1
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
2
|
Tang Y, Zhang W, Sheng T, He X, Xiong X. Overview of the molecular mechanisms contributing to the formation of cancer‑associated adipocytes (Review). Mol Med Rep 2021; 24:768. [PMID: 34490479 PMCID: PMC8430316 DOI: 10.3892/mmr.2021.12408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Adipocytes are the main stromal cells in the tumor microenvironment. In addition to serving as energy stores for triglycerides, adipocytes may function as an active endocrine organ. The crosstalk between adipocytes and cancer cells was shown to promote the migration, invasion and proliferation of cancer cells and to cause phenotypic and functional changes in adipocytes. Tumor-derived soluble factors, such as TNF-α, plasminogen activator inhibitor 1, Wnt3a, IL-6, and exosomal microRNAs (miRNA/miRs), including miR-144, miR-126, miR-155, as well as other miRNAs, have been shown to act on adipocytes at the tumor invasion front, resulting in the formation of cancer-associated adipocytes (CAAs) with diminished reduced terminal differentiation markers and a dedifferentiated phenotype. In addition, the number and size of CAA lipid droplets have been found to be significantly reduced compared with those of mature adipocytes, whereas inflammatory cytokines and proteases are overexpressed. The aim of the present review was to summarize the latest findings on the biological changes of CAAs and the potential role of tumor-adipocyte crosstalk in the formation of CAAs, in the hope of providing novel perspectives for breast cancer treatment.
Collapse
Affiliation(s)
- Yunpeng Tang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenkai Zhang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianqiang Sheng
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
4
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
5
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
6
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Genc GE, Hipolito VEB, Botelho RJ, Gumuslu S. Lysophosphatidic acid represses autophagy in prostate carcinoma cells. Biochem Cell Biol 2018; 97:387-396. [PMID: 30403494 DOI: 10.1139/bcb-2018-0164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a small signaling phospholipid that mediates diverse functions including cell proliferation, migration, and survival by engaging LPA-agonized G-protein coupled receptors. Autophagy is a survival mechanism in response to nutrient depletion or organellar damage that encloses idle or damaged organelles within autophagosomes that are then delivered to lysosomes for degradation. However, the relationship between LPA and autophagy is largely unknown. The purpose of this study is to elucidate whether LPA affects autophagy through the ERK1/2 and (or) the Akt-mTOR signaling pathways. In this study, we investigated the effect of LPA on autophagy-regulating pathways in various prostate-derived cancer cells including PC3, LNCaP, and Du145 cells grown in complete medium and exposed to serum-free medium. Using Western blotting and ELISA, we determined that LPA stimulates the ERK and mTOR pathways in complete and serum-free medium. The mTOR pathway led to phosphorylation of S6K and ULK, which respectively stimulates protein synthesis and arrests autophagy. Consistent with this, LPA exposure suppressed autophagy as measured by LC3 maturation and formation of GFP-LC3 puncta. Altogether, these results suggest that LPA suffices to activate mTORC1 and suppress autophagy in prostate cancer cells.
Collapse
Affiliation(s)
- Gizem E Genc
- a Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Victoria E B Hipolito
- b Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roberto J Botelho
- b Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Saadet Gumuslu
- a Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
8
|
Tang X, Wang X, Zhao YY, Curtis JM, Brindley DN. Doxycycline attenuates breast cancer related inflammation by decreasing plasma lysophosphatidate concentrations and inhibiting NF-κB activation. Mol Cancer 2017; 16:36. [PMID: 28178994 PMCID: PMC5299726 DOI: 10.1186/s12943-017-0607-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background We previously discovered that tetracyclines increase the expression of lipid phosphate phosphatases at the surface of cells. These enzymes degrade circulating lysophosphatidate and therefore doxycycline increases the turnover of plasma lysophosphatidate and decreases its concentration. Extracellular lysophosphatidate signals through six G protein-coupled receptors and it is a potent promoter of tumor growth, metastasis and chemo-resistance. These effects depend partly on the stimulation of inflammation that lysophosphatidate produces. Methods In this work, we used a syngeneic orthotopic mouse model of breast cancer to determine the impact of doxycycline on circulating lysophosphatidate concentrations and tumor growth. Cytokine/chemokine concentrations in tumor tissue and plasma were measured by multiplexing laser bead technology. Leukocyte infiltration in tumors was analyzed by immunohistochemistry. The expression of IL-6 in breast cancer cell lines was determined by RT-PCR. Cell growth was measured in Matrigel™ 3D culture. The effects of doxycycline on NF-κB-dependent signaling were analyzed by Western blotting. Results Doxycycline decreased plasma lysophosphatidate concentrations, delayed tumor growth and decreased the concentrations of several cytokines/chemokines (IL-1β, IL-6, IL-9, CCL2, CCL11, CXCL1, CXCL2, CXCL9, G-CSF, LIF, VEGF) in the tumor. These results were compatible with the effects of doxycycline in decreasing the numbers of F4/80+ macrophages and CD31+ blood vessel endothelial cells in the tumor. Doxycycline also decreased the lysophosphatidate-induced growth of breast cancer cells in three-dimensional culture. Lysophosphatidate-induced Ki-67 expression was inhibited by doxycycline. NF-κB activity in HEK293 cells transiently expressing a NF-κB-luciferase reporter vectors was also inhibited by doxycycline. Treatment of breast cancer cells with doxycycline also decreased the translocation of NF-κB to the nucleus and the mRNA levels for IL-6 in the presence or absence of lysophosphatidate. Conclusion These results contribute a new dimension for understanding the anti-inflammatory effects of tetracyclines, which make them potential candidates for adjuvant therapy of cancers and other inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0607-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xianyan Wang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Yuan Y Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - David N Brindley
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Department of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
9
|
Sun F, Xiong Y, Zhou XH, Li Q, Xiao L, Long P, Li LJ, Cai MY, Wei YX, Ma YL, Yu YH. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. Tumour Biol 2015; 37:6729-36. [PMID: 26662108 DOI: 10.1007/s13277-015-4498-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
Abstract
Acylglycerol kinase (AGK) had been shown to contribute to cancer progression and unfavorable clinical outcomes of patients. Our study aimed to investigate the expression pattern and clinical significance of AGK in patients with early-stage cervical squamous cell cancer (CSCC). The protein and messenger RNA (mRNA) expression of AGK was analyzed in six cervical cancer cell lines and four paired early-stage CSCC specimens and normal cervical tissues (NCT), using Western blotting and real-time PCR (RT-PCR). And we investigated the AGK protein expression in paraffin-embedded specimens from 140 patients with early-stage CSCC and 30 cases of NCT by immunohistochemistry (IHC). Statistical analyses were performed to evaluate the clinicopathological significance of AGK expression. The expressions of AGK protein and mRNA were significantly up-regulated in cervical cancer cell lines and cancer tissues. IHC analyses revealed that AGK was highly expressed in 93 (66.4 %) of 140 early-stage CSCC specimens, but in none of the NCT. Moreover, AGK expression in early-stage CSCC was significantly correlated with tumor stage (P < 0.001), tumor size (P < 0.001), and tumor type (P < 0.001). Early-stage CSCC patients with high AGK expression level had shorter progress-free survival (PFS) and overall survival (OS) time compared with patients with low AGK expression levels. Univariate and multivariate analyses identified AGK expression level as an independent prognostic factor for survival of early-stage CSCC patients. We showed that AGK was over-expressed in cervical cancer cell lines and clinical tissues, and over-expression of AGK was associated with poor survival outcomes of early-stage CSCC patients. AGK can be used as an independent prognostic marker for early-stage CSCC.
Collapse
Affiliation(s)
- Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China.
| | - Ying Xiong
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Xiao-Hua Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China
| | - Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
| | - Lin-Jiang Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
| | - Mu-Yan Cai
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yan-Xing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China
| | - Yan-Lin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China. .,Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, GuangZhou, GuangDong, 510515, China.
| |
Collapse
|
10
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
11
|
Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res 2015; 58:51-75. [DOI: 10.1016/j.plipres.2015.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
|
12
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
13
|
Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015; 56:2048-60. [PMID: 25814022 DOI: 10.1194/jlr.r058362] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
14
|
Ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry for accurate analysis of glycerophospholipids and sphingolipids in drug resistance tumor cells. J Chromatogr A 2015; 1381:140-8. [DOI: 10.1016/j.chroma.2015.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/24/2023]
|
15
|
Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res 2014; 333:201-207. [PMID: 25433271 DOI: 10.1016/j.yexcr.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that modulates a wide variety of cellular functions. Elevated LPA signaling has been reported in patients with colorectal cancer or inflammatory bowel diseases, and the tumorigenic role of LPA has been demonstrated in experimental models of colon cancer. However, emerging evidence indicates the importance of LPA signaling in epithelial wound healing and regulation of intestinal electrolyte transport. Here, we briefly review current knowledge of the biological roles of LPA signaling in the intestinal tract.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | - Ajay Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Bai CQ, Yao YW, Liu CH, Zhang H, Xu XB, Zeng JL, Liang WJ, Yang W, Song Y. Diagnostic and prognostic significance of lysophosphatidic acid in malignant pleural effusions. J Thorac Dis 2014; 6:483-90. [PMID: 24822107 DOI: 10.3978/j.issn.2072-1439.2014.02.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is an important extracellular signal transmitter and intracellular second messenger in body fluids. It can be detected in the ascitic fluid of patients with ovarian cancer. Increasing evidence shows that LPA can stimulate cancer cell proliferation and promote tumor invasion and metastasis. Our study aimed to evaluate the diagnostic value of LPA in differentiating between malignant pleural effusions (MPEs) and benign pleural effusions (BPEs) and to evaluate the association between the level of LPA in MPE and the prognosis of lung cancer patients. PATIENTS AND METHODS The level of LPA in the pleural effusions (PEs) of 123 patients (94 MPE, 29 BPE) with lung cancer was evaluated using an enzyme-linked immunosorbent assay. The performance of LPA was analyzed by standard Receiver operator characteristic curve (ROC) analysis methods, using the area under the curve (AUC) as a measure of accuracy. Overall survival (OS) curves and progression-free survival (PFS) curves were based on the Kaplan-Meier method, and the survival differences between subgroups were analyzed using the log-rank or Breslow test (SPSS software). A multivariate Cox proportional hazards model was used to assess whether LPA independently predicted lung cancer survival. RESULTS The levels of LPA differed significantly between MPE (22.08±8.72 µg/L) and BPE (14.61±5.12 µg/L) (P<0.05). Using a cutoff point of 18.93 µg/L, LPA had a sensitivity of 60% and a specificity of 83% to distinguish MPEs from BPEs with an AUC of 0.769±0.045 (SE) (P=0.000) (95% CI, 0.68-0.857). In the three pathological types of lung cancer patients with MPE, there were no significant associations between LPA levels and the length of PFS and OS (P=0.58 and 0.186, respectively). Interestingly, in the patients with MPE caused by lung adenocarcinoma there were significant associations between the LPA levels and the PFS and OS (P=0.018 and 0.026, respectively). Multivariate analysis showed that the LPA level was an independent prognostic factor for PFS in lung adenocarcinoma. CONCLUSIONS Our results indicate that LPA can be used as a new biomarker for the diagnosis of MPE caused by lung cancer and that higher levels of LPA are related to shorter PFS in adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Cui-Qing Bai
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Yan-Wen Yao
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Chun-Hua Liu
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - He Zhang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Xiao-Bing Xu
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jun-Li Zeng
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Wen-Jun Liang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Wen Yang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Yong Song
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| |
Collapse
|
17
|
Benesch MGK, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BPC, Dewald J, Hitt M, Curtis JM, McMullen TPW, Brindley DN. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J 2014; 28:2655-66. [DOI: 10.1096/fj.13-248641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Xiaoyun Tang
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tatsuo Maeda
- Exploration Research LaboratoriesOno Pharmaceuticals CompanyTsukubaJapan
| | - Akira Ohhata
- Medicinal Chemistry Research LaboratoriesOno Pharmaceuticals CompanyShimamotoJapan
| | - Yuan Y. Zhao
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Bernard P. C. Kok
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jay Dewald
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Mary Hitt
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Jonathan M. Curtis
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Todd P. W. McMullen
- Department of SurgeryMackenzie Health Science CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - David N. Brindley
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
18
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
19
|
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
|
20
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
21
|
Lee SJ, No YR, Dang DT, Dang LH, Yang VW, Shim H, Yun CC. Regulation of hypoxia-inducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Krüppel-like factor 5. J Biol Chem 2013; 288:25244-25253. [PMID: 23880760 DOI: 10.1074/jbc.m113.489708] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) and p53 are pivotal regulators of tumor growth. Lysophosphatidic acid (LPA) is a lipid mediator that functions as a mitogen by acting through LPA receptors. We have shown previously that LPA stimulates HIF-1α expression in colon cancer cells. To determine the mechanism of HIF-1α induction by LPA, we compared the effect of LPA on HIF-1α in several colon cancer cell lines. LPA transcriptionally induced HIF-1α in colon cancer cells. HIF-1α induction was observed in cells expressing WT p53, where LPA decreased p53 expression. However, LPA failed to induce HIF-1α when the p53 gene was mutated. A decrease in p53 expression was dependent on induction of p53-specific E3 ubiquitin ligase Mdm2 by LPA. Krüppel-like factor 5 (KLF5) is an effector of LPA-induced proliferation of colon cancer cells. Because HIF-1α was necessary for LPA-induced growth of colon cancer cells, we determined the relationship between KLF5 and HIF-1α by a loss-of-function approach. Silencing of KLF5 inhibited LPA-induced HIF-1α induction, suggesting that KLF5 is an upstream regulator of HIF-1α. KLF5 and p53 binding to the Hif1α promoter was assessed by ChIP assay. LPA increased the occupancy of the Hif1α promoter by KLF5, while decreasing p53 binding. Transfection of HCT116 cells with KLF5 or p53 attenuated the binding of the other transcription factor. These results identify KLF5 as a transactivator of HIF-1α and show that LPA regulates HIF-1α by dynamically modulating its interaction with KLF5 and p53.
Collapse
Affiliation(s)
- Sei-Jung Lee
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Yi Ran No
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Duyen T Dang
- the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Long H Dang
- the Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida 32610
| | - Vincent W Yang
- the Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York 11794
| | - Hyunsuk Shim
- the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, and; the Department of Radiology, Emory University, Atlanta, Georgia 30322
| | - C Chris Yun
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322,; the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, and.
| |
Collapse
|
22
|
Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:33-41. [PMID: 22902318 DOI: 10.1016/j.bbalip.2012.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors - LPA(1), LPA(2), and LPA(3). However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA(4), LPA(5), and LPA(6) has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
23
|
Bekele RT, Brindley DN. Role of autotaxin and lysophosphatidate in cancer progression and resistance to chemotherapy and radiotherapy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Jia W, Eneh JO, Ratnaparkhe S, Altman MK, Murph MM. MicroRNA-30c-2* expressed in ovarian cancer cells suppresses growth factor-induced cellular proliferation and downregulates the oncogene BCL9. Mol Cancer Res 2011; 9:1732-45. [PMID: 22024689 DOI: 10.1158/1541-7786.mcr-11-0245] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as master regulators of posttranscriptional gene expression with each miRNA negatively regulating hundreds of genes. Lysophosphatidic acid (LPA) is a mitogenic lipid present within the ovarian tumor microenvironment and induces LPA receptor activation and intracellular signaling cascades like ERK/MAPK, leading to enhanced cellular proliferation. Here, we show that in SKOV-3 and OVCAR-3 cells, LPA stimulation at concentrations ranging from 1 nmol/L to 20 μmol/L for 30 to 60 minutes increases miR-30c-2*, and this effect is mediated through a combination of receptors because knock down of multiple LPA receptors is required for inhibition. The epidermal growth factor and platelet-derived growth factor also increase miR-30c-2* transcript expression, suggesting a broader responsive role for miR-30c-2*. Thus, we investigated the functional role of miR-30c-2* through ectopic expression of synthetic miRNA precursors of mature miRNA or antagomir transfection and observed that microRNA-30c-2* reduces, and the antagomir enhances, cell proliferation and viability in OVCAR-3, cisplatin-insensitive SKOV-3 and chemoresistant HeyA8-MDR cells. Ectopic expression of miR-30c-2* reduces BCL9 mRNA transcript abundance and BCL9 protein. Consistent with this observation, miR-30c-2* ectopic expression also reduced BCL9 luciferase reporter gene expression. In comparison with IOSE cells, all cancer cells examined showed increased BCL9 expression, which is consistent with its role in tumor progression. Taken together, this suggest that growth factor induced proliferation mediates a neutralizing response by significantly increasing miR-30c-2* which reduces BCL9 expression and cell proliferation in SKOV-3 and OVCAR-3 cells, likely as a mechanism to regulate signal transduction downstream.
Collapse
Affiliation(s)
- Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
25
|
GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers. PLoS One 2011; 6:e22065. [PMID: 21765936 PMCID: PMC3134474 DOI: 10.1371/journal.pone.0022065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53.
Collapse
|
26
|
Bathena SP, Huang J, Nunn ME, Miyamoto T, Parrish LC, Lang MS, McVaney TP, Toews ML, Cerutis DR, Alnouti Y. Quantitative determination of lysophosphatidic acids (LPAs) in human saliva and gingival crevicular fluid (GCF) by LC-MS/MS. J Pharm Biomed Anal 2011; 56:402-7. [PMID: 21703797 DOI: 10.1016/j.jpba.2011.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/16/2011] [Accepted: 05/27/2011] [Indexed: 01/31/2023]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid mediator that plays multiple cellular functions by acting through G protein-coupled LPA receptors. LPAs are known to be key mediators in inflammation, and several lines of evidence suggest a role for LPAs in inflammatory periodontal diseases. A simple and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify LPA species (LPA 18:0, LPA 16:0, LPA 18:1 and LPA 20:4) in human saliva and gingival crevicular fluid (GCF). LPA 17:0 was used as an internal standard and the LPA species were extracted from saliva by liquid-liquid extraction using butanol. Chromatography was performed using a Macherey-Nagel NUCLEODUR® C8 Gravity Column (125 mm × 2.0 mm ID) with a mixture of methanol/water: 75/25 (v/v) containing 0.5% formic acid and 5 mM ammonium formate (mobile phase A) and methanol/water: 99/0.5 (v/v) containing 0.5% formic acid and 5mM ammonium formate (mobile phase B) at a flow rate of 0.5 mL/min. LPAs were detected by a linear ion trap-triple quadrupole mass spectrometer with a total run time of 8.5 min. The limit of quantification (LOQ) in saliva was 1 ng/mL for all LPA species and the method was validated over the range of 1-200 ng/mL. The method was validated in GCF over the ranges of 10-500 ng/mL for LPA 18:0 and LPA 16:0, and 5-500 ng/mL for LPA 18:1 and LPA 20:4. This sensitive LC-MS/MS assay was successfully applied to obtain quantitative data of individual LPA levels from control subjects and patients with various periodontal diseases. All four LPA species were consistently elevated in samples obtained from periodontal diseases, which supports a role of LPAs in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- S P Bathena
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
G protein-coupled receptors (GPCRs) belong to a superfamily of cell surface signalling proteins that have a pivotal role in many physiological functions and in multiple diseases, including the development of cancer and cancer metastasis. Current drugs that target GPCRs - many of which have excellent therapeutic benefits - are directed towards only a few GPCR members. Therefore, huge efforts are currently underway to develop new GPCR-based drugs, particularly for cancer. We review recent findings that present unexpected opportunities to interfere with major tumorigenic signals by manipulating GPCR-mediated pathways. We also discuss current data regarding novel GPCR targets that may provide promising opportunities for drug discovery in cancer prevention and treatment.
Collapse
|
28
|
Hurst-Kennedy J, Zhong M, Gupta V, Boyan BD, Schwartz Z. 24R,25-Dihydroxyvitamin D3, lysophosphatidic acid, and p53: a signaling axis in the inhibition of phosphate-induced chondrocyte apoptosis. J Steroid Biochem Mol Biol 2010; 122:264-71. [PMID: 20594980 DOI: 10.1016/j.jsbmb.2010.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 11/20/2022]
Abstract
Maintenance of the pool of chondrocytes in the resting zone of the growth plate in the presence of the physiological apoptogen inorganic phosphate (Pi) is crucial for skeletal development. Costochondral resting zone chondrocytes are regulated by the vitamin D metabolite 24R,25-dihydroxyvitamin D3 [24R,25(OH)(2)D(3)], with increased production of sulfated glycosaminoglycan-rich extracellular matrix, and reduced matrix metalloproteinase activity. The effects of 24R,25(OH)(2)D(3) are mediated by activation of phospholipase D (PLD), resulting in increased production of lysophosphatidic acid (LPA) and LPA-mediated proliferation, maturation, inhibition of Pi-induced apoptosis, and reduction of p53. However, the exact mechanism by which 24R,25(OH)(2)D(3) and LPA exert their effects is not fully understood. It was found that both 24R,25(OH)(2)D(3) and LPA attenuate Pi-induced caspase-3 activity. The actions of 24R,25(OH)(2)D(3) and LPA were dependent upon G(αi), LPA receptor(s) 1 and/or 3, PLD, phospholipase C (PLC), and intracellular calcium, phosphoinositide 3-kinase (PI(3)K) signaling, and nuclear export. 24R,25(OH)(2)D(3) decreased both p53 abundance and p53-medaited transcription and inhibited Pi-induced cytochrome c translocation. Moreover, LPA induced increased mdm2 phosphorylation, a negative regulator of p53. Taken together, these data show that 24R,25(OH)(2)D(3) inhibits Pi-induced apoptosis through Ca(2+), PLD, and PLC signaling and through LPA-LPA1/3-G(αi)-PI(3)K-mdm2-mediated p53 degradation, resulting in decreased cytochrome c translocation and caspase-3 activity.
Collapse
Affiliation(s)
- J Hurst-Kennedy
- Department of Biomedical Engineering, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0363, United States
| | | | | | | | | |
Collapse
|
29
|
Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 2010; 93:61-70. [PMID: 20709140 DOI: 10.1016/j.biochi.2010.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/21/2022]
Abstract
Evidence from clinical, animal and cell culture studies demonstrates that increased autotaxin (ATX) expression is responsible for enhancing tumor progression, cell migration, metastases, angiogenesis and chemo-resistance. These effects depend mainly on the rapid formation of lysophosphatidate (LPA) by ATX. Circulating LPA has a half-life of about 3 min in mice and it is degraded by the ecto-activities of lipid phosphate phosphatases (LPPs). These enzymes also hydrolyze extracellular sphingosine 1-phosphate (S1P), a potent signal for cell division, survival and angiogenesis. Many aggressive tumor cells express high ATX levels and low LPP activities. This favors the formation of locally high LPA and S1P concentrations. Furthermore, LPPs attenuate signaling downstream of the activation of G-protein coupled receptors and receptor tyrosine kinases. Therefore, we propose that the low expression of LPPs in many tumor cells makes them hypersensitive to growth promoting and survival signals that are provided by LPA, S1P, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). One of the key signaling pathways in this respect appears to be activation of phospholipase D (PLD) and phosphatidate (PA) production. This is required for the transactivations of the EGFR and PDGFR and also for LPA-induced cell migration. PA also increases the activities of ERK, mTOR, myc and sphingosine kinase-1 (SK-1), which provide individual signals for cells division, survival, chemo-resistance and angiogenesis. This review focuses on the balance of signaling by bioactive lipids including LPA, phosphatidylinositol 3,4,5-trisphosphate, PA and S1P versus the action of ceramides. We will discuss how these lipid mediators interact to produce an aggressive neoplastic phenotype.
Collapse
Affiliation(s)
- Nasser Samadi
- Signal Transduction Research Group, Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, T6G 2S2 Alberta, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Boyan BD, Hurst-Kennedy J, Denison TA, Schwartz Z. 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] controls growth plate development by inhibiting apoptosis in the reserve zone and stimulating response to 1alpha,25(OH)2D3 in hypertrophic cells. J Steroid Biochem Mol Biol 2010; 121:212-6. [PMID: 20307662 DOI: 10.1016/j.jsbmb.2010.03.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/13/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Previously we showed that costochondral growth plate resting zone (RC) chondrocytes response primarily to 24R,25(OH)2D3 whereas prehypertrophic and hypertrophic (GC) cells respond to 1alpha,25(OH)2D3. 24R,25(OH)2D3 increases RC cell proliferation and inhibits activity of matrix processing enzymes, suggesting it stabilizes cells in the reserve zone, possibly by inhibiting the matrix degradation characteristic of apoptotic hypertrophic GC cells. To test this, apoptosis was induced in rat RC cells by treatment with exogenous inorganic phosphate (Pi). 24R,25(OH)2D3 blocked apoptotic effects in a dose-dependent manner. Similarly, apoptosis was induced in ATDC5 cell cultures and 24R,25(OH)2D3 blocked this effect. Further studies indicated that 24R,25(OH)2D3 acts via at least two independent pathways. 24R,25(OH)2D3 increases LPA receptor-1 (LPA R1) expression and production of lysophosphatidic acid (LPA), and subsequent LPA R1/3-dependent signaling, thereby decreasing p53 abundance. LPA also increases the Bcl-2/Bax ratio. In addition, 24R,25(OH)2D3 acts by increasing PKC activity. 24R,25(OH)2D3 stimulates 1-hydroxylase activity, resulting in increased levels of 1,25(OH)2D3, and it increases levels of phospholipase A2 activating protein, which is required for rapid 1alpha,25(OH)2D3-dependent activation of PKC in GC cells. These results suggest that 24R,25(OH)2D3 modulates growth plate development by controlling the rate and extent of RC chondrocyte transition to a GC chondrocyte phenotype.
Collapse
Affiliation(s)
- B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, ATlanta, GA 30332-0363, USA.
| | | | | | | |
Collapse
|
31
|
Xu X, Prestwich GD. Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 2010; 116:1739-50. [PMID: 20143443 DOI: 10.1002/cncr.24907] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND : We developed an engineered three-dimensional (3D) tumor xenograft model of nonsmall cell lung cancer (NSCLC) in nude mice, and we used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS : First, BrP-LPA, a pan-antagonist for 4 LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3D in 3 semisynthetic extracellular matrices (ECMs) based on chemically modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were determined as a function of semisynthetic ECMs composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with 4 intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS : First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3D encapsulated A549 cells in vivo in nude mice increased in the following order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factorss plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS : Engineered A549 lung tumors can be created by 3D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. Cancer 2010. (c) 2010 American Cancer Society.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Medicinal Chemistry and The Center for Therapeutic Biomaterials, The University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
32
|
Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010; 50:157-86. [PMID: 20055701 DOI: 10.1146/annurev.pharmtox.010909.105753] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA(1)-LPA(5). They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Solyakov L, Sayan E, Riley J, Pointon A, Tobin AB. Regulation of p53 expression, phosphorylation and subcellular localization by a G-protein-coupled receptor. Oncogene 2009; 28:3619-30. [PMID: 19648965 PMCID: PMC2875175 DOI: 10.1038/onc.2009.225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/24/2009] [Accepted: 06/05/2009] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This superfamily of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In this study we show that a classical G(q/11)-coupled GPCR, the M(3)-muscarinic receptor, was able to regulate apoptosis through receptors that are endogenously expressed in the human neuroblastoma cell line, SH-SY5Y, and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M(3)-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, subcellular trafficking and modification of p53 in a manner that is, in part, dependent on the cell type.
Collapse
Affiliation(s)
- L Solyakov
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
34
|
Gaetano CG, Samadi N, Tomsig JL, Macdonald TL, Lynch KR, Brindley DN. Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog 2009; 48:801-9. [PMID: 19204929 DOI: 10.1002/mc.20524] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased expression of autotaxin in tumors including glioblastoma, breast, renal, ovarian, lung, and thyroid cancers is associated with increased tumor aggressiveness. Autotaxin promotes metastasis as well as cell growth, survival, and migration of cancer cells. These actions could depend on the noncatalytic effects of autotaxin on cell adhesion, or the catalytic activity of autotaxin, which converts lysophosphatidylcholine into lysophosphatidate in the extracellular fluid surrounding the tumor. Both lysophosphatidylcholine (LPC) and lysophosphatidate have been reported to stimulate migration through their respective G-protein coupled receptors. The present study determines the roles of autotaxin, LPC, and lysophosphatidate in controlling the migration of two cancer cell lines: MDA-MB-231 breast cancer cells, which produce little autotaxin and MDA-MB-435 melanoma cells that secrete significant levels of autotaxin. LPC alone was unable to stimulate the migration of either cell type unless autotaxin was present. Knocking down autotaxin secretion, or inhibiting its catalytic activity, blocked cell migration by preventing lysophosphatidate production and the subsequent activation of LPA(1/3) receptors. We conclude that inhibiting autotaxin production or activity could provide a beneficial adjuvant to chemotherapy for preventing tumor growth and metastasis in patients with high autotaxin expression in their tumors.
Collapse
Affiliation(s)
- Cristoforo G Gaetano
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|
35
|
Weems JM, Cutler NS, Moore C, Nichols WK, Martin D, Makin E, Lamb JG, Yost GS. 3-Methylindole is mutagenic and a possible pulmonary carcinogen. Toxicol Sci 2009; 112:59-67. [PMID: 19700606 DOI: 10.1093/toxsci/kfp201] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous work has shown that bioactivation of the cigarette smoke pneumotoxicant 3-methylindole (3MI) by pulmonary cytochrome P450 enzymes is directly associated with formation of DNA adducts. Here, we present evidence that normal human lung epithelial cells, exposed to low micromolar concentrations of 3MI, showed extensive DNA damage, as measured by the comet assay, with similar potency to the prototypical genotoxic agents, doxorubicin and irinotecan. The DNA damage caused by 3MI was predominantly caused by single-strand breaks. Furthermore, we show that this damage decreased with time, given a subtoxic concentration, with detectable DNA fragmentation peaking 4 h after exposure and diminishing to untreated levels within 24 h. Pretreatment with an inhibitor of poly(ADP-ribose) polymerase 1 (PARP1), NU1025, nearly doubled the DNA damage produced by 5 microM 3MI, implying that PARP1, which among other activities, functions to repair single-strand breaks in DNA, repaired at least some of the 3MI-induced DNA fragmentation. A key cellular response to DNA damage, phosphorylation, and nuclear localization of p53 was seen at subtoxic levels of 3MI exposure. 3MI was highly mutagenic, with essentially the same potency as the prototype carcinogen, benzo[a]pyrene, only when a lung-expressed CYP2F3 enzyme was used to dehydrogenate 3MI to its putative DNA-alkylating intermediate. Conversely, a rat liver S9 metabolic system did not bioactivate 3MI to its mutagenic intermediate(s). Concentrations higher than 25 microM caused apoptosis, which became extensive at 100 microM, similar to the response seen with 10 microM doxorubicin. Our findings indicate that there is a low concentration window in which 3MI can cause extensive DNA damage and mutation, without triggering apoptotic defenses, reinforcing the hypothesis that inhaled 3MI from cigarette smoke may be a potent lung-selective carcinogen.
Collapse
Affiliation(s)
- Jessica M Weems
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu X, Yang G, Zhang H, Prestwich GD. Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 2009; 89:140-6. [PMID: 19682598 DOI: 10.1016/j.prostaglandins.2009.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 12/27/2022]
Abstract
Using an in situ cross-linkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a "tumor engineering" strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and injection parameters for engineered xenografts. Second, we summarize a study to compare angiogenesis inhibition in vivo, comparing BrP-LPA to the kinase inhibitor sunitinib maleate (Sutent). Third, we compare treatment of engineered breast tumors with LPAa/ATXi alone with treatment with Taxol. Fourth, using a re-optimized sECM for non-small cell lung cancer cells, we created reproducibly sized subcutaneous lung tumors and evaluated their response to treatment with LPAa/ATXi. Fifth, we summarize the data on the use of LPAa/ATXi to treat a model for colon cancer metastasis to the liver. Taken together, these improved, more realistic xenografts show considerable utility for evaluating the potential of novel anti-metastatic, anti-proliferative, and anti-angiogenic compounds that modify signal transduction through the LPA signaling pathway.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Medicinal Chemistry and The Center for Therapeutic Biomaterials, The University of Utah, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | |
Collapse
|
37
|
Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, Coombes K, Muller W, Hung MC, Perou CM, Lee AV, Fang X, Mills GB. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15:539-50. [PMID: 19477432 PMCID: PMC4157573 DOI: 10.1016/j.ccr.2009.03.027] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/05/2009] [Accepted: 03/26/2009] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) acts through high-affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each edg family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER)-positive, invasive, and metastatic mammary cancer. Thus, ATX and LPA receptors can contribute to the initiation and progression of breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cloning, Molecular
- Female
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Neoplasm Invasiveness
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Phosphodiesterase I/genetics
- Phosphodiesterase I/metabolism
- Phosphoric Diester Hydrolases
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Shuying Liu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makiko Umezu-Goto
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandi Murph
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fan Zhang
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Clifton Stephens
- Department of Veterinary Medicine & Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiang Cui
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Molecular Oncology, John Wayne Cancer Institute Saint John's Health Center, Santa Monica, CA 90404, USA
| | - George Murrow
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Coombes
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian V. Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: Dr. Gordon B. Mills, Department of Systems Biology, M D Anderson Cancer Center 1515 Holcombe Blvd., Houston, TX 77030, USA, , Tel (713) 563-4200, Fax (713) 563-4235
| |
Collapse
|
38
|
Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:836-46. [PMID: 19233232 DOI: 10.1016/j.bbamcr.2009.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/12/2009] [Accepted: 01/30/2009] [Indexed: 11/24/2022]
Abstract
Growth plate cartilage is responsible for long bone growth in children and adolescents and is regulated by vitamin D metabolites in a cell zone-specific manner. Resting zone chondrocytes (RC cells) are regulated by 24,25-dihydroxyvitamin D3 via a phospholipase D-dependent pathway, suggesting downstream phospholipid metabolites are involved. In this study, we showed that 24R,25(OH)2D3 stimulates rat costochondral RC chondrocytes to release lysophosphatidic acid (LPA) and, therefore sought to determine the role of LPA signaling in these cells. RC cells expressed the G-protein coupled receptors LPA1-5 and peroxisome proliferator-activated receptor gamma (PPAR-gamma). LPA and the LPA1/3 selective agonist OMPT increased proliferation and two maturation markers, alkaline phosphatase activity and [35S]-sulfate incorporation. LPA and 24R,25(OH)2D3's effects were inhibited by the LPA1/3 selective antagonist VPC32183(S). Furthermore, apoptosis induced by either inorganic phosphate or chelerythrine was attenuated by LPA, based on DNA fragmentation, TUNEL staining, caspase-3 activity, and Bcl-2:Bax protein ratio. LPA prevented apoptotic signaling by decreasing the abundance, nuclear localization, and transcriptional activity of the tumor-suppressor p53. LPA treatment also regulated the expression of the p53-target genes Bcl-2 and Bax to enhance cell survival. Collectively, these data suggest that LPA promotes differentiation and survival in RC chondrocytes, demonstrating a novel physiological function of LPA-signaling.
Collapse
|
39
|
Muller PAJ, van de Sluis B, Groot AJ, Verbeek D, Vonk WIM, Maine GN, Burstein E, Wijmenga C, Vooijs M, Reits E, Klomp LWJ. Nuclear-cytosolic transport of COMMD1 regulates NF-kappaB and HIF-1 activity. Traffic 2009; 10:514-27. [PMID: 19220812 DOI: 10.1111/j.1600-0854.2009.00892.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Copper metabolism MURR1 domain1 (COMMD1) is a novel inhibitor of the transcription factors NF-kappaB and HIF-1, which play important roles in inflammation and tumor growth, respectively. In this study, we identified two highly conserved nuclear export signals (NESs) in COMMD1 and revealed that these NESs were essential and sufficient to induce maximal nuclear export of COMMD1. Inhibition of CRM1-mediated nuclear export by Leptomycin B resulted in nuclear accumulation of COMMD1. In addition, low oxygen concentrations induced the active export of COMMD1 from the nucleus in a CRM1-dependent manner. Disruption of the NESs in COMMD1 increased the repression of COMMD1 in transcriptional activity of NF-kappaB and HIF-1. In conclusion, these data indicate that COMMD1 undergoes constitutive nucleocytoplasmic transport as a novel mechanism to regulate NF-kappaB and HIF-1 signaling.
Collapse
Affiliation(s)
- Patricia A J Muller
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene 2008; 28:1028-39. [PMID: 19079345 DOI: 10.1038/onc.2008.442] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autotaxin (ATX) promotes cancer cell survival, growth, migration, invasion and metastasis. ATX converts extracellular lysophosphatidylcholine (LPC) into lysophosphatidate (LPA). As these lipids have been reported to affect cell signaling through their own G-protein-coupled receptors, ATX could modify the balance of this signaling. Also, ATX affects cell adhesion independently of its catalytic activity. We investigated the interactions of ATX, LPC and LPA on the apoptotic effects of Taxol, which is commonly used in breast cancer treatment. LPC had no significant effect on Taxol-induced apoptosis in MCF-7 breast cancer cells, which do not secrete significant ATX. Addition of incubation medium from MDA-MB-435 melanoma cells, which secrete ATX, or recombinat ATX enabled LPC to inhibit Taxol-induced apoptosis of MCF-7 cells. Inhibiting ATX activity blocked this protection against apoptosis. We conclude that LPC has no significant effect in protecting MCF-7 cells against Taxol treatment unless it is converted to LPA by ATX. LPA strongly antagonized Taxol-induced apoptosis through stimulating phosphatidylinositol 3-kinase and inhibiting ceramide formation. LPA also partially reversed the Taxol-induced arrest in the G2/M phase of the cell cycle. Our results support the hypothesis that therapeutic inhibition of ATX activity could improve the efficacy of Taxol as a chemotherapeutic agent for cancer treatment.
Collapse
|
41
|
Abstract
Lipid phosphate phosphatases (LPPs) regulate cell signaling by modifying the concentrations of lipid phosphates versus their dephosphorylated products. The ecto-activity regulates the availability of extracellular lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) and thereby signaling by their respective receptors. LPP products (monoacylglycerol or sphingosine) are taken up by cells and rephosphorylated to produce LPA and S1P, respectively, which activate intracellular signaling cascades. The proposed integrin binding domain on the external surface of LPP3 modifies cell/cell interactions. Expression of LPPs on internal membranes controls signaling depending on the access of lipid phosphates to their active sites. Different LPPs perform distinct functions, probably based on integrin binding, their locations, and their abilities to metabolize different lipid phosphates in vivo.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| | | |
Collapse
|
42
|
Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X, Mills GB. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008; 100:1630-42. [PMID: 19001604 PMCID: PMC2720766 DOI: 10.1093/jnci/djn378] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) acts through the cell surface G protein-coupled receptors, LPA1, LPA2, or LPA3, to elicit a wide range of cellular responses. It is present at high levels in intraperitoneal effusions of human ovarian cancer increasing cell survival, proliferation, and motility as well as stimulating production of neovascularizing factors. LPA2 and LPA3 and enzymes regulating the production and degradation of LPA are aberrantly expressed by ovarian cancer cells, but the consequences of these expression changes in ovarian cancer cells were unknown. METHODS Expression of LPA1, LPA2, or LPA3 was inhibited or increased in ovarian cancer cells using small interfering RNAs (siRNAs) and lentivirus constructs, respectively. We measured the effects of changes in LPA receptor expression on cell proliferation (by crystal violet staining), cell motility and invasion (using Boyden chambers), and cytokines (interleukin 6 [IL-6], interleukin 8 [IL-8], and vascular endothelial growth factor [VEGF]) production by enzyme-linked immunosorbent assay. The role of LPA receptors in tumor growth, ascites formation, and cytokine production was assessed in a mouse xenograft model. All statistical tests were two-sided. RESULTS SKOV-3 cells with increased expression of LPA receptors showed increased invasiveness, whereas siRNA knockdown inhibited both migration (P < .001, Student t test) and invasion. Knockdown of the LPA2 or LPA3 receptors inhibited the production of IL-6, IL-8, and VEGF in SKOV-3 and OVCAR-3 cells. SKOV-3 xenografts expressing LPA receptors formed primary tumors of increased size and increased ascites volume. Invasive tumors in the peritoneal cavity occurred in 75% (n = 4) of mice injected with LPA1 expressing SKOV-3 and 80% (n = 5) of mice injected with LPA2 or LPA3 expressing SKOV-3 cells. Metastatic tumors expressing LPA1, LPA2, and LPA3 were identified in the liver, kidney, and pancreas; tumors expressing LPA2 and LPA3 were detected in skeletal muscle; and tumors expressing LPA2 were also found in the cervical lymph node and heart. The percent survival of mice with tumors expressing LPA2 or LPA3 was reduced in comparison with animals with tumors expressing beta-galactosidase. CONCLUSIONS Expression of LPA2 or LPA3 during ovarian carcinogenesis contributes to ovarian cancer aggressiveness, suggesting that the targeting of LPA production and action may have potential for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuangxing Yu
- Department of Systems Biology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kortlever RM, Brummelkamp TR, van Meeteren LA, Moolenaar WH, Bernards R. Suppression of the p53-dependent replicative senescence response by lysophosphatidic acid signaling. Mol Cancer Res 2008; 6:1452-60. [PMID: 18723828 DOI: 10.1158/1541-7786.mcr-08-0066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator of a large number of biological processes, including wound healing, brain development, vascular remodeling, and tumor progression. Its role in tumor progression is probably linked to its ability to induce cell proliferation, migration, and survival. In particular, the ascites of ovarian cancers is rich in LPA and has been implicated in growth and invasion of ovarian tumor cells. LPA binds to specific G protein-coupled receptors and thereby activates multiple signal transduction pathways, including those initiated by the small GTPases Ras, Rho, and Rac. We report here a genetic screen with retroviral cDNA expression libraries to identify genes that allow bypass of the p53-dependent replicative senescence response in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen. Using this approach, we identified the LPA receptor type 2 (LPA(2)) and the Rho-specific guanine nucleotide exchange factor Dbs as potent inducers of senescence bypass. Enhanced expression of LPA(2) or Dbs also results in senescence bypass in primary mouse embryo fibroblasts in the presence of wild-type p53, in a Rho GTPase-dependent manner. Our results reveal a novel and unexpected link between LPA signaling and the p53 tumor-suppressive pathway.
Collapse
Affiliation(s)
- Roderik M Kortlever
- Division of Molecular Carcinogenesis, Center for Cancer Genomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|