1
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
2
|
de Biase MS, Massip F, Wei TT, Giorgi FM, Stark R, Stone A, Gladwell A, O'Reilly M, Schütte D, de Santiago I, Meyer KB, Markowetz F, Ponder BAJ, Rintoul RC, Schwarz RF. Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk. Genome Med 2024; 16:54. [PMID: 38589970 PMCID: PMC11000304 DOI: 10.1186/s13073-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.
Collapse
Affiliation(s)
- Maria Stella de Biase
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
| | - Florian Massip
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- MINES Paris, PSL University, CBIO-Centre for Computational Biology, 60 bd Saint Michel, 75006, Paris, France.
- Institut Curie, Cedex, Paris, France.
- INSERM, U900, Cedex, Paris, France.
| | - Tzu-Ting Wei
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Amanda Stone
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Amy Gladwell
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Daniel Schütte
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: e-therapeutics plc, 17 Blenheim Office Park, Long Hanborough, OX29 8LN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: The Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
| | - Robert C Rintoul
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK.
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Roland F Schwarz
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Han G, Sinjab A, Rahal Z, Lynch AM, Treekitkarnmongkol W, Liu Y, Serrano AG, Feng J, Liang K, Khan K, Lu W, Hernandez SD, Liu Y, Cao X, Dai E, Pei G, Hu J, Abaya C, Gomez-Bolanos LI, Peng F, Chen M, Parra ER, Cascone T, Sepesi B, Moghaddam SJ, Scheet P, Negrao MV, Heymach JV, Li M, Dubinett SM, Stevenson CS, Spira AE, Fujimoto J, Solis LM, Wistuba II, Chen J, Wang L, Kadara H. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. Nature 2024; 627:656-663. [PMID: 38418883 PMCID: PMC10954546 DOI: 10.1038/s41586-024-07113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiping Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ke Liang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia D Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuanye Cao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Abaya
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorena I Gomez-Bolanos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minyue Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Dubinett
- Department of Medicine, The University of California Los Angeles, Los Angeles, CA, USA
| | | | - Avrum E Spira
- Lung Cancer Initiative at Johnson & Johnson, Boston, MA, USA
- Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Park JA, Pham D, Yalamanchili S, Twardus S, Suzuki K. Developing technologies and areas of interest in lung cancer screening adjuncts. J Thorac Dis 2024; 16:1552-1564. [PMID: 38505010 PMCID: PMC10944753 DOI: 10.21037/jtd-23-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Lung cancer remains the leading cause of cancer mortality. Screening guidelines have been implemented in the past decade to aid in earlier detection of at-risk groups. Nevertheless, computed tomography (CT) scans, the principal screening modality in use today, are still low yield, with 3.6% of lung cancer confirmed amongst 39.1% of lesions detected over a 3-year period. They also carry relatively high false positive rates, between 9% and 27%, which can bear unnecessary financial and emotional costs to patients. As such, research efforts have been dedicated to the development of lung cancer screening adjuncts to improve detection reliability. We herein review several emerging technologies in this specific arena and their efficacy. These include plasma markers (microDNA, DNA methylation, and tumor-associated antibodies), breath/sputum biomarkers [volatile organic compounds (VOCs) and exhaled breath condensate (EBC)], proteomics, metabolomics, and machine learning, such as radiomics technology. We find that, across the board, they offer promising results in terms of non-invasive diagnostics, genetic sequencing for higher-risk individuals, and accessibility for a diverse cohort of patients. While these screening adjuncts are unlikely to completely replace the current standard of care at the moment, continued research into these technologies is crucial to improve and personalize the identification, treatment, and outcome of lung cancer patients in the near future.
Collapse
Affiliation(s)
- Ju Ae Park
- Department of Surgery, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Duy Pham
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sriya Yalamanchili
- Department of Surgery, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Shaina Twardus
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kei Suzuki
- Department of Surgery, Inova Fairfax Medical Campus, Falls Church, VA, USA
| |
Collapse
|
5
|
Daneshkhah A, Prabhala S, Viswanathan P, Subramanian H, Lin J, Chang AS, Bharat A, Roy HK, Backman V. Early detection of lung cancer using artificial intelligence-enhanced optical nanosensing of chromatin alterations in field carcinogenesis. Sci Rep 2023; 13:13702. [PMID: 37608214 PMCID: PMC10444865 DOI: 10.1038/s41598-023-40550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Supranucleosomal chromatin structure, including chromatin domain conformation, is involved in the regulation of gene expression and its dysregulation has been associated with carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular signature of lung cancer among the cigarette-smoking population, the phenomenon known as field carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain (approximately 20 nm) folded into chromatin packing domains, themselves typically below 300 nm in diameter, preclude the detection of alterations in intradomain chromatin conformation using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa as a lung cancer biomarker: chromatin-sensitive partial wave spectroscopic microscopy (csPWS). Artificial intelligence (AI) was applied to csPWS measurements of chromatin alterations to enhance diagnostic performance. Our AI-enhanced buccal csPWS nanocytology of 179 patients at two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under the ROC curve (AUC) of 0.92 ± 0.06 for Site 1 (in-state location) and 0.82 ± 0.11 for Site 2 (out-of-state location).
Collapse
Affiliation(s)
- Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sravya Prabhala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- NanoCytomics, Evanston, IL, USA
| | | | - Andrew S Chang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ankit Bharat
- Department of Surgery, Feinberg School of Medicine, Canning Thoracic Institute, Northwestern University, 420 East Superior Street, Chicago, IL, 60611, USA
| | | | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Deutscher K, Hillen T, Newby J. A computational model for the cancer field effect. Front Artif Intell 2023; 6:1060879. [PMID: 37469932 PMCID: PMC10352683 DOI: 10.3389/frai.2023.1060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction The Cancer Field Effect describes an area of pre-cancerous cells that results from continued exposure to carcinogens. Cells in the cancer field can easily develop into cancer. Removal of the main tumor mass might leave the cancer field behind, increasing risk of recurrence. Methods The model we propose for the cancer field effect is a hybrid cellular automaton (CA), which includes a multi-layer perceptron (MLP) to compute the effects of the carcinogens on the gene expression of the genes related to cancer development. We use carcinogen interactions that are typically associated with smoking and alcohol consumption and their effect on cancer fields of the tongue. Results Using simulations we support the understanding that tobacco smoking is a potent carcinogen, which can be reinforced by alcohol consumption. The effect of alcohol alone is significantly less than the effect of tobacco. We further observe that pairing tumor excision with field removal delays recurrence compared to tumor excision alone. We track cell lineages and find that, in most cases, a polyclonal field develops, where the number of distinct cell lineages decreases over time as some lineages become dominant over others. Finally, we find tumor masses rarely form via monoclonal origin.
Collapse
|
8
|
Rahal Z, Sinjab A, Wistuba II, Kadara H. Game of clones: Battles in the field of carcinogenesis. Pharmacol Ther 2022; 237:108251. [PMID: 35850404 PMCID: PMC10249058 DOI: 10.1016/j.pharmthera.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recent advances in bulk sequencing approaches as well as genomic decoding at the single-cell level have revealed surprisingly high somatic mutational burdens in normal tissues, as well as increased our understanding of the landscape of "field cancerization", that is, molecular and immune alterations in mutagen-exposed normal-appearing tissues that recapitulated those present in tumors. Charting the somatic mutational landscapes in normal tissues can have strong implications on our understanding of how tumors arise from mutagenized epithelium. Making sense of those mutations to understand the progression along the pathologic continuum of normal epithelia, preneoplasias, up to malignant tissues will help pave way for identification of ideal targets that can guide new strategies for preventing or eliminating cancers at their earliest stages of development. In this review, we will provide a brief history of field cancerization and its implications on understanding early stages of cancer pathogenesis and deviation from the pathologically "normal" state. The review will provide an overview of how mutations accumulating in normal tissues can lead to a patchwork of mutated cell clones that compete while maintaining an overall state of functional homeostasis. The review also explores the role of clonal competition in directing the fate of normal tissues and summarizes multiple mechanisms elicited in this phenomenon and which have been linked to cancer development. Finally, we highlight the importance of understanding mutations in normal tissues, as well as clonal competition dynamics (in both the epithelium and the microenvironment) and their significance in exploring new approaches to combatting cancer.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA.
| |
Collapse
|
9
|
Role of biomarkers in lung nodule evaluation. Curr Opin Pulm Med 2022; 28:275-281. [PMID: 35749790 DOI: 10.1097/mcp.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Worldwide, lung cancer is the leading cause of cancer mortality. Much of this mortality is thought to be secondary to detection in later stages, where treatment options and survivability are limited. The goals of lung nodule evaluation are to expedite the diagnosis and treatment of patients with malignant nodules and to minimize unnecessary diagnostic procedures in those with benign nodules. However, the differentiation between benign and malignant has been challenging and is further complicated by the benefits of early diagnosis competing with potential morbidity of invasive diagnostic procedures. RECENT FINDINGS Biomarkers have the potential to improve estimates of pretest probability of malignancy in pulmonary nodules, especially in the intermediate-risk subgroup. Four biomarkers have undergone extensive validation and are available for clinical use, and we will discuss each in this review. SUMMARY The application of biomarkers to lung cancer risk assessment has the potential to improve cancer probability assessments, which in turn can reduce unnecessary invasive testing and/or reduce delays in diagnosis and treatment.
Collapse
|
10
|
PERROTTA F, D’AGNANO V, SCIALÒ F, KOMICI K, ALLOCCA V, NUCERA F, SALVI R, STELLA GM, BIANCO A. Evolving concepts in COPD and lung cancer: a narrative review. Minerva Med 2022; 113:436-448. [DOI: 10.23736/s0026-4806.22.07962-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Abstract
Colorectal cancer (CRC) is characterized by genetic-environmental interplay leading to diffuse changes in the entire colonic mucosa (field carcinogenesis or field of injury) and to a pro-neoplastic genetic/epigenetic/physiological milieu. The clinical consequences are increased risk of synchronous and metachronous neoplasia. Factors such as genetics, race, ethnicity, age, and socioeconomic status are thought to influence neoplasia development. Here, we explore the potential improvement to CRC screening through exploiting field carcinogenesis, with particular focus on racial disparities and chemoprevention strategies. Also, we discuss future directions for field carcinogenesis/risk stratification using molecular and novel biophotonic techniques for personalized CRC screening.
Collapse
|
12
|
Giralt A, Iskandar AR, Martin F, Moschini E, Serchi T, Kondylis A, Marescotti D, Leroy P, Ortega-Torres L, Majeed S, Merg C, Trivedi K, Guedj E, Frentzel S, Ivanov NV, Peitsch MC, Gutleb AC, Hoeng J. Comparison of the biological impact of aerosol of e-vapor device with MESH® technology and cigarette smoke on human bronchial and alveolar cultures. Toxicol Lett 2021; 337:98-110. [PMID: 33220401 DOI: 10.1016/j.toxlet.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Exposure to aerosol from electronic vapor (e-vapor) products has been suggested to result in less risk of harm to smokers than cigarette smoke (CS) exposure. Although many studies on e-vapor products have tested the effects of liquid formulations on cell cultures, few have evaluated the effects of aerosolized formulations. We examined the effects of acute exposure to the aerosol of an e-vapor device that uses the MESH® technology (IQOS® MESH, Philip Morris International) and to CS from the 3R4F reference cigarette on human organotypic bronchial epithelial culture and alveolar triculture models. In contrast to 3R4F CS exposure, exposure to the IQOS MESH aerosol (Classic Tobacco flavor) did not cause cytotoxicity in bronchial epithelial cultures or alveolar tricultures despite its greater concentrations of deposited nicotine (3- and 4-fold, respectively). CS exposure caused a marked decrease in the frequency and active area of ciliary beating in bronchial cultures, whereas IQOS MESH aerosol exposure did not. Global mRNA expression and secreted protein profiles revealed a significantly lower impact of IQOS MESH aerosol exposure than 3R4F CS exposure. Overall, our whole aerosol exposure study shows a clearly reduced impact of IQOS MESH aerosol relative to CS in bronchial and alveolar cultures, even at greater nicotine doses.
Collapse
Affiliation(s)
- Albert Giralt
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Elisa Moschini
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Luxembourg
| | - Tomasso Serchi
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Luxembourg
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Laura Ortega-Torres
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Arno C Gutleb
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Luxembourg
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
13
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
14
|
Nouws J, Wan F, Finnemore E, Roque W, Kim SJ, Bazan I, Li CX, Skold CM, Dai Q, Yan X, Chioccioli M, Neumeister V, Britto CJ, Sweasy J, Bindra R, Wheelock ÅM, Gomez JL, Kaminski N, Lee PJ, Sauler M. MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease. JCI Insight 2021; 6:134218. [PMID: 33290275 PMCID: PMC7934877 DOI: 10.1172/jci.insight.134218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) involves aberrant responses to cellular stress caused by chronic cigarette smoke (CS) exposure. However, not all smokers develop COPD and the critical mechanisms that regulate cellular stress responses to increase COPD susceptibility are not understood. Because microRNAs are well-known regulators of cellular stress responses, we evaluated microRNA expression arrays performed on distal parenchymal lung tissue samples from 172 subjects with and without COPD. We identified miR-24-3p as the microRNA that best correlated with radiographic emphysema and validated this finding in multiple cohorts. In a CS exposure mouse model, inhibition of miR-24-3p increased susceptibility to apoptosis, including alveolar type II epithelial cell apoptosis, and emphysema severity. In lung epithelial cells, miR-24-3p suppressed apoptosis through the BH3-only protein BIM and suppressed homology-directed DNA repair and the DNA repair protein BRCA1. Finally, we found BIM and BRCA1 were increased in COPD lung tissue, and BIM and BRCA1 expression inversely correlated with miR-24-3p. We concluded that miR-24-3p, a regulator of the cellular response to DNA damage, is decreased in COPD, and decreased miR-24-3p increases susceptibility to emphysema through increased BIM and apoptosis.
Collapse
Affiliation(s)
- Jessica Nouws
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Feng Wan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Anatomy, Beijing University of Chinese Medicine, Beijing, China
| | - Eric Finnemore
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Willy Roque
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - So-Jin Kim
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Isabel Bazan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chuan-Xing Li
- Division of Respiratory Medicine and Allergy, Department of Medicine, and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - C Magnus Skold
- Division of Respiratory Medicine and Allergy, Department of Medicine, and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Qile Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Veronique Neumeister
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joann Sweasy
- Department of Radiation Oncology, University of Arizona College of Medicine, Tucson, Arizona, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Åsa M Wheelock
- Division of Respiratory Medicine and Allergy, Department of Medicine, and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jose L Gomez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Ostrin EJ, Sidransky D, Spira A, Hanash SM. Biomarkers for Lung Cancer Screening and Detection. Cancer Epidemiol Biomarkers Prev 2020; 29:2411-2415. [PMID: 33093160 DOI: 10.1158/1055-9965.epi-20-0865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading worldwide cause of cancer mortality, as it is often detected at an advanced stage. Since 2011, low-dose CT scan-based screening has promised a 20% reduction in lung cancer mortality. However, effectiveness of screening has been limited by eligibility only for a high-risk population of heavy smokers and a large number of false positives generated by CT. Biomarkers have tremendous potential to improve early detection of lung cancer by refining lung cancer risk, stratifying positive CT scans, and categorizing intermediate-risk pulmonary nodules. Three biomarker tests (Early CDT-Lung, Nodify XL2, Percepta) have undergone extensive validation and are available to the clinician. The authors discuss these tests, with their clinical applicability and limitations, current ongoing evaluation, and future directions for biomarkers in lung cancer screening and detection.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Edwin J Ostrin
- Department of General Internal Medicine and Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Sidransky
- Department of Otolaryngology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Avrum Spira
- Department of Medicine, Boston University, Boston, Massachusetts.,The Lung Cancer Initiative, Johnson and Johnson, New Brunswick, New Jersey
| | - Samir M Hanash
- McCombs Institute for the Prevention and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Daniunaite K, Sestokaite A, Kubiliute R, Stuopelyte K, Kettunen E, Husgafvel-Pursiainen K, Jarmalaite S. Frequent DNA methylation changes in cancerous and noncancerous lung tissues from smokers with non-small cell lung cancer. Mutagenesis 2020; 35:geaa022. [PMID: 32914849 DOI: 10.1093/mutage/geaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023] Open
Abstract
Cancer deaths account for nearly 10 million deaths worldwide each year, with lung cancer (LCa) as the leading cause of cancer-related death. Smoking is one of the major LCa risk factors, and tobacco-related carcinogens are potent mutagens and epi-mutagens. In the present study, we aimed to analyse smoking-related epigenetic changes in lung tissues from LCa cases. The study cohort consisted of paired LCa and noncancerous lung tissues (NLT) from 104 patients, 90 of whom were smokers or ex-smokers (i.e. ever smokers) at the time of diagnosis. DNA methylation status of tumour suppressor genes DAPK1, MGMT, p16, RASSF1 and RARB was screened by means of methylation-specific PCR (MSP) and further analysed quantitatively by pyrosequencing. Methylation of at least one gene was detected in 59% (61 of 104) of LCa samples and in 39% (41 of 104) of NLT. DAPK1 and RASSF1 were more frequently methylated in LCa than in NLT (P = 0.022 and P = 0.041, respectively). The levels of DNA methylation were higher in LCa than NLT at most of the analysed CpG positions. More frequent methylation of at least one gene was observed in LCa samples of ever smokers (63%, 57 of 90) as compared with never smokers (36%, 5 of 14; P = 0.019). In the ever smokers group, methylation of the genes also occurred in NLT, but was rare or absent in the samples of never smokers. Among the current smokers, RASSF1 methylation in LCa showed association with the number of cigarettes smoked per day (P = 0.017), whereas in NLT it was positively associated with the duration of smoking (P = 0.039). Similarly, p16 methylation in LCa of current smokers correlated with the larger number of cigarettes smoked per day (P = 0.047). Overall, DNA methylation changes were present in both cancerous and noncancerous tissues of LCa patients and showed associations with smoking-related parameters.
Collapse
Affiliation(s)
- Kristina Daniunaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | - Agne Sestokaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Kristina Stuopelyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Eeva Kettunen
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | | | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| |
Collapse
|
17
|
Huang W, Li P, Qiu X. [A Literature Review on the Role of TBX5 in Expression and Progression of Lung Cancer: Current Perspectives]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:883-888. [PMID: 32810974 PMCID: PMC7583881 DOI: 10.3779/j.issn.1009-3419.2020.102.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-box转录因子(T-box transcription factor gene, TBX)基因涉及器官的发生,TBX5在人的正常心脏和肺组织中表达水平最高。TBX5的缺乏可能导致胸廓发育畸形和膈肌发育异常,其异位表达和过表达会诱导细胞凋亡和抑制细胞生长。既往研究发现了TBX5在食管腺癌、胃癌、结肠癌和乳腺癌的发生和发展中的潜在作用。我们对TBX2亚家族的基因表达和预后之间的关系进行了综述,同时探究TBX5在调控肺癌发生发展机制中的研究进展。虽然TBX5和肺癌发生之间的关系尚不明确,不过TBX5可以显著抑制人体内肿瘤生长,其表达水平和肺癌的进展呈现负相关。由此,TBX5的基因表达水平和甲基化程度是潜在的表证肺癌增殖和转移的生物标志物,具有作为肺癌治疗靶点的潜力。
Collapse
Affiliation(s)
- Weijia Huang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Peiwei Li
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Drizik E, Corbett S, Zheng Y, Vermeulen R, Dai Y, Hu W, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Zhang X, Yang J, Bassig B, Liu H, Ye M, Liu G, Jia X, Meng T, Bin P, Zhang J, Silverman D, Spira A, Rothman N, Lenburg ME, Lan Q. Transcriptomic changes in the nasal epithelium associated with diesel engine exhaust exposure. ENVIRONMENT INTERNATIONAL 2020; 137:105506. [PMID: 32044442 PMCID: PMC8725607 DOI: 10.1016/j.envint.2020.105506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Diesel engine exhaust (DEE) exposure causes lung cancer, but the molecular mechanisms by which this occurs are not well understood. OBJECTIVES To assess transcriptomic alterations in nasal epithelium of DEE-exposed factory workers to better understand the cellular and molecular effects of DEE. METHODS Nasal epithelial brushings were obtained from 41 diesel engine factory workers exposed to relatively high levels of DEE (17.2-105.4 μg/m3), and 38 unexposed workers from factories without DEE exposure. mRNA was profiled for gene expression using Affymetrix microarrays. Linear modeling was used to identify differentially expressed genes associated with DEE exposure and interaction effects with current smoking status. Pathway enrichment among differentially expressed genes was assessed using EnrichR. Gene Set Enrichment Analysis (GSEA) was used to compare gene expression patterns between datasets. RESULTS 225 genes had expression associated with DEE exposure after adjusting for smoking status (FDR q < 0.25) and were enriched for genes in pathways related to oxidative stress response, cell cycle pathways such as MAPK/ERK, protein modification, and transmembrane transport. Genes up-regulated in DEE-exposed individuals were enriched among the genes most up-regulated by cigarette smoking in a previously reported bronchial airway smoking dataset. We also found that the DEE signature was enriched among the genes most altered in two previous studies of the effects of acute DEE on PBMC gene expression. An exposure-response relationship was demonstrated between air levels of elemental carbon and the first principal component of the DEE signature. CONCLUSIONS A gene expression signature was identified for workers occupationally exposed to DEE that was altered in an exposure-dependent manner and had some overlap with the effects of smoking and the effects of acute DEE exposure. This is the first study of gene expression in nasal epithelial cells of workers heavily exposed to DEE and provides new insights into the molecular alterations that occur with DEE exposure.
Collapse
Affiliation(s)
- E Drizik
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - S Corbett
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Y Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Y Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - D Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - H Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Xu
- Hong Kong University, Hong Kong, China
| | - W Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - B Zhou
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - J Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - M Ye
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - X Jia
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - T Meng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - P Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA; Global Health Research Center, Duke Kunshan University, Kunshan City, Jiangsu Province, China
| | - D Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - A Spira
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA; The Lung Cancer Initiative at Johnson & Johnson, Cambridge, MA, USA
| | - N Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - M E Lenburg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Q Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
19
|
Saab S, Zalzale H, Rahal Z, Khalifeh Y, Sinjab A, Kadara H. Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Front Immunol 2020; 11:159. [PMID: 32117295 PMCID: PMC7026250 DOI: 10.3389/fimmu.2020.00159] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths. The malignancy is characterized by dismal prognosis and poor clinical outcome mostly due to advanced-stage at diagnosis, thereby inflicting a heavy burden on public health worldwide. Recent breakthroughs in immunotherapy have greatly benefited a subset of lung cancer patients, and more importantly, they are undauntedly bringing forth a paradigm shift in the drugs approved for cancer treatment, by introducing "tumor-type agnostic therapies". Yet, and to fulfill immunotherapy's potential of personalized cancer treatment, demarcating the immune and genomic landscape of cancers at their earliest possible stages will be crucial to identify ideal targets for early treatment and to predict how a particular patient will fare with immunotherapy. Recent genomic surveys of premalignant lung cancer have shed light on early alterations in the evolution of lung cancer. More recently, the advent of immunogenomic technologies has provided prodigious opportunities to study the multidimensional landscape of lung tumors as well as their microenvironment at the molecular, genomic, and cellular resolution. In this review, we will summarize the current state of immune-based therapies for cancer, with a focus on lung malignancy, and highlight learning outcomes from clinical and preclinical studies investigating the naïve immune biology of lung cancer. The review also collates immunogenomic-based evidence from seminal reports which collectively warrant future investigations of premalignancy, the tumor-adjacent normal-appearing lung tissue, pulmonary inflammatory conditions such as chronic obstructive pulmonary disease, as well as systemic microbiome imbalance. Such future directions enable novel insights into the evolution of lung cancers and, thus, can provide a low-hanging fruit of targets for early immune-based treatment of this fatal malignancy.
Collapse
Affiliation(s)
- Sara Saab
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Zalzale
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Khalifeh
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Craig DJ, Morrison T, Khuder SA, Crawford EL, Wu L, Xu J, Blomquist TM, Willey JC. Technical advance in targeted NGS analysis enables identification of lung cancer risk-associated low frequency TP53, PIK3CA, and BRAF mutations in airway epithelial cells. BMC Cancer 2019; 19:1081. [PMID: 31711466 PMCID: PMC6844032 DOI: 10.1186/s12885-019-6313-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Standardized Nucleic Acid Quantification for SEQuencing (SNAQ-SEQ) is a novel method that utilizes synthetic DNA internal standards spiked into each sample prior to next generation sequencing (NGS) library preparation. This method was applied to analysis of normal appearing airway epithelial cells (AEC) obtained by bronchoscopy in an effort to define a somatic mutation field effect associated with lung cancer risk. There is a need for biomarkers that reliably detect those at highest lung cancer risk, thereby enabling more effective screening by annual low dose CT. The purpose of this study was to test the hypothesis that lung cancer risk is characterized by increased prevalence of low variant allele frequency (VAF) somatic mutations in lung cancer driver genes in AEC. METHODS Synthetic DNA internal standards (IS) were prepared for 11 lung cancer driver genes and mixed with each AEC genomic (g) DNA specimen prior to competitive multiplex PCR amplicon NGS library preparation. A custom Perl script was developed to separate IS reads and respective specimen gDNA reads from each target into separate files for parallel variant frequency analysis. This approach identified nucleotide-specific sequencing error and enabled reliable detection of specimen mutations with VAF as low as 5 × 10- 4 (0.05%). This method was applied in a retrospective case-control study of AEC specimens collected by bronchoscopic brush biopsy from the normal airways of 19 subjects, including eleven lung cancer cases and eight non-cancer controls, and the association of lung cancer risk with AEC driver gene mutations was tested. RESULTS TP53 mutations with 0.05-1.0% VAF were more prevalent (p < 0.05) and also enriched for tobacco smoke and age-associated mutation signatures in normal AEC from lung cancer cases compared to non-cancer controls matched for smoking and age. Further, PIK3CA and BRAF mutations in this VAF range were identified in AEC from cases but not controls. CONCLUSIONS Application of SNAQ-SEQ to measure mutations in the 0.05-1.0% VAF range enabled identification of an AEC somatic mutation field of injury associated with lung cancer risk. A biomarker comprising TP53, PIK3CA, and BRAF somatic mutations may better stratify individuals for optimal lung cancer screening and prevention outcomes.
Collapse
Affiliation(s)
- Daniel J. Craig
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Thomas Morrison
- Accugenomics, Inc, 1410 Commonwealth Dr #105, Wilmington, NC 28403 USA
| | - Sadik A. Khuder
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Erin L. Crawford
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Leihong Wu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Thomas M. Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - James C. Willey
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| |
Collapse
|
21
|
Chen X, Li Y, Hua C, Jia P, Xing Y, Xue B, Tian X, Yang Y, Zhang J, Qiao L, Liu H, Li X, Xie F. Establishment of rapid risk assessment model for cigarette smoke extract exposure in chronic obstructive pulmonary disease. Toxicol Lett 2019; 316:10-19. [PMID: 31476341 DOI: 10.1016/j.toxlet.2019.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Rapid risk assessment models for different types of cigarette smoke extract (CSE) exposure are critical to understanding the etiology of chronic obstructive pulmonary disease. The present study investigated inflammation of cultured tracheal tissues with CSE exposure. Rat trachea rings were isolated, cultured, then exposed to various concentrations of CSE from 3R4 F reference cigarettes for 4 h. Tissue/cellular morphology, ultrastructure, viability and damage, inflammatory cell infiltration, and inflammatory protein levels were measured and compared to untreated controls. Human bronchial epithelial cells (BEAS-2B) exposed to 0 or 300 μg/mL CSE were cocultured with macrophages to assess extent of mobilization and phagocytosis. Endotracheal epithelium cilia densities were significantly reduced with increasing CSE concentrations, while mucous membranes became increasingly disordered; both eventually disappeared. Macrophages became larger as the CSE concentration increased, with microvilli and extended pseudopodium covering their surface, and many primary and secondary lysosomes present in the cytoplasm. Inflammatory cell infiltration also increased with increasing CSE dose, as did intracellular adhesion molecule-1(ICAM-1), interleukin-6(IL-6). The method described here may be useful to qualitatively characterized the effects of the compound under study. Then, we use BEAS-2B cell line system to strength the observation made in the cultured tissues. Probably, an approach to integrate results from both experiments will facilitate its application. These results demonstrate that cultured rat tracheal rings have a whole-tissue structure that undergoes inflammatory processes similar to in vivo tissues upon CSE exposure.
Collapse
Affiliation(s)
- Xuemei Chen
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China; Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Yuping Li
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China
| | - Peijun Jia
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Yinpei Xing
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Bohan Xue
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Xiaoyi Tian
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Yuanyuan Yang
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou 450001 Henan Province, PR China
| | - Junxia Zhang
- Experimental Center of Pathology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, PR China
| | - Liangjun Qiao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China.
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 Henan Province, PR China.
| |
Collapse
|
22
|
Davidson DD, Cheng L. Perspectives of lung cancer control and molecular prevention. Future Oncol 2019; 15:3527-3530. [PMID: 31650845 DOI: 10.2217/fon-2019-0523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Darrell D Davidson
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, USA
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, USA
| |
Collapse
|
23
|
Parris BA, O'Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis 2019; 11:S2155-S2172. [PMID: 31737343 DOI: 10.21037/jtd.2019.10.54] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer comprise the leading causes of lung disease-related mortality worldwide. Exposure to tobacco smoke is a mutual aetiology underlying the two diseases, accounting for almost 90% of cases. There is accumulating evidence supporting the role of immune dysfunction, the lung microbiome, extracellular vesicles and underlying genetic susceptibility in the development of COPD and lung cancer. Further, epigenetic factors, involving DNA methylation and microRNA expression, have been implicated in both diseases. Chronic inflammation is a key feature of COPD and could be a potential driver of lung cancer development. Using next generation technologies, further studies investigating the genomics, epigenetics and gene-environment interaction in key molecular pathways will continue to elucidate the pathogenic mechanisms underlying the development of COPD and lung cancer, and contribute to the development of novel diagnostic and prognostic tools for early intervention and personalised therapeutic strategies.
Collapse
Affiliation(s)
- Brielle A Parris
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
24
|
Iskandar AR, Zanetti F, Marescotti D, Titz B, Sewer A, Kondylis A, Leroy P, Belcastro V, Torres LO, Acali S, Majeed S, Steiner S, Trivedi K, Guedj E, Merg C, Schneider T, Frentzel S, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Application of a multi-layer systems toxicology framework for in vitro assessment of the biological effects of Classic Tobacco e-liquid and its corresponding aerosol using an e-cigarette device with MESH™ technology. Arch Toxicol 2019; 93:3229-3247. [PMID: 31494692 DOI: 10.1007/s00204-019-02565-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.
Collapse
Affiliation(s)
- Anita R Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Bjorn Titz
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Laura Ortega Torres
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stefano Acali
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Sandro Steiner
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
25
|
Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, Perdomo C, Liu G, Xiao X, Liu H, Elashoff DA, Brooks DR, O'Connor GT, Dubinett SM, Spira A, Lenburg ME. Gene Expression Alterations in the Bronchial Epithelium of e-Cigarette Users. Chest 2019; 156:764-773. [PMID: 31233743 DOI: 10.1016/j.chest.2019.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although e-cigarette (ECIG) use has increased in the United States, their potential health effects remain uncertain. Understanding the effects of tobacco cigarette (TCIG) smoke on bronchial airway epithelial gene expression have previously provided insights into tobacco-related disease pathogenesis. Identifying the impact of ECIGs on airway gene expression could provide insights into their potential long-term health effects. We sought to compare the bronchial airway gene-expression profiles of former TCIG smokers now using ECIGs with the profiles of former and current TCIG smokers. METHODS We performed gene-expression profiling of bronchial epithelial cells collected from current TCIG smokers (n = 9), current ECIG users who are former TCIG smokers (n = 15), and former TCIG smokers (n = 21). We then compared our findings with previous studies of the effects of TCIG use on bronchial epithelium, as well an in vitro model of ECIG exposure. RESULTS Among 3,165 genes whose expression varied between the three study groups (q < 0.05), we identified 468 genes altered in ECIG users relative to former smokers (P < .05). Seventy-nine of these genes were up- or down-regulated concordantly among ECIG and TCIG users. We did not detect ECIG-associated gene-expression changes in known pathways associated with TCIG usage. Genes downregulated in ECIG users are enriched among the genes most downregulated by exposure of airway epithelium to ECIG vapor in vitro. CONCLUSIONS ECIGs induce both distinct and shared patterns of gene expression relative to TCIGs in the bronchial airway epithelium. The concordance of the genes altered in ECIG users and in the in vitro study suggests that genes altered in ECIG users are likely to be changed as the direct effect of ECIG exposure.
Collapse
Affiliation(s)
- Sean E Corbett
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew Nitzberg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Elizabeth Moses
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Eric Kleerup
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Teresa Wang
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Catalina Perdomo
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Claudia Perdomo
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Xiaohui Xiao
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - David A Elashoff
- Department of Biostatistics, University of California, Los Angeles, CA
| | - Daniel R Brooks
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - George T O'Connor
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA; Johnson & Johnson, Cambridge, MA.
| | - Marc E Lenburg
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
26
|
Robles AI, Harris CC. Lung Cancer Field Cancerization: Implications for Screening by Low-Dose Computed Tomography. J Natl Cancer Inst 2019; 109:3076214. [PMID: 28376183 DOI: 10.1093/jnci/djw328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Du Z, Zhang S, Lin Y, Zhou L, Wang Y, Yan G, Zhang M, Wang M, Li J, Tong Q, Duan Y, Du G. Momordicoside G Regulates Macrophage Phenotypes to Stimulate Efficient Repair of Lung Injury and Prevent Urethane-Induced Lung Carcinoma Lesions. Front Pharmacol 2019; 10:321. [PMID: 30984004 PMCID: PMC6450463 DOI: 10.3389/fphar.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Momordicoside G is a bioactive component from Momordica charantia, this study explores the contributions of macrophages to the effects of momordicoside G on lung injury and carcinoma lesion. In vitro, when administered at the dose that has no effect on cell viability in M2-like macrophages, momordicoside G decreased ROS and promoted autophagy and thus induced apoptosis in M1-like macrophages with the morphological changes. In the urethane-induced lung carcinogenic model, prior to lung carcinoma lesions, urethane induced obvious lung injury accompanied by the increased macrophage infiltration. The lung carcinoma lesions were positively correlated with lung tissue injury and macrophage infiltration in alveolar cavities in the control group, these macrophages showed mainly a M1-like (iNOS+/CD68+) phenotype. ELISA showed that the levels of IL-6 and IL-12 were increased and the levels of IL-10 and TGF-β1 were reduced in the control group. After momordicoside G treatment, lung tissue injury and carcinoma lesions were ameliorated with the decreased M1-like macrophages and the increased M2-like (arginase+/CD68+) macrophages, whereas macrophage depletion by liposome-encapsulated clodronate (LEC) decreased significantly lung tissue injury and carcinoma lesions and also attenuated the protective efficacy of momordicoside G. The M2 macrophage dependent efficacy of momordicoside G was confirmed in a LPS-induced lung injury model in which epithelial closure was promoted by the transfer of M2-like macrophages and delayed by the transfer of M1-like macrophages. To acquire further insight into the underlying molecular mechanisms by which momordicoside G regulates M1 macrophages, we conduct a comprehensive bioinformatics analysis of momordicoside G relevant targets and pathways involved in M1 macrophage phenotype. This study suggests a function of momordicoside G, whereby it selectively suppresses M1 macrophages to stimulate M2-associated lung injury repair and prevent inflammation-associated lung carcinoma lesions.
Collapse
Affiliation(s)
- Zhenhua Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Shuhui Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Lin
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Guixi Yan
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Qiaozhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yongjian Duan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Xinzheng, China
| |
Collapse
|
28
|
Lohsiriwat V, Wilson VG, Scholefield JH, Dashwood MR. Regional Distribution of Nitric Oxide Synthase in Human Anorectal Tissue: A Pilot Study on the Potential Role for Nitric Oxide in Haemorrhoids. Curr Vasc Pharmacol 2018; 18:43-49. [PMID: 30058493 DOI: 10.2174/1570161116666180730101532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the distribution of nitric oxide synthase (NOS) isoforms and protein levels in human haemorrhoids and rectal tissue. METHODS Protein expression of NOS1, NOS2 and NOS3 was compared between haemorrhoids (n=14) and normal rectal submucosa (n=6) using Western blot analysis. The localisation of all NOS isoforms to specific structures was determined by immunohistochemistry. RESULTS Western blot analysis showed median (interquartile range) protein levels of all NOS isoforms were 1.5-2.4 times higher in haemorrhoids than rectal tissue; 121.4 (55.2-165.5) vs 50.0 (25.5-73.7) for NOS1 (p=0.020), 32.2 (23.8-140.6) vs 14.8 (9.6-34.0) for NOS2 (p=0.109), and 80.1 (62.0-139.5) vs 54.3 (48.7 -61.7) for NOS3 (p=0.015). Immunohistochemistry revealed a different distribution and location of all NOS isoforms in vascular and non-vascular structure of haemorrhoids and rectal tissues. The number of haemorrhoid specimens showing positive immunoreactivity of NOS in the vascular endothelium was significantly higher than that in rectal tissue for NOS1 (11/14 (79%) vs 1/6 (17%); p=0.018) and NOS3 (8/14 (57%) vs 0/6 (0%); p=0.042), but not for NOS2 (6/14 (43%) vs 4/6 (67%); p=0.63). CONCLUSION Haemorrhoids have significantly higher protein levels of NOS1 and NOS3 than rectal tissue. The vascular endothelium of haemorrhoids also has significantly higher positive immunoreactivity of NOS1 and NOS3 than rectal tissue suggesting that blood vessels in haemorrhoids are exposed to higher NO concentrations than those of rectal tissue. Since haemorrhoids exhibit marked vascular dilatation and present with bleeding or swelling, a reduction in NOS - by applying NOS inhibitors - may potentially improve the symptoms of haemorrhoids.
Collapse
Affiliation(s)
- Varut Lohsiriwat
- The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom.,Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vincent G Wilson
- The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - John H Scholefield
- The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Michael R Dashwood
- Surgical and Interventional Sciences, Royal Free and University College Medical School, London, United Kingdom
| |
Collapse
|
29
|
Leng S, Diergaarde B, Picchi MA, Wilson DO, Gilliland FD, Yuan JM, Siegfried JM, Belinsky SA. Gene Promoter Hypermethylation Detected in Sputum Predicts FEV 1 Decline and All-Cause Mortality in Smokers. Am J Respir Crit Care Med 2018; 198:187-196. [PMID: 29437466 PMCID: PMC6058990 DOI: 10.1164/rccm.201708-1659oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Gene promoter hypermethylation detected in sputum assesses the extent of field cancerization and predicts lung cancer (LC) risk in ever-smokers. A rapid decline of FEV1 is a major driver for development of airway obstruction. OBJECTIVES To assess the effects of methylation of 12 genes on FEV1 decline and of FEV1 decline on subsequent LC incidence using two independent, longitudinal cohorts (i.e., LSC [Lovelace Smokers Cohort] and PLuSS [Pittsburgh Lung Screening Study]). METHODS Gene methylation was measured in sputum using two-stage nested methylation-specific PCR. The linear mixed effects model was used to assess the effects of studied variables on FEV1 decline. MEASUREMENTS AND MAIN RESULTS A dose-dependent relationship between number of genes methylated and FEV1 decline was identified, with smokers with three or more methylated genes having 27.8% and 10.3% faster FEV1 decline than smokers with zero to two methylated genes in the LSC and PLuSS cohort, respectively (all P < 0.01). High methylation in sputum was associated with a shorter latency for LC incidence (log-rank P = 0.0048) and worse all-cause mortality (log-rank P < 0.0001). Smokers with subsequent LC incidence had a more rapid annual decline of FEV1 (by 5.2 ml, P = 0.038) than smoker control subjects. CONCLUSIONS Gene methylation detected in sputum predicted FEV1 decline, LC incidence, and all-cause mortality in smokers. Rapid FEV1 decline may be a risk factor for LC incidence in smokers, which may explain a greater prevalence of airway obstruction seen in patients with LC.
Collapse
Affiliation(s)
- Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Cancer Control Research Program and
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Brenda Diergaarde
- Department of Human Genetics and
- Cancer Epidemiology and Prevention Program
- Lung Cancer Program, and
| | - Maria A. Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - David O. Wilson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank D. Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, and
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | | - Steven A. Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Cancer Control Research Program and
- Cancer Genetics and Epigenetics Program, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
30
|
Billatos E, Vick JL, Lenburg ME, Spira AE. The Airway Transcriptome as a Biomarker for Early Lung Cancer Detection. Clin Cancer Res 2018; 24:2984-2992. [PMID: 29463557 PMCID: PMC7397497 DOI: 10.1158/1078-0432.ccr-16-3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer remains the leading cause of cancer-related death due to its advanced stage at diagnosis. Early detection of lung cancer can be improved by better defining who should be screened radiographically and determining which imaging-detected pulmonary nodules are malignant. Gene expression biomarkers measured in normal-appearing airway epithelium provide an opportunity to use lung cancer-associated molecular changes in this tissue for early detection of lung cancer. Molecular changes in the airway may result from an etiologic field of injury and/or field cancerization. The etiologic field of injury reflects the aberrant physiologic response to carcinogen exposure that creates a susceptible microenvironment for cancer initiation. In contrast, field cancerization reflects effects of "first-hit" mutations in a clone of cells from which the tumor ultimately arises or the effects of the tumor on the surrounding tissue. These fields might have value both for assessing lung cancer risk and diagnosis. Cancer-associated gene expression changes in the bronchial airway have recently been used to develop and validate a 23-gene classifier that improves the diagnostic yield of bronchoscopy for lung cancer among intermediate-risk patients. Recent studies have demonstrated that these lung cancer-related gene expression changes extend to nasal epithelial cells that can be sampled noninvasively. While the bronchial gene expression biomarker is being adopted clinically, further work is necessary to explore the potential clinical utility of gene expression profiling in the nasal epithelium for lung cancer diagnosis, lung cancer risk assessment, and precision medicine for lung cancer treatment and chemoprevention. Clin Cancer Res; 24(13); 2984-92. ©2018 AACR.
Collapse
Affiliation(s)
- Ehab Billatos
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Jessica L Vick
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Marc E Lenburg
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Avrum E Spira
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts.
| |
Collapse
|
31
|
Airway brushing as a new experimental methodology to detect airway gene expression signatures in mouse lung squamous cell carcinoma. Sci Rep 2018; 8:8895. [PMID: 29891994 PMCID: PMC5995924 DOI: 10.1038/s41598-018-26902-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022] Open
Abstract
As a consequence of exposure to environmental toxicants, a “field cancerization” effect occurs in the lung, resulting in the development of a field of initiated, but morphologically normal appearing cells within a damaged epithelium containing mutations in oncogene or tumor suppressor genes. Unlike humans, whose airway field of injury associated with lung cancer has long been investigated with airway brushings obtained via bronchoscopy, no methods are available for similar studies in the mouse due to the small size of the murine airways. In this protocol, we describe a detailed method for performing airway brushing from a live mouse, which enables repeated sampling from the same mouse and thus, mimicking the bronchoscopy protocol used in humans. Using this approach in the N-nitroso-tris-chloroethylurea (NTCU)-induced mouse lung squamous cell carcinoma (SCC) model, we isolated airway epithelial cells with intact cell membrane structure and then performed transcriptome sequencing (RNA-Seq). We found activation of the PI3K signaling network to be the most significant in cytologically normal bronchial airway epithelial cells of mice with preneoplastic lung SCC lesions. Prolonged exposure to NTCU also induced activation of NF-kappaB (NFƙB), the downstream pathway of PI3K; this NTCU-induced lung SCC progression can be reversed by blocking the NFƙB pathway.
Collapse
|
32
|
Iskandar AR, Martin F, Leroy P, Schlage WK, Mathis C, Titz B, Kondylis A, Schneider T, Vuillaume G, Sewer A, Guedj E, Trivedi K, Elamin A, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: A systems toxicology assessment. Food Chem Toxicol 2018; 115:109-126. [PMID: 29501877 DOI: 10.1016/j.fct.2018.02.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
Abstract
The biological impact of an aerosol of a potential modified-risk tobacco product, carbon heated tobacco product 1.2 (CHTP1.2), was comprehensively assessed for the first time in vitro using human small airway and nasal epithelial models following a systems toxicology approach. The potentially reduced effects of CHTP1.2 aerosol exposure were benchmarked against those of 3R4F cigarette smoke at similar nicotine concentrations. Experimental repetitions were conducted for which new batches of small airway and nasal cultures were exposed to CHTP1.2 aerosol or 3R4F smoke for 28 minutes. The biological impacts were determined based on a collection of endpoints including morphology, cytotoxicity, proinflammatory mediator profiles, cytochrome P450 1A1/1B1 activity, global mRNA and microRNA changes and proteome profiles. Alterations in mRNA expression were detected in cultures exposed to CHTP1.2 aerosol, without noticeable morphological changes and cytotoxicity, and minimal impact on proinflammatory mediator and proteome profiles. The changes linked to CHTP1.2 aerosol exposure, when observed, were transient. However, the impact of 3R4F smoke exposure persisted long post-exposure and greater than CHTP1.2 aerosol. Morphological changes were observed only in cultures exposed to 3R4F smoke. The lower biological effects of CHTP1.2 aerosol than 3R4F smoke exposure were observed similarly in both small airway and nasal epithelial cultures.
Collapse
Affiliation(s)
- Anita R Iskandar
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Grégory Vuillaume
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
33
|
Zanetti F, Sewer A, Scotti E, Titz B, Schlage WK, Leroy P, Kondylis A, Vuillaume G, Iskandar AR, Guedj E, Trivedi K, Schneider T, Elamin A, Martin F, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Assessment of the impact of aerosol from a potential modified risk tobacco product compared with cigarette smoke on human organotypic oral epithelial cultures under different exposure regimens. Food Chem Toxicol 2018; 115:148-169. [PMID: 29505817 DOI: 10.1016/j.fct.2018.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022]
Abstract
Cigarette smoke (CS) is affecting considerably the oral mucosa. Heating, instead of burning, tobacco reduces consistently the amount of toxic compounds and may exert a lower impact on oral health than combusted cigarettes. The carbon-heated tobacco product 1.2 (CHTP1.2) is a potential modified risk tobacco product (MRTP) based on heat-not-burn technology. Using a systems toxicology assessment framework, we compared the effects of exposure to CHTP1.2 aerosol with those of CS from a reference cigarette (3R4F). Human organotypic cultures derived from buccal and gingival epithelia were exposed acutely (28-min) or repeatedly (28 min/day for 3 days), respectively, to two matching concentrations of CHTP1.2 aerosol or 3R4F CS, and a non-diluted (100%) CHTP1.2 aerosol. The results showed an absence of cytotoxicity, reduction in pathophysiological alterations, toxicological marker proteins, and inflammatory mediators following exposure to CHTP1.2 aerosol compared with 3R4F CS. Changes in mRNA and miRNA expression were linked by an integrative analysis approach, suggesting a regulatory role of miRNAs in several smoke/disease-relevant biological processes induced by 3R4F CS. The identification of mechanisms by which potential MRTPs can reduce the impact of tobacco use on biological systems is of great importance in understanding the molecular basis of the smoking harm reduction paradigm.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elena Scotti
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
34
|
Kantrowitz J, Sinjab A, Xu L, McDowell TL, Sivakumar S, Lang W, Nunomura-Nakamura S, Fukuoka J, Nemer G, Darwiche N, Chami H, Tfayli A, Wistuba II, Scheet P, Fujimoto J, Spira AE, Kadara H. Genome-Wide Gene Expression Changes in the Normal-Appearing Airway during the Evolution of Smoking-Associated Lung Adenocarcinoma. Cancer Prev Res (Phila) 2018; 11:237-248. [PMID: 29382653 DOI: 10.1158/1940-6207.capr-17-0295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Smoking perpetuates in cytologically normal airways a molecular "field of injury" that is pertinent to lung cancer and early detection. The evolution of airway field changes prior to lung oncogenesis is poorly understood largely due to the long latency of lung cancer in smokers. Here, we studied airway expression changes prior to lung cancer onset in mice with knockout of the Gprc5a gene (Gprc5a-/-) and tobacco carcinogen (NNK) exposure and that develop the most common type of lung cancer, lung adenocarcinoma, within 6 months following exposure. Airway epithelial brushings were collected from Gprc5a-/- mice before exposure and at multiple times post-NNK until time of lung adenocarcinoma development and then analyzed by RNA sequencing. Temporal airway profiles were identified by linear models and analyzed by comparative genomics in normal airways of human smokers with and without lung cancer. We identified significantly altered profiles (n = 926) in the NNK-exposed mouse normal airways relative to baseline epithelia, a subset of which were concordantly modulated with smoking status in the human airway. Among airway profiles that were significantly modulated following NNK, we found that expression changes (n = 22) occurring as early as 2 months following exposure were significantly associated with lung cancer status when examined in airways of human smokers. Furthermore, a subset of a recently reported human bronchial gene classifier (Percepta; n = 56) was enriched in the temporal mouse airway profiles. We underscore evolutionarily conserved profiles in the normal-appearing airway that develop prior to lung oncogenesis and that comprise viable markers for early lung cancer detection in suspect smokers. Cancer Prev Res; 11(4); 237-48. ©2018 AACR.
Collapse
Affiliation(s)
- Jacob Kantrowitz
- Section of Computational Biomedicine, School of Medicine, Boston University, Boston, Massachusetts
| | - Ansam Sinjab
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Li Xu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina L McDowell
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Smruthy Sivakumar
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhua Lang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sayuri Nunomura-Nakamura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Junya Fukuoka
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Chami
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Arafat Tfayli
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Avrum E Spira
- Section of Computational Biomedicine, School of Medicine, Boston University, Boston, Massachusetts
| | - Humam Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Abstract
Tumorigenesis begins long before the growth of a clinically detectable lesion and, indeed, even before any of the usual morphological correlates of pre-malignancy are recognizable. Field cancerization, which is the replacement of the normal cell population by a cancer-primed cell population that may show no morphological change, is now recognized to underlie the development of many types of cancer, including the common carcinomas of the lung, colon, skin, prostate and bladder. Field cancerization is the consequence of the evolution of somatic cells in the body that results in cells that carry some but not all phenotypes required for malignancy. Here, we review the evidence of field cancerization across organs and examine the biological mechanisms that drive the evolutionary process that results in field creation. We discuss the clinical implications, principally, how measurements of the cancerized field could improve cancer risk prediction in patients with pre-malignant disease.
Collapse
Affiliation(s)
- Kit Curtius
- Centre for Tumour Biology, Barts Cancer Institute, EC1M 6BQ London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, EC1M 6BQ London, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, EC1M 6BQ London, UK
| |
Collapse
|
36
|
Fujimoto J, Nunomura-Nakamura S, Liu Y, Lang W, McDowell T, Jakubek Y, Ezzeddine D, Ochieng JK, Petersen J, Davies G, Fukuoka J, Wistuba II, Ehli E, Fowler J, Scheet P, Kadara H. Development of Kras mutant lung adenocarcinoma in mice with knockout of the airway lineage-specific gene Gprc5a. Int J Cancer 2017; 141:1589-1599. [PMID: 28653505 PMCID: PMC5774849 DOI: 10.1002/ijc.30851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Despite the urgency for prevention and treatment of lung adenocarcinoma (LUAD), we still do not know drivers in pathogenesis of the disease. Earlier work revealed that mice with knockout of the G-protein coupled receptor Gprc5a develop late onset lung tumors including LUADs. Here, we sought to further probe the impact of Gprc5a expression on LUAD pathogenesis. We first surveyed GPRC5A expression in human tissues and found that GPRC5A was markedly elevated in human normal lung relative to other normal tissues and was consistently downregulated in LUADs. In sharp contrast to wild-type littermates, Gprc5a-/- mice treated chronically with the nicotine-specific carcinogen NNK developed LUADs by 6 months following NNK exposure. Immunofluorescence analysis revealed that the LUADs exhibited abundant expression of surfactant protein C and lacked the clara cell marker Ccsp, suggesting that these LUADs originated from alveolar type II cells. Next, we sought to survey genome-wide alterations in the pathogenesis of Gprc5a-/- LUADs. Using whole exome sequencing, we found that carcinogen-induced LUADs exhibited markedly higher somatic mutation burdens relative to spontaneous tumors. All LUADs were found to harbor somatic mutations in the Kras oncogene (p. G12D or p. Q61R). In contrast to spontaneous lesions, carcinogen-induced Gprc5a-/- LUADs exhibited mutations (variants and copy number gains) in additional drivers (Atm, Kmt2d, Nf1, Trp53, Met, Ezh2). Our study underscores genomic alterations that represent early events in the development of Kras mutant LUAD following Gprc5a loss and tobacco carcinogen exposure and that may constitute targets for prevention and early treatment of this disease.
Collapse
Affiliation(s)
- Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sayuri Nunomura-Nakamura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Yihua Liu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenhua Lang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina McDowell
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasminka Jakubek
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dalia Ezzeddine
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Joshua Kapere Ochieng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | - Junya Fukuoka
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | - Jerry Fowler
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
37
|
Rahal Z, El Nemr S, Sinjab A, Chami H, Tfayli A, Kadara H. Smoking and Lung Cancer: A Geo-Regional Perspective. Front Oncol 2017; 7:194. [PMID: 28920053 PMCID: PMC5585135 DOI: 10.3389/fonc.2017.00194] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents the most frequently diagnosed subtype of this morbid malignancy. NSCLC is causally linked to tobacco consumption with more than 500 million smokers worldwide at high risk for this fatal malignancy. We are currently lagging in our knowledge of the early molecular (e.g., genomic) effects of smoking in NSCLC pathogenesis that would constitute ideal markers for early detection. This limitation is further amplified when considering the variable etiologic factors in NSCLC pathogenesis among different regions around the globe. In this review, we present our current knowledge of genomic alterations arising during early stages of smoking-induced lung cancer initiation and progression, including discussing the premalignant airway field of injury induced by smoking. The review also underscores the wider spectra and higher age-adjusted rates of tobacco (e.g., water-pipe smoke) consumption, along with elevated environmental carcinogenic exposures and relatively poorer socioeconomic status, in low-middle income countries (LMICs), with Lebanon as an exemplar. This “cocktail” of carcinogenic exposures warrants the pressing need to understand the complex etiology of lung malignancies developing in LMICs such as Lebanon.
Collapse
Affiliation(s)
- Zahraa Rahal
- Faculty of Arts and Sciences, Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shaza El Nemr
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ansam Sinjab
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hassan Chami
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Arafat Tfayli
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.,Department of Epidemiology, Division of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017; 6:631-653. [PMID: 30090531 PMCID: PMC6062142 DOI: 10.1039/c7tx00047b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Systems biology combines comprehensive molecular analyses with quantitative modeling to understand the characteristics of a biological system as a whole. Leveraging a similar approach, systems toxicology aims to decipher complex biological responses following exposures. This work reports a systems toxicology meta-analysis in the context of in vitro assessment of a candidate modified-risk tobacco product (MRTP) using three human organotypic cultures of the aerodigestive tract (buccal, bronchial, and nasal epithelia). Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare quantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F cigarette smoke (CS) at similar nicotine concentrations. Lower toxicity was observed in all cultures following exposure to THS2.2 aerosol compared with 3R4F CS. Because of their morphological differences, a smaller exposure impact was observed in the buccal (stratified epithelium) compared with the bronchial and nasal (pseudostratified epithelium). However, the causal network enrichment approach supported a similar mechanistic impact of CS across the three cultures, including the impact on xenobiotic, oxidative stress, and inflammatory responses. At comparable nicotine concentrations, THS2.2 aerosol elicited reduced and more transient effects on these processes. To demonstrate the benefits of additional data modalities, we employed a newly established targeted mass-spectrometry marker panel to further confirm the reduced cellular stress responses elicited by THS2.2 aerosol compared with 3R4F CS in the nasal culture. Overall, this work demonstrates the applicability and robustness of the systems toxicology approach for in vitro inhalation toxicity assessment.
Collapse
Affiliation(s)
- A R Iskandar
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - B Titz
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Sewer
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - P Leroy
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - T Schneider
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - F Zanetti
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - C Mathis
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Elamin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - S Frentzel
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - W K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - F Martin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - N V Ivanov
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - M C Peitsch
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - J Hoeng
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
39
|
TBX2 subfamily suppression in lung cancer pathogenesis: a high-potential marker for early detection. Oncotarget 2017; 8:68230-68241. [PMID: 28978111 PMCID: PMC5620251 DOI: 10.18632/oncotarget.19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The TBX2 subfamily (TBXs 2, 3, 4 and 5) transactivates or represses genes involved in lung organogenesis. Yet TBX2 subfamily expression in pathogenesis of non-small cell lung cancer (NSCLC), the most common lung malignancy, remains elusive. We sought to probe the expression profile of the TBX2 subfamily in early phases of NSCLC. Expression of TBX2 subfamily was analyzed in datasets of pan-normal specimens as well as NSCLCs and normal lung tissues. TBX2 subfamily expression in matched normal lungs, premalignant hyperplasias and NSCLCs was profiled by transcriptome sequencing. TBX2 subfamily expression was evaluated in the cancerization field consisting of matched NSCLCs and adjacent cytologically-normal airways relative to distant normal lungs and in a dataset of normal bronchial samples from smokers with indeterminate nodules suspicious for malignancy. Statistical analysis was performed using R. TBX2 subfamily expression was markedly elevated in normal lungs relative to other organ-specific normal tissues. Expression of the TBXs was significantly suppressed in NSCLCs relative to normal lungs (P < 10−9). TBX2 subfamily was significantly progressively decreased across premalignant lesions and NSCLCs relative to normal lungs (P < 10−4). The subfamily was significantly suppressed in NSCLCs and adjacent normal-appearing airways relative to distant normal lung tissues (P < 10−15). Further, suppressed TBX2 subfamily expression in normal bronchi was associated with lung cancer status (P < 10−5) in smokers. Our findings suggest that the TBX2 subfamily is notably suppressed in human NSCLC pathogenesis and may serve as a high-potential biomarker for early lung cancer detection in high-risk smokers.
Collapse
|
40
|
Beane J, Campbell JD, Lel J, Vick J, Spira A. Genomic approaches to accelerate cancer interception. Lancet Oncol 2017; 18:e494-e502. [PMID: 28759388 DOI: 10.1016/s1470-2045(17)30373-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Although major advances have been reported in the last decade in the treatment of late-stage cancer with targeted and immune-based therapies, there is a crucial unmet need to develop new approaches to improve the prevention and early detection of cancer. Advances in genomics and computational biology offer unprecedented opportunities to understand the earliest molecular events associated with carcinogenesis, enabling novel strategies to intercept the development of invasive cancers. This Series paper will highlight emerging big data genomic approaches with the potential to accelerate advances in cancer prevention, screening, and early detection across various tumour types, and the challenges inherent in the development of these tools for clinical use. Through coordinated multicentre consortia, these genomic approaches are likely to transform the landscape of cancer interception in the coming years.
Collapse
Affiliation(s)
- Jennifer Beane
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Julian Lel
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Jessica Vick
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA.
| |
Collapse
|
41
|
Yeo J, Crawford EL, Zhang X, Khuder S, Chen T, Levin A, Blomquist TM, Willey JC. A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells. BMC Cancer 2017; 17:301. [PMID: 28464886 PMCID: PMC5412061 DOI: 10.1186/s12885-017-3287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Methods Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. Results After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96–0.99). The overall classification accuracy was 93% (95% CI 88%–98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. Conclusions The LCRT biomarker reported here displayed high accuracy and ease of implementation on a high throughput, quality-controlled targeted NGS platform. As such, it is optimized for clinical validation in specimens from the ongoing LCRT blinded prospective cohort study. Following validation, the biomarker is expected to have clinical utility by better stratifying subjects for annual lung cancer screening compared to current demographic criteria alone. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiyoun Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Erin L Crawford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Xiaolu Zhang
- Cancer Genetics and Comparative Genomics Branch (CGCGB), National Human Genomes Research Institute (NHGRI), National Institutes of Health (NIH), Bldg 50, Rm 5341, 50 South Dr., Bethesda, MD, 20892, USA
| | - Sadik Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Tian Chen
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Albert Levin
- Department of Biostatistics, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA
| | - Thomas M Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - James C Willey
- Ruppert 0012, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
42
|
Fernández P J, Méndez-Sánchez SC, Gonzalez-Correa CA, Miranda DA. Could field cancerization be interpreted as a biochemical anomaly amplification due to transformed cells? Med Hypotheses 2016; 97:107-111. [PMID: 27876116 DOI: 10.1016/j.mehy.2016.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Field cancerization is a concept used to explain cellular and molecular alterations in tissue associated to neoplasia and cancer. This effect was proposed by Slaughter in order to explain the development of multiple primary tumors and locally recurrent cancer. The particular changes associated with this effect, in each type of cancer, have been detected even at distances greater than 10cm off the tumor, in areas classified as normal by histopathological studies. Early detection of lung, colon, and ovary cancer has been reported by the use of Partial Wave Microscopy Spectroscopy (PWS) and has been explained in terms of the field cancerization effect. Until now, field cancerization has been studied as a field effect and we hypothesize that it can be understood as an amplifying effect of biochemical abnormalities in cells, which leads us to ask the question: Could field cancerization be interpreted as a biochemical anomaly amplification due to transformed cells? We propose this question because the biochemical changes due to field cancerization alter the dynamics of molecules and cells in abnormal tissues in comparison to normal ones, these alterations modify the interaction of intracellular and extracellular medium, as well as cellular movement. We hypothesize that field cancerization when interpreted as an amplification effect can be used for the early detection of cancer by measuring the change of cell dynamics.
Collapse
Affiliation(s)
- Janeth Fernández P
- Universidad Industrial de Santander, Cra 27 Cll 9, Bucaramanga, Colombia
| | - Stelia C Méndez-Sánchez
- Escuela de Química, Universidad Industrial de Santander, Cra 27 Cll 9, Bucaramanga, Colombia
| | | | - David A Miranda
- Universidad Industrial de Santander, Cra 27 Cll 9, Bucaramanga, Colombia.
| |
Collapse
|
43
|
Martin F, Talikka M, Hoeng J, Peitsch MC. Identification of gene expression signature for cigarette smoke exposure response--from man to mouse. Hum Exp Toxicol 2016; 34:1200-11. [PMID: 26614807 DOI: 10.1177/0960327115600364] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene expression profiling data can be used in toxicology to assess both the level and impact of toxicant exposure, aligned with a vision of 21st century toxicology. Here, we present a whole blood-derived gene signature that can distinguish current smokers from either nonsmokers or former smokers with high specificity and sensitivity. Such a signature that can be measured in a surrogate tissue (whole blood) may help in monitoring smoking exposure as well as discontinuation of exposure when the primarily impacted tissue (e.g., lung) is not readily accessible. The signature consisted of LRRN3, SASH1, PALLD, RGL1, TNFRSF17, CDKN1C, IGJ, RRM2, ID3, SERPING1, and FUCA1. Several members of this signature have been previously described in the context of smoking. The signature translated well across species and could distinguish mice that were exposed to cigarette smoke from ones exposed to air only or had been withdrawn from cigarette smoke exposure. Finally, the small signature of only 11 genes could be converted into a polymerase chain reaction-based assay that could serve as a marker to monitor compliance with a smoking abstinence protocol.
Collapse
Affiliation(s)
- F Martin
- Philip Morris International Research and Development, Neuchatel, Switzerland
| | - M Talikka
- Philip Morris International Research and Development, Neuchatel, Switzerland
| | - J Hoeng
- Philip Morris International Research and Development, Neuchatel, Switzerland
| | - M C Peitsch
- Philip Morris International Research and Development, Neuchatel, Switzerland
| |
Collapse
|
44
|
Subramanian H, Viswanathan P, Cherkezyan L, Iyengar R, Rozhok S, Verleye M, Derbas J, Czarnecki J, Roy HK, Backman V. Procedures for risk-stratification of lung cancer using buccal nanocytology. BIOMEDICAL OPTICS EXPRESS 2016; 7:3795-3810. [PMID: 27699138 PMCID: PMC5030050 DOI: 10.1364/boe.7.003795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/13/2016] [Accepted: 08/20/2016] [Indexed: 05/04/2023]
Abstract
Lung cancer is the leading cause of cancer deaths in the U.S. with survival dramatically depending on stage at diagnosis. We had earlier reported that nanocytology of buccal cells can accurately risk-stratify smokers for the presence of early and late-stage lung cancer. To translate the technique into clinical practice, standardization of operating procedures is necessary to consistently yield precise and repeatable results. Here, we develop and validate simple, robust, and easily implementable procedures for specimen collection, processing, etc. in addition to a commercially-viable instrument prototype. Results of this work enable translation of the technology from academic lab to physicians' office.
Collapse
Affiliation(s)
- H. Subramanian
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - P. Viswanathan
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - L. Cherkezyan
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - R. Iyengar
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - S. Rozhok
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - M. Verleye
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - J. Derbas
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - J. Czarnecki
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - H. K. Roy
- Boston University Medical Center, Boston, Massachusetts, 02118, USA
| | - V. Backman
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| |
Collapse
|
45
|
Osei ET, Noordhoek JA, Hackett TL, Spanjer AIR, Postma DS, Timens W, Brandsma CA, Heijink IH. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. Eur Respir J 2016; 48:359-69. [PMID: 27418555 DOI: 10.1183/13993003.01911-2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/09/2016] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the mediators that are involved in remodelling and inflammation in COPD.AECs and fibroblasts obtained from COPD and control lung tissue were grown in co-culture with fetal lung fibroblast or human bronchial epithelial cell lines. mRNA and protein expression of inflammatory mediators, pro-fibrotic molecules and extracellular matrix (ECM) proteins were assessed.Co-culture resulted in the release of pro-inflammatory mediators interleukin (IL)-8/CXCL8 and heat shock protein (Hsp70) from lung fibroblasts, and decreased expression of ECM molecules (e.g. collagen, decorin) that was not different between control and COPD-derived primary cells. This pro-inflammatory effect was mediated by epithelial-derived IL-1α and increased upon epithelial exposure to cigarette smoke extract (CSE). When exposed to CSE, COPD-derived AECs elicited a stronger IL-1α response compared with control-derived airway epithelium and this corresponded with a significantly enhanced IL-8 release from lung fibroblasts.We demonstrate that, through IL-1α production, AECs induce a pro-inflammatory lung fibroblast phenotype that is further enhanced with CSE exposure in COPD, suggesting an aberrant epithelial-fibroblast interaction in COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands University of British Columbia, Centre for Heart Lung Innovation, Dept of Anesthesiology, Pharmacology and Therapeutics, Vancouver, BC, Canada
| | - Jacobien A Noordhoek
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands
| | - Tillie L Hackett
- University of British Columbia, Centre for Heart Lung Innovation, Dept of Anesthesiology, Pharmacology and Therapeutics, Vancouver, BC, Canada
| | - Anita I R Spanjer
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands University of Groningen, Dept of Molecular Pharmacology, Groningen, The Netherlands
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands These two authors contributed equally to this work
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands These two authors contributed equally to this work
| |
Collapse
|
46
|
Cao B, Feng L, Lu D, Liu Y, Liu Y, Guo S, Han N, Liu X, Mao Y, He J, Cheng S, Gao Y, Zhang K. Prognostic value of molecular events from negative surgical margin of non-small-cell lung cancer. Oncotarget 2016; 8:53642-53653. [PMID: 28881838 PMCID: PMC5581137 DOI: 10.18632/oncotarget.10949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
It is hypothesized that the molecular status in negative surgical margin (NSM) is associated with prognosis of cancer patients. In this study, the prognostic relevance of Epithelial-to-Mesenchymal Transition (EMT) molecular events in NSMs in patients with NSCLC was investigated. EMT model was developed, in which the mesenchymal transition of human immortalized bronchial epithelial cell line was induced by TGF-beta1. Gene expression of EMT-induced cells and NSMs from 60 lung squamous cell carcinoma (SCC) patients was profiled by microarray and validated by quantitative RT-PCR. Two independent cohorts (lung SCC, n = 50; NSCLC, n = 54) were employed to validate the prognostic value of candidate genes. A set of 1490 genes were identified in EMT model in vitro. An EMT-like gene-expression pattern by 33 essential genes was optimized in NSMs, and was significantly associated with tumor progression. The 33 genes also exhibited a site-dependent field cancerization effect in the normal-appearing airways adjacent to NSCLCs. In the independent lung SCC cohort, the EMT-like active pattern indicated poor outcome of patients (n = 50, log-rank p = 0.009). Furthermore, in the NSCLC cohort, patients with EMT-like active pattern had shorter predictive survival time (n = 54, log-rank p = 0.02). In conclusion, the existence of EMT-like gene expression in NSMs, may play critical role in tumor progression and be a potential biomarker for prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Bangrong Cao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Basic Research, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan Province, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Lu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Suping Guo
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyang Liu
- Department of Thoracic Surgical Oncology, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yousheng Mao
- Department of Thoracic Surgical Oncology, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgical Oncology, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Gao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Kadara H, Scheet P, Wistuba II, Spira AE. Early Events in the Molecular Pathogenesis of Lung Cancer. Cancer Prev Res (Phila) 2016; 9:518-27. [PMID: 27006378 DOI: 10.1158/1940-6207.capr-15-0400] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Abstract
The majority of cancer-related deaths in the United States and worldwide are attributed to lung cancer. There are more than 90 million smokers in the United States who represent a significant population at elevated risk for lung malignancy. In other epithelial tumors, it has been shown that if neoplastic lesions can be detected and treated at their intraepithelial stage, patient prognosis is significantly improved. Thus, new strategies to detect and treat lung preinvasive lesions are urgently needed in order to decrease the overwhelming public health burden of lung cancer. Limiting these advances is a poor knowledge of the earliest events that underlie lung cancer development and that would constitute markers and targets for early detection and prevention. This review summarizes the state of knowledge of human lung cancer pathogenesis and the molecular pathology of premalignant lung lesions, with a focus on the molecular premalignant field that associates with lung cancer development. Lastly, we highlight new approaches and models to study genome-wide alterations in human lung premalignancy in order to facilitate the discovery of new markers for early detection and prevention of this fatal disease. Cancer Prev Res; 9(7); 518-27. ©2016 AACR.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas.
| | - Paul Scheet
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas. Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Avrum E Spira
- Section of Computational Biomedicine, Boston University School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
48
|
Automated Cell Selection Using Support Vector Machine for Application to Spectral Nanocytology. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6090912. [PMID: 26904682 PMCID: PMC4745312 DOI: 10.1155/2016/6090912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023]
Abstract
Partial wave spectroscopy (PWS) enables quantification of the statistical properties of cell structures at the nanoscale, which has been used to identify patients harboring premalignant tumors by interrogating easily accessible sites distant from location of the lesion. Due to its high sensitivity, cells that are well preserved need to be selected from the smear images for further analysis. To date, such cell selection has been done manually. This is time-consuming, is labor-intensive, is vulnerable to bias, and has considerable inter- and intraoperator variability. In this study, we developed a classification scheme to identify and remove the corrupted cells or debris that are of no diagnostic value from raw smear images. The slide of smear sample is digitized by acquiring and stitching low-magnification transmission. Objects are then extracted from these images through segmentation algorithms. A training-set is created by manually classifying objects as suitable or unsuitable. A feature-set is created by quantifying a large number of features for each object. The training-set and feature-set are used to train a selection algorithm using Support Vector Machine (SVM) classifiers. We show that the selection algorithm achieves an error rate of 93% with a sensitivity of 95%.
Collapse
|
49
|
Palma JF, Das P, Liesenfeld O. Lung cancer screening: utility of molecular applications in conjunction with low-dose computed tomography guidelines. Expert Rev Mol Diagn 2016; 16:435-47. [DOI: 10.1586/14737159.2016.1149469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Zhang D, Cherkezyan L, Capoglu I, Subramanian H, Chandler J, Thompson S, Taflove A, Backman V. Spectroscopic microscopy can quantify the statistics of subdiffractional refractive-index fluctuations in media with random rough surfaces. OPTICS LETTERS 2015; 40:4931-4. [PMID: 26512486 PMCID: PMC4868404 DOI: 10.1364/ol.40.004931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwell's equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ilker Capoglu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Sebastian Thompson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Allen Taflove
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding author:
| |
Collapse
|