1
|
Jilani M, Degras D, Haspel N. Elucidating Cancer Subtypes by Using the Relationship between DNA Methylation and Gene Expression. Genes (Basel) 2024; 15:631. [PMID: 38790260 PMCID: PMC11121157 DOI: 10.3390/genes15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Advancements in the field of next generation sequencing (NGS) have generated vast amounts of data for the same set of subjects. The challenge that arises is how to combine and reconcile results from different omics studies, such as epigenome and transcriptome, to improve the classification of disease subtypes. In this study, we introduce sCClust (sparse canonical correlation analysis with clustering), a technique to combine high-dimensional omics data using sparse canonical correlation analysis (sCCA), such that the correlation between datasets is maximized. This stage is followed by clustering the integrated data in a lower-dimensional space. We apply sCClust to gene expression and DNA methylation data for three cancer genomics datasets from the Cancer Genome Atlas (TCGA) to distinguish between underlying subtypes. We evaluate the identified subtypes using Kaplan-Meier plots and hazard ratio analysis on the three types of cancer-GBM (glioblastoma multiform), lung cancer and colon cancer. Comparison with subtypes identified by both single- and multi-omics studies implies improved clinical association. We also perform pathway over-representation analysis in order to identify up-regulated and down-regulated genes as tentative drug targets. The main goal of the paper is twofold: the integration of epigenomic and transcriptomic datasets followed by elucidating subtypes in the latent space. The significance of this study lies in the enhanced categorization of cancer data, which is crucial to precision medicine.
Collapse
Affiliation(s)
- Muneeba Jilani
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA;
| | - David Degras
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA;
| |
Collapse
|
2
|
Different Approaches for the Profiling of Cancer Pathway-Related Genes in Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms231810883. [PMID: 36142793 PMCID: PMC9504477 DOI: 10.3390/ijms231810883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Deregulation of signalling pathways that regulate cell growth, survival, metabolism, and migration can frequently lead to the progression of cancer. Brain tumours are a large group of malignancies characterised by inter- and intratumoral heterogeneity, with glioblastoma (GBM) being the most aggressive and fatal. The present study aimed to characterise the expression of cancer pathway-related genes (n = 84) in glial tumour cell lines (A172, SW1088, and T98G). The transcriptomic data obtained by the qRT-PCR method were compared to different control groups, and the most appropriate control for subsequent interpretation of the obtained results was chosen. We analysed three widely used control groups (non-glioma cells) in glioblastoma research: Human Dermal Fibroblasts (HDFa), Normal Human Astrocytes (NHA), and commercially available mRNAs extracted from healthy human brain tissues (hRNA). The gene expression profiles of individual glioblastoma cell lines may vary due to the selection of a different control group to correlate with. Moreover, we present the original multicriterial decision making (MCDM) for the possible characterization of gene expression profiles. We observed deregulation of 75 genes out of 78 tested in the A172 cell line, while T98G and SW1088 cells exhibited changes in 72 genes. By comparing the delta cycle threshold value of the tumour groups to the mean value of the three controls, only changes in the expression of 26 genes belonging to the following pathways were identified: angiogenesis FGF2; apoptosis APAF1, CFLAR, XIAP; cellular senescence BM1, ETS2, IGFBP5, IGFBP7, SOD1, TBX2; DNA damage and repair ERCC5, PPP1R15A; epithelial to mesenchymal transition SNAI3, SOX10; hypoxia ADM, ARNT, LDHA; metabolism ATP5A1, COX5A, CPT2, PFKL, UQCRFS1; telomeres and telomerase PINX1, TINF2, TNKS, and TNKS2. We identified a human astrocyte cell line and normal human brain tissue as the appropriate control group for an in vitro model, despite the small sample size. A different method of assessing gene expression levels produced the same disparities, highlighting the need for caution when interpreting the accuracy of tumorigenesis markers.
Collapse
|
3
|
Hasegawa D, Aoshima K, Sasaoka K, Kobayashi A, Takiguchi M, Kimura T. Malignant oligoastrocytoma in the spinal cord of a cat. J Vet Med Sci 2022; 84:1277-1282. [PMID: 35908858 PMCID: PMC9523307 DOI: 10.1292/jvms.22-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 12-year and 3-month spayed female mixed cat was presented with severe lumbar pain. Magnetic resonance imaging and postmortem examination revealed a swollen lesion in the spinal cord at L3 level. Histologic examination identified extensive neoplastic cell proliferation with massive necrosis in the tumor tissue. Two types of neoplastic cells were recognized. One type of neoplastic cells were large cells characterized by round to polygonal shape and abundant eosinophilic cytoplasm (referred to as "large cells"). The other neoplastic cells were small, densely proliferated, and had round to irregular shape and scant eosinophilic cytoplasm (referred to as "small cells"). Both types of cells were positive for oligodendrocyte transcription factor 2 and SRY-box transcription factor 10. Glial fibrillary acidic protein was positive in large cells but negative in most small cells. Digital analysis for Ki-67-stained tumor tissues found that total 21.1% ± 6.5% of tumor cells were positive for Ki-67. Based on these findings, we diagnosed malignant oligoastrocytoma in the spinal cord.
Collapse
Affiliation(s)
- Dai Hasegawa
- Laboratories of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
| | - Keisuke Aoshima
- Laboratories of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
| | - Kazuyoshi Sasaoka
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University
| | - Atsushi Kobayashi
- Laboratories of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
| | - Mitsuyoshi Takiguchi
- Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
| | - Takashi Kimura
- Laboratories of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
| |
Collapse
|
4
|
Unraveling unique and common cell type-specific mechanisms in glioblastoma multiforme. Comput Struct Biotechnol J 2022; 20:90-106. [PMID: 34976314 PMCID: PMC8688884 DOI: 10.1016/j.csbj.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.
Collapse
Key Words
- CAMs, Cell adhesion molecules
- CNS, Cental nervous system
- DEG, Differentially expressed genes
- EMT, Epithelial-mesenchymal transistion
- GBM, Glioblastoma multiforme
- GSC, Glioblastoma Stem Cell
- Glial cell types
- Glioblastoma multiforme
- INstruct, a database of structurally resolved protein interactome
- MO, Myelinating oligodendrocyte
- NCBI, National Centre for Biotechnology Information
- NFO, Newly formed oligodendrocyte
- NPC, Neural progenitor cell
- OPC, Oligodendrocyte precursor cell
- PDI, Protein domain interactions
- PDIN, Protein domain interaction network
- PPI, Protein-protein interactions
- Primary solid tumour
- Protein domains
- Protein interaction networks
- RSEM, RNA-seq by Expectation-Maximization
- Recurrent solid tumour transcription factors
- SIGNOR, Signaling Network Open Resource
- TCGA, The Cancer Genome Atlas
- TF, Transcription factor
- TP, Primary solid tumour
- TR, Recurrent solid tumour
- WHO, World health organization
- iDEP, Integrated Differential Expression and Pathway analysis
Collapse
|
5
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
6
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Jin C, Zhao J, Zhang Z, Wu M, Li J, Liu B, Bin Liao X, Liao Y, Liu J. CircRNA EPHB4 modulates stem properties and proliferation of gliomas via sponging miR-637 and up-regulating SOX10. Mol Oncol 2021; 15:596-622. [PMID: 33085838 PMCID: PMC7858283 DOI: 10.1002/1878-0261.12830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common type of primary brain tumors. CircRNA ephrin type-B receptor 4 (circEPHB4) is a circular RNA derived from the receptor tyrosine kinase EPHB4. However, the clinical significance and the specific roles of circEPHB4 in gliomas and glioma cancer stem cells (CSC) have not been studied. Here, we found that circEPHB4 (hsa_circ_0081519) and SOX10 were up-regulated and microRNA (miR)-637 was down-regulated in glioma tissues and cell lines. Consistently, circEPHB4 was positively correlated with SOX10 but negatively correlated with miR-637. The altered expressions of these molecules were independently associated with overall survival of patients. CircEPHB4 up-regulated SOX10 and Nestin by directly sponging miR-637, thereby stimulating stemness, proliferation and glycolysis of glioma cells. Functionally, silencing circEPHB4 or increasing miR-637 levels in glioma cells was sufficient to inhibit xenograft growth in vivo. In conclusion, the circEPHB4/miR-637/SOX10/Nestin axis plays a central role in controlling stem properties, self-renewal and glycolysis of glioma cells and predicts the overall survival of glioma patients. Targeting this axis might provide a therapeutic strategy for malignant gliomas.
Collapse
Affiliation(s)
- Chen Jin
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Zhao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Zhi‐Ping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Ming Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Jian Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Bo Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Xin‐ Bin Liao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Yu‐Xiang Liao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Jing‐Ping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
8
|
Yang K, Stein TD, Huber BR, Sartor EA, Rachlin JR, Mahalingam M. Glioblastoma and malignant melanoma: Serendipitous or anticipated association? Neuropathology 2020; 41:65-71. [PMID: 33103282 DOI: 10.1111/neup.12702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
We describe a patient who had primary glioblastoma (GB) and malignant melanoma (MM). A 78-year-old man presented with several weeks to months of history of gait disturbance, confusion, memory disturbance, and worsening speech. Imaging studies performed on admission revealed a large frontotemporal lobe mass associated with the surrounding zone of vasogenic edema. Given the patient's medical history of incomplete biopsy of a midback tumor performed three weeks before, the presumptive clinical diagnosis was metastatic MM. Pathological examination of frozen sections of fragmented specimens obtained at stereotactic biopsy performed on admission revealed a high-grade malignant neoplasm characterized by discohesive cells in a blue myxoid background and abundant foci of tumor necrosis. Given these features, in conjunction with the abovementioned pathological report, the frozen section diagnosis by the neuropathologist was "neoplasm identified, favor melanoma." Due to the paucity of lesional tissue, a limited immunohistochemistry performed on the permanent sections revealed positive staining of lesional cells for Sox10 alone using a multiplex MART1/Sox10 immunostain and S-100 protein, an immunohistochemical profile supporting the presumptive frozen section diagnosis. A tumor debulk procedure, performed two weeks later, revealed histopathologic features most compatible with GB, IDH wild-type. Thus, additional immunohistochemistry on the permanent sections revealed positive staining of glial fibrillary acidic protein (GFAP), Sox10, and S-100 protein as well as negative staining of gp100, a complex carbohydrate matrix protein in embryonic melanosomes, using a specific antibody HMB45. The concomitant occurrence of MM and GB in our patient underscores the association between these two entities. Our literature review suggests that the sporadic co-occurrence of these two conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kevin Yang
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
| | - Bertrand R Huber
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
| | - Emmett A Sartor
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
| | - Jacob R Rachlin
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
| | - Meera Mahalingam
- Tufts University School of Medicine, Boston, Massachusetts, USA.,Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA Consolidated Laboratories, West Roxbury, Massachusetts, USA
| |
Collapse
|
9
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
10
|
Abstract
Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.
Collapse
|
11
|
Finneran MM, Georges J, Kakareka M, Moncman R, Enriquez M, Siegal T, Kubicek G, Turtz A, Yocom S, Goldman HW, Barrese J. Epithelioid glioblastoma presenting as aphasia in a young adult with ovarian cancer: A case report. Clin Case Rep 2019; 7:821-825. [PMID: 30997093 PMCID: PMC6452522 DOI: 10.1002/ccr3.2088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
Our patient's clinical history and preoperative radiographic evaluation suggested central nervous system (CNS) metastatic disease. Ultimately, final pathology revealed epithelioid glioblastoma (eGBM), a newly classified CNS primary tumor. This reinforces the importance of direct tissue sampling and including eGBM on the differential for young patients with histories of systemic cancer presenting with new CNS lesions.
Collapse
Affiliation(s)
- Megan M. Finneran
- Department of Clinical MedicineChicago College of Osteopathic MedicineChicagoIllinois
| | - Joseph Georges
- Department of NeurosurgeryPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvania
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - Michael Kakareka
- Department of NeurosurgeryPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvania
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - Ryan Moncman
- Department of NeurosurgeryPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvania
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - Miriam Enriquez
- Department of PathologyCooper University HospitalCamdenNew Jersey
| | - Todd Siegal
- Department of RadiologyCooper University HospitalCamdenNew Jersey
| | - Gregory Kubicek
- Department of Radiation OncologyCooper University HospitalCamdenNew Jersey
| | - Alan Turtz
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - Steven Yocom
- Department of NeurosurgeryPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvania
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - H. Warren Goldman
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| | - James Barrese
- Department of NeurosurgeryCooper University HospitalCamdenNew Jersey
| |
Collapse
|
12
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
13
|
|
14
|
SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors. Clin Transl Oncol 2017; 19:1035-1044. [DOI: 10.1007/s12094-017-1641-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
|
15
|
Bielle F, Ducray F, Mokhtari K, Dehais C, Adle-Biassette H, Carpentier C, Chanut A, Polivka M, Poggioli S, Rosenberg S, Giry M, Marie Y, Duyckaerts C, Sanson M, Figarella-Branger D, Idbaih A. Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas. Brain Pathol 2016; 27:567-579. [PMID: 27543943 DOI: 10.1111/bpa.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The integrated diagnosis of anaplastic oligodendroglioma, IDH mutant and 1p/19q co-deleted, grade III (O3id ) is a histomolecular entity that WHO 2016 classification distinguished from other diffuse gliomas by specific molecular alterations. In contrast, its cell portrait is less well known. The present study is focused on intertumor and intratumor, cell lineage-oriented, heterogeneity in O3id . Based on pathological, transcriptomic and immunophenotypic studies, a novel subgroup of newly diagnosed O3id overexpressing neuronal intermediate progenitor (NIP) genes was identified. This NIP overexpression pattern in O3id is associated with: (i) morphological and immunohistochemical similarities with embryonic subventricular zone, (ii) proliferating tumor cell subpopulation with NIP features including expression of INSM1 and no expression of SOX9, (iii) mutations in critical genes involved in NIP biology and, (iv) increased tumor necrosis. Interestingly, NIP tumor cell subpopulation increases in O3id recurrence compared with paired newly diagnosed tumors. Our results, validated in an independent cohort, emphasize intertumor and intratumor heterogeneity in O3id and identified a tumor cell subpopulation exhibiting NIP characteristics that is potentially critical in oncogenesis of O3id . A better understanding of spatial and temporal intratumor cell heterogeneity in O3id will open new therapeutic avenues overcoming resistance to current antitumor treatments.
Collapse
Affiliation(s)
- Franck Bielle
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - François Ducray
- Service de Neuro-oncologie, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Karima Mokhtari
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,OncoNeuroTek, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Caroline Dehais
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | | | - Catherine Carpentier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Anaïs Chanut
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France
| | - Marc Polivka
- Hôpital Lariboisière, Département de Pathologie, AP-HP, Paris, France
| | - Sylvie Poggioli
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Shai Rosenberg
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Marine Giry
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Yannick Marie
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,OncoNeuroTek, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Charles Duyckaerts
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Marc Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | - Dominique Figarella-Branger
- Département de Pathologie et Neuropathologie, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France.,Université Aix-Marseille, INSERM U911, Marseille, France
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | -
- POLA Network investigators: Amiens: Christine Desenclos, Henri Sevestre; Angers: Philippe Menei, Audrey Rousseau; Besançon: Joel Godard, Gabriel Viennet; Bobigny: Antoine Carpentier; Bordeaux: Sandrine Eimer, Hugues Loiseau; Brest: Phong Dam-Hieu, Isabelle Quintin-Roué; Caen: Jean-Sebastien Guillamo, Emmanuelle Lechapt-Zalcman; Clermont-Ferrand:Jean-Louis Kemeny, Toufik Khallil; Clichy: Dominique Cazals-Hatem, Thierry Faillot; Cornebarrieu: Ioana Carpiuc, Pomone Richard; Créteil: Caroline Le Guerinel; Colmar: Claude Gaultier, Marie-Christine Tortel; Dijon: Marie-Hélène Aubriot-Lorton, François Ghiringhelli; Kremlin-Bicêtre: Clovis Adam, Fabrice Parker; Lille: Claude-Alain Maurage, Carole Ramirez; Limoges: Edouard Marcel Gueye, François Labrousse; Lyon: Anne Jouvet; Marseille: Olivier Chinot; Montpellier: Luc Bauchet, Valérie Rigau; Nancy: Patrick Beauchesne, Dr Guillaume Gauchotte; Nantes: Mario Campone, Delphine Loussouarn; Nice: Denys Fontaine, Fanny Vandenbos; Orléans: Claire Blechet, Mélanie Fesneau; Paris: Jean Yves Delattre (national coordinator of the network), Selma Elouadhani-Hamdi, Damien Ricard; Poitiers: Delphine Larrieu-Ciron, Pierre-Marie Levillain; Reims: Philippe Colin, Marie-Danièle Diebold; Rennes: Danchristian Chiforeanu, Elodie Vauléon; Rouen: Olivier Langlois, Annie Laquerrière; Saint-Etienne: Marie Janette Motsuo Fotso, Michel Peoc'h; Saint-Pierre de la réunion: Marie Andraud, Gwenaelle Runavot; Strasbourg: Marie-Pierre Chenard, Georges Noel; Suresnes: Dr Stéphane Gaillard, Dr Chiara Villa; Toulon: Nicolas Desse; Toulouse: Elisabeth Cohen-Moyal, Emmanuelle Uro-Coste; Villejuif: Frédéric Dhermain
| |
Collapse
|
16
|
Blokzijl A, Chen LE, Gustafsdottir SM, Vuu J, Ullenhag G, Kämpe O, Landegren U, Kamali-Moghaddam M, Hedstrand H. Elevated Levels of SOX10 in Serum from Vitiligo and Melanoma Patients, Analyzed by Proximity Ligation Assay. PLoS One 2016; 11:e0154214. [PMID: 27110718 PMCID: PMC4844164 DOI: 10.1371/journal.pone.0154214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background The diagnosis of malignant melanoma currently relies on clinical inspection of the skin surface and on the histopathological status of the excised tumor. The serum marker S100B is used for prognostic estimates at later stages of the disease, but analyses are marred by false positives and inadequate sensitivity in predicting relapsing disorder. Objectives To investigate SOX10 as a potential biomarker for melanoma and vitiligo. Methods In this study we have applied proximity ligation assay (PLA) to detect the transcription factor SOX10 as a possible serum marker for melanoma. We studied a cohort of 110 melanoma patients. We further investigated a second cohort of 85 patients with vitiligo, which is a disease that also affects melanocytes. Results The specificity of the SOX10 assay in serum was high, with only 1% of healthy blood donors being positive. In contrast, elevated serum SOX10 was found with high frequency among vitiligo and melanoma patients. In patients with metastases, lack of SOX10 detection was associated with treatment benefit. In two responding patients, a change from SOX10 positivity to undetectable levels was seen before the response was evident clinically. Conclusions We show for the first time that SOX10 represents a promising new serum melanoma marker for detection of early stage disease, complementing the established S100B marker. Our findings imply that SOX10 can be used to monitor responses to treatment and to assess if the treatment is of benefit at stages earlier than what is possible radiologically.
Collapse
Affiliation(s)
- Andries Blokzijl
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24, Uppsala, Sweden
| | - Lei E. Chen
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Sigrun M. Gustafsdottir
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Jimmy Vuu
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Gustav Ullenhag
- Dept. of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - Olle Kämpe
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Ulf Landegren
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Håkan Hedstrand
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
17
|
Kleinschmidt-DeMasters BK, Donson AM, Richmond AM, Pekmezci M, Tihan T, Foreman NK. SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. J Neuropathol Exp Neurol 2016; 75:295-8. [PMID: 26945037 DOI: 10.1093/jnen/nlw010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SOX10 is important in nonneoplastic oligodendroglial development, but mRNA transcripts and protein expression are identified in a wider variety of CNS glial neoplasms than oligodendrogliomas. We previously demonstrated high levels of SOX10 mRNA and protein in pilocytic astrocytomas (PAs) but not ependymomas (EPNs). We now extend these studies to investigate subsets of these 2 tumors that affect infants, pilomyxoid astrocytomas (PMAs) and infant (<1 year) ependymomas (iEPNs). By gene expression microarray analysis, we found that iEPNs and all EPNs in older children showed very low SOX10 expression levels, on average 7.1-fold below normal control tissues. EPN groups showed no significant difference in SOX10 expression between iEPN and EPN. PAs/PMAs had 24.1/29.4-fold higher transcript levels, respectively, than those in normal tissues. Using immunohistochemical analysis of adult, pediatric, and infantile EPNs and of PAs/PMAs, we found that EPNs from multiple anatomical locations and both age groups (n = 228) never showed 3+ diffuse nuclear immunostaining for SOX10; the majority were scored at 0 or 1+. Conversely, almost all pediatric and adult PAs and PMAs (n = 47) were scored as 3+. These results suggest that in select settings, SOX10 immunohistochemistry can supplement the diagnosis of PMA and PA and aid in distinguishing them from EPNs.
Collapse
Affiliation(s)
- B K Kleinschmidt-DeMasters
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California.
| | - Andrew M Donson
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California
| | - Abby M Richmond
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California
| | - Melike Pekmezci
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California
| | - Tarik Tihan
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California
| | - Nicholas K Foreman
- From the Department of Pathology (BKKD, AMR); Department of Neurology (BKKD); and Department of Neurosurgery, University of Colorado Health Sciences Center (BKKD), Aurora, Colorado; Department of Neuro-Oncology, Children's Hospital Colorado (AMD, NKF), Aurora, Colorado; and Department of Pathology, University of California San Francisco (MP, TT), San Francisco, California
| |
Collapse
|
18
|
Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, Liu X, Kou G, Han J, Guo S, Hu Y, Li C, Tao Q, Guo Y. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 5:10571-83. [PMID: 25301735 PMCID: PMC4279394 DOI: 10.18632/oncotarget.2512] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
SOX10 was identified as a methylated gene in our previous cancer methylome study. Here we further analyzed its epigenetic inactivation, biological functions and related cell signaling in digestive cancers (colorectal, gastric and esophageal cancers) in detail. SOX10 expression was decreased in multiple digestive cancer cell lines as well as primary tumors due to its promoter methylation. Pharmacologic or genetic demethylation reversed SOX10 silencing. Ectopic expression of SOX10in SOX10-deficient cancer cells inhibits their proliferation, tumorigenicity, and metastatic potentials in vitro and in vivo. SOX10 also suppressed the epithelial to mesenchymal transition (EMT) and stemness properties of digestive tumor cells. Mechanistically, SOX10 competes with TCF4 to bind β-catenin and transrepresses its downstream target genes via its own DNA-binding property. SOX10 mutations that disrupt the SOX10-β-catenin interaction partially prevented tumor suppression. SOX10is thus a commonly inactivated tumor suppressor that antagonizes Wnt/β-catenin signaling in cancer cells from different digestive tissues.
Collapse
Affiliation(s)
- Xin Tong
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyan Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Lei Heng
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xianwei Su
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Rong Rong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Shi Hu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Wenjia Liu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Baoqing Jia
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Xing Liu
- 150 hospital of Chinese PLA, Luoyang, China
| | - Geng Kou
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Jun Han
- Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| | - Shangjing Guo
- Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Yi Hu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Cheng Li
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| |
Collapse
|
19
|
Glasgow S, Zhu W, Stolt CC, Huang TW, Chen F, LoTurco JJ, Neul JL, Wegner M, Mohila C, Deneen B. Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat Neurosci 2014; 17:1322-9. [PMID: 25151262 PMCID: PMC4313923 DOI: 10.1038/nn.3790] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
Abstract
Lineage progression and diversification is regulated by the coordinated action of unique sets of transcription factors. Oligodendrocytes (OL) and astrocytes (AS) comprise the glial sub-lineages in the CNS, and the manner in which their associated regulatory factors orchestrate lineage diversification during development and disease remains an open question. Sox10 and NFIA are key transcriptional regulators of gliogenesis associated with OL and AS. We found that NFIA inhibited Sox10 induction of OL differentiation through direct association and antagonism of its function. Conversely, we found that Sox10 antagonized NFIA function and suppressed AS differentiation in mouse and chick systems. Using this developmental paradigm as a model for glioma, we found that this relationship similarly regulated the generation of glioma subtypes. Our results describe the antagonistic relationship between Sox10 and NFIA that regulates the balance of OL and AS fate during development and demonstrate for the first time, to the best of our knowledge, that the transcriptional processes governing glial sub-lineage diversification oversee the generation of glioma subtypes.
Collapse
Affiliation(s)
| | - Wenyi Zhu
- Center for Cell and Gene Therapy, Texas 77030, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Texas 77030, USA
| | - C. Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Teng-Wei Huang
- Program in Developmental Biology, Texas 77030, USA
- Duncan Neurological Research Institute at Texas Children's, Texas 77030, USA
| | - Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT 0626 USA
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT 0626 USA
| | - Jeffrey L. Neul
- Program in Developmental Biology, Texas 77030, USA
- Duncan Neurological Research Institute at Texas Children's, Texas 77030, USA
- Department of Pediatrics, Neurology, and Molecular and Human Genetics, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carrie Mohila
- Department of Pathology, Texas Childrens Hospital, Texas 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Texas 77030, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Texas 77030, USA
- Program in Developmental Biology, Texas 77030, USA
- Duncan Neurological Research Institute at Texas Children's, Texas 77030, USA
- Department of Pediatrics, Neurology, and Molecular and Human Genetics, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
20
|
|
21
|
Sox10 nuclear immunostaining lacks diagnostic utility for CNS granular cell tumors. J Neuropathol Exp Neurol 2013; 73:98-100. [PMID: 24335528 DOI: 10.1097/nen.0000000000000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Mao XG, Song SJ, Xue XY, Yan M, Wang L, Lin W, Guo G, Zhang X. LGR5 is a proneural factor and is regulated by OLIG2 in glioma stem-like cells. Cell Mol Neurobiol 2013; 33:851-65. [PMID: 23793848 DOI: 10.1007/s10571-013-9951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
Abstract
The biological functional roles of LGR5 (leucine-rich repeat containing G protein-coupled receptor 5, also known as GPR49), a novel potential marker for stem-like cells in glioblastoma (GSCs), is poorly acknowledged. Here, we demonstrated that LGR5 was detected in glioblastoma tissues and GSCs. Bioinformatics analysis revealed that LGR5 is closely related to neurogenesis and neuronal functions, and preferentially expressed in Proneural subtype of GBMs. Furthermore, LGR5 is regulated by Proneural factor OLIG2, which is important for both neurogenesis and GSC maintenance. Biological experiments in GSC cells validated the bioinformatics analysis results and revealed that LGR5 regulated the tumor sphere formation capacity, an important stem cell property for GSCs. Therefore, LGR5 expression may be functionally correlated with the neurogenic competence, and be regulated by OLIG2 in GSCs.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.
Collapse
Affiliation(s)
- Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Sanna-Maria Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - William A. Weiss
- University of California, Depts. of Neurology, Pathology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, San Francisco CA 94158, USA
| |
Collapse
|
24
|
Abstract
Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, BMC, Box 595, S-751 24 Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
The slow development of effective treatment of glioblastoma is contrasted by the rapidly advancing research on the molecular mechanisms underlying the disease. Amplification and overexpression of receptor tyrosine kinases, particularly EGFR and PDGFRA, are complemented by mutations in the PI3K, RB1, and p53 signaling pathways. In addition to finding effective means to target these pathways, we may take advantage of the recent understanding of the hierarchical structure of tumor cell populations, where the progressive expansion of the tumor relies on a minor subpopulation of glioma stem cells, or glioma-initiating cells. Finding ways to reprogram these cells and block their self-renewal is one of the most important topics for future research.
Collapse
Affiliation(s)
- Bengt Westermark
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| |
Collapse
|
26
|
Yu D, Lim J, Liang F, Kim K, Kim BS, Jang W. Permutation test for incomplete paired data with application to cDNA microarray data. Comput Stat Data Anal 2012. [DOI: 10.1016/j.csda.2011.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol 2012; 2012:764213. [PMID: 22474481 PMCID: PMC3299309 DOI: 10.1155/2012/764213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Treatment of patients with glioblastoma multiforme (GBM) remains to be a challenge with a median survival of 14.6 months following diagnosis. Standard treatment options include surgery, radiation therapy, and systemic chemotherapy with temozolomide. Despite the fact that the brain constitutes an immunoprivileged site, recent observations after immunotherapies with lysate from autologous tumor cells pulsed on dendritic cells (DCs), peptides, protein, messenger RNA, and cytokines suggest an immunological and even clinical response from immunotherapies. Given this plethora of immunomodulatory therapies, this paper gives a structure overview of the state-of-the art in the field. Particular emphasis was also put on immunogenic antigens as potential targets for a more specific stimulation of the immune system against GBM.
Collapse
|
28
|
Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, Andreiuolo F, Carvalho D, Reis R, Guerrini-Rousseau L, Roujeau T, Dessen P, Richon C, Lazar V, Le Teuff G, Sainte-Rose C, Geoerger B, Vassal G, Jones C, Grill J. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 2012; 7:e30313. [PMID: 22389665 PMCID: PMC3289615 DOI: 10.1371/journal.pone.0030313] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/15/2011] [Indexed: 12/17/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (p = 0.041, Cox regression model). The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, p = 0.045, log-rank test). Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies.
Collapse
Affiliation(s)
- Stephanie Puget
- Department of Neurosurgery, Necker-Sick Children Hospital, University Paris V Descartes, Paris, France
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Cathy Philippe
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Dorine A. Bax
- Section of Pediatric Oncology, The Institute of Cancer Research/Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Bastien Job
- Formation de Recherche en Evolution 2939 du Centre National de la Recherche Scientifique, Integrated Research Cancer Institute in Villejuif, University Paris XI, Villejuif, France
| | - Pascale Varlet
- Team Glial Plasticity, Unite Mixte de Recherche 894 de l'Institut National de la Santé et de la Recherche Medicale and Department of Neuropathology, Sainte-Anne Hospital, University Paris V Descartes, Paris, France
| | - Marie-Pierre Junier
- Team Glial Plasticity, Unite Mixte de Recherche 894 de l'Institut National de la Santé et de la Recherche Medicale and Department of Neuropathology, Sainte-Anne Hospital, University Paris V Descartes, Paris, France
| | - Felipe Andreiuolo
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Dina Carvalho
- Section of Pediatric Oncology, The Institute of Cancer Research/Royal Marsden Hospital, Sutton, Surrey, United Kingdom
- Life and Health Sciences Research Institute, University Do Minho, Braga, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Reis
- Life and Health Sciences Research Institute, University Do Minho, Braga, Portugal
| | - Lea Guerrini-Rousseau
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Thomas Roujeau
- Department of Neurosurgery, Necker-Sick Children Hospital, University Paris V Descartes, Paris, France
| | - Philippe Dessen
- Formation de Recherche en Evolution 2939 du Centre National de la Recherche Scientifique, Integrated Research Cancer Institute in Villejuif, University Paris XI, Villejuif, France
| | - Catherine Richon
- Functional Genomics Unit, Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Vladimir Lazar
- Functional Genomics Unit, Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Gwenael Le Teuff
- Department of Biostatistics and Epidemiology, Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Christian Sainte-Rose
- Department of Neurosurgery, Necker-Sick Children Hospital, University Paris V Descartes, Paris, France
| | - Birgit Geoerger
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Gilles Vassal
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
| | - Chris Jones
- Section of Pediatric Oncology, The Institute of Cancer Research/Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Jacques Grill
- Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique «Vectorology and Anticancer Therapeutics», Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, University Paris XI, Villejuif, France
- * E-mail:
| |
Collapse
|
29
|
Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J. Developmental regulation of microRNA expression in Schwann cells. Mol Cell Biol 2012; 32:558-68. [PMID: 22064487 PMCID: PMC3255778 DOI: 10.1128/mcb.06270-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/30/2011] [Indexed: 01/07/2023] Open
Abstract
Schwann cell differentiation and subsequent myelination of the peripheral nervous system require the action of several transcription factors, including Sox10, which is vital at multiple stages of development. The transition from immature to myelinating Schwann cell is also regulated posttranscriptionally and depends upon Dicer-mediated processing of microRNAs (miRNAs). Although specific miRNA targets have begun to be identified, the mechanisms establishing the dynamic regulation of miRNA expression have not been elucidated. We performed expression profiling studies and identified 225 miRNAs differentially expressed during peripheral myelination. A subset of 9 miRNAs is positively regulated by Sox10, including miR-338 which has been implicated in oligodendrocyte maturation. In vivo chromatin immunoprecipitation (ChIP) of sciatic nerve cells revealed a Sox10 binding site upstream of an alternate promoter within the Aatk gene, which hosts miR-338. Sox10 occupied this site in spinal cord ChIP experiments, suggesting a similar regulatory mechanism in oligodendrocytes. Cancer profiling studies have identified clusters of miRNAs that regulate proliferation, termed "oncomirs." In Schwann cells, the expression of many of these proproliferative miRNAs was reduced in the absence of Sox10. Finally, Schwann cells with reduced Sox10 and oncomir expression have an increase in the CDK inhibitor p21 and a concomitant reduction in cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - John Svaren
- Waisman Center
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Serão NVL, Delfino KR, Southey BR, Beever JE, Rodriguez-Zas SL. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genomics 2011; 4:49. [PMID: 21649900 PMCID: PMC3127972 DOI: 10.1186/1755-8794-4-49] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/07/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. METHODS A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. RESULTS A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events.Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death. CONCLUSIONS Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.
Collapse
Affiliation(s)
- Nicola VL Serão
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kristin R Delfino
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan E Beever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
31
|
Kong LY, Wu AS, Doucette T, Wei J, Priebe W, Fuller GN, Qiao W, Sawaya R, Rao G, Heimberger AB. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin Cancer Res 2010; 16:5722-33. [PMID: 20921210 PMCID: PMC2999668 DOI: 10.1158/1078-0432.ccr-10-1693] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Preclinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. EXPERIMENTAL DESIGN Using the RCAS/Ntv-a system, mice were engineered to coexpress platelet-derived growth factor B (PDGF-B) receptor + B-cell lymphoma 2 (Bcl-2) under the control of the glioneuronal specific Nestin promoter. The degree and type of tumor-mediated immunosuppression were determined in these endogenously arising gliomas on the basis of the presence of macrophages and regulatory T cells. The immunotherapeutic agent WP1066 was tested in vivo to assess therapeutic efficacy and immunomodulation. RESULTS Ntv-a mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction 3 (STAT3) expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice coexpressing PDGF-B + Bcl-2that were treated with WP1066, there was 55.5% increase in median survival time (P < 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. CONCLUSIONS Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, especially immunotherapeutics, in the context of translational studies.
Collapse
Affiliation(s)
- Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Adam S. Wu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jun Wei
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gregory N. Fuller
- Department of Neuropathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Wei Qiao
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
32
|
Ferletta M, Caglayan D, Mokvist L, Jiang Y, Kastemar M, Uhrbom L, Westermark B. Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells. Int J Cancer 2010; 129:45-60. [PMID: 20824710 DOI: 10.1002/ijc.25647] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Numerous studies support a role for Sox2 to keep stem cells and progenitor cells in an immature and proliferative state. Coexpression of Sox2 and GFAP has been found in regions of the adult brain where neural stem cells are present and in human glioma cells. In our study, we have investigated the roles of Sox2 and its counteracting partner Sox21 in human glioma cells. We show for the first time that Sox21 is expressed in both primary glioblastoma and in human glioma cell lines. We found that coexpression of Sox2, GFAP and Sox21 was mutually exclusive with expression of fibronectin. Our result suggests that glioma consists of at least two different cell populations: Sox2(+) /GFAP(+) /Sox21(+) /FN(-) and Sox2(-) /GFAP(-) /Sox21(-) /FN(+) . Reduction of Sox2 expression by using siRNA against Sox2 or by overexpressing Sox21 using a tetracycline-regulated expression system (Tet-on) caused decreased GFAP expression and a reduction in cell number due to induction of apoptosis. We suggest that Sox21 can negatively regulate Sox2 in glioma. Our findings imply that Sox2 and Sox21 may be interesting targets for the development of novel glioma therapy.
Collapse
Affiliation(s)
- Maria Ferletta
- Department of Genetics and Pathology, Rudbeck laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kondyli M, Gatzounis G, Kyritsis A, Varakis J, Assimakopoulou M. Immunohistochemical detection of phosphorylated JAK-2 and STAT-5 proteins and correlation with erythropoietin receptor (EpoR) expression status in human brain tumors. J Neurooncol 2010; 100:157-64. [PMID: 20336349 DOI: 10.1007/s11060-010-0156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
Abstract
Phosphorylated (activated) forms of Janus Kinase 2 (pJAK-2) and STAT-5 transcription factor (pSTAT-5), which are preferentially expressed after binding of erythropoietin (Epo) to its receptor EpoR, are known to be implicated in the molecular mechanisms controlling brain development. The purpose of this study was to investigate the expression of these proteins (pJAK-2, pSTAT-5, and EpoR) in human brain tumors compared with normal brain. Using specific antibodies and immunohistochemistry on formalin-fixed, paraffin-embedded semi-serial tissue sections a total of 87 human brain tumors and samples from normal brain tissue were studied. pJAK-2/pSTAT-5 nuclear co-expression was detected in 39% of astrocytomas, 43% of oligodendrogliomas, 50% of ependymomas, and in all (100%) of the medulloblastomas examined. In contrast, most of the meningiomas showed weak or no immunoreactivity for pJAK-2/pSTAT-5 proteins. A significant percentage of tumors exhibited pSTAT-5 immunoreactivity, being pJAK-2 immunonegative. EpoR/pJAK-2/pSTAT-5 co-expression was detected in a small percentage of astrocytomas (18%) and ependymomas (33%). Oligodendrogliomas and medulloblastomas were EpoR immunonegative. Tumor vessels exhibited EpoR, pJAK-2, and pSTAT-5 immunoreactivity. In normal brain tissue, EpoR immunoreactivity was detected in neurons and vessels whereas pSTAT-5 and pJAK-2 immunoreactivity was limited to some neurons and a few glial cells, respectively. These results indicate the existence of ligand (other than Epo)-dependent or independent JAK-2 activation that leads to constitutive activation of STAT-5 in most human brain tumors. Given the oncogenic potential of the JAK/STAT pathway, detection of different pJAK-2 and pSTAT-5 expression profiles between groups of tumors may reflect differences in the biological behavior of the various human brain tumors.
Collapse
Affiliation(s)
- M Kondyli
- Department of Anatomy, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
34
|
Germano I, Swiss V, Casaccia P. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link? Neuropharmacology 2010; 58:903-10. [PMID: 20045420 DOI: 10.1016/j.neuropharm.2009.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 01/05/2023]
Abstract
The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside.
Collapse
Affiliation(s)
- Isabelle Germano
- Department of Neurosurgery, Neurology, Oncological Sciences, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1136, New York, NY 10029, USA.
| | | | | |
Collapse
|
35
|
Rohrbeck A, Borlak J. Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1. PLoS One 2009; 4:e7315. [PMID: 19812696 PMCID: PMC2754338 DOI: 10.1371/journal.pone.0007315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/13/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initially dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. METHODOLOGY/PRINCIPAL FINDINGS By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionally, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. CONCLUSIONS/SIGNIFICANCE This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 2009; 5:231-46. [PMID: 19562527 PMCID: PMC10467564 DOI: 10.1007/s12015-009-9080-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/07/2009] [Indexed: 12/11/2022]
Abstract
Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (V(mem)) in the regulation of proliferation and differentiation. Interestingly, distinct V(mem) controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as V(mem) would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | | | | |
Collapse
|
37
|
Abstract
Gliomas are primary brain tumors mainly affecting adults. The cellular origin is unknown. The recent identification of tumor-initiating cells in glioma, which share many similarities with normal neural stem cells, has suggested the cell of origin to be a transformed neural stem cell. In previous studies, using the RCAS/tv-a mouse model, platelet-derived growth factor B (PDGF-B)-induced gliomas have been generated from nestin or glial fibrillary acidic protein-expressing cells, markers of neural stem cells. To investigate if committed glial progenitor cells could be the cell of origin for glioma, we generated the Ctv-a mouse where tumor induction would be restricted to myelinating oligodendrocyte progenitor cells (OPCs) expressing 2',3'-cyclic nucleotide 3'-phosphodiesterase. We showed that PDGF-B transfer to OPCs could induce gliomas with an incidence of 33%. The majority of tumors resembled human WHO grade II oligodendroglioma based on close similarities in histopathology and expression of cellular markers. Thus, with the Ctv-a mouse we have showed that the cell of origin for glioma may be a committed glial progenitor cell.
Collapse
|
38
|
Hitoshi Y, Harris BT, Liu H, Popko B, Israel MA. Spinal glioma: platelet-derived growth factor B-mediated oncogenesis in the spinal cord. Cancer Res 2008; 68:8507-15. [PMID: 18922925 DOI: 10.1158/0008-5472.can-08-1063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human platelet-derived growth factor B (hPDGFB) has been characterized in vitro and shown to mediate numerous cellular responses including glial proliferation and differentiation. Expression of PDGFB is thought to be important in the pathogenesis of glioma and several animal models of cerebral glioma based on PDGF expression have been described. To examine whether PDGF could contribute to the pathogenesis of spinal cord glioma, we developed transgenic mice that express hPDGFB under the control of a tetracycline-responsive element (TRE/hPDGFB). These TRE/hPDGFB mice were mated with transgenic mice expressing the tetracycline transcriptional activator (tet-off), tTA, regulated by the human glial fibrillary acidic protein (GFAP) promoter and exhibiting uniquely strong promoter activity in the spinal cord. These transgenic mice (GFAP/tTA:TRE/hPDGFB) expressed hPDGFB in GFAP-expressing glia in a manner responsive to doxycycline administration. Without doxycycline, almost all GFAP/tTA:TRE/hPDGFB mice developed spinal cord neoplasms resembling human mixed oligoastrocytoma. Tumorigenesis in these animals was suppressed by doxycycline. To further examine the importance of PDGFB in mouse primary intramedullary spinal cord tumors, we also created transgenic mice expressing hPDGFB under the control of the human GFAP promoter (GFAP/hPDGFB). These GFAP/hPDGFB mice also developed spinal oligoastrocytoma. PDGFB can mediate the development of mouse spinal tumors that are histologically and pathologically indistinguishable from primary intramedullary spinal tumors of humans and may provide opportunities for both novel insights into the pathogenesis of these tumors and the development of new therapeutics.
Collapse
Affiliation(s)
- Yasuyuki Hitoshi
- Departments of Pediatrics and Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA.
| | | | | | | | | |
Collapse
|
39
|
Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci U S A 2008; 105:16608-13. [PMID: 18931301 PMCID: PMC2575467 DOI: 10.1073/pnas.0808328105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Indexed: 02/07/2023] Open
Abstract
Ion transporters, and the resulting voltage gradients and electric fields, have been implicated in embryonic development and regeneration. These biophysical signals are key physiological aspects of the microenvironment that epigenetically regulate stem and tumor cell behavior. Here, we identify a previously unrecognized function for KCNQ1, a potassium channel known to be involved in human Romano-Ward and Jervell-Lange-Nielsen syndromes when mutated. Misexpression of its modulatory wild-type beta-subunit XKCNE1 in the Xenopus embryo resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. Depolarization of embryonic cells by misexpression of KCNE1 non-cell-autonomously induced melanocytes to overproliferate, spread out, and become highly invasive of blood vessels, liver, gut, and neural tube, leading to a deeply hyperpigmented phenotype. This effect is mediated by the up-regulation of Sox10 and Slug genes, thus linking alterations in ion channel function to the control of migration, shape, and mitosis rates during embryonic morphogenesis. Taken together, these data identify a role for the KCNQ1 channel in regulating key cell behaviors and reveal the molecular identity of a biophysical switch, by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell subpopulation.
Collapse
Affiliation(s)
- Junji Morokuma
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Douglas Blackiston
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Dany S. Adams
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Guiscard Seebohm
- Institute of Physiology I, University of Tubingen, 72076 Tubingen, Germany
- Biochemistry I, Ruhr University Bochum, 44780 Bochum, Germany; and
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02155
| | - Michael Levin
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| |
Collapse
|
40
|
Abstract
Malignant primary brain tumors, gliomas, often overexpress both platelet-derived growth factor (PDGF) ligands and receptors providing an autocrine and/or paracrine boost to tumor growth. Glioblastoma multiforme (GBM) is the most frequent glioma. Its aggressive and infiltrative growth renders it extremely difficult to treat. Median survival after diagnosis is currently only 12-14 months. The present review describes the use of retroviral tagging to identify candidate cancer-causing genes that cooperate with PDGF in brain tumor formation. Newborn mice injected intracerebrally with a Moloney murine leukemia retrovirus carrying the sis/PDGF-B oncogene and a replication competent helper virus developed brain tumors with many characteristics of human gliomas. Analysis of proviral integrations in the brain tumors identified almost 70 common insertion sites (CISs). These CISs were named brain tumor loci and harbored known but also putative novel cancer-causing genes. Microarray analysis identified differentially expressed genes in the mouse brain tumors compared to normal brain. Known tumor genes and markers of immature cells were upregulated in the tumors. Tumors developed 13-42 weeks after injection and short latency tumors were further distinguished as fast growing and GBM-like. Long latency tumors resembled slow-growing oligodendrogliomas and contained significantly less integrations as compared to short latency tumors. Several candidate genes tagged in this retroviral screen have known functions in neoplastic transformation and oncogenesis. Some candidates with a previously unknown function in tumorigenesis were found and their putative role in brain tumor formation will be discussed in this review. The results show that proviral tagging may be a useful tool in the search for candidate glioma genes.
Collapse
|