1
|
Estrade M, Diguisto C, Arnaud C, Ehlinger V, Vayssière PC. Comparison of cesarean delivery rates after 3 methods of cervical ripening among obese women at or after 41 weeks - Secondary analysis of two French randomized controlled trials: MAGPOP and CYTOPRO. Eur J Obstet Gynecol Reprod Biol 2023; 291:16-21. [PMID: 37806026 DOI: 10.1016/j.ejogrb.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE To compare cesarean rates and maternal and neonatal morbidity according to the cervical ripening method used among obese pregnant women requiring induction of labor at or after 41 weeks of gestation. DESIGN A secondary analysis of two multicenter randomized controlled trials conducted in French maternity units between 2015 and 2018. PARTICIPANTS 336 women with a body mass index ≥30 kg/m2, a pregnancy ≥41 weeks, and an induction of labor requiring cervical ripening. INTERVENTIONS Cervical ripening with a PGE2 dinoprostone pessary (Propess®), or low-dose vaginal PGE1 (misoprostol) or a double-balloon catheter. MEASUREMENTS AND FINDINGS The rates of cesarean delivery did not differ significantly according to the cervical ripening method (PGE2 pessary vs PGE1, RR: 1.18, 95% CI: 0.80-1.75; PGE2 pessary vs double balloon catheter: RR, 0.88, 95% CI: 0.60-1.29), p = 0.52; double balloon catheter vs PGE1, RR: 1.34, 95% CI: 0.77-2.32, p = 0.29). More oxytocin was required for women from the double-balloon group compared to those from both the PGE1 and PGE2 pessary groups (respectively, RR: 1.31, 95% CI: 1.08-1.58, p = 0.005; RR: 1.17, 95% CI: 1.03-1.32, p = 0.01). The risk of perineal tears or episiotomy was significantly lower for women induced with the PGE2 pessary than with PGE1 (0.85; 95% CI: 0.74-0.99), p = 0.03). KEY CONCLUSIONS AND IMPLICATIONS FOR PRACTICE No cervical ripening method was associated with a lower cesarean rate in obese women who required cervical ripening from 41 weeks. Further trials are required among obese women to determine the cervical ripening method most efficacious for reducing the cesarean rate.
Collapse
Affiliation(s)
- Marine Estrade
- CERPOP, UMR 1295, Team SPHERE (Study of Perinatal, Pediatric and Adolescent Health: Epidemiological Research and Evaluation) Toulouse III University, Toulouse, France.
| | - Caroline Diguisto
- Pôle de gynécologie obstétrique, médecine fœtale, médecine et biologie de la reproduction, centre Olympe de Gouges, CHRU de Tours, Université de Tours, France; Université Paris Cité, Centre for Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPé, INSERM, INRA, Paris, France
| | - Catherine Arnaud
- CERPOP, UMR 1295, Team SPHERE (Study of Perinatal, Pediatric and Adolescent Health: Epidemiological Research and Evaluation) Toulouse III University, Toulouse, France
| | - Virginie Ehlinger
- CERPOP, UMR 1295, Team SPHERE (Study of Perinatal, Pediatric and Adolescent Health: Epidemiological Research and Evaluation) Toulouse III University, Toulouse, France
| | - Pr Christophe Vayssière
- CERPOP, UMR 1295, Team SPHERE (Study of Perinatal, Pediatric and Adolescent Health: Epidemiological Research and Evaluation) Toulouse III University, Toulouse, France; Department of Obstetrics and Gynecology, Paule de Viguier Hospital, Toulouse III University, Toulouse, France
| |
Collapse
|
2
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
3
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
4
|
Kim ES, Kim SY, Moon A. C-Reactive Protein Signaling Pathways in Tumor Progression. Biomol Ther (Seoul) 2023; 31:473-483. [PMID: 37562952 PMCID: PMC10468419 DOI: 10.4062/biomolther.2023.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.
Collapse
Affiliation(s)
- Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
5
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Tang Y, Lin TC, Kim YC, Chung S, Liu Z. High-Fat Diet Exposure in Early Life Alters Mammary Metabolic and Inflammatory Microenvironment in Favor of Breast Tumorigenesis Later in Life in Mice. Curr Oncol 2023; 30:4197-4207. [PMID: 37185433 PMCID: PMC10136975 DOI: 10.3390/curroncol30040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Emerging evidence highlights the important impact of early-life exposures on cancer development later in life. The present study aimed to investigate the impacts of a high-fat diet in early life on the mammary microenvironment in relation to breast tumorigenesis. Forty-four female C57BL/6 mice were fed a low-fat diet (LF, 10 kcal% fat) or a high-fat diet (HF, 60 kcal% fat) for 8 weeks starting at ~4 weeks of age. Twenty-two mice were sacrificed immediately after an 8 week feeding, and the rest of mice were switched to a normal diet for maintenance (Lab Diet, #5P76) for additional 12 weeks. A panel of metabolic parameters, inflammatory cytokines, as well as tumorigenic Wnt-signaling target genes were analyzed. The HF diet increased body weight and exacerbated mammary metabolic and inflammatory status. The disrupted microenvironment remains significant to the later life equivalent to young adulthood (p < 0.05). Mammary Wnt-signaling was elevated right after the HF diet as indicated by the upregulated expression of its downstream genes, whereas it was surprisingly suppressed after switching diets (p < 0.05). In summary, HF-induced overweight/obesity in early life altered the mammary metabolic and inflammatory microenvironments in favor of breast tumorigenesis, although its overall impact to breast cancer later in life warrants further investigation.
Collapse
Affiliation(s)
- Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Young-Cheul Kim
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
7
|
Løfling L, Støer NC, Nafisi S, Ursin G, Hofvind S, Botteri E. Low-dose aspirin and risk of breast cancer: a Norwegian population-based cohort study of one million women. Eur J Epidemiol 2023; 38:413-426. [PMID: 36877278 PMCID: PMC10082109 DOI: 10.1007/s10654-023-00976-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023]
Abstract
Several studies evaluated the association between aspirin use and risk of breast cancer (BC), with inconsistent results. We identified women aged ≥ 50 years residing in Norway between 2004 and 2018, and linked data from nationwide registries; including the Cancer Registry of Norway, the Norwegian Prescription Database, and national health surveys. We used Cox regression models to estimate the association between low-dose aspirin use and BC risk, overall and by BC characteristics, women's age and body mass index (BMI), adjusting for sociodemographic factors and use of other medications. We included 1,083,629 women. During a median follow-up of 11.6 years, 257,442 (24%) women used aspirin, and 29,533 (3%) BCs occurred. For current use of aspirin, compared to never use, we found an indication of a reduced risk of oestrogen receptor-positive (ER +) BC (hazard ratio [HR] = 0.96, 95% confidence interval [CI]: 0.92-1.00), but not ER-negative BC (HR = 1.01, 95%CI: 0.90-1.13). The association with ER + BC was only found in women aged ≥ 65 years (HR = 0.95, 95%CI: 0.90-0.99), and became stronger as the duration of use increased (use of ≥ 4 years HR = 0.91, 95%CI: 0.85-0.98). BMI was available for 450,080 (42%) women. Current use of aspirin was associated with a reduced risk of ER + BC in women with BMI ≥ 25 (HR = 0.91, 95%CI: 0.83-0.99; HR = 0.86, 95%CI: 0.75-0.97 for use of ≥ 4 years), but not in women with BMI < 25.Use of low-dose aspirin was associated with reduced risk of ER + BC, in particular in women aged ≥ 65 years and overweight women.
Collapse
Affiliation(s)
- Lukas Løfling
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway
| | - Nathalie C Støer
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway
- Norwegian Research Centre for Women's Health, Women's Clinic, Oslo University Hospital, Oslo, Norway
| | - Sara Nafisi
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Giske Ursin
- Cancer Registry of Norway, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Solveig Hofvind
- Section for Breast Cancer Screening, Cancer Registry of Norway, Oslo, Norway
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Edoardo Botteri
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway.
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway.
| |
Collapse
|
8
|
Krum-Hansen S, Standahl Olsen K, Anderssen E, Frantzen JO, Lund E, Paulssen RH. Associations of breast cancer related exposures and gene expression profiles in normal breast tissue-The Norwegian Women and Cancer normal breast tissue study. Cancer Rep (Hoboken) 2023; 6:e1777. [PMID: 36617746 PMCID: PMC10075301 DOI: 10.1002/cnr2.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Normal breast tissue is utilized in tissue-based studies of breast carcinogenesis. While gene expression in breast tumor tissue is well explored, our knowledge of transcriptomic signatures in normal breast tissue is still incomplete. The aim of this study was to investigate variability of gene expression in a large sample of normal breast tissue biopsies, according to breast cancer related exposures (obesity, smoking, alcohol, hormone therapy, and parity). METHODS We analyzed gene expression profiles from 311 normal breast tissue biopsies from cancer-free, post-menopausal women, using Illumina bead chip arrays. Principal component analysis and K-means clustering was used for initial analysis of the dataset. The association of exposures and covariates with gene expression was determined using linear models for microarrays. RESULTS Heterogeneity of the breast tissue and cell composition had the strongest influence on gene expression profiles. After adjusting for cell composition, obesity, smoking, and alcohol showed the highest numbers of associated genes and pathways, whereas hormone therapy and parity were associated with negligible gene expression differences. CONCLUSION Our results provide insight into associations between major exposures and gene expression profiles and provide an informative baseline for improved understanding of exposure-related molecular events in normal breast tissue of cancer-free, post-menopausal women.
Collapse
Affiliation(s)
- Sanda Krum-Hansen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway
| | - Jan Ole Frantzen
- Narvik Hospital, University Hospital of North Norway, Narvik, Norway
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Assanga SBI, Luján LML, McCarty MF, Di Nicolantonio JJ. Nutraceutical and Dietary Resources for Breast Cancer Prevention – Highlighting Strategies for Suppressing Breast Aromatase Expression. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Haque S, Raina R, Afroze N, Hussain A, Alsulimani A, Singh V, Mishra BN, Kaul S, Kharwar RN. Microbial dysbiosis and epigenetics modulation in cancer development - A chemopreventive approach. Semin Cancer Biol 2022; 86:666-681. [PMID: 34216789 DOI: 10.1016/j.semcancer.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates.
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, 180006, J&K, India
| | - Ravindra Nath Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
11
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
12
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Wei Y, Zhang X, Meng Y, Wang Q, Xu H, Chen L. The Effects of Resistant Starch on Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis. Nutr Cancer 2022; 74:2337-2350. [PMID: 35188032 DOI: 10.1080/01635581.2021.2019284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yali Wei
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiyu Zhang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Yan Meng
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Qian Wang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Hongzhao Xu
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Liyong Chen
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Barone I, Caruso A, Gelsomino L, Giordano C, Bonofiglio D, Catalano S, Andò S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes Rev 2022; 23:e13358. [PMID: 34559450 PMCID: PMC9285685 DOI: 10.1111/obr.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
15
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
16
|
García-Estévez L, Cortés J, Pérez S, Calvo I, Gallegos I, Moreno-Bueno G. Obesity and Breast Cancer: A Paradoxical and Controversial Relationship Influenced by Menopausal Status. Front Oncol 2021; 11:705911. [PMID: 34485137 PMCID: PMC8414651 DOI: 10.3389/fonc.2021.705911] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common tumor in women worldwide, and an increasing public health concern. Knowledge of both protective and negative risk factors is essential for a better understanding of this heterogenous disease. We undertook a review of the recent literature and evaluated the relationship between obesity mediators and breast cancer development depending on menopausal status. Excess weight is now pandemic and has replaced tobacco as the main lifestyle-related risk factor for premature death. Although the prevalence of obesity/overweight has increased globally over the last 50 years, the potential harm attributable to excess fat has generally been underestimated. The relationship between overweight/obesity, breast cancer and overall risk appears to be highly dependent on menopausal status. Thus, obesity increases the risk of breast cancer in postmenopausal women but, conversely, it appears to be protective in premenopausal women. We evaluate the role of different clinical factors potentially involved in this seemingly contradictory relationship, including estrogen, mammogram density, adipokines, insulin-signaling pathway activation, and inflammatory status. A key focus of this review is to better understand the impact of body mass index and menopausal status on these clinical factors and, hence, provide some clarity into the inter-relationships involved in this controversial issue.
Collapse
Affiliation(s)
- Laura García-Estévez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Barcelona, Spain.,Medical Scientia Innovation Research (MedSIR), Barcelona, Spain.,Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Silvia Pérez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Isabel Calvo
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Isabel Gallegos
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| |
Collapse
|
17
|
Obesity-related gut hormones and cancer: novel insight into the pathophysiology. Int J Obes (Lond) 2021; 45:1886-1898. [PMID: 34088971 DOI: 10.1038/s41366-021-00865-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
The number of cancers attributed to obesity is increasing over time. The mechanisms classically implicated in cancer pathogenesis and progression in patients with obesity involve adiposity-related alteration of insulin, sex hormones, and adipokine pathways. However, they do not fully capture the complexity of the association between obesity-related nutritional imbalance and cancer. Gut hormones are secreted by enteroendocrine cells along the gastrointestinal tract in response to nutritional cues, and act as nutrient sensors, regulating eating behavior and energy homeostasis and playing a role in immune-modulation. The dysregulation of gastrointestinal hormone physiology has been implicated in obesity pathogenesis. For their peculiar function, at the cross-road between nutrients intake, energy homeostasis and inflammation, gut hormones might represent an important but still underestimated mechanism underling the obesity-related high incidence of cancer. In addition, cancer research has revealed the widespread expression of gut hormone receptors in neoplastic tissues, underscoring their implication in cell proliferation, migration, and invasion processes that characterize tumor growth and aggressiveness. In this review, we hypothesize that obesity-related alterations in gut hormones might be implicated in cancer pathogenesis, and provide evidence of the pathways potentially involved.
Collapse
|
18
|
Nuvoli B, Antoniani B, Libener R, Maconi A, Sacconi A, Carosi M, Galati R. Identification of novel COX-2 / CYP19A1 axis involved in the mesothelioma pathogenesis opens new therapeutic opportunities. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:257. [PMID: 34404424 PMCID: PMC8369782 DOI: 10.1186/s13046-021-02050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Based on previous studies highlighting that the induction of cyclooxygenase-2 (COX-2) and high prostaglandin E2 (PGE2) levels contribute to the pathogenesis of malignant pleural mesothelioma (MPM), and that aromatase (CYP19A1), an enzyme that plays a key role in estrogen biosynthesis, along with estradiol (E2) were expressed in MPM, this study aimed to investigate the possible interplay between COX-2 and CYP19A1 in the pathogenesis of mesothelioma, as well as the underlying mechanism. METHODS The interaction between COX-2 and CYP19A1 was first investigated on different MPM lines upon PGE2, and COX-2 inhibitor (rofecoxib) treatment by western blot, RT-PCR. The key regulatory pathways involved in the COX-2 and CYP19A1 axis were further studied in MPM cells, after rofecoxib and exemestane (CYP19A1 inhibitor) treatment in monotherapy and in combination, by cell cycle distribution, western blot, and combination index analysis. To explore the role of COX-2/CYP19A1 axis in 3D preclinical models of MPM cells, we analyzed the effect of combination of COX-2 and CYP19A1 inhibitors in mesosphere formation. Immunohistochemical analysis of MPM mesosphere and specimens was utilized to evaluate the involvement of COX-2 on the CYP19A1 activity and the relationship between E2 and COX-2. RESULTS PGE2 or rofecoxib treatment caused in MPM cells an increased or decreased, respectively, CYP19A1 expression at mRNA and protein levels. The effect of rofecoxib and exemestane combination in MPM cell proliferation was synergistic. Activation of caspase-3 and cleavage of PARP confirmed an apoptotic death for MPM cell lines. Increased expression levels of p53, p21, and p27, downregulation of cyclin D1 and inhibition of Akt activation (pAKT) were also found. The antagonistic effect of rofecoxib and exemestane combination found only in one cell line, was reverted by pretreatment with MK2206, a pAKT inhibitor, indicating pAKT as an actionable mediator in the COX-2-CYP19A1 axis. Reduction of size and sphere-forming efficiency in MPM spheres after treatment with both inhibitor and a decrease in COX-2 and E2 staining was found. Moreover, immunohistochemical analysis of 46 MPM samples showed a significant positive correlation between COX-2 and E2. CONCLUSIONS Collectively, the results highlighted a novel COX-2/CYP19A1 axis in the pathogenesis of MPM that can be pharmacologically targeted, consequently opening up new therapeutic options.
Collapse
Affiliation(s)
- Barbara Nuvoli
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Antoniani
- grid.417520.50000 0004 1760 5276Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Libener
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio General Hospital, Alessandria, Italy
| | - Antonio Maconi
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio General Hospital, Alessandria, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- grid.417520.50000 0004 1760 5276Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Galati
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
19
|
Martínez-Chacón G, Yatkin E, Polari L, Deniz Dinç D, Peuhu E, Hartiala P, Saarinen N, Mäkelä S. CC chemokine ligand 2 (CCL2) stimulates aromatase gene expression in mammary adipose tissue. FASEB J 2021; 35:e21536. [PMID: 33913559 DOI: 10.1096/fj.201902485rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a risk factor for postmenopausal breast cancer. Obesity-related inflammation upregulates aromatase expression, the rate-limiting enzyme for estrogen synthesis, in breast adipose tissue (BAT), increasing estrogen production and cancer risk. The regulation of aromatase gene (CYP19A1) in BAT is complex, and the mechanisms linking obesity and aromatase dysregulation are not fully understood. An obesity-associated factor that could regulate aromatase is the CC chemokine ligand (CCL) 2, a pro-inflammatory factor that also activates signaling pathways implicated in CYP19A1 transcription. By using human primary breast adipose stromal cells (ASCs) and aromatase reporter (hARO-Luc) mouse mammary adipose explants, we demonstrated that CCL2 enhances the glucocorticoid-mediated CYP19A1 transcription. The potential mechanism involves the activation of PI.4 via ERK1/2 pathway. We also showed that CCL2 contributes to the pro-inflammatory milieu and aromatase expression in obesity, evidenced by increased expression of CCL2 and CYP19A1 in mammary tissues from obese hARO-Luc mice, and subcutaneous adipose tissue from obese women. In summary, our results indicate that postmenopausal obesity may promote CCL2 production in BAT, leading to exacerbation of the menopause-related inflammatory state and further stimulation of local aromatase and estrogens. These results provide new insights into the regulation of aromatase and may aid in finding approaches to prevent breast cancer.
Collapse
Affiliation(s)
- Gabriela Martínez-Chacón
- Functional Foods Forum, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Emrah Yatkin
- Functional Foods Forum, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Central Animal Laboratory, University of Turku, Turku, Finland
| | - Lauri Polari
- Functional Foods Forum, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Defne Deniz Dinç
- Institute of Biomedicine, University of Turku, Turku, Finland.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, University of Turku, Turku, Finland.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pauliina Hartiala
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Plastic and General Surgery, Turku University Hospital (TYS), Turku, Finland
| | - Niina Saarinen
- Functional Foods Forum, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Sari Mäkelä
- Functional Foods Forum, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Effect of n-3 long-chain polyunsaturated fatty acid intake on the eicosanoid profile in individuals with obesity and overweight: a systematic review and meta-analysis of clinical trials. J Nutr Sci 2021; 10:e53. [PMID: 34367628 PMCID: PMC8327393 DOI: 10.1017/jns.2021.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) present beneficial effects on counteracting inflammation status, displaying a critical anti-inflammatory role and maintaining physiological homeostasis in obesity. The primary objective of this systematic review was to evaluate the effect of n-3 PUFAs intake on the eicosanoid profile of people with obesity and overweight. The search strategy on Embase, Scopus, PubMed, Web of Science, Cochrane Library, Google Scholar and ProQuest was undertaken until November 2019 and updated January 2021. The effect size of n-3 PUFAs on prostaglandins was estimated by Glass's, type 1 in a random-effect model for the meta-analysis. Seven clinical trials met the eligible criteria and a total of 610 subjects were included in this systematic review, and four of seven studies were included in meta-analysis. The intake of n-3 PUFAs promoted an overall reduction in serum pro-inflammatory eicosanoids. Additionally, n-3 PUFAs intake significantly decreased the arachidonic acid COX-derived PG eicosanoid group levels (Glass's Δ -0⋅35; CI -0⋅62, -0⋅07, I 2 31⋅48). Subgroup analyses showed a higher effect on periods up to 8 weeks (Glass's Δ -0⋅51; CI -0⋅76, -0⋅27) and doses higher than 0⋅5 g of n-3 PUFAs (Glass's Δ -0⋅46; CI -0⋅72, -0⋅27). Dietary n-3 PUFAs intake contributes to reduce pro-inflammatory eicosanoids of people with obesity and overweight. Subgroup's analysis showed that n-3 PUFAs can reduce the overall arachidonic acid COX-derived PG when adequate dose and period are matched.
Collapse
|
21
|
Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci 2021; 22:ijms22115421. [PMID: 34063828 PMCID: PMC8196678 DOI: 10.3390/ijms22115421] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.
Collapse
Affiliation(s)
- Sana Hibino
- Research Center for Advanced Science and Technology, Department of Inflammology, The University of Tokyo, Tokyo 153-0041, Japan;
| | - Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidenori Kasahara
- National Center for Global Health and Medicine, Department of Stem Cell Biology, Research Institute, Tokyo 162-8655, Japan;
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan;
| | | | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-5050
| |
Collapse
|
22
|
Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ. Retraction: Increased Levels of COX-2 and Prostaglandin E2 Contribute to Elevated Aromatase Expression in Inflamed Breast Tissue of Obese Women. Cancer Discov 2021; 11:1306. [PMID: 33947719 DOI: 10.1158/2159-8290.cd-21-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Bevinakoppamath S, Saleh Ahmed AM, Ramachandra SC, Vishwanath P, Prashant A. Chemopreventive and Anticancer Property of Selenoproteins in Obese Breast Cancer. Front Pharmacol 2021; 12:618172. [PMID: 33935708 PMCID: PMC8087246 DOI: 10.3389/fphar.2021.618172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a significant risk factor for various cancers including breast cancer resulting in an increased risk of recurrence as well as morbidity and mortality. Extensive studies on various pathways have been successful in establishing a biological relationship between obesity and breast cancer. The molecular classification of breast cancer includes five groups each having different responses to treatment. Increased levels of inflammatory cytokines seen in obese conditions drive the pro-proliferative pathways, such as the influx of macrophages, angiogenesis, and antiapoptotic pathways. Increased peripheral aromatization of androgens by aromatase increases the circulating estrogen levels which are also responsible for the association of obesity with breast cancer. Also, increased oxidative stress due to chronic low-grade inflammation in obese women plays an important role in carcinogenesis. Despite the availability of safe and effective treatment options for breast cancer, obese women are at increased risk of adverse outcomes including treatment-related toxicities. In the recent decade, selenium compounds have gained substantial interest as chemopreventive and anticancer agents. The chemical derivatives of selenium include inorganic and organic compounds that exhibit pro-oxidant properties and alter cellular redox homeostasis. They target more than one metabolic pathway by thiol modifications, induction of reactive oxygen species, and chromatin modifications to exert their chemopreventive and anticancer activities. The primary functional effectors of selenium that play a significant role in human homeostasis are selenoproteins like glutathione peroxidase, thioredoxin reductase, iodothyronine deiodinases, and selenoprotein P. Selenoproteins play a significant role in adipose tissue physiology by modulating preadipocyte proliferation and adipogenic differentiation. They correlate negatively with body mass index resulting in increased oxidative stress that may lead to carcinogenesis in obese individuals. Methylseleninic acid effectively suppresses aromatase activation thus reducing the estrogen levels and acting as a breast cancer chemopreventive agent. Adipose-derived inflammatory mediators influence the selenium metabolites and affect the proliferation and metastatic properties of cancer cells. Recently selenium nanoparticles have shown potent anticancer activity which may lead to a major breakthrough in the management of cancers caused due to multiple pathways. In this review, we discuss the possible role of selenoproteins as chemopreventive and an anticancer agent in obese breast cancer.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Adel Mohammed Saleh Ahmed
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Shobha Chikkavaddaraguddi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
24
|
Xing T, Pan X, Zhang L, Gao F. Hepatic Oxidative Stress, Apoptosis, and Inflammation in Broiler Chickens With Wooden Breast Myopathy. Front Physiol 2021; 12:659777. [PMID: 33935806 PMCID: PMC8081064 DOI: 10.3389/fphys.2021.659777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Wooden breast (WB) syndrome has emerged as a global myopathy in modern commercial broiler chickens, mainly affecting the pectoralis major muscle. Recent evidence suggests that WB myopathy is a systemic disease, which might be accompanied by other physiological disparities and metabolic changes. This study was conducted to systemically investigate the potential physiological changes in liver tissues as well as the possible mechanisms involved to enhance the understanding of the etiology. A total of 93 market-age Arbor Acres male broiler chickens were sampled and categorized into control (CON) and WB groups based on the evaluation of myopathic lesions. Liver samples were collected (n = 10 in each group) for histopathological evaluation and biochemical analyses. Results indicated that WB birds exhibited significantly higher plasma aspartate amino transferase, alkaline phosphatase, and gamma glutamyl transpeptidase activities. Histopathological changes in hydropic/fatty degeneration, inflammatory cell infiltration, intrahepatic hemorrhages, elevated myeloperoxidase activity, and overproduction of nitric oxide were observed in WB liver compared with CON, suggesting the occurrence of liver injury in birds affected by WB myopathy. The WB group showed increased levels of reactive oxygen species, oxidative products, as well as enhanced antioxidant capacities in the liver. These changes were associated with impaired mitochondria morphology and mitochondrial dysfunction. WB myopathy also induced mitochondria-mediated hepatic apoptosis by upregulating levels of caspases 3 and 9, altering the expressions of apoptotic B-cell lymphoma-2 family regulators, as well as increasing the release of cytochrome c. The activation of nuclear factor kappa-light-chain-enhancer of activated B cell signaling enhanced the mRNA expression of downstream inflammatory mediators, contributing to the production of inflammatory cytokines in WB liver. Combined, these findings suggest that hepatic disorders may be conjoined with WB myopathy in broiler chickens and indicating systemic physiological disparities, and other metabolic changes accompanying this myopathy need further assessment.
Collapse
Affiliation(s)
- Tong Xing
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaona Pan
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Almekinders MMM, Schaapveld M, Thijssen B, Visser LL, Bismeijer T, Sanders J, Isnaldi E, Hofland I, Mertz M, Wessels LFA, Broeks A, Hooijberg E, Zwart W, Lips EH, Desmedt C, Wesseling J. Breast adipocyte size associates with ipsilateral invasive breast cancer risk after ductal carcinoma in situ. NPJ Breast Cancer 2021; 7:31. [PMID: 33753731 PMCID: PMC7985299 DOI: 10.1038/s41523-021-00232-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Although ductal carcinoma in situ (DCIS) is a non-obligate precursor to ipsilateral invasive breast cancer (iIBC), most DCIS lesions remain indolent. Hence, overdiagnosis and overtreatment of DCIS is a major concern. There is an urgent need for prognostic markers that can distinguish harmless from potentially hazardous DCIS. We hypothesised that features of the breast adipose tissue may be associated with risk of subsequent iIBC. We performed a case-control study nested in a population-based DCIS cohort, consisting of 2658 women diagnosed with primary DCIS between 1989 and 2005, uniformly treated with breast conserving surgery (BCS) alone. We assessed breast adipose features with digital pathology (HALO®, Indica Labs) and related these to iIBC risk in 108 women that developed subsequent iIBC (cases) and 168 women who did not (controls) by conditional logistic regression, accounting for clinicopathological and immunohistochemistry variables. Large breast adipocyte size was significantly associated with iIBC risk (odds ratio (OR) 2.75, 95% confidence interval (95% CI) = 1.25-6.05). High cyclooxygenase (COX)-2 protein expression in the DCIS cells was also associated with subsequent iIBC (OR 3.70 (95% CI = 1.59-8.64). DCIS with both high COX-2 expression and large breast adipocytes was associated with a 12-fold higher risk (OR 12.0, 95% CI = 3.10-46.3, P < 0.001) for subsequent iIBC compared with women with smaller adipocyte size and low COX-2 expression. Large breast adipocytes combined with high COX-2 expression in DCIS is associated with a high risk of subsequent iIBC. Besides COX-2, adipocyte size has the potential to improve clinical management in patients diagnosed with primary DCIS.
Collapse
Affiliation(s)
- Mathilde M M Almekinders
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Michael Schaapveld
- Division of Psychosocial Research, Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lindy L Visser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Edoardo Isnaldi
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Medical Specialties, Università degli Studi di Genova, IT-16132, Genova, Italy
| | - Ingrid Hofland
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjolijn Mertz
- Bio-Imaging Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
26
|
Miller B, Chalfant H, Thomas A, Wellberg E, Henson C, McNally MW, Grizzle WE, Jain A, McNally LR. Diabetes, Obesity, and Inflammation: Impact on Clinical and Radiographic Features of Breast Cancer. Int J Mol Sci 2021; 22:2757. [PMID: 33803201 PMCID: PMC7963150 DOI: 10.3390/ijms22052757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, diabetes, and inflammation increase the risk of breast cancer, the most common malignancy in women. One of the mainstays of breast cancer treatment and improving outcomes is early detection through imaging-based screening. There may be a role for individualized imaging strategies for patients with certain co-morbidities. Herein, we review the literature regarding the accuracy of conventional imaging modalities in obese and diabetic women, the potential role of anti-inflammatory agents to improve detection, and the novel molecular imaging techniques that may have a role for breast cancer screening in these patients. We demonstrate that with conventional imaging modalities, increased sensitivity often comes with a loss of specificity, resulting in unnecessary biopsies and overtreatment. Obese women have body size limitations that impair image quality, and diabetes increases the risk for dense breast tis-sue. Increased density is known to obscure the diagnosis of cancer on routine screening mammography. Novel molecu-lar imaging agents with targets such as estrogen receptor, human epidermal growth factor receptor 2 (HER2), pyrimi-dine analogues, and ligand-targeted receptor probes, among others, have potential to reduce false positive results. They can also improve detection rates with increased resolution and inform therapeutic decision making. These emerg-ing imaging techniques promise to improve breast cancer diagnosis in obese patients with diabetes who have dense breasts, but more work is needed to validate their clinical application.
Collapse
Affiliation(s)
- Braden Miller
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Hunter Chalfant
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Alexandra Thomas
- Department of Internal Medicine, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA;
| | - Elizabeth Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | - Christina Henson
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | | | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
27
|
Tan PY, Teng KT. Role of dietary fat on obesity-related postmenopausal breast cancer: insights from mouse models and methodological considerations. Breast Cancer 2021; 28:556-571. [PMID: 33687609 DOI: 10.1007/s12282-021-01233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The increasing incidence rate of breast cancer in the last few decades is known to be linked to the upward trend of obesity prevalence worldwide. The consumption of high-fat diet in particular has been correlated with postmenopausal breast cancer risk. The underlying mechanisms, using suitable and reliable experimental mouse model, however, is lacking. The current review aims to discuss the evidence available from mouse models on the effects of dietary fats intake on postmenopausal breast cancer. We will further discuss the biochemical mechanisms involved in the occurrence of postmenopausal breast cancer. In addition, the methodological considerations and their limitations in obesity-related postmenopausal breast cancer, such as choice of mouse models and breast cancer cell lines as well as the study duration will be reviewed. The current review will provide a platform for further development of new xenograft models which may offer the opportunity to investigate the mechanisms of postmenopausal breast cancer in a greater detail.
Collapse
Affiliation(s)
- Pei Yee Tan
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kim Tiu Teng
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
28
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
29
|
The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1342-1352. [PMID: 33639102 DOI: 10.1016/j.ajpath.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The role of the adipocyte in the tumor microenvironment has received significant attention as a critical mediator of the obesity-cancer relationship. Current estimates indicate that 650 million adults have obesity, and thirteen cancers, including breast cancer, are estimated to be associated with obesity. Even in people with a normal body mass index, adipocytes are key players in breast cancer progression because of the proximity of tumors to mammary adipose tissue. Outside the breast microenvironment, adipocytes influence metabolic and immune function and produce numerous signaling molecules, all of which affect breast cancer development and progression. The current epidemiologic data linking obesity, and importantly adipose tissue, to breast cancer risk and prognosis, focusing on metabolic health, weight gain, and adipose distribution as underlying drivers of obesity-associated breast cancer is presented here. Bioactive factors produced by adipocytes, both normal and cancer associated, such as cytokines, growth factors, and metabolites, and the potential mechanisms through which adipocytes influence different breast cancer subtypes are highlighted.
Collapse
|
30
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
31
|
Luo Y, Li X, Ma J, Abbruzzese JL, Lu W. Pancreatic Tumorigenesis: Oncogenic KRAS and the Vulnerability of the Pancreas to Obesity. Cancers (Basel) 2021; 13:cancers13040778. [PMID: 33668583 PMCID: PMC7918840 DOI: 10.3390/cancers13040778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a devastating disease with a poor survival rate, and oncogenic mutant KRAS is a major driver of its initiation and progression; however, effective strategies/drugs targeting major forms of mutant KRAS have not been forthcoming. Of note, obesity is known to worsen mutant KRAS-mediated pathologies, leading to PDAC with high penetrance; however, the mechanistic link between obesity and pancreatic cancer remains elusive. The recent discovery of FGF21 as an anti-obesity and anti-inflammation factor and as a downstream target of KRAS has shed new light on the problem. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
Collapse
Affiliation(s)
- Yongde Luo
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Xiaokun Li
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
| | - Jianjia Ma
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA;
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
32
|
Jung SY, Papp JC, Sobel EM, Pellegrini M, Yu H, Zhang ZF. Genetically Predicted C-Reactive Protein Associated With Postmenopausal Breast Cancer Risk: Interrelation With Estrogen and Cancer Molecular Subtypes Using Mendelian Randomization. Front Oncol 2021; 10:630994. [PMID: 33614510 PMCID: PMC7888276 DOI: 10.3389/fonc.2020.630994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Immune-related etiologic pathways that influence breast cancer risk are incompletely understood and may be confounded by lifestyles or reverse causality. Using a Mendelian randomization (MR) approach, we investigated the potential causal relationship between genetically elevated C-reactive protein (CRP) concentrations and primary invasive breast cancer risk in postmenopausal women. Methods We used individual-level data obtained from 10,179 women, including 537 who developed breast cancer, from the Women’s Health Initiative Database for Genotypes and Phenotypes Study, which consists of five genome-wide association (GWA) studies. We examined 61 GWA single-nucleotide polymorphisms (SNPs) previously associated with CRP. We employed weighted/penalized weighted–medians and MR gene–environment interactions that allow instruments’ invalidity to some extent and attenuate the heterogeneous estimates of outlying SNPs. Results In lifestyle-stratification analyses, genetically elevated CRP decreased risk for breast cancer in exogenous estrogen-only, estrogen + progestin, and past oral contraceptive (OC) users, but only among relatively short-term users (<5 years). Estrogen-only users for ≥5 years had more profound CRP-decreased breast cancer risk in dose–response fashion, whereas past OC users for ≥5 years had CRP-increased cancer risk. Also, genetically predicted CRP was strongly associated with increased risk for hormone-receptor positive or human epidermal growth factor receptor-2 negative breast cancer. Conclusions Our findings may provide novel evidence on the immune-related molecular pathways linking to breast cancer risk and suggest potential clinical use of CRP to predict the specific cancer subtypes. Our findings suggest potential interventions targeting CRP–inflammatory markers to reduce breast cancer risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States.,Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Kim S, Lee ES, Lee EJ, Jung JY, Lee SB, Lee HJ, Kim J, Kim HJ, Lee JW, Son BH, Gong G, Ahn SH, Chang S. Targeted eicosanoids profiling reveals a prostaglandin reprogramming in breast Cancer by microRNA-155. J Exp Clin Cancer Res 2021; 40:43. [PMID: 33494773 PMCID: PMC7831268 DOI: 10.1186/s13046-021-01839-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract Background Prostaglandin is one of the key metabolites for inflammation-related carcinogenesis. Despite the microRNA-155 is implicated in various types of cancers, it’s function in prostaglandin metabolism is largely unknown. Methods A targeted profiling of eicosanoids including prostaglandin, leukotriene and thromboxanes was performed in miR-155 deficient breast tumors and cancer cells. The molecular mechanism of miR-155-mediated prostaglandin reprogramming was investigated in primary and cancer cell lines, by analyzing key enzymes responsible for the prostaglandin production. Results We found miR-155-deficient breast tumors, plasma of tumor-bearing mouse and cancer cells show altered prostaglandin level, especially for the prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Subsequent analysis in primary cancer cells, 20 triple-negative breast cancer (TNBC) specimens and breast cancer cell lines with miR-155 knockdown consistently showed a positive correlation between miR-155 level and PGE2/PGD2 ratio. Mechanistically, we reveal the miR-155 reprograms the prostaglandin metabolism by up-regulating PGE2-producing enzymes PTGES/PTGES2 while down-regulating PGD2-producing enzyme PTGDS. Further, we show the up-regulation of PTGES2 is driven by miR-155-cMYC axis, whereas PTGES is transactivated by miR-155-KLF4. Thus, miR-155 hires dual-regulatory mode for the metabolic enzyme expression to reprogram the PGE2/PGD2 balance. Lastly, we show the miR-155-driven cellular proliferation is restored by the siRNA of PTGES1/2, of which expression also significantly correlates with breast cancer patients’ survival. Conclusions Considering clinical trials targeting PGE2 production largely have focused on the inhibition of Cox1 or Cox2 that showed cardiac toxicity, our data suggest an alternative way for suppressing PGE2 production via the inhibition of miR-155. As the antagomiR of miR-155 (MRG-106) underwent a phase-1 clinical trial, its effect should be considered and analyzed in prostaglandin metabolism in tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01839-4.
Collapse
Affiliation(s)
- Sinae Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Sung Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sei-Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
34
|
Gut microbiota homeostasis restoration may become a novel therapy for breast cancer. Invest New Drugs 2021; 39:871-878. [PMID: 33454868 DOI: 10.1007/s10637-021-01063-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most diagnosed cancer in women. It significantly impairs a patient's physical and mental health. Gut microbiota comprise the bacteria residing in a host's gastrointestinal tract. Through studies over the last decade, we now know that alterations in the composition of the gut microbiome are associated with protection against colonization by pathogens and other diseases, such as diabetes and cancer. This review focuses on how gut microbiota can affect breast cancer development through estrogen activity and discusses the types of bacteria that may be involved in the onset and the progression of breast cancer. We also describe potential therapies to curtail the risk of breast cancer by restoring gut microbiota homeostasis and reducing systemic estrogen levels. This review will further explore the relationship between intestinal microbes and breast cancer and propose a method to treat breast cancer by improving intestinal microbes. We aimed at discovering new methods to prevent or treat BC by changing intestinal microorganisms.
Collapse
|
35
|
Hu R, Cheng X, Liu J, Lai X, Wang R, Yu D, Fan Y, Yu Z. Body Composition Analysis of 10 Years versus 5 Years of Adjuvant Endocrine Therapy in Patients with Nonmetastatic Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6659680. [PMID: 33510788 PMCID: PMC7826243 DOI: 10.1155/2021/6659680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Our study aims to investigate the association of extended adjuvant endocrine therapy with disease-free survival (DFS), muscle mass, muscle strength, and visceral adipose tissue in patients with nonmetastatic breast cancer and the effect of extended endocrine therapy on body composition. Patients and Methods. Patients (N = 90) with nonmetastatic breast cancer aged between 60 and 65 years old were prospectively recruited in this study, compromising a cohort of subjects rece iving 5 years or 10 years of adjuvant endocrine therapy. Patients' DFS was compared between these two groups. Patients' body composition including muscle and fat using CT scans, muscle strength, and gait speed was evaluated in these two groups. RESULTS Dietary behavior was recorded with the food frequency questionnaire (FFQ). Patients' age, body weight, and body mass index (BMI) did not differ between the two groups. An extended adjuvant endocrine therapy into 10 years could translate into DFS benefit (123.8 vs. 102.2 months, P=0.038). Patients receiving 10 years of adjuvant endocrine therapy had less skeletal muscle and more visceral fat compared with patients receiving 5 years of adjuvant endocrine therapy. The skeletal muscle index was 50.3 ± 1.6 cm2/m2 versus 46.5 ± 1.3 cm2/m2 in the 10 years or 5 years of adjuvant endocrine therapy group (P=0.042). The visceral fat was 28.9 ± 2.9 cm2/m2 versus 55.0 ± 3.2 cm2/m2 in the 10 years or 5 years of adjuvant endocrine therapy group (P=0.011). The muscle strength, gait speed, and FFQ results in the two groups not reaching statistical difference. CONCLUSION In conclusion, breast cancer patients with 10 years of adjuvant endocrine therapy had DFS benefit, but with more muscle loss and adipose tissue deposits compared to patients receiving 5 years of adjuvant endocrine therapy.
Collapse
Affiliation(s)
- Ruyi Hu
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Xinran Cheng
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Jun Liu
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Xu Lai
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Ruifeng Wang
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Dongchang Yu
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Yanan Fan
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| | - Zhaoshi Yu
- Thyroid Breast Surgery Department, Hubei Ezhou Central Hospital, Ezhou, Hubei, China
| |
Collapse
|
36
|
Xing T, Luo D, Zhao X, Xu X, Li J, Zhang L, Gao F. Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:279-286. [PMID: 32623748 DOI: 10.1002/jsfa.10641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Wooden breast (WB) myopathy in broiler chickens is a growing challenge for the poultry industry. Previous multi-omic data have implied that the pathogenesis of WB is associated with the activation of immune system and inflammatory response. However, the intricate mechanisms are not fully understood. This study was therefore conducted to systematically investigate the morphology, expression of cytokines as well as the underlying signaling pathways regulating the inflammatory response in pectoralis major (PM) muscle of WB myopathic broilers. RESULTS wHistopathological changes, increased plasma creatine kinase and lactate dehydrogenase activities, elevated myeloperoxidase activity and overproduction of nitric oxide in muscle indicated the enhancement of muscle damage and inflammation in WB broilers. The messenger RNA (mRNA) expressions of inflammatory cytokines were dysregulated in PM muscle and contents of interleukin (IL)-1β, IL-8 and tumor necrosis factor-α were increased in serum of WB myopathic broilers, indicating this myopathy was associated with immune disorder and systemic inflammation response. Additionally, toll-like receptor (TLR) levels were upregulated, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway was activated and the mRNA expression levels of downstream inflammatory mediators were enhanced in PM muscle of WB myopathy affected birds. CONCLUSION The results indicated an immune disorder and a systemic inflammation response in WB myopathic broilers, which might be related to a synergetic effect of TLRs and NF-κB pathway. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dan Luo
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xue Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
37
|
COX-2 promotes mammary adipose tissue inflammation, local estrogen biosynthesis, and carcinogenesis in high-sugar/fat diet treated mice. Cancer Lett 2021; 502:44-57. [PMID: 33429006 DOI: 10.1016/j.canlet.2021.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Obesity is a major risk factor for breast cancer, especially in post-menopausal women. In the breast tissue of obese women, cyclooxygenase-2 (COX-2)-dependent prostaglandin E2 (PGE2) production has been correlated with inflammation and local estrogen biosynthesis via aromatase. Using a mouse model of 7,12-dimethylbenz[a]anthracene/medroxyprogesterone-acetate (DMBA/MPA)-induced carcinogenesis, we demonstrated that an obesogenic diet promotes mammary tissue inflammation and local estrogen production, and accelerates mammary tumor formation in a COX-2-dependent manner. High-sugar/fat (HSF) diet augmented the levels of the pro-inflammatory mediators MCP-1, IL-6, COX-2, and PGE2 in mammary tissue, and this was accompanied by crown-like structures of breast (CLS-B) formation and aromatase/estrogen upregulation. Treatment with a COX-2 selective inhibitor, etoricoxib, decreased PGE2, IL-6, MCP-1, and CLS-B formation as well as reduced aromatase protein and estrogen levels in the mammary tissue of mice fed a HSF diet. Etoricoxib-treated mice showed increased latency and decreased incidence of mammary tumors, which resulted in prolonged animal survival when compared to HSF diet alone. Inhibition of tumor angiogenesis also seemed to account for the prolonged survival of COX-2 inhibitor-treated animals. In conclusion, obesogenic diet-induced COX-2 is sufficient to trigger inflammation, local estrogen biosynthesis, and mammary tumorigenesis.
Collapse
|
38
|
Acetyl-CoA Synthetase 2: A Critical Linkage in Obesity-Induced Tumorigenesis in Myeloma. Cell Metab 2021; 33:78-93.e7. [PMID: 33406405 PMCID: PMC7799390 DOI: 10.1016/j.cmet.2020.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is often linked to malignancies including multiple myeloma, and the underlying mechanisms remain elusive. Here we showed that acetyl-CoA synthetase 2 (ACSS2) may be an important linker in obesity-related myeloma. ACSS2 is overexpressed in myeloma cells derived from obese patients and contributes to myeloma progression. We identified adipocyte-secreted angiotensin II as a direct cause of adiposity in increased ACSS2 expression. ACSS2 interacts with oncoprotein interferon regulatory factor 4 (IRF4), and enhances IRF4 stability and IRF4-mediated gene transcription through activation of acetylation. The importance of ACSS2 overexpression in myeloma is confirmed by the finding that an inhibitor of ACSS2 reduces myeloma growth both in vitro and in a diet-induced obese mouse model. Our findings demonstrate a key impact for obesity-induced ACSS2 on the progression of myeloma. Given the central role of ACSS2 in many tumors, this mechanism could be important to other obesity-related malignancies.
Collapse
|
39
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
40
|
Shi H, Sun X, Kong A, Ma H, Xie Y, Cheng D, Wong CKC, Zhou Y, Gu J. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111480. [PMID: 33254385 DOI: 10.1016/j.ecoenv.2020.111480] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Environmental or occupational exposure of Cadmium (Cd) is concerned to be a threat to human health. The kidney is main target of Cd accumulation, which increases the risk of renal cell carcinoma (RCC). In addition, low content of Cd had been determined in kidney cancer, however, the roles of presence of Cd in renal tumors progression are still unclear. The present study is proposed to determine the effect of low-dose Cd exposure on the renal cancer cells and aimed to clarify the underlying mechanisms. The cell viability, cytotoxicity, and the migratory effect of low-dose Cd on the renal cancer cells were detected. Moreover, the roles of reactive oxygen species (ROS), Ca2+, and cyclic AMP (cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2) signaling, as well as COX2 catalytic product prostaglandin E2 (PGE2) on cell migration and invasion were identified. Our results suggested that low dose Cd exposure promoted migration of renal cancer Caki-1 cells, which was not dependent on Cd-induced ROS and intracellular Ca2+ levels. Cd exposure induced cAMP/PKA-COX2, which mediated cell migration and invasion, and decreased expressions of epithelial-mesenchymal transition (EMT) marker, E-cadherin, but increased expressions of N-cadherin and Vimentin. Moreover, Cd-induced secretion of PGE2 feedback on activation of cAMP/PKA-COX2 signaling, also promoted EMT, migration and invasion of renal cancer Caki-1 cells. This study might contribute to understanding of the mechanism of Cd-induce progression of renal cancer and future studies on the prevention and therapy of renal cell carcinomas.
Collapse
Affiliation(s)
- Haifeng Shi
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Xi Sun
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Haiyan Ma
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing Hospital, Jiangsu, Yixing 214200, China
| | - Dongrui Cheng
- General Hospital of Nanjing Military Region, East Zhongshan Road 305, Xuanwu District, Jiangsu, Nanjing 210002, China
| | | | - Yang Zhou
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China.
| |
Collapse
|
41
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
42
|
Lombardi FL, Jafari N, Bertrand KA, Oshry LJ, Cassidy MR, Ko NY, Denis GV. Novel semi-automated algorithm for high-throughput quantification of adipocyte size in breast adipose tissue, with applications for breast cancer microenvironment. Adipocyte 2020; 9:313-325. [PMID: 32633194 PMCID: PMC7469507 DOI: 10.1080/21623945.2020.1787582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
The size distribution of adipocytes in fat tissue provides important information about metabolic status and overall health of patients. Histological measurements of biopsied adipose tissue can reveal cardiovascular and/or cancer risks, to complement typical prognosis parameters such as body mass index, hypertension or diabetes. Yet, current methods for adipocyte quantification are problematic and insufficient. Methods such as hand-tracing are tedious and time-consuming, ellipse approximation lacks precision, and fully automated methods have not proven reliable. A semi-automated method fills the gap in goal-directed computational algorithms, specifically for high-throughput adipocyte quantification. Here, we design and develop a tool, AdipoCyze, which incorporates a novel semi-automated tracing algorithm, along with benchmark methods, and use breast histological images from the Komen for the Cure Foundation to assess utility. Speed and precision of the new approach are superior to conventional methods and accuracy is comparable, suggesting a viable option to quantify adipocytes, while increasing user flexibility. This platform is the first to provide multiple methods of quantification in a single tool. Widespread laboratory and clinical use of this program may enhance productivity and performance, and yield insight into patient metabolism, which may help evaluate risks for breast cancer progression in patients with comorbidities of obesity. ABBREVIATIONS BMI: body mass index.
Collapse
Affiliation(s)
- Frank L. Lombardi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Naser Jafari
- BU-BMC Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Kimberly A. Bertrand
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, USA
| | - Lauren J. Oshry
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
| | | | - Naomi Y. Ko
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
| | - Gerald V. Denis
- BU-BMC Cancer Center, Boston University School of Medicine, Boston, MA, USA
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
43
|
Bayraktar S, Baghaki S, Wu J, Liu DD, Gutierrez-Barrera AM, Bevers TB, Valero V, Sneige N, Arun BK. Biomarker Modulation Study of Celecoxib for Chemoprevention in Women at Increased Risk for Breast Cancer: A Phase II Pilot Study. Cancer Prev Res (Phila) 2020; 13:795-802. [PMID: 32513785 DOI: 10.1158/1940-6207.capr-20-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
In preclinical studies, celecoxib has been associated with reduced risk of breast cancer. In this study, the aim was to assess the biomodulatory effect of celecoxib on blood and benign breast tissue biomarkers in women at increased risk for breast cancer. Women at increased risk for breast cancer [5-year Gail risk score of >1.67%, history of atypical hyperplasia, lobular carcinoma in situ, or previous estrogen receptor (ER)-negative breast cancer] were treated with celecoxib at 400 mg orally twice daily for 6 months. Participants underwent random periareolar fine needle aspiration and blood draw at baseline and at 6 months for analysis of biomarkers: serum levels of insulin-like growth factor 1 (IGF-1), IGF-binding protein 1 (IGFBP-1), and IGFBP-3; tissue expression of Ki-67 and ER; as well as cytology. Forty-nine patients were eligible for analysis. Median IGFBP-1 levels increased significantly from 6.05 ng/mL at baseline to 6.93 ng/mL at 6 months (P = 0.04), and median IGFBP-3 levels decreased significantly from 3,593 ng/mL to 3,420 ng/mL (P = 0.01). We also detected favorable changes in cytology of 52% of tested sites after 6 months of celecoxib therapy. No changes in tissue Ki-67 and ER expression levels were observed. No grade 3 or 4 toxicity was recorded. Celecoxib was well tolerated and induced favorable changes in serum biomarkers as well as cytology in this pilot phase II trial. A phase IIb placebo-controlled study with celecoxib could be considered for women at increased risk for breast cancer.
Collapse
Affiliation(s)
- Soley Bayraktar
- Division of Medical Oncology and Hematology, Department of Medicine, Biruni University School of Medicine, Istanbul, Turkey
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sema Baghaki
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jimin Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Therese B Bevers
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nour Sneige
- Department of Cytopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21165938. [PMID: 32824846 PMCID: PMC7460696 DOI: 10.3390/ijms21165938] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces lysophosphatidate (LPA), which signals through six G-protein coupled receptors, promoting tumor growth, metastasis, and survival from chemotherapy and radiotherapy. Many cancer cells produce ATX, but breast cancer cells express little ATX. In breast tumors, ATX is produced by tumor-associated stroma. Breast tumors are also surrounded by adipose tissue, which is a major bodily source of ATX. In mice, a high-fat diet increases adipocyte ATX production. ATX production in obesity is also increased because of low-level inflammation in the expanded adipose tissue. This increased ATX secretion and consequent LPA signaling is associated with decreased adiponectin production, which results in adverse metabolic profiles and glucose homeostasis. Increased ATX production by inflamed adipose tissue may explain the obesity-breast cancer association. Breast tumors produce inflammatory mediators that stimulate ATX transcription in tumor-adjacent adipose tissue. This drives a feedforward inflammatory cycle since increased LPA signaling increases production of more inflammatory mediators and cyclooxygenase-2. Inhibiting ATX activity, which has implications in breast cancer adjuvant treatments, attenuates this cycle. Targeting ATX activity and LPA signaling may potentially increase chemotherapy and radiotherapy efficacy, and decrease radiation-induced fibrosis morbidity independently of breast cancer type because most ATX is not derived from breast cancer cells.
Collapse
|
45
|
The Relationship Between White Adipose Tissue Inflammation and Overweight/Obesity in Chinese Female Breast Cancer: A Retrospective Study. Adv Ther 2020; 37:2734-2747. [PMID: 32410166 DOI: 10.1007/s12325-020-01368-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION This study aims to investigate the relationship between breast white adipose tissue (WAT) inflammation and being overweight or obese, menopausal status, and metabolic syndrome-related indicators in breast cancer patients as well as the association between adipocyte size and the severity of WAT inflammation and body mass index (BMI). METHODS The crown-like structures (CLS-B) formed by macrophages surrounding dying or dead adipocytes can be used to identify breast WAT inflammation. In this study, breast WAT and fasting blood from 136 Chinese women with breast cancer were collected for analysis. Cluster of differentiation 68 (CD68) immunohistochemical staining was performed to identify CLS-B, and the adipocyte size was measured by hematoxylin and eosin staining. RESULTS The results showed that breast WAT inflammation usually occurs in overweight/obese breast cancer patients, and the severity of inflammation is positively correlated with adipocyte hypertrophy. We did not observe a direct association between WAT inflammation and menopausal status. In addition, the presence of WAT inflammation is associated with abnormalities in circulating factors associated with metabolic syndrome such as higher serum lipid, glucose, and C-reactive protein levels. CONCLUSION Overweight/obese breast cancer patients may be more prone to breast WAT inflammation and may be associated with abnormalities in circulatory markers associated with metabolic syndrome.
Collapse
|
46
|
Faria SS, Corrêa LH, Heyn GS, de Sant'Ana LP, Almeida RDN, Magalhães KG. Obesity and Breast Cancer: The Role of Crown-Like Structures in Breast Adipose Tissue in Tumor Progression, Prognosis, and Therapy. J Breast Cancer 2020; 23:233-245. [PMID: 32595986 PMCID: PMC7311368 DOI: 10.4048/jbc.2020.23.e35] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with increased risk and aggressiveness of many types of cancer. Women with obesity and breast cancer are more likely to be diagnosed with larger and higher-grade tumors and have higher incidence of metastases than lean individuals. Increasing evidence indicates that obesity includes systemic, chronic low-grade inflammation, and that adipose tissue can act as an important endocrine site, secreting a variety of substances that may regulate inflammation, immune response, and cancer predisposition. Obesity-associated inflammation appears to be initially mediated by macrophage infiltration into adipose tissue. Macrophages can surround damaged or necrotic adipocytes, forming "crown-like" structures (CLS). CLS are increased in breast adipose tissue from breast cancer patients and are more abundant in patients with obesity conditions. Moreover, the CLS index-ratio from individuals with obesity seems to influence breast cancer recurrence rates and survival. In this review, we discuss the most recent cellular and molecular mechanisms involved in CLS establishment in the white adipose tissue of women with obesity and their implications for breast cancer biology. We also explain how CLS influence the tumor microenvironment and affect breast cancer behavior. Targeting breast adipose tissue CLS can be a crucial therapeutic tool in cancer treatment, especially in patients with obesity.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gabriella Simões Heyn
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Raquel das Neves Almeida
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
47
|
Chamberlin T, Thompson V, Hillers-Ziemer LE, Walton BN, Arendt LM. Obesity reduces mammary epithelial cell TGFβ1 activity through macrophage-mediated extracellular matrix remodeling. FASEB J 2020; 34:8611-8624. [PMID: 32359100 PMCID: PMC7317547 DOI: 10.1096/fj.202000228rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor for breast cancer in postmenopausal and high‐risk premenopausal women. Changes within the obese breast microenvironment may increase breast cancer risk. Transforming growth factor beta‐1 (TGFβ1) is a major regulator of mammary epithelial stem/progenitor cells, and its activity is dysregulated under conditions of obesity. Using a high‐fat diet model of obesity in mice and breast tissue from women, we observed that TGFβ1 activity is reduced in breast epithelial cells in obesity. Breast ducts and lobules demonstrated increased decorin in the extracellular matrix (ECM) surrounding epithelial cells, and we observed that decorin and latent TGFβ1 complexed together. Under conditions of obesity, macrophages expressed higher levels of decorin and were significantly increased in number surrounding breast epithelial cells. To investigate the relationship between macrophages and decorin expression, we treated obese mice with either IgG control or anti‐F4/80 antibodies to deplete macrophages. Mice treated with anti‐F4/80 antibodies demonstrated reduced decorin surrounding mammary ducts and enhanced TGFβ1 activity within mammary epithelial cells. Given the role of TGFβ1 as a tumor suppressor, reduced epithelial TGFβ1 activity and enhanced TGFβ1 within the ECM of obese mammary tissue may enhance breast cancer risk.
Collapse
Affiliation(s)
- Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Thompson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brenna N Walton
- Program in Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Program in Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
48
|
Sipe LM, Chaib M, Pingili AK, Pierre JF, Makowski L. Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev 2020; 295:220-239. [PMID: 32320071 PMCID: PMC7841960 DOI: 10.1111/imr.12856] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) are known facilitators of nutrient absorption but recent paradigm shifts now recognize BAs as signaling molecules regulating both innate and adaptive immunity. Bile acids are synthesized from cholesterol in the liver with subsequent microbial modification and fermentation adding complexity to pool composition. Bile acids act on several receptors such as Farnesoid X Receptor and the G protein-coupled BA receptor 1 (TGR5). Interestingly, BA receptors (BARs) are expressed on immune cells and activation either by BAs or BAR agonists modulates innate and adaptive immune cell populations skewing their polarization toward a more tolerogenic anti-inflammatory phenotype. Intriguingly, recent evidence also suggests that BAs promote anti-tumor immune response through activation and recruitment of tumoricidal immune cells such as natural killer T cells. These exciting findings have redefined BA signaling in health and disease wherein they may suppress inflammation on the one hand, yet promote anti-tumor immunity on the other hand. In this review, we provide our readers with the most recent understanding of the interaction of BAs with the host microbiome, their effect on innate and adaptive immunity in health and disease with a special focus on obesity, bariatric surgery-induced weight loss, and immune checkpoint blockade in cancer.
Collapse
Affiliation(s)
- Laura M. Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ajeeth K. Pingili
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liza Makowski
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
49
|
Du BW, Zhang XJ, Shi N, Peng T, Gao JB, Azimova B, Zhang R, Pu DB, Wang C, Abduvaliev A, Rakhmanov A, Zhang GL, Xiao WL, Wang F. Luteolin-7-methylether from Leonurus japonicus inhibits estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). Eur J Pharmacol 2020; 879:173154. [PMID: 32360836 DOI: 10.1016/j.ejphar.2020.173154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
Leonurus japonicus (motherwort) has been widely used to treat gynecological disorders, in which estrogen is often dysregulated, for a long time in China and other Asian countries. However, the chemical constituents and mechanisms underlying the activity of this medicinal plant are not fully understood. Seventeen of forty-six tested natural products from L. japonicus showed stimulatory or inhibitory effects on estrogen biosynthesis with different potency in human ovarian granulosa-like KGN cells. Luteolin-7-methylether (XLY29) potently inhibited 17β-estradiol production (IC50: 5.213 μM) by decreasing the expression of aromatase, the only enzyme in vertebrates that catalyzes the biosynthesis of estrogens, but had no effect on the catalytic activity of aromatase. XLY29 decreased the expression of aromatase promoter I.3/II, and suppressed the phosphorylation of cAMP response element-binding protein. XLY29 potently inhibited phosphorylation of p38 mitogen-activated protein kinase and AKT but had no effect on phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase. XLY29 also decreased the serum 17β-estradiol level and disturbed estrous cycle in mice. These results suggest that modulation of estrogen biosynthesis is a novel effect of L. japonicus, and XLY29 warrants further investigation as a new therapeutic means for the treatment of estrogen-related diseases.
Collapse
Affiliation(s)
- Bao-Wen Du
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Nan Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun-Bo Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Bahtigul Azimova
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - De-Bing Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Chun Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | | | - Guo-Lin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
50
|
Le Guennec D, Rossary A. The interrelationship between physical activity and metabolic regulation of breast cancer progression in obesity via cytokine control. Cytokine Growth Factor Rev 2020; 52:76-87. [DOI: 10.1016/j.cytogfr.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|