1
|
Hanscom M, Morales-Soto W, Watts SW, Jackson WF, Gulbransen BD. Innervation of adipocytes is limited in mouse perivascular adipose tissue. Am J Physiol Heart Circ Physiol 2024; 327:H155-H181. [PMID: 38787382 PMCID: PMC11380956 DOI: 10.1152/ajpheart.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Wilmarie Morales-Soto
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
2
|
Pan Y, Xue Q, Yang Y, Shi T, Wang H, Song X, Luo Y, Liu W, Ren S, Cai Y, Nie Y, Song Z, Liu B, Li JP, Wei J. Glycoengineering-based anti-PD-1-iRGD peptide conjugate boosts antitumor efficacy through T cell engagement. Cell Rep Med 2024; 5:101590. [PMID: 38843844 PMCID: PMC11228665 DOI: 10.1016/j.xcrm.2024.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfeng Pan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Xue
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Yang
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanbing Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xueru Song
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Luo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shiji Ren
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiran Cai
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Nie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhentao Song
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie P Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Zheng J, Wu YC, Phillips EH, Cai X, Wang X, Seung-Young Lee S. Increased Multiplexity in Optical Tissue Clearing-Based Three-Dimensional Immunofluorescence Microscopy of the Tumor Microenvironment by Light-Emitting Diode Photobleaching. J Transl Med 2024; 104:102072. [PMID: 38679160 PMCID: PMC11240282 DOI: 10.1016/j.labinv.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy is transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only 3 or 4 cellular and noncellular TME components can be localized in cleared tumor tissue. Here we report a light-emitting diode (LED) photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through 3 work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Evan H Phillips
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois; University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Zheng J, Wu YC, Phillips EH, Wang X, Lee SSY. Increased multiplexity in optical tissue clearing-based 3D immunofluorescence microscopy of the tumor microenvironment by LED photobleaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569277. [PMID: 38076864 PMCID: PMC10705380 DOI: 10.1101/2023.11.29.569277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy have been transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only three or four cellular and non-cellular TME components can be localized in a cleared tumor tissue. Here we report a LED photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through three work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
|
5
|
Yang M, Qin C, Tao L, Cheng G, Li J, Lv F, Yang N, Xing Z, Chu X, Han X, Huo M, Yin L. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials 2023; 301:122253. [PMID: 37536040 DOI: 10.1016/j.biomaterials.2023.122253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
The poor permeability of therapeutic drugs, limited T-cell infiltration, and strong immunosuppressive tumor microenvironment of triple-negative breast cancer (TNBC) acts as a prominent barrier to the delivery of drugs and immunotherapy including programmed cell death ligand-1 antibody (anti-PD-L1). Transforming growth factor (TGF)-β, an important cytokine produced by cancer-associated fibroblasts (CAFs) and tumor cells contributes to the pathological vasculature, dense tumor stroma and strong immunosuppressive tumor microenvironment (TME). Herein, a nanomedicine platform (HA-LSL/siTGF-β) employing dual-targeting, alongside hyaluronidase (HAase) and glutathione (GSH) triggered release was elaborately constructed to efficiently deliver TGF-β small interference RNA (siTGF-β). It was determined that this system was able to improve the efficacy of anti-PD-L1. The siTGF-β nanosystem efficiently silenced TGF-β-related signaling pathways in both activated NIH 3T3 cells and 4T1 cells in vitro and in vivo. This occurred firstly, through CD44-mediated uptake, followed by rapid escape mediated by HAase in endo/lysosomes and release of siRNA mediated by high GSH concentrations in the cytoplasm. By simultaneous silencing of TGF-β in stromal and tumor cells, HA-LSL/siTGF-β dramatically reduced stroma deposition, promoted the penetration of nanomedicines for deep remodeling of the TME, improved oxygenation, T cells infiltration and subsequent anti-PD-L1 deep penetration. The double suppression of TGF-β has been demonstrated to promote blood vessel normalization, inhibit an epithelial-to-mesenchymal transition (EMT), and further modify the immunosuppressive TME, which was supported by an overall increase in the proportion of dendritic cells and cytotoxic T cells. Further, a reduction in the proportion of immunosuppression cells such as regulatory T cells and myeloid-derived suppressor cells was also observed in the TME. Based on the comprehensive remodeling of the tumor microenvironment by this nanosystem, subsequent anti-PD-L1 therapy elicited robust antitumor immunity. Specifically, this system was able to suppress the growth of both primary and distant tumor while preventing tumor metastasis to the lung. Therefore, the combination of the dual-targeted siTGF-β nanosystem, alongside anti-PD-L1 may serve as a novel method to enhance antitumor immunotherapy against stroma-rich TNBC.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Linlin Tao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jingjing Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fangnan Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Nan Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zuhang Xing
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xinyu Chu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Meirong Huo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Key Laboratory of Druggability of Biopharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
6
|
Huang S, Xing F, Dai Y, Zhang Z, Zhou G, Yang S, Liu YC, Yuan Z, Luo KQ, Ying T, Chu D, Liu TM, Deng CX, Zhao Q. Navigating chimeric antigen receptor-engineered natural killer cells as drug carriers via three-dimensional mapping of the tumor microenvironment. J Control Release 2023; 362:524-535. [PMID: 37673307 DOI: 10.1016/j.jconrel.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.
Collapse
Affiliation(s)
- Shigao Huang
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Radiation Oncology of Xijing Hospital, Fourth Military Medical University, Xi' an, China
| | - Fuqiang Xing
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yeneng Dai
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Zhiming Zhang
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Guangyu Zhou
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Shuo Yang
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Zhen Yuan
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Kathy Qian Luo
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dafeng Chu
- Geneleap Biotechnology LLC, Woburn, MA, USA.
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| | - Chu-Xia Deng
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| | - Qi Zhao
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
7
|
Wu YC, Moon HG, Bindokas VP, Phillips EH, Park GY, Lee SSY. Multiresolution 3D Optical Mapping of Immune Cell Infiltrates in Mouse Asthmatic Lung. Am J Respir Cell Mol Biol 2023; 69:13-21. [PMID: 37017484 PMCID: PMC10324044 DOI: 10.1165/rcmb.2022-0353ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease driven by various infiltrating immune cell types into the lung. Optical microscopy has been used to study immune infiltrates in asthmatic lungs. Confocal laser scanning microscopy (CLSM) identifies the phenotypes and locations of individual immune cells in lung tissue sections by employing high-magnification objectives and multiplex immunofluorescence staining. In contrast, light-sheet fluorescence microscopy (LSFM) can visualize the macroscopic and mesoscopic architecture of whole-mount lung tissues in three dimensions (3D) by adopting an optical tissue-clearing method. Despite each microscopy method producing image data with unique resolution from a tissue sample, CLSM and LSFM have not been applied together because of different tissue-preparation procedures. Here, we introduce a new approach combining LSFM and CLSM into a sequential imaging pipeline. We built a new optical tissue clearing workflow in which the immersion clearing agent can be switched from an organic solvent to an aqueous sugar solution for sequential 3D LSFM and CLSM of mouse lungs. This sequential combination microscopy offered quantitative 3D spatial analyses of the distribution of immune infiltrates in the same mouse asthmatic lung tissue at the organ, tissue, and cell levels. These results show that our method facilitates multiresolution 3D fluorescence microscopy as a new imaging approach providing comprehensive spatial information for a better understanding of inflammatory lung diseases.
Collapse
Affiliation(s)
| | - Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Vytautas P. Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois; and
| | | | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | | |
Collapse
|
8
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
9
|
Frenkel N, Poghosyan S, van Wijnbergen JW, van den Bent L, Wiljer L, Verheem A, Borel Rinkes I, Kranenburg O, Hagendoorn J. Tissue clearing and immunostaining to visualize the spatial organization of vasculature and tumor cells in mouse liver. Front Oncol 2023; 13:1062926. [PMID: 37077833 PMCID: PMC10108913 DOI: 10.3389/fonc.2023.1062926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing – a technique rendering tissues optically transparent allowing enhanced microscopy imaging – has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.
Collapse
|
10
|
Rakhilin N, Yang B, Spilker ME, Manzuk LK, Montgomery MK, Shin E, Prashad N, Hwang J, Song Y, Loganzo F, Giddabasappa A, Ram S. Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. J Control Release 2023; 354:244-259. [PMID: 36596340 DOI: 10.1016/j.jconrel.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticle (NP) technology holds significant promise to mediate targeted drug delivery to specific organs in the body. Understanding the 3D biodistribution of NPs in heterogeneous environments such as the tumor tissue can provide crucial information on efficacy, safety and potential clinical outcomes. Here we present a novel end-to-end workflow, VIOLA, which makes use of tissue clearing methodology in conjunction with high resolution imaging and advanced 3D image processing to quantify the spatiotemporal 3D biodistribution of fluorescently labeled ACCURIN® NPs. Specifically, we investigate the spatiotemporal biodistribution of NPs in three different murine tumor models (CT26, EMT6, and KPC-GEM) of increasing complexity and translational relevance. We have developed new endpoints to characterize NP biodistribution at multiple length scales. Our observations reveal that the macroscale NP biodistribution is spatially heterogeneous and exhibits a gradient with relatively high accumulation at the tumor periphery that progressively decreases towards the tumor core in all the tumor models. Microscale analysis revealed that NP extravasation from blood vessels increases in a time dependent manner and plateaus at 72 h post injection. Volumetric analysis and pharmacokinetic modeling of NP biodistribution in the vicinity of the blood vessels revealed that the local NP density exhibits a distance dependent spatiotemporal biodistribution which provide insights into the dynamics of NP extravasation in the tumor tissue. Our data represents a comprehensive analysis of NP biodistribution at multiple length scales in different tumor models providing unique insights into their spatiotemporal dynamics. Specifically, our results show that NPs exhibit a dynamic equilibrium with macroscale heterogeneity combined with microscale homogeneity.
Collapse
Affiliation(s)
| | - Bing Yang
- Comparative Medicine, Pfizer Inc., United States
| | - Mary E Spilker
- Medicine Design - Translational Modeling and Simulation, Pfizer Inc., United States
| | | | | | - Eyoung Shin
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Youngho Song
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Sripad Ram
- Drug Safety R&D, Pfizer Inc., United States.
| |
Collapse
|
11
|
Pac J, Koo DJ, Cho H, Jung D, Choi MH, Choi Y, Kim B, Park JU, Kim SY, Lee Y. Three-dimensional imaging and analysis of pathological tissue samples with de novo generation of citrate-based fluorophores. SCIENCE ADVANCES 2022; 8:eadd9419. [PMID: 36383671 PMCID: PMC9668299 DOI: 10.1126/sciadv.add9419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.
Collapse
Affiliation(s)
- Jinyoung Pac
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Dongwook Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Min-ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Yunjung Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
12
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
13
|
Hong FU, Castro M, Linse K. Tumor specifically internalizing peptide ‘HN-1’: Targeting the putative receptor retinoblastoma-regulated discoidin domain receptor 1 involved in metastasis. World J Clin Oncol 2022; 13:323-338. [PMID: 35662982 PMCID: PMC9153073 DOI: 10.5306/wjco.v13.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Less than 0.5% of intravenously injected drugs reach tumors, contributing to side effects. To limit damage to healthy cells, various delivery vectors have been formulated; yet, previously developed vectors suffer from poor penetration into solid tumors. This issue was resolved by the discovery of HN-1 peptide isolated via biopanning a phage-display library. HN-1 targets human head and neck squamous cell carcinoma (HNSCC) (breast, thyroid; potentially lung, cervix, uterine, colon cancer), translocates across the cell membrane, and efficiently infiltrates solid tumors. HN-1 peptide has been conjugated to various anticancer drugs and imaging agents though the identity of its receptor remained enigmatic.
AIM To decipher the clues that pointed to retinoblastoma (Rb)-regulated discoidin-domain receptor 1 as the putative receptor for HN-1 is described.
METHODS HN-1 peptide was synthesized and purified using reverse-phase high-performance liquid chromatography and gel electrophoresis. The predicted mass was confirmed by mass spectroscopy. To image the 3-dimensional structure of HN-1 peptide, PyMOL was used. Molecular modeling was also performed with PEP-FOLD3 software via RPBS bioinformatics web portal (INSERM, France). The immunohistochemistry results of discoidin domain receptor 1 (DDR1) protein were obtained from the publicly accessible database in the Human Protein Atlas portal, which contained the images of immunohistochemically labeled human cancers and the corresponding normal tissues.
RESULTS The clues that led to DDR1 involved in metastasis as the putative receptor mediating HN-1 endocytosis are the following: (1) HN-1 is internalized in phosphate-buffered saline and its uptake is competitively inhibited; (2) HN-1 (TSPLNIHNGQKL) exhibits similarity with a stretch of amino acids in alpha5 beta3 integrin (KLLITIHDRKEF). Aside from two identical residues (Ile-His) in the middle, the overall distribution of polar and nonpolar residues throughout the sequences is nearly identical. As HN-1 sequence lacks the Arg-Gly-Asp motif recognized by integrins, HN-1 may interact with an "integrin-like" molecule. The tertiary structure of both peptides showed similarity at the 3-dimensional level; (3) HN-1 is internalized by attached cells but not by suspended cells. As culture plates are typically coated with collagen, collagen-binding receptor (expressed by adherent but not suspended cells) may represent the receptor for HN-1; (4) DDR1 is highly expressed in head and neck cancer (or breast cancer) targeted by HN-1; (5) Upon activation by collagen, DDR1 becomes internalized and compartmentalized in endosomes consistent with the determination of ’energy-dependent clathrin-mediated endocytosis’ as the HN-1 entry route and the identification of HN-1 entrapped vesicles as endosomes; and (6) DDR1 is essential for the development of mammary glands consistent with the common embryonic lineage rationale used to identify breast cancer as an additional target of HN-1. In summary, collagen-activated tyrosine kinase receptor DDR1 overexpressed in HNSCC assumes a critical role in metastasis. Further studies are warranted to assess HN-1 peptide’s interaction with DDR1 and the therapeutic potential of treating metastatic cancer. Additionally, advances in delivery (conformation, endocytic mechanism, repertoire of targeted cancers of HN-1 peptide), tracking (HN-1 conjugated imaging agents), and activity (HN-1 conjugated therapeutic agents) are described.
CONCLUSION The discovery of DDR1 as HN-1 peptide’s putative receptor represents a significant advance as it enables identification of metastatic cancers or clinical application of previously developed therapeutics to block metastasis.
Collapse
Affiliation(s)
- Frank-Un Hong
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| | - Miguel Castro
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| | - Klaus Linse
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| |
Collapse
|
14
|
van Ineveld RL, van Vliet EJ, Wehrens EJ, Alieva M, Rios AC. 3D imaging for driving cancer discovery. EMBO J 2022; 41:e109675. [PMID: 35403737 PMCID: PMC9108604 DOI: 10.15252/embj.2021109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.
Collapse
Affiliation(s)
- Ravian L van Ineveld
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Esmée J van Vliet
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Maria Alieva
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
15
|
Han J, Jang EK, Ki MR, Son RG, Kim S, Choe Y, Pack SP, Chung S. pH-responsive phototherapeutic poly(acrylic acid)-calcium phosphate passivated TiO2 nanoparticle-based drug delivery system for cancer treatment applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
17
|
Serain AF, Morosi L, Ceruti T, Matteo C, Meroni M, Minatel E, Zucchetti M, Salvador MJ. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112328. [PMID: 34628206 DOI: 10.1016/j.jphotobiol.2021.112328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small molecules and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biological effect as bioactive drug, but it has low water solubility. Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm2, 5.5 J/cm2, and 11 J/cm2) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound.
Collapse
Affiliation(s)
- Alessandra F Serain
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Lavinia Morosi
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Cristina Matteo
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Elaine Minatel
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marcos J Salvador
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| |
Collapse
|
18
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
19
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Structure-Indicated LC-MS/MS Bioanalysis of Therapeutic Antibodies. Methods Mol Biol 2021; 2313:187-205. [PMID: 34478139 DOI: 10.1007/978-1-0716-1450-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Monoclonal antibodies bind to Protein A/G resin with 100 nm-diameter pores, which orients the Fab toward the reaction solution. Then, they can be proteolyzed using trypsin immobilized on the surface of 200 nm-diameter nanoparticles. The difference between the two particle diameters allows Fab-selective proteolysis by limiting trypsin access to the antibody substrate. The specific signature peptide of monoclonal antibody is collected, which comprises the complementarity-determining regions (CDRs). Excess trypsin protease and peptide fragments from common sequences in Fc that inhibit the analysis can then be separated and removed. The resulting peptide samples are separated through high performance liquid chromatography on a 20 nm-diameter pore-size reversed-phase C18 column. These are then sequentially ionized with an electrospray interface and subjected to mass spectrometry (MS). In MS, peptide ions are trapped and fragment ions are generated by the collision-induced dissociation with argon gas. These are detected with multiple reaction monitoring measurements to perform a highly sensitive and accurate quantitative analysis.By focusing on various physicochemical features at each analytical scene, such as characteristic structure and orientation of antibody, control of trypsin reaction field, carry-over on HPLC column, ionization suppression effect from endogenous proteins, and detection of amino acid sequence specificity of antibody, we optimized the overall conditions from the sample processing up to MS detection and developed analytical validation and clinical application of many therapeutic antibodies using our Fab-selective proteolysis technology that is based on the structure-indicated approach.
Collapse
|
21
|
Tian T, Yang Z, Li X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 2021; 238:489-507. [PMID: 32939792 PMCID: PMC7812135 DOI: 10.1111/joa.13309] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 08/24/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms are inherently three dimensional, thus comprehensive understanding of the complicated biological system requires analysis of organs or even whole bodies in the context of three dimensions. However, this is a tremendous task since the biological specimens are naturally opaque, a major obstacle in whole-body and whole-organ imaging. Tissue clearing technique provides a prospective solution and has become a powerful tool for three-dimensional imaging and quantification of organisms. Tissue clearing technique aims to make tissue transparent by minimizing light scattering and light absorption, thus allowing deep imaging of large volume samples. When combined with diverse molecular labeling methods and high-throughput optical sectioning microscopes, tissue clearing technique enables whole-body and whole-organ imaging at cellular or subcellular resolution, providing detailed and comprehensive information about the intact biological systems. Here, we give an overview of recent progress and biomedical applications of tissue clearing technique. We introduce the mechanisms and basic principles of tissue clearing, and summarize the current tissue clearing methods. Moreover, the available imaging techniques and software packages for data processing are also presented. Finally, we introduce the recent advances in applications of tissue clearing in biomedical fields. Tissue clearing contributes to the investigation of structure-function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs. We hope this review contributes to a better understanding of tissue clearing technique and can help researchers to select the best-suited clearing protocol for their experiments.
Collapse
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Zhaoyang Yang
- Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina,Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| |
Collapse
|
22
|
Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen SJ, Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020; 10:10309-10325. [PMID: 32929350 PMCID: PMC7481426 DOI: 10.7150/thno.45825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale: Following an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in live intact animals, which is critical to assess the delivery efficacy of therapeutics. However, to date, non-invasive imaging approaches that can simultaneously measure cellular drug delivery efficacy and metabolic response are lacking. A major challenge for the implementation of concurrent optical and MFLI-FRET in vivo whole-body preclinical imaging is the spectral crowding and cross-contamination between fluorescent probes. Methods: We report on a strategy that relies on a dark quencher enabling simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. Several optical imaging approaches, such as in vitro NIR FLI microscopy (FLIM) and in vivo wide-field MFLI, were used to validate a novel donor-dark quencher FRET pair. IRDye 800CW 2-deoxyglucose (2-DG) imaging was multiplexed with MFLI-FRET of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) to monitor tumor metabolism and probe uptake in breast tumor xenografts in intact live nude mice. Immunohistochemistry was used to validate in vivo imaging results. Results: First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700). Second, we report on simultaneous in vivo imaging of the metabolic probe 2-DG and MFLI-FRET imaging of Tf-AF700/Tf-QC-1 uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Conclusions: Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sez-Jade Chen
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joseph E. Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
23
|
Koo DJ, Choi J, Ahn M, Ahn BH, Min DH, Kim SY. Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment. Bioconjug Chem 2020; 31:1784-1794. [DOI: 10.1021/acs.bioconjchem.0c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
| | - Jinahn Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, South Korea
| | - Benjamin H. Ahn
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, South Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
24
|
Liao R, Pham T, Mastroeni D, Coleman PD, Labaer J, Guo J. Highly Sensitive and Multiplexed In-Situ Protein Profiling with Cleavable Fluorescent Streptavidin. Cells 2020; 9:E852. [PMID: 32244728 PMCID: PMC7226835 DOI: 10.3390/cells9040852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The ability to perform highly sensitive and multiplexed in-situ protein analysis is crucial to advance our understanding of normal physiology and disease pathogenesis. To achieve this goal, we here develop an approach using cleavable biotin-conjugated antibodies and cleavable fluorescent streptavidin (CFS). In this approach, protein targets are first recognized by the cleavable biotin-labeled antibodies. Subsequently, CFS is applied to stain the protein targets. Though layer-by-layer signal amplification using cleavable biotin-conjugated orthogonal antibodies and CSF, the protein detection sensitivity can be enhanced at least 10-fold, compared with the current in-situ proteomics methods. After imaging, the fluorophore and the biotin unbound to streptavidin are removed by chemical cleavage. The leftover streptavidin is blocked by biotin. Upon reiterative analysis cycles, a large number of different proteins with a wide range of expression levels can be profiled in individual cells at the optical resolution. Applying this approach, we have demonstrated that multiple proteins are unambiguously detected in the same set of cells, regardless of the protein analysis order. We have also shown that this method can be successfully applied to quantify proteins in formalin-fixed paraffin-embedded (FFPE) tissues.
Collapse
Affiliation(s)
- Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.L.); (T.P.); (J.L.)
| | - Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.L.); (T.P.); (J.L.)
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.M.); (P.D.C.)
- L.J. Roberts Center for Alzheimer’s Research, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Paul D. Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.M.); (P.D.C.)
- L.J. Roberts Center for Alzheimer’s Research, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.L.); (T.P.); (J.L.)
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.L.); (T.P.); (J.L.)
| |
Collapse
|
25
|
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Am J Cancer Res 2020; 10:1884-1909. [PMID: 32042343 PMCID: PMC6993242 DOI: 10.7150/thno.38625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes “therapy heterogeneity”: a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
Collapse
|
26
|
Du Y, Qi Y, Jin Z, Tian J. Noninvasive imaging in cancer immunotherapy: The way to precision medicine. Cancer Lett 2019; 466:13-22. [DOI: 10.1016/j.canlet.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
|
27
|
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019; 11:E1441. [PMID: 31480780 PMCID: PMC6780590 DOI: 10.3390/polym11091441] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine has generated significant interest as an alternative to conventional cancertherapy due to the ability for nanoparticles to tune cargo release. However, while nanoparticletechnology has promised significant benefit, there are still limited examples of nanoparticles inclinical practice. The low translational success of nanoparticle research is due to the series ofbiological roadblocks that nanoparticles must migrate to be effective, including blood and plasmainteractions, clearance, extravasation, and tumor penetration, through to cellular targeting,internalization, and endosomal escape. It is important to consider these roadblocks holistically inorder to design more effective delivery systems. This perspective will discuss how nanoparticlescan be designed to migrate each of these biological challenges and thus improve nanoparticledelivery systems in the future. In this review, we have limited the literature discussed to studiesinvestigating the impact of polymer nanoparticle structure or composition on therapeutic deliveryand associated advancements. The focus of this review is to highlight the impact of nanoparticlecharacteristics on the interaction with different biological barriers. More specific studies/reviewshave been referenced where possible.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Samuel A Smith
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Georgina Such
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| |
Collapse
|