasis. Upon sensing mechanical stimuli, cells can translate these external forces into intracellular biochemical signals to regulate their cellular behaviors, but the specific mechanisms of mechanotransduction at the molecular level remain elusive. As a subfamily of the Ras superfamily, Rho GTPases have been recognized as key intracellular mechanotransduction mediators that can regulate multiple cell activities such as proliferation, migration and differentiation as well as biological processes such as cytoskeletal dynamics, metabolism, and organ development. However, the upstream mechanosensors for Rho proteins and downstream effectors that respond to Rho signal activation have not been well illustrated. Moreover, Rho-mediated mechanical signals in previous studies are highly context-dependent. In this review, we systematically summarize the types of mechanical cues in the cell microenvironment and provide recent advances on the roles of the Rho-based mechanotransduction in various cell activities, physiological processes and diseases. Comprehensive insights into the mechanical roles of Rho GTPase partners would open a new paradigm of mechanomedicine for a variety of diseases. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical role of Rho GTPases as signal mediators to respond to physical cues in microenvironment. This article will add a distinct contribution to this set of knowledge by intensively addressing the relationship between Rho signaling and mechanobiology/mechanotransduction/mechanomedcine. This topic has not been discussed by the journal, nor has it yet been developed by the field. The comprehensive picture that will develop, from molecular mechanisms and engineering methods to disease treatment strategies, represents an important and distinct contribution to the field. We hope that this review would help researchers in various fields, especially clinicians, oncologists and bioengineers, who study Rho signal pathway and mechanobiology/mechanotransduction, understand the critical role of Rho GTPase in mechanotransduction.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runxin Xue
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi 710049, China.
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
11
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
13
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
14
|
Bai JF, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-Rodríguez P, Moreno-Vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur J Med Chem 2022; 239:114504. [PMID: 35724566 DOI: 10.1016/j.ejmech.2022.114504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC50 of 0.16 nM, 0.004 nM and 0.08 nM toward PDAC cells, respectively.
Collapse
Affiliation(s)
- Jian-Fei Bai
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Sophie Poty
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Axel Bellotti
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
15
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
16
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
17
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
19
|
Wang C, Xia J, Lei Y, Lu R, Zhang M, Lv H, Hong Q, Lu T, Chen Y, Li H. Synthesis and biological evaluation of 7H-pyrrolo [2,3-d] pyrimidine derivatives as potential p21-activated kinase 4 (PAK4) inhibitors. Bioorg Med Chem 2022; 60:116700. [PMID: 35272236 DOI: 10.1016/j.bmc.2022.116700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
PAK4 has been validated as a crucial effector of various signal pathways and play an important role in driving tumor progression. Here, we developed a series of 7H-pyrrolo [2,3-d] pyrimidine derivatives as PAK4 inhibitors. Compounds 5n and 5o showed higher enzymatic inhibitory activities (IC50 = 2.7 and 20.2 nM, respectively) and potent activity (IC50 = 7.8 and 38.3 nM, respectively) against MV4-11 cell line. Further flow cytometry assay revealed that the compound 5n can arrest MV4-11 cells at G0/G1 phase and induce cell apoptosis. Molecular mechanism study indicated that compound 5n regulated the phosphorylation of PAK4 in vitro. The docking study supported that compound 5n binds to PAK4 through various hydrogen bonding interactions and hydrophobic interactions. Thus, compound 5n represents a promising lead for the discovery of PAK4 directed therapeutic agents and may be considered for further drug development.
Collapse
Affiliation(s)
- Cong Wang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiawei Xia
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Lei
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rui Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mingliang Zhang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - He Lv
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qianqian Hong
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongmei Li
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
20
|
Song P, Zhao F, Li D, Qu J, Yao M, Su Y, Wang H, Zhou M, Wang Y, Gao Y, Li F, Zhao D, Zhang F, Rao Y, Xia M, Li H, Wang J, Cheng M. Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells. Acta Pharm Sin B 2022; 12:2905-2922. [PMID: 35755272 PMCID: PMC9214071 DOI: 10.1016/j.apsb.2022.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The p21 activated kinase 4 (PAK4) is serine/threonine protein kinase that is critical for cancer progression. Guided by X-ray crystallography and structure-based optimization, we report a novel subseries of C-3-substituted 6-ethynyl-1H-indole derivatives that display high potential and specificity towards group II PAKs. Among these inhibitors, compound 55 exhibited excellent inhibitory activity and kinase selectivity, displayed superior anti-migratory and anti-invasive properties against the lung cancer cell line A549 and the melanoma cell line B16. Compound 55 exhibited potent in vivo antitumor metastatic efficacy, with over 80% and 90% inhibition of lung metastasis in A549 or B16-BL6 lung metastasis models, respectively. Further mechanistic studies demonstrated that compound 55 mitigated TGF-β1-induced epithelial-mesenchymal transition (EMT).
Collapse
|
21
|
Rumex Vesicarius L. extract improves the efficacy of doxorubicin in triple-negative breast cancer through inhibiting Bcl2, mTOR, JNK1 and augmenting p21 expression. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
23
|
He H, Dumesny C, Ang CS, Dong L, Ma Y, Zeng J, Nikfarjam M. A novel PAK4 inhibitor suppresses pancreatic cancer growth and enhances the inhibitory effect of gemcitabine. Transl Oncol 2022; 16:101329. [PMID: 34973571 PMCID: PMC8724943 DOI: 10.1016/j.tranon.2021.101329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over 95% of Pancreatic ductal adenocarcinomas (PDA) carry mutations in the oncogene KRas which has been proven to be a difficult drug target. P21-activated kinase 4 (PAK4), acts downstream of KRas, and is overexpressed in PDA contributing to its growth and chemoresistance, and thus becomes an attractive therapeutic target. We have developed a new PAK4 inhibitor, PAKib and tested its effect on pancreatic cancer (PC) cell growth in vitro and in a syngeneic mouse model of PC. PAKib suppressed PC cell growth by inducing cell death and cycle arrest. PAKib inhibited PC growth and enhanced the inhibition by gemcitabine of PC in cell culture and in PC mouse model. PAKib acted through multiple signaling pathways involved in cell cycle checkpoints, apoptosis, cell junction, and focal adhesion. These proof-of-concept studies demonstrated the anti-cancer effect of PAKib alone and in combination with gemcitabine and warrant a further clinical investigation.
Collapse
Affiliation(s)
- Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, Victoria 3084, Australia.
| | - Chelsea Dumesny
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, Victoria 3084, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Flemington Road, Parkville, Victoria, Australia
| | - Li Dong
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, Victoria 3084, Australia
| | - Yi Ma
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, Victoria 3084, Australia
| | - Jun Zeng
- Pakinax Pty. Ltd., Melbourne, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
24
|
PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers (Basel) 2021; 14:cancers14010160. [PMID: 35008323 PMCID: PMC8750170 DOI: 10.3390/cancers14010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Non-Hodgkin’s lymphomas (NHL) are cancers of the white blood cells. While some NHL subtypes, such as Diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), grow and spread aggressively, others, like follicular lymphoma (FL), are indolent in nature. Irrespective of how fast they grow, all NHL subtypes can spread to other organs in the body if not treated. In this study, we have demonstrated that the targeted inhibition of p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) in different NHL subtypes by a novel, orally bioavailable, dual inhibitor KPT-9274 can lead to energy depletion, inhibition of cell proliferation, and ultimately apoptosis. KPT-9274 treatment shows potent anti-tumor effects in DLBCL and MCL subcutaneous xenograft models and enhances mice survival in a systemic FL model. Therefore, this study demonstrates the potential of targeting PAK4 and NAMPT by a small molecule inhibitor KPT-9274 for NHL therapy. Abstract Diffuse large B-cell lymphoma (DLBCL), grade 3b follicular lymphoma (FL), and mantle cell lymphoma (MCL) are aggressive non-Hodgkin’s lymphomas (NHL). Cure rates are suboptimal and novel treatment strategies are needed to improve outcomes. Here, we show that p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) is critical for lymphoma subsistence. Dual targeting of PAK4-NAMPT by the Phase I small molecule KPT-9274 suppressed cell proliferation in DLBCL, FL, and MCL. Growth inhibition was concurrent with apoptosis induction alongside activation of pro-apoptotic proteins and reduced pro-survival markers. We observed NAD suppression, ATP reduction, and consequent cellular metabolic collapse in lymphoma cells due to KPT-9274 treatment. KPT-9274 in combination with standard-of-care chemotherapeutics led to superior inhibition of cell proliferation. In vivo, KPT-9274 could markedly suppress the growth of WSU-DLCL2 (DLBCL), Z-138, and JeKo-1 (MCL) sub-cutaneous xenografts, and a remarkable increase in host life span was shown, with a 50% cure of a systemic WSU-FSCCL (FL) model. Residual tumor analysis confirmed a reduction in total and phosphorylated PAK4 and activation of the pro-apoptotic cascade. This study, using various preclinical experimental models, demonstrates the therapeutic potential of targeting PAK4-NAMPT in DLBCL, FL, and MCL. The orally bioavailable, safe, and efficacious PAK4-NAMPT dual inhibitor KPT-9274 warrants further clinical investigation.
Collapse
|
25
|
The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment. Cells 2021; 10:cells10123565. [PMID: 34944073 PMCID: PMC8700304 DOI: 10.3390/cells10123565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors.
Collapse
|
26
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
27
|
Wang H, Song P, Gao Y, Shen L, Xu H, Wang J, Cheng M. Drug discovery targeting p21-activated kinase 4 (PAK4): a patent review. Expert Opin Ther Pat 2021; 31:977-987. [PMID: 34369844 DOI: 10.1080/13543776.2021.1944100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The Ser/Thr protein kinase PAK4 is a downstream regulator of Cdc42, mediating cytoskeleton remodeling, and cell motility, and inhibiting apoptosis and transcriptional regulation. Nowadays, efforts in PAK4 inhibitor development are focusing on improving inhibitory selectivity, cellular potency, and in vivo pharmacokinetic properties, and identifying the feasibility of immunotherapy combination in oncology therapy.Areas covered: This review summarized the development of PAK4 inhibitors that reported on patents in the past two decades. According to their binding features, these inhibitors were classified into type I, type I 1/2, and PAMs. Their designing ideas and SAR were elucidated in this review. Moreover, synergistic therapy of PAK4 inhibitors with PD-1/PD-L1 or CAR-T were also summarized .Expert opinion: In the past years, preclinical and clinical studies of PAK4 inhibitors ended in failure due to poor selectivity, cellular activity, or pharmacokinetic issues. There are researchers questioning the reliability of PAK4 as a drug target, particularly PAK4-related therapy is concerned with the distinguishment of the non-kinase functions and catalytic functions triggered by PAK4 phosphorylation. Meanwhile, synergistic effects of PAK4 inhibitors with PD-1/PD-L1 and CAR-T immunotherapy shed light for the development of PAK4 inhibitors.
Collapse
Affiliation(s)
- Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Peilu Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinli Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lanlan Shen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanqin Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
28
|
Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, Landesman Y, Wagner KU, Viola NT, El-Rayes BF, Philip PA, Mohammad RM, Azmi AS. PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Mol Cancer Ther 2021; 20:1836-1845. [PMID: 34253597 DOI: 10.1158/1535-7163.mct-20-1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed β-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.
Collapse
Affiliation(s)
- Gabriel B Mpilla
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Md Hafiz Uddin
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Mohammed N Al-Hallak
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Amro Aboukameel
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Steve H Kim
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Rafic Beydoun
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Gregory Dyson
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | - Kay-Uwe Wagner
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Nerissa T Viola
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | - Philip A Philip
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.
| |
Collapse
|
29
|
Naїja A, Merhi M, Inchakalody V, Fernandes Q, Mestiri S, Prabhu KS, Uddin S, Dermime S. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy. Cell Immunol 2021; 367:104408. [PMID: 34246086 DOI: 10.1016/j.cellimm.2021.104408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023]
Abstract
The p21 activated kinases (PAKs) are known to play a role in the regulation of cell morphology and functions. Among the various members of PAKs family, only the PAK4 protein has been shown to be overexpressed in cancer cells and its upregulation was associated with tumor development. Indeed, several studies have shown that PAK4 overexpression is implicated in carcinogenesis by different mechanisms including promotion of cell proliferation, invasion and migration, protection of cells from apoptosis, stimulation of the tumor-specific anchorage-independent cell growth and regulation of the cytoskeletal organisation and adhesion. Moreover, high PAK4 protein levels have been observed in several solid tumors and have been shown able to enhance cancer cell resistance to many treatments especially chemotherapy. Interestingly, it has been recently demonstrated that PAK4 downregulation can inhibit the PD-1/PD-L1 immune regulatory pathway. Taken together, these findings not only implicate PAK4 in oncogenic transformation and in prediction of tumor response to treatment but also suggest its role as an attractive target for immunotherapy. In the current review we will summarize the different mechanisms of PAK4 implication in tumor development, describe its role as a regulator of the immune response and as a potential novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Azza Naїja
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic health system, Hamad medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
30
|
Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans 2021; 49:1443-1456. [PMID: 34100887 PMCID: PMC8286826 DOI: 10.1042/bst20210112] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a key regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. It signals downstream of the master regulator Ras and is essential for cell transformation by this potent oncogene. Overexpression of Cdc42 is observed in several cancers, where it is linked to poor prognosis. As a regulator of both cell architecture and motility, deregulation of Cdc42 is also linked to tumour metastasis. Like Ras, Cdc42 and other components of the signalling pathways it controls represent important potential targets for cancer therapeutics. In this review, we consider the progress that has been made targeting Cdc42, its regulators and effectors, including new modalities and new approaches to inhibition. Strategies under consideration include inhibition of lipid modification, modulation of Cdc42-GEF, Cdc42-GDI and Cdc42-effector interactions, and direct inhibition of downstream effectors.
Collapse
|
31
|
Borrero-García LD, Del Mar Maldonado M, Medina-Velázquez J, Troche-Torres AL, Velazquez L, Grafals-Ruiz N, Dharmawardhane S. Rac inhibition as a novel therapeutic strategy for EGFR/HER2 targeted therapy resistant breast cancer. BMC Cancer 2021; 21:652. [PMID: 34074257 PMCID: PMC8170972 DOI: 10.1186/s12885-021-08366-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though targeted therapies are available for cancers expressing oncogenic epidermal growth receptor (EGFR) and (or) human EGFR2 (HER2), acquired or intrinsic resistance often confounds therapy success. Common mechanisms of therapy resistance involve activating receptor point mutations and (or) upregulation of signaling downstream of EGFR/HER2 to Akt and (or) mitogen activated protein kinase (MAPK) pathways. However, additional pathways of resistance may exist thus, confounding successful therapy. Methods To determine novel mechanisms of EGFR/HER2 therapy resistance in breast cancer, gefitinib or lapatinib resistant variants were created from SKBR3 breast cancer cells. Syngenic therapy sensitive and resistant SKBR3 variants were characterized for mechanisms of resistance by mammosphere assays, viability assays, and western blotting for total and phospho proteins. Results Gefitinib and lapatinib treatments reduced mammosphere formation in the sensitive cells, but not in the therapy resistant variants, indicating enhanced mesenchymal and cancer stem cell-like characteristics in therapy resistant cells. The therapy resistant variants did not show significant changes in known therapy resistant pathways of AKT and MAPK activities downstream of EGFR/HER2. However, these cells exhibited elevated expression and activation of the small GTPase Rac, which is a pivotal intermediate of GFR signaling in EMT and metastasis. Therefore, the potential of the Rac inhibitors EHop-016 and MBQ-167 to overcome therapy resistance was tested, and found to inhibit viability and induce apoptosis of therapy resistant cells. Conclusions Rac inhibition may represent a viable strategy for treatment of EGFR/HER2 targeted therapy resistant breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08366-7.
Collapse
Affiliation(s)
- Luis D Borrero-García
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Medina-Velázquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel L Troche-Torres
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
32
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
33
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
34
|
Murphy SJ, Levy MJ, Smadbeck JB, Karagouga G, McCune AF, Harris FR, Udell JB, Johnson SH, Kerr SE, Cheville JC, Kipp BR, Vasmatzis G, Gleeson FC. Theragnostic chromosomal rearrangements in treatment-naive pancreatic ductal adenocarcinomas obtained via endoscopic ultrasound. J Cell Mol Med 2021; 25:4110-4123. [PMID: 33704908 PMCID: PMC8051743 DOI: 10.1111/jcmm.16381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment‐naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome‐wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome‐wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.
Collapse
Affiliation(s)
- Stephen J Murphy
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giannoula Karagouga
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexa F McCune
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Faye R Harris
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julia B Udell
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah H Johnson
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Kerr
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ferga C Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene 2021; 40:1176-1190. [PMID: 33414491 DOI: 10.1038/s41388-020-01600-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease. Via informatics analysis, we established the inverse association of PAK1 and PAK4 expression with clinical stage and outcome in ES patients. Through expression knockdown and small-molecule inhibition of PAKs, utilizing FRAX-597, KPT-9274, and PF-3758309 in multiple ES cell lines and patient-derived xenograft models, we further explored the role of PAKs in ES tumor growth and metastatic capabilities. In vitro studies in several ES cell lines indicated that diminishing PAK1 and PAK4 expression reduces tumor cell viability, migratory, and invasive properties. In vivo studies using PAK4 inhibitors, KPT-9274 and PF-3758309 demonstrated significant inhibition of primary and metastatic tumor formation, while transcriptomic analysis of PAK4-inhibitor-treated tumors identified concomitant suppression of Notch, β-catenin, and hypoxia-mediated signatures. In addition, the analysis showed enrichment of anti-tumor immune regulatory mechanisms, including interferon (IFN)-ɣ and IFN-α responses. Altogether, our molecular and pre-clinical studies are the first to establish a critical role for PAKs in ES development and progression, and consequently as viable therapeutic targets for the treatment of high-risk ES in the near future.
Collapse
|
36
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
37
|
Li M, Guo H, Wang Q, Chen K, Marko K, Tian X, Yang Y. Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway. Cancer Lett 2020; 490:20-30. [PMID: 32585413 DOI: 10.1016/j.canlet.2020.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/03/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Exosomes play important role in tumor microenvironment, and mediate the crosstalk between pancreatic cancer (PC) cells and matrix components including pancreatic stellate cells (PSCs) to regulate pancreatic cancer progression. Here we isolated primary PSCs from PC patients, and demonstrated that PSC-derived exosomes could be internalized by PC cells to promote cell proliferation. Furthermore, we identified that miR-5703 in the exosomes acted as a driver of cell proliferation and its inhibitor suppressed the function of exosomes to promote PC cell proliferation. miR-5703 directly bound to the 3'UTR of CMTM4 and downregulated its expression. CMTM4 knockdown promoted PC cell proliferation, while overexpression of CMTM4 suppressed PC cell proliferation both in vivo and in vitro. Mechanistically, we revealed that CMTM4 suppressed PI3K/Akt pathway via downregulating PAK4. In conclusion, our results suggest that PSC-derived exosomal miR-5703 could target CMTM4 in PC cells and promote cell proliferation due to PAK4 activated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Mingzhe Li
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Huahu Guo
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Qi Wang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Kornmann Marko
- Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, 89081, Germany.
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
38
|
Neggers JE, Jacquemyn M, Dierckx T, Kleinstiver BP, Thibaut HJ, Daelemans D. enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Mol Ther 2020; 29:208-224. [PMID: 33002419 PMCID: PMC7791016 DOI: 10.1016/j.ymthe.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/25/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
While drug resistance mutations provide the gold standard proof for drug target engagement, target deconvolution of inhibitors identified from a phenotypic screen remains challenging. Genetic screening for functional in-frame drug resistance mutations by tiling CRISPR-Cas nucleases across protein coding sequences is a method for identifying a drug's target and binding site. However, the applicability of this approach is constrained by the availability of nuclease target sites across genetic regions that mediate drug resistance upon mutation. In this study, we show that an enhanced AsCas12a variant (enAsCas12a), which harbors an expanded targeting range, facilitates screening for drug resistance mutations with increased activity and resolution in regions that are not accessible to other CRISPR nucleases, including the prototypical SpCas9. Utilizing enAsCas12a, we uncover new drug resistance mutations against inhibitors of NAMPT and KIF11. These findings demonstrate that enAsCas12a is a promising new addition to the CRISPR screening toolbox and allows targeting sites not readily accessible to SpCas9.
Collapse
Affiliation(s)
- Jasper Edgar Neggers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Tim Dierckx
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Benjamin Peter Kleinstiver
- Molecular Pathology Unit, Center for Cancer Research and Center for Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Xu L, Faruqu FN, Lim YM, Lim KY, Liam-Or R, Walters AA, Lavender P, Fear D, Wells CM, Tzu-Wen Wang J, Al-Jamal KT. Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment. Biomaterials 2020; 264:120369. [PMID: 32977209 DOI: 10.1016/j.biomaterials.2020.120369] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
With a dismal survival rate, pancreatic cancer (PC) remains one of the most aggressive and devastating malignancies, predominantly due to the absence of a valid biomarker for diagnosis and limited therapeutic options for advanced diseases. Exosomes (Exo) as cell-derived vesicles, are widely used as natural nanocarriers for drug delivery. P21-activated kinase 4 (PAK4) is oncogenic when overexpressed, promoting cell survival, migration and anchorage-independent growth. Herein we validated PAK4 as a therapeutic target in an in vivo PC tumour mouse model using Exo-mediated RNAi following intra-tumoural administration. PC derived Exo were firstly isolated by ultracentrifugation on sucrose cushion and characterised for their surface marker expression, size, number, purity and morphology. SiRNA was encapsulated into Exo via electroporation and dual uptake of Exo and siRNA was investigated by flow cytometry and confocal microscopy. In vitro siPAK4 silencing in PC cells following uptake was assessed by flow cytometry, western blotting, and in vitro scratch assay. In vivo efficacy (tumour growth delay and mouse survival) of siPAK4 was evaluated in PC bearing NSG mouse model. Ex vivo tumours were examined using Haematoxylin and eosin (H&E) staining and immunohistochemistry. Results showed high quality PC-derived PANC-1 Exo were obtained. SiRNA was incorporated in Exo with 16.5% encapsulation efficiency. In vitro imaging confirmed Exo and siRNA co-localisation in cells. PAK4 knockdown was successful with 30 nM Exo-siPAK4 at 24 h post incubation in vitro. Intra-tumoural administration of Exo-siPAK4 (0.03 mg/kg siPAK4 and 6.1 × 1011 Exo, each dose, two doses) reduced PC tumour growth in vivo and enhanced mice survival (p < 0.001), with minimal toxicity observed compared to polyethylenimine (PEI) used as a commercial transfection reagent. H&E staining of tumours showed significant tissue apoptosis in siPAK4 treated groups. PAK4 knockdown prolongs survival of PC-bearing mice suggesting its potential as a new therapeutic target for PC. PANC-1 Exo demonstrated comparable efficacy but safer profile than PEI as in vivo RNAi transfection reagent.
Collapse
Affiliation(s)
- Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Farid N Faruqu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Yau M Lim
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Kee Y Lim
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Paul Lavender
- Department of Respiratory Medicine and Allergy, School of Immunology & Microbial Sciences, King's College London, St. Thomas Street, London, SE1 9RT, United Kingdom
| | - David Fear
- Department of Respiratory Medicine and Allergy, School of Immunology & Microbial Sciences, King's College London, St. Thomas Street, London, SE1 9RT, United Kingdom
| | - Claire M Wells
- Comprehensive Cancer Centre, Faculty of Life Sciences & Medicine, King's College London, New Hunts House, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
40
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society’s estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
41
|
Trott JF, Abu Aboud O, McLaughlin B, Anderson KL, Modiano JF, Kim K, Jen KY, Senapedis W, Chang H, Landesman Y, Baloglu E, Pili R, Weiss RH. Anti-Cancer Activity of PAK4/NAMPT Inhibitor and Programmed Cell Death Protein-1 Antibody in Kidney Cancer. KIDNEY360 2020; 1:376-388. [PMID: 35224510 PMCID: PMC8809296 DOI: 10.34067/kid.0000282019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/12/2020] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and is increasing in incidence. Despite new therapies, including targeted therapies and immunotherapies, most RCCs are resistant to treatment. Thus, several laboratories have been evaluating new approaches to therapy, both with single agents as well as combinations. Although we have previously shown efficacy of the dual PAK4/nicotinamide phosphoribosyltransferase (NAMPT) inhibitor KPT-9274, and the immune checkpoint inhibitors (CPI) have shown utility in the clinic, there has been no evaluation of this combination either clinically or in an immunocompetent animal model of kidney cancer. METHODS In this study, we use the renal cell adenocarcinoma (RENCA) model of spontaneous murine kidney cancer. Male BALB/cJ mice were injected subcutaneously with RENCA cells and, after tumors were palpable, they were treated with KPT-9274 and/or anti-programmed cell death 1 (PDCD1; PD1) antibody for 21 days. Tumors were measured and then removed at animal euthanasia for subsequent studies. RESULTS We demonstrate a significant decrease in allograft growth with the combination treatment of KPT-9274 and anti-PD1 antibody without significant weight loss by the animals. This is associated with decreased (MOUSE) Naprt expression, indicating dependence of these tumors on NAMPT in parallel to what we have observed in human RCC. Histology of the tumors showed substantial necrosis regardless of treatment condition, and flow cytometry of antibody-stained tumor cells revealed that the enhanced therapeutic effect of KPT-9274 and anti-PD1 antibody was not driven by infiltration of T cells into tumors. CONCLUSIONS This study highlights the potential of the RENCA model for evaluating immunologic responses to KPT-9274 and checkpoint inhibitor (CPI) and suggests that therapy with this combination could improve efficacy in RCC beyond what is achievable with CPI alone.
Collapse
Affiliation(s)
- Josephine F. Trott
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Omran Abu Aboud
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Bridget McLaughlin
- Comprehensive Cancer Center, University of California, Davis, California
| | - Katie L. Anderson
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - William Senapedis
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Hua Chang
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Yosef Landesman
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Erkan Baloglu
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Roberto Pili
- Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Robert H. Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
- Comprehensive Cancer Center, University of California, Davis, California
- Medical Service, Veterans Affairs Northern California Health Care System, Sacramento, California
| |
Collapse
|
42
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
43
|
Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Adv 2020; 3:242-255. [PMID: 30692102 DOI: 10.1182/bloodadvances.2018024182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Treatment options for acute myeloid leukemia (AML) remain extremely limited and associated with significant toxicity. Nicotinamide phosphoribosyltransferase (NAMPT) is involved in the generation of NAD+ and a potential therapeutic target in AML. We evaluated the effect of KPT-9274, a p21-activated kinase 4/NAMPT inhibitor that possesses a unique NAMPT-binding profile based on in silico modeling compared with earlier compounds pursued against this target. KPT-9274 elicited loss of mitochondrial respiration and glycolysis and induced apoptosis in AML subtypes independent of mutations and genomic abnormalities. These actions occurred mainly through the depletion of NAD+, whereas genetic knockdown of p21-activated kinase 4 did not induce cytotoxicity in AML cell lines or influence the cytotoxic effect of KPT-9274. KPT-9274 exposure reduced colony formation, increased blast differentiation, and diminished the frequency of leukemia-initiating cells from primary AML samples; KPT-9274 was minimally cytotoxic toward normal hematopoietic or immune cells. In addition, KPT-9274 improved overall survival in vivo in 2 different mouse models of AML and reduced tumor development in a patient-derived xenograft model of AML. Overall, KPT-9274 exhibited broad preclinical activity across a variety of AML subtypes and warrants further investigation as a potential therapeutic agent for AML.
Collapse
|
44
|
Azmi AS, Khan HY, Muqbil I, Aboukameel A, Neggers JE, Daelemans D, Mahipal A, Dyson G, Kamgar M, Al-Hallak MN, Tesfaye A, Kim S, Shidham V, M Mohammad R, Philip PA. Preclinical Assessment with Clinical Validation of Selinexor with Gemcitabine and Nab-Paclitaxel for the Treatment of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:1338-1348. [PMID: 31831564 PMCID: PMC7073299 DOI: 10.1158/1078-0432.ccr-19-1728] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/11/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease urgently requiring new treatments. Overexpression of the protein transporter exportin-1 (XPO1) leads to mislocalization of tumor-suppressor proteins (TSP) and their inactivation. Earlier, we showed that blocking XPO1 by CRISPR/Cas9 validated Selective Inhibitor of Nuclear Export (SINE) compounds (selinexor and analogs) restores the antitumor activity of multiple TSPs leading to suppression of PDAC in vitro and in orthotopic models. EXPERIMENTAL DESIGN We evaluate the synergy between SINE compounds and standard-of-care treatments in preclinical models and in a PDAC Phase Ib trial. RESULTS SINE compounds synergize with gemcitabine (GEM) and nanoparticle albumin-bound (nab)-paclitaxel leading to suppression of PDAC cellular growth and cancer stem cell (CSC) spheroids disintegration. Label-free quantitative proteome profiling with nuclear and cytoplasmic enrichment showed superior enhancement in nuclear protein fraction in combination treatment. Selinexor inhibited the growth of PDAC CSC and two patient-derived (PDX) subcutaneous xenografts. Selinexor-GEM-nab-paclitaxel blocked PDX and orthotopic tumor growth. In a phase 1b study (NCT02178436), 9 patients were exposed to selinexor (60 mg oral) with GEM (1,000 mg/m2 i.v.) and nab-paclitaxel (125 mg/m2 i.v.) on days 1, 8, and 15 of 28-day cycle. Two patients showed partial response, and 2 had stable disease. An outstanding, durable objective response was observed in one of the responders with progression-free survival of 16 months and overall survival of 22 months. CONCLUSIONS Our preclinical and ongoing clinical study lends support to the use of selinexor-GEM-nab-paclitaxel as an effective therapy for metastatic PDAC.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, Michigan
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasper E Neggers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | - Anteneh Tesfaye
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Vinod Shidham
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
45
|
Bi S, Wang Y, Feng H, Li Q. Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle 2020; 19:801-816. [PMID: 32116086 DOI: 10.1080/15384101.2020.1731645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A long noncoding RNAs (lncRNA) called LINC00657 is dysregulated and contributes to tumor progression in a number of human cancer types. However, there is limited information on the expression profile and functions of LINC00657 in pancreatic ductal adenocarcinoma (PDAC). The expression profile of LINC00657 in PDAC was estimated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). The effects of LINC00657 upregulation on PDAC cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo were explored using CCK-8, flow cytometry, Transwell migration and invasion assays, and a xenograft tumor formation experiment, respectively. The results revealed that LINC00657 was evidently upregulated in the PDAC tumors and cell lines. High LINC00657 expression significantly correlated with the pathological T stage, lymph node metastasis, and shorter overall survival. Functional analysis demonstrated that LINC00657 knockdown inhibited the proliferation, migration, and invasion while promoted the apoptosis of PDAC cells. In addition, LINC00657 knockdown markedly suppressed tumor growth of these cells in vivo. In terms of the mechanism, LINC00657 could directly interact with microRNA-433 (miR-433) and effectively worked as an miR-433 sponge, thus decreasing the competitive binding of miR-433 to PAK4 mRNA and ultimately increasing PAK4 expression. The actions of LINC00657 knockdown on malignant phenotype of PDAC cells were strongly attenuated by miR-433 inhibition and PAK4 restoration. These results indicate that LINC00657 promotes PDAC progression by increasing the output of the miR-433-PAK4 regulatory loop, thus highlighting the importance of the LINC00657-miR-433-PAK4 network in PDAC pathogenesis.
Collapse
Affiliation(s)
- Shasha Bi
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China
| | - Yan Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| | - Hu Feng
- Department of General Oncotherapy, WeiHai Municipal Hospital, Shandong, P.R.China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| |
Collapse
|
46
|
Ye C, Qi L, Li X, Wang J, Yu J, Zhou B, Guo C, Chen J, Zheng S. Targeting the NAD + salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. Cell Commun Signal 2020; 18:16. [PMID: 32005247 PMCID: PMC6995173 DOI: 10.1186/s12964-020-0513-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background The role and mechanism of the nicotinamide adenine dinucleotide (NAD+) salvage pathway in cancer cell proliferation is poorly understood. Nicotinamide phosphoribosyltransferase (NAMPT), which converts nicotinamide into NAD+, is the rate-limiting enzyme in the NAD+ salvage pathway. Here, we assessed the role of NAMPT in the proliferation of colorectal cancer. Methods Real-time PCR, immunohistochemistry, western blotting, and analyses of datasets from Oncomine and Gene Expression Omnibus were conducted to assess the expression of NAMPT at the mRNA and protein levels in colorectal cancer. The Kaplan Meier plotter online tool was used to evaluate the prognostic role of NAMPT. Knockdown of NAMPT was performed to assess the role of NAMPT in colorectal cancer cell proliferation and tumorigenesis both in vitro and in vivo. Overexpression of NAMPT was used to evaluate impact of NAMPT on colorectal cancer cell proliferation in vitro. NAD+ quantitation, immunofluorescence, dual luciferase assay and western blot were used to explore the mechanism of colorectal cancer proliferation. Transwell migration and invasion assays were conducted to assess the role of NAMPT in cell migration and invasion abilities of colorectal cancer cells. Results Our study indicated that the inhibition of NAMPT decreased proliferation capacity of colorectal cancer cells both in vitro and in vivo. Conversely, overexpression of NAMPT could promote cell proliferation in vitro. NAMPT inhibition induced β-catenin degradation by increasing Axin expression levels; this resulted in the inhibition of Wnt/β-catenin signaling and cell proliferation in colorectal cancer. The addition of nicotinamide mononucleotide, the enzymatic product of NAMPT, effectively reversed β-catenin protein degradation and inhibited growth. Similarly, the knockdown of Axin also decreased the cell death induced by the inhibition of NAMPT. In addition, we showed that colorectal cancer tissues harbored significantly higher levels of NAMPT than the levels harbored by paired normal tissues, especially in colorectal cancer stages I and II. And the overexpression of NAMPT was associated with unfavorable survival results. Conclusions Our findings reveal that NAMPT plays an important role in colorectal cancer proliferation via Wnt/β-catenin pathway, which could have vital implications for the diagnosis, prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310016, Hangzhou, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China. .,Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.
| |
Collapse
|
47
|
Cordover E, Wei J, Patel C, Shan NL, Gionco J, Sargsyan D, Wu R, Cai L, Kong AN, Jacinto E, Minden A. KPT-9274, an Inhibitor of PAK4 and NAMPT, Leads to Downregulation of mTORC2 in Triple Negative Breast Cancer Cells. Chem Res Toxicol 2020; 33:482-491. [PMID: 31876149 DOI: 10.1021/acs.chemrestox.9b00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is difficult to treat due to lack of druggable targets. We have found that treatment with the small molecule inhibitor KPT-9274 inhibits growth of TNBC cells and eventually leads to cell death. KPT-9274 is a dual specific inhibitor of PAK4 and Nicotinamide Phosphoribosyltransferase (NAMPT). The PAK4 protein kinase is often highly expressed in TNBC cells and has important roles in cell growth, survival, and migration. Previously we have found that inhibition of PAK4 leads to growth inhibition of TNBC cells both in vitro and in vivo. Likewise, NAMPT has been shown to be dysregulated in cancer due to its role in cell metabolism. In order to understand better how treating cells with KPT-9274 abrogates TNBC cell growth, we carried out an RNA sequencing of TNBC cells treated with KPT-9274. As a result, we identified Rictor as an important target that is inhibited in the KPT-9274 treated cells. Conversely, we found that Rictor is predicted to be activated when PAK4 is overexpressed in cells, which suggests a role for PAK4 in the regulation of Rictor. Rictor is a component of mTORC2, one of the complexes formed by the serine/threonine kinase mTOR. mTOR is important for the control of cell growth and metabolism. Our results suggest a new mechanism by which the KPT-9274 compound may block the growth of breast cancer cells, which is via inhibition of mTORC2 signaling. Consistent with this, sequencing analysis of PAK4 overexpressing cells indicates that PAK4 has a role in activation of the mTOR pathway.
Collapse
Affiliation(s)
- Emma Cordover
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Janet Wei
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Chadni Patel
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Naing Lin Shan
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - John Gionco
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Li Cai
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , 599 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
48
|
Abril-Rodriguez G, Torrejon DY, Liu W, Zaretsky JM, Nowicki TS, Tsoi J, Puig-Saus C, Baselga-Carretero I, Medina E, Quist MJ, Garcia AJ, Senapedis W, Baloglu E, Kalbasi A, Cheung-Lau G, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Wang CY, Grasso CS, Ribas A. PAK4 inhibition improves PD-1 blockade immunotherapy. NATURE CANCER 2019; 1:46-58. [PMID: 34368780 PMCID: PMC8340852 DOI: 10.1038/s43018-019-0003-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Lack of tumor infiltration by immune cells is the main mechanism of primary resistance to programmed cell death protein 1 (PD-1) blockade therapies for cancer. It has been postulated that cancer cell-intrinsic mechanisms may actively exclude T cells from tumors, suggesting that the finding of actionable molecules that could be inhibited to increase T cell infiltration may synergize with checkpoint inhibitor immunotherapy. Here, we show that p21-activated kinase 4 (PAK4) is enriched in non-responding tumor biopsies with low T cell and dendritic cell infiltration. In mouse models, genetic deletion of PAK4 increased T cell infiltration and reversed resistance to PD-1 blockade in a CD8 T cell-dependent manner. Furthermore, combination of anti-PD-1 with the PAK4 inhibitor KPT-9274 improved anti-tumor response compared with anti-PD-1 alone. Therefore, high PAK4 expression is correlated with low T cell and dendritic cell infiltration and a lack of response to PD-1 blockade, which could be reversed with PAK4 inhibition.
Collapse
Affiliation(s)
- Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Davis Y Torrejon
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse M Zaretsky
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore S Nowicki
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Jennifer Tsoi
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J Quist
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alejandro J Garcia
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Gardenia Cheung-Lau
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine S Grasso
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
49
|
PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2019; 11:cancers11121902. [PMID: 31795447 PMCID: PMC6966587 DOI: 10.3390/cancers11121902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNET) remain an unmet clinical need. In this study, we show that targeting both nicotinamide phosphoribosyltransferase (NAMPT) and p21-activated kinase 4 (PAK4) could become a synthetic lethal strategy for PNET. The expression of PAK4 and NAMPT was found to be higher in PNET tissue compared to normal cells. PAK4-NAMPT dual RNAi suppressed proliferation of PNET cell lines. Treatment with KPT-9274 (currently in a Phase I trial or analogs, PF3758309 (the PAK4 selective inhibitor) or FK866 (the NAMPT inhibitor)) suppressed the growth of PNET cell lines and synergized with the mammalian target of rapamycin (mTOR) inhibitors everolimus and INK-128. Molecular analysis of the combination treatment showed down-regulation of known everolimus resistance drivers. KPT-9274 suppressed NAD pool and ATP levels in PNET cell lines. Metabolomic profiling showed a statistically significant alteration in cellular energetic pathways. KPT-9274 given orally at 150 mg/kg 5 days/week for 4 weeks dramatically reduced PNET sub-cutaneous tumor growth. Residual tumor analysis demonstrated target engagement in vivo and recapitulated in vitro results. Our investigations demonstrate that PAK4 and NAMPT are two viable therapeutic targets in the difficult to treat PNET that warrant further clinical investigation.
Collapse
|
50
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|