1
|
Li X, Xu F, Wang R, Shen L, Luo B, Zhou S, Zhang J, Zhang Z, Cao Z, Zhan K, Zhao Y, Zhao G. Aspirin enhances radio/chemo-therapy sensitivity in C. elegans by inducing germ cell apoptosis and suppresses RAS overactivated tumorigenesis via mtROS-mediated DNA damage and MAPK pathway. Biochem Biophys Res Commun 2024; 735:150828. [PMID: 39418772 DOI: 10.1016/j.bbrc.2024.150828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Previous studies have demonstrated that combination therapy involving radiotherapy and aspirin decreases the survival rate of cancer cells. However, the mechanism by which aspirin exerts its radiation sensitization effect at the in vivo level remains largely unclear. In this study, we employed Caenorhabditis elegans (C. elegans) as a model organism to investigate the effect of aspirin combined with radio/chemo-therapy on tumors at the individual level. Here, we illustrate that high-dose aspirin increases the expression of genes involved in core apoptosis pathways (egl-1, ced-9, ced-4 and ced-3) and induces germ cell apoptosis in C. elegans through mitochondrial outer membrane permeabilization (MOMP) and elevation of reactive oxygen species (ROS) levels. Crucially, aspirin-induces ROS upregulates the expression of genes critical for DNA damage response (hus-1, clk-2 and cep-1) and genes involved in MAPK pathways (lin-45, mek-2, mpk-1, sek-1 and pmk-1), thereby mediating the enhanced sensitivity of radio/chemo-therapy by aspirin. Notably, aspirin fails to induce germ cell apoptosis and enhance radio/chemo-therapy in C. elegans lacking the expression of each of those genes. Furthermore, in a C. elegans tumor-like symptom model, aspirin enhances radio/chemo-therapy sensitivity through ROS induction. However, low-dose aspirin can diminish the apoptotic signal of reproductive cells in C. elegans and exert anti-inflammatory effects. Our research results suggest that the tumor-suppressive and radio/chemo-therapy sensitizing effects of aspirin provide robust experimental evidence for improving the clinical efficacy of tumor radio/chemo-therapy and deepening our understanding of aspirin's mechanism of action in cancer.
Collapse
Affiliation(s)
- Xiaona Li
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Feng Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruru Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lili Shen
- The Second People's Hospital of Chizhou, Chizhou, Anhui, 247099, China
| | - Bowen Luo
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shenglan Zhou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaoyang Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhizun Cao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kangren Zhan
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Guoping Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
2
|
Shahrokhi Nejad S, Razi S, Rezaei N. The role of AMPK in pancreatic cancer: from carcinogenesis to treatment. Clin Transl Oncol 2024:10.1007/s12094-024-03572-8. [PMID: 38926257 DOI: 10.1007/s12094-024-03572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.
Collapse
Affiliation(s)
- Shahrzad Shahrokhi Nejad
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
3
|
Wang N, Wang B, Maswikiti EP, Yu Y, Song K, Ma C, Han X, Ma H, Deng X, Yu R, Chen H. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov 2024; 10:237. [PMID: 38762523 PMCID: PMC11102436 DOI: 10.1038/s41420-024-02011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Immunotherapy has now garnered significant attention as an essential component in cancer therapy during this new era. However, due to immune tolerance, immunosuppressive environment, tumor heterogeneity, immune escape, and other factors, the efficacy of tumor immunotherapy has been limited with its application to very small population size. Energy metabolism not only affects tumor progression but also plays a crucial role in immune escape. Tumor cells are more metabolically active and need more energy and nutrients to maintain their growth, which causes the surrounding immune cells to lack glucose, oxygen, and other nutrients, with the result of decreased immune cell activity and increased immunosuppressive cells. On the other hand, immune cells need to utilize multiple metabolic pathways, for instance, cellular respiration, and oxidative phosphorylation pathways to maintain their activity and normal function. Studies have shown that there is a significant difference in the energy expenditure of immune cells in the resting and activated states. Notably, competitive uptake of glucose is the main cause of impaired T cell function. Conversely, glutamine competition often affects the activation of most immune cells and the transformation of CD4+T cells into inflammatory subtypes. Excessive metabolite lactate often impairs the function of NK cells. Furthermore, the metabolite PGE2 also often inhibits the immune response by inhibiting Th1 differentiation, B cell function, and T cell activation. Additionally, the transformation of tumor-suppressive M1 macrophages into cancer-promoting M2 macrophages is influenced by energy metabolism. Therefore, energy metabolism is a vital factor and component involved in the reconstruction of the tumor immune microenvironment. Noteworthy and vital is that not only does the metabolic program of tumor cells affect the antigen presentation and recognition of immune cells, but also the metabolic program of immune cells affects their own functions, ultimately leading to changes in tumor immune function. Metabolic intervention can not only improve the response of immune cells to tumors, but also increase the immunogenicity of tumors, thereby expanding the population who benefit from immunotherapy. Consequently, identifying metabolic crosstalk molecules that link tumor energy metabolism and immune microenvironment would be a promising anti-tumor immune strategy. AMPK (AMP-activated protein kinase) is a ubiquitous serine/threonine kinase in eukaryotes, serving as the central regulator of metabolic pathways. The sequential activation of AMPK and its associated signaling cascades profoundly impacts the dynamic alterations in tumor cell bioenergetics. By modulating energy metabolism and inflammatory responses, AMPK exerts significant influence on tumor cell development, while also playing a pivotal role in tumor immunotherapy by regulating immune cell activity and function. Furthermore, AMPK-mediated inflammatory response facilitates the recruitment of immune cells to the tumor microenvironment (TIME), thereby impeding tumorigenesis, progression, and metastasis. AMPK, as the link between cell energy homeostasis, tumor bioenergetics, and anti-tumor immunity, will have a significant impact on the treatment and management of oncology patients. That being summarized, the main objective of this review is to pinpoint the efficacy of tumor immunotherapy by regulating the energy metabolism of the tumor immune microenvironment and to provide guidance for the development of new immunotherapy strategies.
Collapse
Affiliation(s)
- Na Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Bofang Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Ewetse Paul Maswikiti
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yang Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Kewei Song
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaowen Han
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Huanhuan Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaobo Deng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Rong Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Department of Tumor Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
4
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Ma M, Pan Y, Zhang Y, Yang M, Xi Y, Lin B, Hao W, Liu J, Wu L, Liu Y, Qin X. Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the AMPK/mTOR signaling pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00781-8. [PMID: 37702819 DOI: 10.1007/s12079-023-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023] Open
Abstract
Autophagy activation protects against podocyte injury in idiopathic membranous nephropathy (IMN). The AMPK/mTOR signaling pathway is a vital autophagy regulatory pathway. Metformin promotes autophagy, whereas rapamycin is an autophagy agonist. However, the therapeutic mechanisms of metformin and rapamycin in IMN remain unclear. Thus, we examined the mechanisms of action of metformin and rapamycin in IMN by regulating the AMPK/mTOR autophagy signaling pathway. Female Sprague-Dawley (SD) rats were treated with cationic bovine serum albumin (C-BSA) to establish an IMN model and were randomly divided into IMN model, metformin, rapamycin, and metformin + rapamycin groups. A control group was also established. Metformin and rapamycin were used as treatments. Renal histological changes, urinary protein excretion, the protein expression levels of key AMPK/mTOR signaling pathway proteins, renal tissue cell apoptosis, and autophagy-associated proteins (Beclin 1 and LC3) were examined. In addition, a C5b-9 sublysis model using the MPC-5 mouse podocyte cell line was established to verify the effect of metformin combined with rapamycin on podocytes. Metformin combined with rapamycin improved urinary protein excretion in IMN rats. Metformin combined with rapamycin attenuated the inflammatory response, renal fibrosis, and podocyte foot process fusion. In addition, it improved autophagy in podocytes as demonstrated by the enhanced expression of Beclin-1, p-AMPK/AMPK, LC3-II/I, and autophagosomes in podocytes and decreased p-mTOR/mTOR expression. In conclusion, metformin combined with rapamycin decreased proteinuria, improved renal fibrosis and podocyte autophagy via AMPK/mTOR pathway in IMN rats. The metformin and rapamycin decreased proteinuria and inproved renal fibrosis in IMN model rats.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Pan
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
7
|
Shi M, Liu X, Pan W, Li N, Tang B. Anti-inflammatory strategies for photothermal therapy of cancer. J Mater Chem B 2023. [PMID: 37326239 DOI: 10.1039/d3tb00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature generated by photothermal therapy (PTT) can trigger an inflammatory response at the tumor site, which not only limits the efficacy of PTT but also increases the risk of tumor metastasis and recurrence. In light of the current limitations posed by inflammation in PTT, several studies have revealed that inhibiting PTT-induced inflammation can significantly improve the efficacy of cancer treatment. In this review, we summarize the research progress made in combining anti-inflammatory strategies to enhance the effectiveness of PTT. The goal is to offer valuable insights for developing better-designed photothermal agents in clinical cancer therapy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
8
|
Moezzi SMI, Javadi P, Mozafari N, Ashrafi H, Azadi A. Metformin-loaded nanoerythrosomes: An erythrocyte-based drug delivery system as a therapeutic tool for glioma. Heliyon 2023; 9:e17082. [PMID: 37484272 PMCID: PMC10361227 DOI: 10.1016/j.heliyon.2023.e17082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glioma is an intra-cranial malignancy with the origin of neural stem cells or precursor cells, the most prevalent brain tumor worldwide. Glioblastoma, the fourth-grade glioma, is a common brain tumor whose incidence rate is 5-7 people per 100,000 populations annually. Despite their high mortality rate, all efforts for treatment have yet to achieve any desirable clinical outcome. The Wnt signaling pathway is a conserved pathway among species that seems to be a candidate for cancer therapy by its inhibition. Metformin is a known inhibitor of the Wnt signaling pathway. Its effects on glioma treatment have been observed in cellular, animal, and clinical experiments. Nanoerythrosomes are drug carriers obtained from the cellular membrane of red blood cells in nano size which can offer several characteristics to deliver metformin to brain tumors. They are good at loading and carrying hydrophilic drugs, they can protect metformin from its metabolizing enzymes, which are present in the blood-brain barrier, and they can extend the period of metformin presence in circulation. In this study, nanoerythrosomes were prepared by using the hypotonic buffer. They had particle sizes in the range of 97.1 ± 34.2 nm, and their loading efficiency and loading capacity were 72.6% and 1.66%, respectively. Nanoerythrosomes could reserve metformin in their structure for a long time, and only 50% of metformin was released after 30 h. Moreover, they released metformin at a low and approximately constant rate. Besides, nanoerythrosomes could tolerate various kinds of stress and maintain most of the drug in their structure. Altogether, nanoerythrosome can be a suitable drug delivery system to deliver therapeutic amounts of metformin to various tissues.
Collapse
Affiliation(s)
- Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Javadi
- Department of Nanomedicine, School of Novel Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Zhou H, Yun X, Shu Y, Xu K. Aspirin increases the efficacy of gemcitabine in pancreatic cancer by modulating the PI3K/AKT/mTOR signaling pathway and reversing epithelial‑mesenchymal transition. Oncol Lett 2023; 25:101. [PMID: 36817049 PMCID: PMC9932045 DOI: 10.3892/ol.2023.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
Gemcitabine is regarded as a standard medication for patients with pancreatic cancer. The aim of the present study was to investigate the impact of aspirin (ASA) on the efficacy of gemcitabine in pancreatic cancer and the potential mechanism. The SW1990 and BxPC-3 human pancreatic cell lines were treated with 2 mmol/l ASA and/or 1 mg/l gemcitabine. The effects of the treatments were tested on the viability, migration and invasion of the cells using MTT, wound healing and Transwell invasion assays. In addition, cell apoptosis was evaluated via flow cytometry with Annexin V-FITC/PI and the western blotting of Bax and Bcl-2. The expression of epithelial-mesenchymal transition (EMT)-associated proteins and activation of the PI3K/AKT/mTOR pathway were also assessed using western blotting. The results reveal that ASA increased the efficacy of gemcitabine in reducing the proliferation, migration and invasion of pancreatic cancer cells and increasing their apoptosis. These effects are associated with inhibition of the PI3K/AKT/mTOR pathway and the reversal of EMT. Thus, the combined use of ASA and gemcitabine is suggested to be a potential therapeutic strategy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China,Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Xiao Yun
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China,Dr Yongqian Shu, Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou, Nanjing, Jiangsu 210029, P.R. China, E-mail:
| | - Kequn Xu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China,Correspondence to: Dr Kequn Xu, Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning, Changzhou, Jiangsu 213003, P.R. China, E-mail:
| |
Collapse
|
10
|
Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:1-14. [PMID: 36624636 PMCID: PMC9971708 DOI: 10.52547/ibj.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunometabolism is an emerging field in tumor immunotherapy. Understanding the metabolic competition for access to the limited nutrients between tumor cells and immune cells can reveal the complexity of the tumor microenvironment and help develop new therapeutic approaches for cancer. Recent studies have focused on modifying the function of immune cells by manipulating their metabolic pathways. Besides, identifying metabolic events, which affect the function of immune cells leads to new therapeutic opportunities for treatment of inflammatory diseases and immune-related conditions. According to the literature, metabolic pathway such as glycolysis, tricarboxylic acid cycle, and fatty acid metabolism, significantly influence the survival, proliferation, activation, and function of immune cells and thus regulate immune responses. In this paper, we reviewed the role of metabolic processes and major signaling pathways involving in T-cell regulation and T-cell responses against tumor cells. Moreover, we summarized the new therapeutics suggested to enhance anti-tumor activity of T cells through manipulating metabolic pathways.
Collapse
|
11
|
Co-Treatments of Gardeniae Fructus and Silymarin Ameliorates Excessive Oxidative Stress-Driven Liver Fibrosis by Regulation of Hepatic Sirtuin1 Activities Using Thioacetamide-Induced Mice Model. Antioxidants (Basel) 2022; 12:antiox12010097. [PMID: 36670959 PMCID: PMC9854785 DOI: 10.3390/antiox12010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Gardeniae Fructus (GF, the dried ripe fruits of Gardenia jasminoides Ellis) has traditionally been used to treat various diseases in East Asian countries, such as liver disease. Silymarin is a well-known medicine used to treat numerous liver diseases globally. The present study was purposed to evaluate the synergistic effects of GF and silymarin on the thioacetamide (TAA)-induced liver fibrosis of a mouse model. Mice were orally administered with distilled water, GF (100 mg/kg, GF 100), silymarin (100 mg/kg, Sily 100), and GF and silymarin mixtures (50 and 100 mg/kg, GS 50 and 100). The GS group showed remarkable amelioration of liver injury in the serum levels and histopathology by observing the inflamed cell infiltrations and decreases in necrotic bodies through the liver tissue. TAA caused liver tissue oxidation, which was evidenced by the abnormal statuses of lipid peroxidation and deteriorations in the total glutathione in the hepatic protein levels; moreover, the immunohistochemistry supported the increases in the positive signals against 4-hydroxyneal and 8-OHdG through the liver tissue. These alterations corresponded well to hepatic inflammation by an increase in F4/80 positive cells and increases in pro-inflammatory cytokines in the hepatic protein levels; however, administration with GS, especially the high dose group, not only remarkably reduced oxidative stress and DNA damage in the liver cells but also considerably diminished pro-inflammatory cytokines, which were driven by Kupffer cell activations, as compared with each of the single treatment groups. The pharmacological properties of GS prolonged liver fibrosis by the amelioration of hepatic stellate cells’ (HSCs’) activation that is dominantly expressed by huge extracellular matrix (ECM) molecules including α-smooth muscle actin, and collagen type1 and 3, respectively. We further figured out that GS ameliorated HSCs activated by the regulation of Sirtuin 1 (Sirt1) activities in the hepatic protein levels, and this finding excellently reenacted the transforming growth factor-β-treated LX-2-cells-induced cell death signals depending on the Sirt1 activities. Future studies need to reveal the pharmacological roles of GS on the specific cell types during the liver fibrosis condition.
Collapse
|
12
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li S, Yang Y, Wang S, Gao Y, Song Z, Chen L, Chen Z. Advances in metal graphitic nanocapsules for biomedicine. EXPLORATION (BEIJING, CHINA) 2022; 2:20210223. [PMID: 37324797 PMCID: PMC10191027 DOI: 10.1002/exp.20210223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Metal graphitic nanocapsules have the advantages of both graphitic and metal nanomaterials, showing great promise in biomedicine. On one hand, the chemically inert graphitic shells are able to protect the metal core from external environments, quench the fluorescence signal from the biological system, offer robust platform for targeted molecules or drugs loading, and act as stable Raman labels or internal standard molecule. On the other hand, the metal cores with different compositions, sizes, and morphologies show unique physicochemical properties, and further broaden their biomedical functions. In this review, we firstly introduce the preparation, classification, and properties of metal graphitic nanocapsules, then summarize the recent progress of their applications in biodetection, bioimaging, and therapy. Challenges and their development prospects in biomedicine are eventually discussed in detail. We expect the versatile metal graphitic nanocapsules will advance the development of future clinical biomedicine.
Collapse
Affiliation(s)
- Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yang Gao
- College of Materials Science and EngineeringHunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangshaChina
| | - Zhiling Song
- Key Laboratory of Optic‐Electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Long Chen
- Faculty of Science and TechnologyUniversity of MacauMacau SARChina
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| |
Collapse
|
14
|
Ren G, Ma Y, Wang X, Zheng Z, Li G. Aspirin blocks AMPK/SIRT3-mediated glycolysis to inhibit NSCLC cell proliferation. Eur J Pharmacol 2022; 932:175208. [PMID: 35981603 DOI: 10.1016/j.ejphar.2022.175208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) has the highest incidence and mortality in the world. Aspirin has been reported to promote apoptosis, inhibit proliferation, stemness, angiogenesis, cancer-associated inflammation and migration in NSCLC. But the effect of aspirin on aerobic glycolysis in NSCLC is less reported. In the present study, we investigated whether aspirin blocked aerobic glycolysis of NSCLC cells to inhibit proliferation. Our results showed that aspirin inhibited viability, PCNA expression, ability of colony formation, dimished extracellular acidification rate (ECAR), oxygen consumption rate (OCR) and production of pyruvic acid and lactic acid, accompanied with reduced mitochondrial membrane potential (MMP), PGC-1α expression and ROS production, indicating mitochondrial dysfunction in NSCLC cells. AMPK and mitochondrial-localized deacetylase sirtuin 3 (SIRT3) were identified as the relevant molecular targets in glycolysis, but mechanism and relationship between AMPK and SIRT3 for aspirin induced glycolysis inhibition remain unknown in cancer cells. The investigation of underlying mechanism indicated that aspirin activated AMPK pathway to inhibit aerobic glycolysis and proliferation by upregulating SIRT3 after application of compound C (CC), an inhibitor of AMPK activity or SIRT3 siRNA. Upon activation of SIRT3, aspirin promoted the release of hexokinase-II (HK-II) from mitochondrial outer membrane to cytosol by deacetylating cyclophilin D (CypD). Consistently, aspirin significantly inhibited the growth of NSCLC xenografts and exhibited antitumor activity probably through AMPK/SIRT3/HK-II pathway in vivo. Collectively, AMPK/SIRT3/HK-II pathway plays a critical role in anticancer effects of aspirin, and our findings might serve as potential target for clinical practice and chemoprevention of aspirin in NSCLC.
Collapse
Affiliation(s)
- Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Ma
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
15
|
Metformin Can Enhance the Inhibitory Effect of Olaparib in Bladder Cancer Cells. DISEASE MARKERS 2022; 2022:5709259. [PMID: 35783012 PMCID: PMC9249502 DOI: 10.1155/2022/5709259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
Background. Bladder cancer is a common urinary system tumor. In the treatment of clinical patients, it is particularly important to find an effective treatment method to inhibit tumor growth. The world’s first PARP inhibitor olaparib is mainly used for the treatment of BRCA1/BRCA2 mutated tumors. Metformin, an antidiabetic drug, has been reported to reduce cancer incidence in humans and improve survival in cancer patients. Methods. Cell viability and proliferation were detected by CCK-8 assay and colony formation assay; cell apoptosis was detected by flow cytometry; cell migration and invasion abilities were detected by scratch assay and Transwell assay; STAT3/C-MYC signaling pathway protein were detected by western blotting. Results. Olaparib combined with metformin has better effects on the proliferation, clone formation, migration, invasion, and apoptosis of bladder cancer cells than single drug, indicating that metformin can enhance the inhibitory effect of olaparib on tumor growth and regulate the expression of STAT3/C-MYC signaling pathway proteins. Conclusion. The results of this study showed that metformin could significantly enhance the antitumor effect of olaparib on bladder cancer cells, and these effects were mediated by downregulating STAT3/C-MYC signaling pathway proteins. This finding may have potential clinical application in the treatment of bladder cancer.
Collapse
|
16
|
Miyaki C, Lynch LM. An Update on Common Pharmaceuticals in the Prevention of Pancreatic Cancer. Cureus 2022; 14:e25496. [PMID: 35800820 PMCID: PMC9246430 DOI: 10.7759/cureus.25496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/03/2023] Open
Abstract
In this review, we aim to update readers about the most recent studies on common pharmaceuticals and their association with pancreatic cancer risk. The use of prophylactic aspirin, metformin, beta-blockers, and statins has been studied in the past but showed inconclusive results in the reduction of pancreatic cancer incidence. However, in recent studies, these medications along with combination therapy of aspirin and metformin were found to have a more significant association with decreasing risk. Given the poor prognosis of pancreatic cancer despite treatment, medication prophylaxis prevention should be considered. In this review, we hope to encourage future case-control or prospective studies on common medications that have shown great potential in delaying pancreatic cancer development.
Collapse
|
17
|
Wu J, Liu G, An K, Shi L. NPTX1 inhibits pancreatic cancer cell proliferation and migration and enhances chemotherapy sensitivity by targeting RBM10. Oncol Lett 2022; 23:154. [PMID: 35836482 PMCID: PMC9258595 DOI: 10.3892/ol.2022.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC), one of the deadliest diseases worldwide, has exhibited an increasing incidence rate in recent years. The present study aimed to explore the biological mechanism of PC. Therefore, the expression levels of neuronal pentraxin 1 (NPTX1) and RNA-binding protein 10 (RBM10) were detected in PC cell lines using reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses prior to or following NPTX1 and RBM10 overexpression. Additionally, the proliferative ability of PANC-1 and BxPC-3 cells treated with or without gemcitabine (GEM) and cisplatin (DDP) was evaluated using Cell Counting Kit-8 assay. Cell apoptosis and the expression levels of apoptosis-related proteins were determined by TUNEL assay and western blot analysis, respectively. Furthermore, wound healing and Transwell assays were performed to measure the migration and invasion abilities of PANC-1 and BxPC-3 cells. The interaction between RBM10 and NPTX1 mRNA was detected by RNA binding protein immunoprecipitation (RIP) assay. Additionally, cells were treated with actinomycin D to verify the regulatory effect of RBM10 on NPTX1 expression. This effect was further confirmed by RT-qPCR analysis. The results showed that NPTX1 was downregulated in PC cell lines. In addition, NPTX1 overexpression inhibited the proliferation and promoted apoptosis in PC cells. The results from the wound healing and Transwell assays revealed that the migration and invasion abilities of PANC-1 and BxPC-3 cells were reduced following NPTX1 overexpression. However, treatment of NPTX1-overexpressing cells with GEM or DDP attenuated PC cell viability. In addition, the results of the RIP assay revealed that RBM10 could bind with NPTX1. Furthermore, RBM10 overexpression could regulate NPTX1 expression, as evidenced by actinomycin D experiments. Overall, the results of the present study suggested that NPTX1 could inhibit PC and enhance the sensitivity of PC cells to chemotherapy. Additionally, NPTX1 was found to interact with RBM10, indicating that NPTX1 could inhibit PC via targeting RBM10.
Collapse
Affiliation(s)
- Jing Wu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gaifang Liu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Kang An
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Linping Shi
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
18
|
Hao W, Li N, Mi C, Wang Q, Yu Y. Salidroside attenuates cardiac dysfunction in a rat model of diabetes. Diabet Med 2022; 39:e14683. [PMID: 34467560 DOI: 10.1111/dme.14683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
AIM This study aimed to investigate the therapeutic effects of salidroside on diabetes-induced cardiovascular disease. METHODS Sprague-Dawley rats treated with 65 mg/kg of streptozotocin (STZ) on a daily basis were used to establish the diabetic rat model (blood glucose levels >13.9 mmol/L). Cardiac functions of diabetic rats were evaluated by their haemodynamic alterations. Western blot assay was performed to evaluate the protein levels of multiple signalling pathway factors. Quantitative real-time PCR assay was performed to investigate the inflammation and oxidative stress of diabetic rats. RESULTS Salidroside treatment improved the cardiac functions of diabetic rats. In addition, salidroside therapy attenuated the cardiac oxidative stress induced by diabetes. Salidroside inhibited the diabetes-induced inflammation in diabetic rat hearts. The apoptosis of cardiomyocytes was also alleviated by the treatment of salidroside. Salidroside also upregulated the phosphorylation levels of AMPK, ACC, TSC2 and RAPTOR. CONCLUSION Salidroside exerts protective effects against diabetes-induced cardiac dysfunction by modulating the mTOR and AMPK signalling pathways.
Collapse
Affiliation(s)
- Weiwei Hao
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Na Li
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Caifeng Mi
- Department of Gastroenterology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Qiang Wang
- Department of Cardiology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Yuanyuan Yu
- Department of Endocrinology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
19
|
Huang F, Xiang Y, Li T, Huang Y, Wang J, Zhang HM, Li HH, Dai ZT, Li JP, Li H, Zhou J, Liao XH. Metformin and MiR-365 synergistically promote the apoptosis of gastric cancer cells via MiR-365-PTEN-AMPK axis. Pathol Res Pract 2022; 230:153740. [PMID: 35007850 DOI: 10.1016/j.prp.2021.153740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Metformin is an oral biguanide used to treat diabetes. Recent study showed it may interfere was related to cancer progression and has a positive effect on cancer prevention and treatment, which attracts a new hot research topic. Here we show that Metformin suppressed the proliferation but induced apoptosis of gastric cells. Notably, Metformin enhanced gastriccell apoptosis via modulating AMPK signaling. Furthermore, Metformin and miR-365 synergistically promote the apoptosis of gastric cancer cells by miR-365-PTEN-AMPK axis. Our study unraveled a novel signaling axis in the regulation in gastric cancer, which could be amplified by the application of metformin. The new effect of metformin potentiates its novel therapeutic application in the future. AVAILABILITY OF DATA AND MATERIALS: The data generated during this study are included in this article and its supplementary information files are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430014, PR China.
| | - Ting Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - You Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Jun Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Hui-Min Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Han-Han Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Jun Zhou
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
20
|
Kuang X, Liu Z. Mining the Biomarkers and Associated-Drugs for Esophageal Squamous Cell Carcinoma by Bioinformatic Methods. TOHOKU J EXP MED 2022; 256:27-36. [PMID: 35067492 DOI: 10.1620/tjem.256.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) showed limited treatment outcome and poor prognosis. This study aimed to screen potential biomarkers and drugs in ESCC. Firstly, GSE26886, GSE111044 and GSE77861 were downloaded from the Gene Expression Omnibus (GEO) database. Next, the differentially expressed genes (DEGs) between cancer and noncancerous tissues were analyzed by the GEO2R. The Gene Ontology (GO) annotation, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, the protein-protein interaction (PPI) analysis and hub genes screened were conducted by some bioinformatic methods, respectively. Lastly, the hub genes and potential drugs were verified by the GEPIA2 and the QuartataWeb database. The results showed that 13 up-regulated genes and 81 down-regulated genes were identified. In GO terms, DEGs were mainly associated with cell proliferation, cell migration and cell differentiation. DEGs did not cluster into the KEGG pathway. After hub genes validated, nine genes (FLG, COL1A1, COL1A2, PSCA, SCEL, PPL, ACPP, CNFN, and A2ML1) expression trends showed no change. Moreover, higher COL1A1 or COL1A2 expression for ESCC patients showed poor prognosis. Finally, five drugs used for promoting blood coagulation were identified. Probably, these drugs could show anticancer effects by promoting blood coagulation or inhibiting vascular formation in cancers, which offers a novel idea for the treatment of ESCC.
Collapse
Affiliation(s)
- Xiuying Kuang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine
| | - Zhihui Liu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine
| |
Collapse
|
21
|
Wang C, Huang B, Sun L, Wang X, Zhou B, Tang H, Geng W. MK8722, an AMPK activator, inhibiting carcinoma proliferation, invasion and migration in human pancreatic cancer cells. Biomed Pharmacother 2021; 144:112325. [PMID: 34656065 DOI: 10.1016/j.biopha.2021.112325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MK8722 is a potent and systemic pan-AMPK activator. It is an effective, direct, allosteric activator of AMPK complex in many mammals. This study tried to explore the underlying anti-cancer molecular mechanism of MK8722 in human pancreatic cancer cells (PCCs). METHODS The anti-proliferation, invasion and migration functions of MK8722 in human pancreatic cancer analyzed by real time cellular analysis, colony formation assay, cell migration assay, transwell assay and flow cytometery analysis. Moreover, the potential targeted signaling pathway was tested via RNA-seq and pathway enrichment analysis. RESULTS In the present study, we investigated the anti-PCCs effects of MK8722 on two different human pancreatic cancer cell lines (PANC-1 and Patu8988). The results showed that MK8722 significantly inhibited human tumor cells proliferation and migration/invasion in a dose-dependent manner. Additionally, the influence of MK8722 was examined by analyzing the expression of potential key genes and pathways, which may provide novel insights to the mechanism of MK8722. CONCLUSION The inhibition of pancreatic cancer by MK8722 through a number of pathways that inhibit carcinoma proliferation, invasion and migration. The potential effect of MK8722 might be determined by regulating the expression of AL162151, IER2, REPIN1, KRT80 to inhibit cycle arrest and migration.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Baofeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; Wenzhou Key Laboratory of perioperative medicine (NO. 2021HZSY0037).
| |
Collapse
|
22
|
Chen Y, Zhang Y, Chen S, Liu W, Lin Y, Zhang H, Yu F. NSAIDs Sensitize Melanoma Cells to MEK Inhibition and Inhibit Metastasis and Relapse by Inducing Degradation of AXL. Pigment Cell Melanoma Res 2021; 35:238-251. [PMID: 34748282 DOI: 10.1111/pcmr.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Melanoma is highly heterogeneous with diverse genomic alterations and partial therapeutic responses. Emergence of drug-resistant tumor cell clones accompanied with high AXL expression level is one of the major challenges for anti-tumor clinical care. Recent studies have demonstrated that high AXL expression in melanoma cells mediated drug-resistance, epithelial-mesenchymal transition (EMT) and elevated survival of cancer stem cells (CSCs). Given that we have identified several non-steroidal anti-inflammatory drugs (NSAIDs) including Aspirin potently induce the degradation of AXL, we questioned whether NSAIDs could counteract the AXL-mediated neoplastic phenotypes. Here we found NSAIDs downregulate PKA activity via the PGE2 /EP2/cAMP/PKA signaling pathway and interrupt the PKA-dependent interaction between CDC37 and HSP90, resulting in an incorrect AXL protein folding and finally AXL degradation through the ubiquitination-proteasome system (UPS) pathway. Furthermore, NSAIDs not only sensitized the MEK inhibitor treatment, but also reduced EMT and relapse mediate by AXL in tumor tissue. Our findings suggest that the combination of inhibitors and NSAIDs, especially Aspirin, could be a simple but efficient modality to treat melanoma in which AXL is a key factor for drug-resistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Yingshi Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Siqi Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Fan Y, Ren X, Wang Y, Xu E, Wang S, Ge R, Liu Y. Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro. Oncol Lett 2021; 22:852. [PMID: 34733370 PMCID: PMC8561621 DOI: 10.3892/ol.2021.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
As an anti-diabetic drug, metformin has been demonstrated to exhibit antitumor effects. However, the mechanisms involved in decreasing tumor formation, including canine mammary gland tumors (CMGTs), are not well elucidated. The aim of the present study was to evaluate the ability of metformin to induce apoptosis and cell cycle arrest in CMGT cells, as well as identifying the pathways underlying these effects. Cell viability was assessed by Cell Counting Kit-8 analysis following treating with metformin. Subsequently, apoptosis and cell cycle progression were assessed by flow cytometry, and the expression of associated proteins was examined. Expression levels of classical AMP-activated protein kinase (AMPK), protein kinase B (AKT), mechanistic target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were then investigated using western blot analysis. Metformin inhibited the proliferation of CHMm cells in a concentration-dependent manner. Specifically, metformin induced cell cycle arrest in the G0/G1 phases, accompanied by increased expression of p21 and p27, and decreased expression of cyclin D1 and cyclin-dependent kinase 4. Marked levels of apoptosis were observed in CHMm cells alongside the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. Also, the level of Bcl-2 was decreased, and that of Bax was increased. The expression of associated signaling molecules revealed that metformin markedly increased the phosphorylation of AMPK in CHMm cells, and decreased the levels of phosphorylated (p-)AKT, p-mTOR and p-4E-BP1, while Compound C reversed these changes. These findings demonstrated that metformin may be a potential therapeutic agent for CMGTs, acting via the AMPK/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaoli Ren
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, P.R. China
| | - Yingxue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Enshuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, P.R. China
| | - Shuang Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Ruidong Ge
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Yun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
24
|
Frades I, Foguet C, Cascante M, Araúzo-Bravo MJ. Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers (Basel) 2021; 13:4609. [PMID: 34572839 PMCID: PMC8470216 DOI: 10.3390/cancers13184609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
The tumor's physiology emerges from the dynamic interplay of numerous cell types, such as cancer cells, immune cells and stromal cells, within the tumor microenvironment. Immune and cancer cells compete for nutrients within the tumor microenvironment, leading to a metabolic battle between these cell populations. Tumor cells can reprogram their metabolism to meet the high demand of building blocks and ATP for proliferation, and to gain an advantage over the action of immune cells. The study of the metabolic reprogramming mechanisms underlying cancer requires the quantification of metabolic fluxes which can be estimated at the genome-scale with constraint-based or kinetic modeling. Constraint-based models use a set of linear constraints to simulate steady-state metabolic fluxes, whereas kinetic models can simulate both the transient behavior and steady-state values of cellular fluxes and concentrations. The integration of cell- or tissue-specific data enables the construction of context-specific models that reflect cell-type- or tissue-specific metabolic properties. While the available modeling frameworks enable limited modeling of the metabolic crosstalk between tumor and immune cells in the tumor stroma, future developments will likely involve new hybrid kinetic/stoichiometric formulations.
Collapse
Affiliation(s)
- Itziar Frades
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
- Max Planck Institute of Molecular Biomedicine, 48167 Münster, Germany
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), 28015 Madrid, Spain
- Translational Bioinformatics Network (TransBioNet), 8001 Barcelona, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| |
Collapse
|
25
|
Metformin Attenuates Hypoxia-induced Endothelial Cell Injury by Activating the AMP-Activated Protein Kinase Pathway. J Cardiovasc Pharmacol 2021; 77:862-874. [PMID: 33929389 DOI: 10.1097/fjc.0000000000001028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Metformin reduces the incidence of cardiovascular diseases, and potential underlying mechanisms of action have been suggested. Here, we investigated the role of metformin in endothelial cell injury and endothelial-mesenchymal transition (EndMT) induced by hypoxia. All experiments were performed in human cardiac microvascular endothelial cells (HCMECs). HCMECs were exposed to hypoxic conditions for 24, 48, 72, and 96 hours, and we assessed the cell viability by cell counting kit 8; metformin (2, 5, 10, and 20 mmol/L) was added to the cells after exposure to the hypoxic conditions for 48 hours. The cells were randomly divided into the control group, hypoxia group, hypoxia + metformin group, hypoxia + control small interfering RNA group, hypoxia + small interfering Prkaa1 (siPrkaa1) group, and hypoxia + siPrkaa1 + metformin group. Flow cytometry and cell counting kit 8 were used to monitor apoptosis and assess cell viability. Immunofluorescence staining was used to identify the CD31+/alpha smooth muscle actin+ double-positive cells. Quantitative real-time-PCR and Western blot were used for mRNA and protein expression analyses, respectively. Hypoxia contributed to endothelial injuries and EndMT of HCMECs in a time-dependent manner, which was mainly manifested as decreases in cell viability, increases in apoptotic rate, and changes in expression of apoptosis-related and EndMT-related mRNAs and proteins. Furthermore, metformin could attenuate the injuries and EndMT caused by hypoxia. After metformin treatment, phosphorylated-AMPK (pAMPK) and p-endothelial nitric oxide synthase expression increased, whereas p-mammalian target of rapamycin expression decreased. However, results obtained after transfection with siPrkaa1 were in contrast to the results of metformin treatment. In conclusion, metformin can attenuate endothelial injuries and suppress EndMT of HCMECs under hypoxic conditions because of its ability to activate the AMPK pathway, increase p-AMPK/AMP-activated protein kinase, and inhibit mammalian target of rapamycin.
Collapse
|
26
|
Nagayama D, Saiki A, Shirai K. The Anti-Cancer Effect of Pitavastatin May Be a Drug-Specific Effect: Subgroup Analysis of the TOHO-LIP Study. Vasc Health Risk Manag 2021; 17:169-173. [PMID: 33953560 PMCID: PMC8092348 DOI: 10.2147/vhrm.s306540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
The significance of statin treatment for the reduction of cardiovascular (CV) disease has been reported, whereas other reports have also described anti-cancer properties associated with the class effect of statins. However, the differences in anti-cancer effect of various types of statins have rarely been examined. Pitavastatin is a statin with a different chemical structure and pharmacokinetics from other statins, and the mechanism of the specific anti-cancer effect of pitavastatin has been reported in in vivo therapeutic models. We previously revealed that pitavastatin therapy was superior to atorvastatin therapy in the prevention of CV events, despite similar LDL-cholesterol-lowering effect in the TOHO Lipid Intervention Trial Using Pitavastatin (TOHO-LIP). Furthermore, in subgroup analysis of the TOHO-LIP study, cumulative 240-week incidence of new cancer cases tended to be lower in the pitavastatin group compared to the atorvastatin group [0.32% (1/312) vs 1.94% (6/310), log-rank P=0.051]. This finding might reveal the superiority of pitavastatin to prevent carcinogenesis. The molecular mechanism by which pitavastatin suppresses the incidence of any-organ cancer is gradually elucidated, and new combination of cancer treatments with pitavastatin will be developed in the future to further enhance the anti-cancer activity and reduce the side effects.
Collapse
Affiliation(s)
- Daiji Nagayama
- Department of Internal Medicine, Nagayama Clinic, Tochigi, Japan.,Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kohji Shirai
- Department of Internal Medicine, Mihama Hospital, Chiba, Japan
| |
Collapse
|
27
|
Tian-Huang Formula, a Traditional Chinese Medicinal Prescription, Improves Hepatosteatosis and Glucose Intolerance Targeting AKT-SREBP Nexus in Diet-Induced Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6617586. [PMID: 33763145 PMCID: PMC7955866 DOI: 10.1155/2021/6617586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The progressive increase of metabolic diseases underscores the necessity for developing effective therapies. Although we found Tian-Huang formula (THF) could alleviate metabolic disorders, the underlying mechanism remains to be fully understood. In the present study, firstly, male Sprague-Dawley rats were fed with high-fat diet plus high-fructose drink (HFF, the diet is about 60% of calories from fat and the drink is 12.5% fructose solution) for 14 weeks to induce hepatosteatosis and glucose intolerance and then treated with THF (200 mg/kg) for 4 weeks. Then, metabolomics analysis was performed with rat liver samples and following the clues illustrated by Ingenuity Pathway Analysis (IPA) with the metabolomics discoveries, RT-qPCR and Western blotting were carried out to validate the putative pathways. Our results showed that THF treatment reduced the body weight from 735.1 ± 81.29 to 616.3 ± 52.81 g and plasma triglyceride from 1.5 ± 0.42 to 0.88 ± 0.33 mmol/L; meanwhile, histological examinations of hepatic tissue and epididymis adipose tissue showed obvious alleviation. Compared with the HFF group, the fasting serum insulin and blood glucose level of the THF group were improved from 20.77 ± 6.58 to 9.65 ± 5.48 mIU/L and from 8.96 ± 0.56 to 7.66 ± 1.25 mmol/L, respectively, so did the serum aspartate aminotransferase, insulin resistance index, and oral glucose tolerance (p = 0.0019, 0.0053, and 0.0066, respectively). Furthermore, based on a list of 32 key differential endogenous metabolites, the molecular networks generated by IPA suggested that THF alleviated glucose intolerance and hepatosteatosis by activating phosphatidylinositol-3 kinase (PI3K) and low-density lipoprotein receptor (LDL-R) involved pathways. RT-qPCR and Western blotting results confirmed that THF alleviated hepatic steatosis and glucose intolerance partly through protein kinase B- (AKT-) sterol regulatory element-binding protein (SREBP) nexus. Our findings shed light on molecular mechanisms of THF on alleviating metabolic diseases and provided further evidence for developing its therapeutic potential.
Collapse
|
28
|
Yang J, Fang HJ, Cao Q, Mao ZW. The design of cyclometalated iridium(iii)-metformin complexes for hypoxic cancer treatment. Chem Commun (Camb) 2021; 57:1093-1096. [PMID: 33434260 DOI: 10.1039/d0cc07104h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the hypoxic microenvironment is the priority for tumor treatment. Cytometalated iridium(iii)-metformin conjugates were synthesized for treating hypoxic cancer cells for the first time, which alleviate hypoxia via mitochondria respiration inhibition, thus displaying 10-fold higher cytotoxicity, emerging anti-metastasis and anti-inflammatory activities than a metformin-free Ir(iii) complex and cisplatin against hypoxic cancer cells.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
29
|
Fang L, Xu Q, Qian J, Zhou JY. Aberrant Factors of Fibrinolysis and Coagulation in Pancreatic Cancer. Onco Targets Ther 2021; 14:53-65. [PMID: 33442266 PMCID: PMC7797325 DOI: 10.2147/ott.s281251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant factors associated with fibrinolysis and thrombosis are found in many cancer patients, which can promote metastasis and are associated with poor prognosis. The relationship between tumor-associated fibrinolysis and thrombosis is poorly understood in pancreatic cancer. This review provides a brief highlight of existing studies that the fibrinolysis and coagulation systems were activated in pancreatic cancer patients, along with aberrant high concentrations of tissue plasminogen activator (t-PA), urine plasminogen activator (u-PA), D-dimer, fibrinogen, or platelets. These factors cooperate with each other, propelling tumor cell shedding, localization, adhesion to distant metastasis. The relationship between thrombosis or fibrinolysis and cancer immune escape is also investigated. In addition, the potential prevention and therapy strategies of pancreatic cancer targeting factors in fibrinolysis and coagulation systems are also been discussed, in which we highlight two effective agents aspirin and low-molecular weight heparin (LMWH). Summarily, this review provides new directions for the research and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lianghua Fang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Qing Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, People's Republic of China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
30
|
Parihar M, Dodds SG, Javors M, Strong R, Hasty P, Sharp ZD. Sex-dependent lifespan extension of Apc Min/+ FAP mice by chronic mTOR inhibition. AGING PATHOBIOLOGY AND THERAPEUTICS 2020; 2:187-194. [PMID: 33834178 PMCID: PMC8026166 DOI: 10.31491/apt.2020.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Apc Min/+ mice model familial adenomatous polyposis (FAP), a disease that causes numerous colon polyps leading to colorectal cancer. We previously showed that chronic treatment of Apc Min/+ females with the anti-aging drug, rapamycin, restored a normal lifespan through reduced polyposis and anemia prevention. Lifespan extension by chronic rapamycin in wildtype UM-HET3 mice is sex-dependent with females gaining the most benefit. Whether Apc Min/+ mice have a similar sex-dependent response to chronic mTOR inhibition is not known. METHODS To address this knowledge gap and gain deeper insight into how chronic mTOR inhibition prevents intestinal polyposis, we compared male and female Apc Min/+ mice responses to chronic treatment with a rapamycin-containing diet. Animals were fed a diet containing either 42 ppm microencapsulate rapamycin or empty capsules, one group was used to determine lifespan and a second group with similar treatment was harvested at 16 weeks of age for cross-sectional studies. RESULTS We found that the survival of males is greater than females in this setting (P < 0.0197). To explore the potential basis for this difference we analyzed factors affected by chronic rapamycin. Immunoblot assays showed that males and females exhibited approximately the same level of mTORC1 inhibition using phosphorylation of ribosomal protein S6 (rpS6) as an indirect measure. Immunohistochemistry assays of rpS6 phosphorylation showed that rapamycin reduction of mTORC1 activity was on the same level, with the most prominent difference being in intestinal crypt Paneth cells in both sexes. Chronic rapamycin also reduced crypt depths in both male and female Apc Min/+ mice (P < 0.0001), consistent with reduced crypt epithelial cell proliferation. Finally, chronic rapamycin prevented anemia equally in males and females. CONCLUSIONS In males and females, these findings link rapamycin-mediated intestinal polyposis prevention with mTORC1 inhibition in Paneth cells and concomitant reduced epithelial cell proliferation.
Collapse
Affiliation(s)
- Manish Parihar
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of
Texas Health San Antonio, San Antonio, TX, USA
| | - Sherry G. Dodds
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marty Javors
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San
Antonio, San Antonio, TX, USA
- Department of Psychiatry, University of Texas Health San
Antonio, San Antonio, TX, USA
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San
Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System San Antonio, TX,
USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio,
San Antonio, TX, USA
| | - Zelton Dave Sharp
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio,
San Antonio, TX, USA
| |
Collapse
|
31
|
AMP-activated protein kinase regulates β-catenin protein synthesis by phosphorylating serine/arginine-rich splicing factor 9. Biochem Biophys Res Commun 2020; 534:347-352. [PMID: 33248688 DOI: 10.1016/j.bbrc.2020.11.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
β-catenin is a multi-functional protein with a central role in regulating embryonic development and tissue homeostasis. The abnormal accumulation of β-catenin, due to disrupted β-catenin degradation or unregulated β-catenin synthesis, causes the development of cancer. A recent study showed that the overexpression of proto-oncogene serine/arginine-rich splicing factor 9 (SRSF9) promotes β-catenin accumulation via binding β-catenin mRNA and enhancing its translation in a manner that is dependent on the mechanistic target of rapamycin (mTOR). However, the regulation of the interaction between SRSF9 and mRNA of β-catenin remains unclear. Here, we show that AMP-activated protein kinase (AMPK) phosphorylates SRSF9 at the RNA-interacting SWQDLKD motif that plays a major role in determining substrate specificity. The phosphorylation by AMPK inhibits the binding of SRSF9 to β-catenin mRNA and suppresses β-catenin protein synthesis caused by SRSF9 overexpression without changing the β-catenin mRNA levels. Our findings suggest that AMPK activators are potential therapeutic targets for SRSF9-derived overproduction of β-catenin in cancer cells.
Collapse
|
32
|
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5:166. [PMID: 32843638 PMCID: PMC7447642 DOI: 10.1038/s41392-020-00280-x] [Citation(s) in RCA: 566] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, β-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
33
|
Khani M, Hosseini J, Habibi M, Mirfakhraie R, Sadeghzadeh Z, Pouresmaeili F. Investigating the relationship between ccfDNA concentration, its integrity, and some individual factors in an Iranian population. Hum Antibodies 2020; 28:319-326. [PMID: 32804121 DOI: 10.3233/hab-200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Circulating cell-free DNA (ccfDNA) increases in some pathologic conditions like cancer. We aimed to investigate the correlation between some individual factors and the ccfDNA level in peripheral blood of Iranian in relation to prostate cancer. MATERIAL AND METHOD 30 patients with prostate cancer (PCa), 40 with benign prostate hyperplasia (BPH), and 30 controls were studied. Personal information, ccfDNA concentration, and the integrity index were assessed for the correlation between the disease and different factors. The results were statistically analyzed using SPSS software. RESULTS In PCa group, no association was found between total ccfDNA, BMI, BPH background, non-cancerous diseases, medications, PCa length, and job (p-value > 0.05). But, total ccfDNA had statistical associations with weight, family history of cancer, and location (p-value < 0.05). No association was between the integrity of ccfDNA, weight, the background of BPH, and family history of cancer. But, the integrity of ccfDNA was significantly associated with BMI and PCa length (p-value < 0.05).In BPH group, no association between total ccfDNA or the integrity of ccfDNA and the assessed factors was obtained (p-value > 0.05). In the normal group, neither statistical association was found between total ccfDNA, weight, BMI, and job, nor between the integrity of ccfDNA, weight, BMI, non-cancerous disease, drug, job, and location (p-value > 0.05). But, a statistical association was found between the integrity of ccfDNA and family history of cancer in the recent group (Based on 95% CI and P-value less than 0.05). CONCLUSION ccfDNA and its integrity as possible prostate cancer biomarkers under the influence of individuals' physiological status are prone to the pathologic changes toward the disease. Further simultaneous study of the target groups could clarify this matter.
Collapse
Affiliation(s)
- Maryam Khani
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Habibi
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadeghzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Xu J, Kim S, Song M, Jeong M, Kim D, Kang J, Rousseau JF, Li X, Xu W, Torvik VI, Bu Y, Chen C, Ebeid IA, Li D, Ding Y. Building a PubMed knowledge graph. Sci Data 2020; 7:205. [PMID: 32591513 PMCID: PMC7320186 DOI: 10.1038/s41597-020-0543-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
PubMed® is an essential resource for the medical domain, but useful concepts are either difficult to extract or are ambiguous, which has significantly hindered knowledge discovery. To address this issue, we constructed a PubMed knowledge graph (PKG) by extracting bio-entities from 29 million PubMed abstracts, disambiguating author names, integrating funding data through the National Institutes of Health (NIH) ExPORTER, collecting affiliation history and educational background of authors from ORCID®, and identifying fine-grained affiliation data from MapAffil. Through the integration of these credible multi-source data, we could create connections among the bio-entities, authors, articles, affiliations, and funding. Data validation revealed that the BioBERT deep learning method of bio-entity extraction significantly outperformed the state-of-the-art models based on the F1 score (by 0.51%), with the author name disambiguation (AND) achieving an F1 score of 98.09%. PKG can trigger broader innovations, not only enabling us to measure scholarly impact, knowledge usage, and knowledge transfer, but also assisting us in profiling authors and organizations based on their connections with bio-entities.
Collapse
Affiliation(s)
- Jian Xu
- School of Information Management, Sun Yat-sen University, Guangzhou, China
| | - Sunkyu Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, South Korea
| | - Minbyul Jeong
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Donghyeon Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | | | - Xin Li
- School of Information, University of Texas at Austin, Austin, TX, USA
| | - Weijia Xu
- Texas Advanced Computing Center, Austin, TX, USA
| | - Vetle I Torvik
- School of Information Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Yi Bu
- Department of Information Management, Peking University, Beijing, China
| | - Chongyan Chen
- School of Information, University of Texas at Austin, Austin, TX, USA
| | - Islam Akef Ebeid
- School of Information, University of Texas at Austin, Austin, TX, USA
| | - Daifeng Li
- School of Information Management, Sun Yat-sen University, Guangzhou, China.
| | - Ying Ding
- Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- School of Information, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Yoo D, Kim N, Hwang DW, Song KB, Lee JH, Lee W, Kwon J, Park Y, Hong S, Lee JW, Hwang K, Shin D, Tak E, Kim SC. Association between Metformin Use and Clinical Outcomes Following Pancreaticoduodenectomy in Patients with Type 2 Diabetes and Pancreatic Ductal Adenocarcinoma. J Clin Med 2020; 9:jcm9061953. [PMID: 32580502 PMCID: PMC7356590 DOI: 10.3390/jcm9061953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Retrospective studies on the association between metformin and clinical outcomes have mainly been performed on patients with non-resectable pancreatic ductal adenocarcinoma and may have been affected by time-related bias. To avoid this bias, recent studies have used time-varying analysis; however, they have only considered the start date of metformin use and not the stop date. We studied 283 patients with type 2 diabetes and pancreatic ductal adenocarcinoma following pancreaticoduodenectomy, and performed analysis using a Cox model with time-varying covariates, while considering both start and stop dates of metformin use. When start and stop dates were not considered, the metformin group showed significantly better survival. Compared with previous studies, adjusted analysis based on Cox models with time-varying covariates only considering the start date of postoperative metformin use showed no significant differences in survival. However, although adjusted analysis considering both start and stop dates showed no significant difference in recurrence-free survival, the overall survival was significantly better in the metformin group (Hazard ratio (HR), 0.747; 95% confidence interval (CI), 0.562–0.993; p = 0.045). Time-varying analysis incorporating both start and stop dates thus revealed that metformin use is associated with a higher overall survival following pancreaticoduodenectomy in patients with type 2 diabetes and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Daegwang Yoo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Nayoung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Dae Wook Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Ki Byung Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Jae Hoon Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Woohyung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Jaewoo Kwon
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Yejong Park
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Sarang Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Jong Woo Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Kyungyeon Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Dakyum Shin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.Y.); (D.W.H.); (K.B.S.); (J.H.L.); (W.L.); (J.K.); (Y.P.); (S.H.); (J.W.L.); (K.H.); (D.S.)
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: (E.T.); (S.C.K.); Tel.: +82-2-3010-4634 (E.T.); +82-2-3010-3936 (S.C.K.)
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: (E.T.); (S.C.K.); Tel.: +82-2-3010-4634 (E.T.); +82-2-3010-3936 (S.C.K.)
| |
Collapse
|
36
|
Fu X, Tan T, Liu P. Regulation of Autophagy by Non-Steroidal Anti-Inflammatory Drugs in Cancer. Cancer Manag Res 2020; 12:4595-4604. [PMID: 32606952 PMCID: PMC7305821 DOI: 10.2147/cmar.s253345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is the leading cause of death, placing a substantial global health burden. The development of the most effective treatment regimen is the unmet clinical need for cancer. Inflammation plays a role in tumorigenesis and progression, and anti-inflammation may be a promising option for cancer management and prevention. Emerging studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs) display anticarcinogenic and chemopreventive properties through the regulation of autophagy in certain types of cancer. In this review, we summarize the pharmacological functions and side effects of NSAIDs as chemotherapeutic agents, and focus on its mode of action on autophagy regulation, which increases our knowledge of NSAIDs and cancer-related inflammation, and contributes to a putative addition of NSAIDs in the chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- Xiangjie Fu
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tan Tan
- Translational Medicine Institute, The First Affiliated Hospital of Chenzhou, University of South China, Hunan, People’s Republic of China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Shanxi, People’s Republic of China
| |
Collapse
|
37
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
38
|
Adacan K, Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Kaya RI, Palavan-Unsal N. Epibrassinolide-induced autophagy occurs in an Atg5-independent manner due to endoplasmic stress induction in MEF cells. Amino Acids 2020; 52:871-891. [PMID: 32449072 DOI: 10.1007/s00726-020-02857-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Epibrassinolide (EBR), a polyhydroxysteroid belongs to plant growth regulator family, brassinosteroids and has been shown to have a similar chemical structure to mammalian steroid hormones. Our findings indicated that EBR could trigger apoptosis in cancer cells via induction of endoplasmic reticulum (ER) stress, caused by protein folding disturbance in the ER. Normal cells exhibited a remarkable resistance to EBR treatment and avoid from apoptotic cell death. The unfolded protein response clears un/misfolded proteins and restore ER functions. When stress is chronic, cells tend to die due to improper cellular functions. To understand the effect of EBR in non-malign cells, mouse embryonic fibroblast (MEF) cells were investigated in detail for ER stress biomarkers, autophagy, and polyamine metabolism in this study. Evolutionary conserved autophagy mechanism is a crucial cellular process to clean damaged organelles and protein aggregates through lysosome under the control of autophagy-related genes (ATGs). Cells tend to activate autophagy to promote cell survival under stress conditions. Polyamines are polycationic molecules playing a role in the homeostasis of important cellular events such as cell survival, growth, and, proliferation. The administration of PAs has been markedly extended the lifespan of various organisms via inducing autophagy and inhibiting oxidative stress. Our data indicated that ER stress is induced following EBR treatment in MEF cells as well as MEF Atg5-/- cells. In addition, autophagy is activated following EBR treatment by targeting PI3K/Akt/mTOR in wildtype (wt) cells. However, EBR-induced autophagy targets ULK1 in MEF cells lacking Atg5 expression. Besides, EBR treatment depleted the PA pool in MEF cells through the alterations of metabolic enzymes. The administration of Spd with EBR further increased autophagic vacuole formation. In conclusion, EBR is an anticancer drug candidate with selective cytotoxicity for cancer cells, in addition the induction of autophagy and PA metabolism are critical for responses of normal cells against EBR.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey.
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Resul Ismail Kaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Narçın Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
39
|
Sambi M, Samuel V, Qorri B, Haq S, Burov SV, Markvicheva E, Harless W, Szewczuk MR. A Triple Combination of Metformin, Acetylsalicylic Acid, and Oseltamivir Phosphate Impacts Tumour Spheroid Viability and Upends Chemoresistance in Triple-Negative Breast Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1995-2019. [PMID: 32546966 PMCID: PMC7260544 DOI: 10.2147/dddt.s242514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Introduction Targeted multimodal approaches need to be strategically developed to control tumour growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes that arise. The tumour stage and cellular subtypes often dictate the appropriate clinical treatment regimen. Also, the development of chemoresistance is a common clinical challenge with breast cancer. Higher doses and additional drug agents can produce additional adverse effects leading to a more aggressive malignancy. Acetylsalicylic acid (ASA), metformin (Met), and oseltamivir phosphate (OP) were investigated for their efficacy to sensitize MDA-MB-231 triple-negative breast cancer and its tamoxifen (Tmx) resistant variant (MDA-MB-231-TmxR) together in combination with Tmx treatment. Methods Microscopic imaging, the formation of 3D multicellular tumour spheroids, immunocytochemistry, flow cytometry, Annexin V Assay, Caspase 3/7 Apoptosis Assay, tube formation assay and analysis, and WST-1 cell viability assay evaluated the formation of MCTS, morphologic changes, cell viability, apoptosis activity and the expression levels of ALDH1A1, CD44 and CD24 on the cell surface, MDA-MB231 triple-negative breast cancer, tamoxifen (Tmx) resistant variant (MDA-MB-231-TmxR). Results The results using a triple combination of ASA, Met and OP on MDA-MB-231 and MDA-MB-231-TmxR cells and their matrix-free 3D multicellular tumour spheroids (MCTS) formed by using the cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)) peptide method demonstrate a consistent and significant decrease in cell and tumour spheroid viability and volume with increased apoptotic activity, and increased sensitivity to Tmx therapy. Tmx treatment of MDA-MB-231 cells in combination with ASA, Met and OP markedly reduced the CD44/CD24 ratio by 6.5-fold compared to the untreated control group. Tmx treatment of MDA-MB-231-TmxR cells in combination with ASA, Met and OP markedly reduced the ALDH1A1 by 134-fold compared to the same treatment for the parental cell line. Also, the triple combination treatment of ASA, Met, and OP inhibited vasculogenic endothelial cell tube formation and induced endothelial cell apoptosis. Conclusion For the first time, the findings demonstrate that repurposing ASA, Met, and OP provides a novel and promising targeted multimodal approach in the treatment of triple-negative breast cancer and its chemoresistant variant.
Collapse
Affiliation(s)
- Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Vanessa Samuel
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sabah Haq
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sergey V Burov
- Laboratory of Novel Peptide Therapeutics, Cytomed J.S.Co., St. Petersburg, Russia
| | - Elena Markvicheva
- Biomedical Materials Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
40
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
41
|
Terasaki F, Sugiura T, Okamura Y, Ito T, Yamamoto Y, Ashida R, Ohgi K, Uesaka K. Oncological benefit of metformin in patients with pancreatic ductal adenocarcinoma and comorbid diabetes mellitus. Langenbecks Arch Surg 2020; 405:313-324. [PMID: 32367394 DOI: 10.1007/s00423-020-01874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Some clinical studies have suggested that metformin improved prognoses in several cancers. This study aimed to identify prognostic factors for pancreatic ductal adenocarcinoma (PDAC) and determine the utility of metformin administration. METHODS Between January 2007 and December 2015, 373 consecutive patients underwent curative surgery for PDAC. Among the patients, 121 were diagnosed as having diabetes mellitus (DM) before surgery. The characteristics and overall survival (OS) between patients with and without DM were compared retrospectively. Based on their metformin intake, patients with DM were divided into two groups. OS rates between patients with and without metformin intake were compared. Univariate and multivariate analyses were performed to identify prognostic factors for OS among all patients and those with PDAC and DM. RESULTS No significant differences in the 5-year survival rates between patients with and without DM were observed. Among the 121 patients with DM, 18 received metformin and 103 did not (other medications group). The 5-year survival rate was significantly better in the metformin group than in the other medications group (66.7% and 24.4%, respectively; p = 0.034). Multivariate analysis identified pN1 (p = 0.002), metformin administration (p = 0.022), and microvascular invasion (p = 0.023) as independent prognostic factors for OS in the patients with DM. Matched-pair analysis showed that OS tended to be better in the metformin group than in the other medications group (p = 0.067). CONCLUSIONS History of metformin intake may contribute to favorable prognosis in patients with PDAC and pre-existing DM.
Collapse
Affiliation(s)
- Fumihiro Terasaki
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
42
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
43
|
Palazzolo G, Mollica H, Lusi V, Rutigliani M, Di Francesco M, Pereira RC, Filauro M, Paleari L, DeCensi A, Decuzzi P. Modulating the Distant Spreading of Patient-Derived Colorectal Cancer Cells via Aspirin and Metformin. Transl Oncol 2020; 13:100760. [PMID: 32247264 PMCID: PMC7118176 DOI: 10.1016/j.tranon.2020.100760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Although screening has reduced mortality rates for colorectal cancer (CRC), about 20% of patients still carry metastases at diagnosis. Postsurgery chemotherapy is toxic and induces drug resistance. Promising alternative strategies rely on repurposing drugs such as aspirin (ASA) and metformin (MET). Here, tumor spheroids were generated in suspension by primary CRCs and metastatic lymph nodes from 11 patients. These spheroids presented a heterogeneous cell population including a small core of CD133+/ESA+ cancer stem cells surrounded by a thick corona of CDX2+/CK20+ CRC cells, thus maintaining the molecular hallmarks of the tumor source. Spheroids were exposed to ASA and/or MET at different doses for up to 7 days to assess cell growth, migration, and adhesion in three-dimensional assays. While ASA at 5 mM was always sufficient to mitigate cell migration, the response to MET was patient specific. Only in MET-sensitive spheroids, the 5 mM ASA/MET combination showed an effect. Interestingly, CRCs from diabetic patients daily pretreated with MET gave a very low spheroid yield due to reduced cancer cell survival. This study highlights the potential of ASA/MET treatments to modulate CRC spreading.
Collapse
Affiliation(s)
- Gemma Palazzolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| | - Hilaria Mollica
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Valeria Lusi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Mariangela Rutigliani
- Department of Laboratory and Service, Histological and Anatomical Pathology Unit, E.O. Ospedali Galliera, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Rui Cruz Pereira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Marco Filauro
- Department of Surgery, E.O. Ospedali Galliera, Genoa, Italy
| | | | - Andrea DeCensi
- Department of Medicine Area, Medical Oncology Unit, E.O. Ospedali Galliera, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
44
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020; 19:50. [PMID: 32122374 PMCID: PMC7053123 DOI: 10.1186/s12943-020-01169-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| |
Collapse
|
45
|
Sanches-Silva A, Testai L, Nabavi SF, Battino M, Pandima Devi K, Tejada S, Sureda A, Xu S, Yousefi B, Majidinia M, Russo GL, Efferth T, Nabavi SM, Farzaei MH. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res 2020; 152:104626. [PMID: 31904507 DOI: 10.1016/j.phrs.2019.104626] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand, inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of natural agents like polyphenols via regulating mTOR.
Collapse
Affiliation(s)
- Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
46
|
Li HK, Zhang WD, Gu Y, Wu GS. Strategy of systems biology for visualizing the “Black box” of traditional Chinese medicine. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_31_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Mroueh FM, Noureldein M, Zeidan YH, Boutary S, Irani SAM, Eid S, Haddad M, Barakat R, Harb F, Costantine J, Kanj R, Sauleau EA, Ouhtit A, Azar ST, Eid AH, Eid AA. Unmasking the interplay between mTOR and Nox4: novel insights into the mechanism connecting diabetes and cancer. FASEB J 2019; 33:14051-14066. [DOI: 10.1096/fj.201900396rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fatima Mohsen Mroueh
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mohamed Noureldein
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Youssef H. Zeidan
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- Department of Radiation Oncology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Suzan Boutary
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sara Abou Merhi Irani
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Stéphanie Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mary Haddad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Frederic Harb
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Joseph Costantine
- Department of Electrical and Computer Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Rouwaida Kanj
- Department of Electrical and Computer Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Erik-André Sauleau
- Department of Biostatistics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7357 ICube, University of Strasbourg, Strasbourg, France
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sami T. Azar
- Department of Internal Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- American University of Beirut (AUB) Diabetes, Faculty of Medicine and Medical Center American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- American University of Beirut (AUB) Diabetes, Faculty of Medicine and Medical Center American University of Beirut, Beirut, Lebanon
| |
Collapse
|
48
|
Li K, Yuan M, He Z, Wu Q, Zhang C, Lei Z, Rong X, Huang Z, Turnbull JE, Guo J. Omics Insights into Metabolic Stress and Resilience of Rats in Response to Short‐term Fructose Overfeeding. Mol Nutr Food Res 2019; 63:e1900773. [DOI: 10.1002/mnfr.201900773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Min Yuan
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhuo‐Ru He
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Qi Wu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Chu‐Mei Zhang
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhi‐Li Lei
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Xiang‐Lu Rong
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510006 China
| | - Jeremy E. Turnbull
- Centre for Glycobiology, Department of BiochemistryInstitute of Integrative BiologyUniversity of Liverpool Liverpool L69 7ZB UK
| | - Jiao Guo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| |
Collapse
|
49
|
Sun X, Zhang X, Zhai H, Zhang D, Ma S. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomed Pharmacother 2019; 118:109144. [PMID: 31545234 DOI: 10.1016/j.biopha.2019.109144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common cancers leading to tumor-related deaths worldwide. Chicoric acid (CA) exhibits a variety of protective effects in different diseases. However, its role in regulating tumor progression has not been reported. Autophagy, as a conserved catabolic process, sustains cellular homoeostasis responding to stress to modulate cell fate. In the study, the effects of CA on gastric cancer were investigated. The results indicated that CA treatment markedly reduced the cell viability and induced apoptosis in gastric cancer cells, and prevented tumor growth in an established xenograft gastric cancer model. Furthermore, CA exposure significantly induced autophagy both in gastric cancer cells and tumor samples, as evidenced by the up-regulated expression of LC3II. Moreover, phosphorylated AMP-activated protein kinase (AMPK) and p70S6 kinase (p70s6k) expression were obviously promoted by CA in vitro and in vivo. Importantly, blocking AMPK activation abrogated CA-induced expression of LC3II in gastric cancer cells. In addition, endoplasmic reticulum (ER) stress in tumor samples or cells was markedly induced by CA treatment through promoting the expression of associated signals such as Parkin, protein kinase RNA-like ER kinase (PERK), activating transcription factors 4 (ATF4) and ATF6. Importantly, these effects were abolished by the inhibition of AMPK signaling. Collectively, our findings indicated that CA prevents human gastric cancer progression by inducing autophagy partly through the activation of AMPK, and represents an effective therapeutic strategy against gastric cancer development.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongjun Zhai
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Di Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuangyu Ma
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
50
|
Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2019; 14:678-687. [PMID: 30120380 DOI: 10.1038/s41581-018-0051-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.
Collapse
|