1
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
2
|
Khazimullina YZ, Gimadieva AR, Khairullina VR, Zainullina LF, Vakhitova YV, Mustafin AG. The Synthesis and Anti-inflammatory Studies of New Pyrimidine Derivatives, Inhibitors of Cyclooxygenase Isoforms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Trostchansky A, Wood I, Rubbo H. Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. Prostaglandins Other Lipid Mediat 2021; 152:106482. [PMID: 33007446 DOI: 10.1016/j.prostaglandins.2020.106482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Irene Wood
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
5
|
Trostchansky A, Moore-Carrasco R, Fuentes E. Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 2019; 145:106382. [PMID: 31634570 DOI: 10.1016/j.prostaglandins.2019.106382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Platelet activation plays an important role in acute and chronic cardiovascular disease states. Multiple pathways contribute to platelet activation including those dependent upon arachidonic acid. Arachidonic acid is released from the platelet membrane by phospholipase A2 action and is then metabolized in the cytosol by specific arachidonic acid oxidation enzymes including prostaglandin H synthase, 12-lipoxygenase, and cytochrome P450 to produce pro- and anti-inflammatory eicosanoids. This review aims to analyze the role of arachidonic acid oxidation on platelet activation, the enzymes that use it as a substrate associated as novel therapeutics target for antiplatelet drugs.
Collapse
Affiliation(s)
- Andres Trostchansky
- Departamento de Bioquimica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile.
| |
Collapse
|
6
|
Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE -/- mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis 2019; 284:50-58. [PMID: 30875493 DOI: 10.1016/j.atherosclerosis.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS COX-2-selective inhibitors have been associated with an increased risk of cardiovascular complications, and their impact on atherosclerosis (AS) remains controversial. The proinflammatory COX-2 and 5-LO pathways both play essential roles in AS and related cardiovascular diseases. Previous clinical studies have provided evidence of the ability of COX-2-selective inhibitors to shunt AA metabolism from the COX-2 pathway to the 5-LO pathway. In this study, the effects of celecoxib, a selective COX-2 inhibitor, on AS and the COX-2 and 5-LO pathways were investigated in vivo and in vitro. METHODS Male ApoE-/- mice fed a western-type diet for 18 weeks and cultured mouse RAW264.7 macrophages stimulated with 1 μg/mL LPS for 24 h were used in this study. RESULTS In ApoE-/- mice, intragastric administration of celecoxib (80 mg/kg/d) for 18 weeks significantly increased aortic atherosclerotic lesion area but had no effect on hyperlipidemia. In addition, celecoxib significantly lowered TNF-α and PGE2 levels but increased both LTB4 and CysLTs levels in aortic tissues. In LPS-stimulated RAW264.7 macrophages, pretreatment with 8 μmol/L celecoxib for 1 h significantly lowered the TNF-α, NO, and PGE2 levels but increased the LTB4 and CysLTs levels. Celecoxib also decreased the protein and mRNA expression of COX-2 but increased the expression of 5-LO and LTC4S in both ApoE-/- mouse aortic tissues and LPS-stimulated RAW264.7 macrophages. CONCLUSION The COX-2-selective inhibitor celecoxib can aggravate atherogenesis, an effect that may be related to upregulation of LTs via a 5-LO pathway shunt.
Collapse
Affiliation(s)
- Yimin Pang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Lu Gan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Xianzhe Wang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Qi Su
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Cong Liang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Ping He
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
7
|
Singh P, Kaur J, Kaur H, Kaur A, Bhatti R. Synergy of Physico-chemical and Biological Experiments for Developing a Cyclooxygenase-2 Inhibitor. Sci Rep 2018; 8:10005. [PMID: 29968808 PMCID: PMC6030096 DOI: 10.1038/s41598-018-28408-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
The physiological consequences of COX-2 overexpression in the development of cancer, diabetes and neurodegenerative diseases have made this enzyme a promising therapeutic target. Herein, COX-2 active site was analyzed and new molecules were designed. We identified a highly potent molecule (S)-3a with IC50 value and the selectivity for COX-2 0.6 nM and 1666, respectively. The MTD of (S)-3a was 2000 mg kg-1 and its pharmacokinetic studies in rat showed t1/2 7.5 h. This compound reversed acetic acid induced analgesia and carragennan induced inflammation by 50% and 25% in rat when used at a dose 10 mg kg-1. Mechanistically, it was found that compound (S)-3a inhibits COX-2. Overall, the combination of physico-chemical and biological experiments facilitated the development of a new lead molecule to anti-inflammatory drug.
Collapse
Affiliation(s)
- Palwinder Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Jagroop Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harpreet Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
8
|
Vijayakumar B, Kannappan V, Sathyanarayanamoorthi V. DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Khayrullina VR, Gerchikov AY, Lagunin AA, Zarudii FS. Quantitative analysis of structure-activity relationships of tetrahydro-2H-isoindole cyclooxygenase-2 inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 80:74-86. [PMID: 25754042 DOI: 10.1134/s0006297915010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using the GUSAR program, structure-activity relationships on inhibition of cyclooxygenase-2 (COX-2) catalytic activity were quantitatively analyzed for twenty-six derivatives of 4,5,6,7-tetrahydro-2H-isoindole, 2,3-dihydro-1H-pyrrolyzine, and benzothiophene in the concentration range of 0.6-700 nmol/liter IC50 values. Six statistically significant consensus QSAR models for prediction of IC50 values were designed based on MNA- and QNA-descriptors and their combinations. These models demonstrated high accuracy in the prediction of IC50 values for structures of both training and test sets. Structural fragments of the COX-2 inhibitors capable of strengthening or weakening the desired property were determined using the same program. This information can be taken into consideration on molecular design of new COX-2 inhibitors. It was shown that in most cases, the influence of structural fragments on the inhibitory activity of the studied compounds revealed with the GUSAR program coincided with the results of expert evaluation of their effects based on known experimental data, and this can be used for optimization of structures to change the value of their biological activity.
Collapse
Affiliation(s)
- V R Khayrullina
- Bashkir State University, Faculty of Chemistry, Ufa, 450076, Russia.
| | | | | | | |
Collapse
|
10
|
Crean D, Godson C. Specialised lipid mediators and their targets. Semin Immunol 2015; 27:169-76. [DOI: 10.1016/j.smim.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
|
11
|
Honda T, Kabashima K. Leukotrienes as key mediators and amplifiers in allergic inflammation: insights from the bench and clinic. Exp Dermatol 2014; 23:95-6. [DOI: 10.1111/exd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tetsuya Honda
- Center for Innovation in Immunoregulative Technology and Therapeutics; Kyoto University Graduate School of Medicine; Kyoto Japan
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
12
|
Mohebati A, Milne GL, Zhou XK, Duffield-Lillico AJ, Boyle JO, Knutson A, Bosworth BP, Kingsley PJ, Marnett LJ, Brown PH, Akpa EG, Szabo E, Dannenberg AJ. Effect of zileuton and celecoxib on urinary LTE4 and PGE-M levels in smokers. Cancer Prev Res (Phila) 2013; 6:646-55. [PMID: 23682075 PMCID: PMC3707304 DOI: 10.1158/1940-6207.capr-13-0083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
COX-2 and 5-lipoxygenase (5-LO) use arachidonic acid for the synthesis of eicosanoids that have been implicated in carcinogenesis and cardiovascular disease. The ability of celecoxib, a selective COX-2 inhibitor, to redirect arachidonic acid into the 5-LO pathway can potentially reduce its efficacy as a chemopreventive agent and increase the risk of cardiovascular complications. Levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E4 (LTE4), biomarkers of the COX and 5-LO pathways, are elevated in smokers. Here, we investigated the effects of zileuton, a 5-LO inhibitor, versus zileuton and celecoxib for 6 ± 1 days on urinary PGE-M and LTE4 levels in smokers. Treatment with zileuton led to an 18% decrease in PGE-M levels (P = 0.03); the combination of zileuton and celecoxib led to a 62% reduction in PGE-M levels (P < 0.001). Levels of LTE4 decreased by 61% in subjects treated with zileuton alone (P < 0.001) and were unaffected by the addition of celecoxib. Although zileuton use was associated with a small overall decrease in PGE-M levels, increased PGE-M levels were found in a subset (19 of 52) of subjects. Notably, the addition of celecoxib to the 5-LO inhibitor protected against the increase in urinary PGE-M levels (P = 0.03). In conclusion, zileuton was an effective inhibitor of 5-LO activity resulting in marked suppression of urinary LTE4 levels and possible redirection of arachidonic acid into the COX-2 pathway in a subset of subjects. Combining celecoxib and zileuton was associated with inhibition of both the COX-2 and 5-LO pathways manifested as reduced levels of urinary PGE-M and LTE4.
Collapse
Affiliation(s)
- Arash Mohebati
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sharma P, Ryu MH, Basu S, Maltby SA, Yeganeh B, Mutawe MM, Mitchell RW, Halayko AJ. Epithelium-dependent modulation of responsiveness of airways from caveolin-1 knockout mice is mediated through cyclooxygenase-2 and 5-lipoxygenase. Br J Pharmacol 2013; 167:548-60. [PMID: 22551156 DOI: 10.1111/j.1476-5381.2012.02014.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute silencing of caveolin-1 (Cav-1) modulates receptor-mediated contraction of airway smooth muscle. Moreover, COX-2- and 5-lipoxygenase (5-LO)-derived prostaglandin and leukotriene biosynthesis can influence smooth muscle reactivity. COX-2 half-life can be prolonged through association with Cav-1. We suggested that lack of Cav-1 modulated levels of COX-2 which in turn modulated tracheal contraction, when arachidonic acid signalling was disturbed by inhibition of COX-2. EXPERIMENTAL APPROACH Using tracheal rings from Cav-1 knockout (KO) and wild-type mice (B6129SF2/J), we measured isometric contractions to methacholine and used PCR, immunoblotting and immunohistology to monitor expression of relevant proteins. KEY RESULTS Tracheal rings from Cav-1 KO and wild-type mice exhibited similar responses, but the COX-2 inhibitor, indomethacin, increased responses of tracheal rings from Cav-1 KO mice to methacholine. The phospholipase A₂ inhibitor, eicosatetraynoic acid, which inhibits formation of both COX-2 and 5-LO metabolites, had no effect on wild-type or Cav-1 KO tissues. Indomethacin-mediated hyperreactivity was ablated by the LTD₄ receptor antagonist (montelukast) and 5-LO inhibitor (zileuton). The potentiating effect of indomethacin on Cav-1 KO responses to methacholine was blocked by epithelial denudation. Immunoprecipitation showed that COX-2 binds Cav-1 in wild-type lungs. Immunoblotting and qPCR revealed elevated levels of COX-2 and 5-LO protein, but not COX-1, in Cav-1 KO tracheas, a feature that was prevented by removal of the epithelium. CONCLUSION AND IMPLICATIONS The indomethacin-induced hypercontractility observed in Cav-1 KO tracheas was linked to increased expression of COX-2 and 5-LO, which probably enhanced arachidonic acid shunting and generation of pro-contractile leukotrienes when COX-2 was inhibited.
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Qandil AM. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int J Mol Sci 2012; 13:17244-74. [PMID: 23247285 PMCID: PMC3546748 DOI: 10.3390/ijms131217244] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 12/15/2022] Open
Abstract
The design and the synthesis of prodrugs for nonsteroidal anti-inflammatory drugs (NSAIDs) have been given much attention by medicinal chemists, especially in the last decade. As a therapeutic group, NSAIDs are among the most widely used prescribed and over the counter (OTC) medications. The rich literature about potential NSAID prodrugs clearly shows a shift from alkyl, aryalkyl or aryl esters with the sole role of masking the carboxylic acid group, to more elaborate conjugates that contain carefully chosen groups to serve specific purposes, such as enhancement of water solubility and dissolution, nitric oxide release, hydrogen sulfide release, antioxidant activity, anticholinergic and acetylcholinesterase inhibitory (AChEI) activity and site-specific targeting and delivery. This review will focus on NSAID prodrugs that have been designed or were, later, found to possess intrinsic pharmacological activity as an intact chemical entity. Such intrinsic activity might augment the anti-inflammatory activity of the NSAID, reduce its side effects or transform the potential therapeutic use from classical anti-inflammatory action to something else. Reports discussed in this review will be those of NO-NSAIDs, anticholinergic and AChEI-NSAIDs, Phospho-NSAIDs and some miscellaneous agents. In most cases, this review will cover literature dealing with these NSAID prodrugs from the year 2006 and later. Older literature will be used when necessary, e.g., to explain the chemical and biological mechanisms of action.
Collapse
Affiliation(s)
- Amjad M Qandil
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia.
| |
Collapse
|
15
|
Bhardwaj A, Batchu SN, Kaur J, Huang Z, Seubert JM, Knaus EE. Cardiovascular Properties of a Nitric Oxide Releasing Rofecoxib Analogue: Beneficial Anti-hypertensive Activity and Enhanced Recovery in an Ischemic Reperfusion Injury Model. ChemMedChem 2012; 7:1365-8. [DOI: 10.1002/cmdc.201200234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/25/2012] [Indexed: 11/06/2022]
|
16
|
Abstract
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a key prostaglandin catabolic enzyme catalyzing the oxidation and inactivation of prostaglandin E(2) (PGE(2)) synthesized from the cyclooxygenase (COX) pathway. Accumulating evidence indicates that 15-PGDH may function as a tumor suppressor antagonizing the action of COX-2 oncogene. 15-PGDH has been found to be down-regulated contributing to elevated levels of PGE(2) in most tumors. The expression of 15-PGDH and COX-2 appears to be regulated reciprocally in cancer cells. Down-regulation of 15-PGDH in tumors is due, in part, to transcriptional repression and epigenetic silencing. Numerous agents have been found to up-regulate 15-PGDH by down-regulation of transcriptional repressors and by attenuation of the turnover of the enzyme. Up-regulation of 15-PGDH may provide a viable approach to cancer chemoprevention. Further catabolism of 15-keto-prostaglandin E(2) is catalyzed by 15-keto-prostaglandin-∆(13)-reductase (13-PGR), which also exhibits LTB(4)-12-hydroxydehydrogenase (LTB(4)-12-DH) activity. 13-PGR/LTB(4)-12-DH behaves as a tumor suppressor as well. This review summarizes current knowledge of the expression and function of 15-PGDH and 13-PGR/LTB(4)-12-DH in lung and other tissues during tumor progression. Future directions of research on these prostaglandin catabolic enzymes as tumor suppressors are also discussed.
Collapse
Affiliation(s)
- Hsin-Hsiung Tai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
Bhardwaj A, Huang Z, Kaur J, Knaus EE. Rofecoxib analogues possessing a nitric oxide donor sulfohydroxamic acid (SO2NHOH) cyclooxygenase-2 pharmacophore: synthesis, molecular modeling, and biological evaluation as anti-inflammatory agents. ChemMedChem 2011; 7:62-7. [PMID: 21990143 DOI: 10.1002/cmdc.201100393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/12/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Atul Bhardwaj
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
18
|
Abdellatif KR, Huang Z, Chowdhury MA, Kaufman S, Knaus EE. A diazen-1-ium-1,2-diolated nitric oxide donor ester prodrug of 3-(4-hydroxymethylphenyl)-4-(4-methanesulfonylphenyl)-5 H -furan-2-one: Synthesis, biological evaluation and nitric oxide release studies. Bioorg Med Chem Lett 2011; 21:3951-6. [DOI: 10.1016/j.bmcl.2011.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
19
|
Design, synthesis and biological evaluation of novel 4-hydroxybenzene acrylic acid derivatives. Bioorg Med Chem Lett 2011; 21:1549-53. [DOI: 10.1016/j.bmcl.2010.12.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/28/2010] [Accepted: 12/15/2010] [Indexed: 12/25/2022]
|
20
|
Almendingen K, Larsen LN, Fausa O, Bratlie J, Høstmark AT, Aabakken L. Selective COX-2 inhibition affects fatty acids, but not COX mRNA expression in patients with FAP. Fam Cancer 2010; 9:571-80. [PMID: 20593240 PMCID: PMC2980621 DOI: 10.1007/s10689-010-9365-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Familial adenomatous polyposis (FAP) provides a model for sporadic colorectal cancer development. Cyclooxygenase (COX) inhibition may ameliorate polyp development, but rofecoxib was withdrawn due to cardiovascular side effects. Although this selective COX-2 inhibitor, like diet, may alter the fatty acid and eicosanoid pattern, data on the potential alteration in tissues after use, are scarce. The aims were to study if rofecoxib might influence the fatty acid distribution in serum phospholipids and duodenal lesions, mRNA for COX-1 and COX-2 in leucocytes and duodenal lesions, and finally plasma levels of PGE(2) in a randomized, double-blind, placebo controlled study (n = 38). Significant reductions were found for essential fatty acid index both in serum phospholipids (P = 0.01, 95% CI = -0.9; -0.1), and in duodenal lesions (P = 0.04, 95 CI % = -0.9; -0.1) after treatment. No treatment effects were found on the COX mRNA expression, or in the plasma PGE(2) levels. Dietary AA/EPA ratio was inversely associated with all the indicators of EFA status (all P < 0.01). These findings suggest that the effects of COX chemoprevention should be further investigated in FAP and that dietary needs should be included in the treatment of FAP.
Collapse
Affiliation(s)
- Kari Almendingen
- Research Centre, Akershus University Hospital, 1478 Lørenskog, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
Dubois RN. New, long-term insights from the Adenoma Prevention with Celecoxib Trial on a promising but troubled class of drugs. Cancer Prev Res (Phila) 2009; 2:285-7. [PMID: 19336723 DOI: 10.1158/1940-6207.capr-09-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raymond N Dubois
- Department of Cancer Biology and Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|