1
|
Thompson JC, Tilsed C, Davis C, Gupta A, Melidosian B, Sun C, Kallen ME, Timmers C, Langer CJ, Albelda SM. Predictive Signatures for Responses to Checkpoint Blockade in Small-Cell Lung Cancer in Second-Line Therapy Do Not Predict Responses in First-Line Patients. Cancers (Basel) 2024; 16:2795. [PMID: 39199568 PMCID: PMC11353197 DOI: 10.3390/cancers16162795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Although immune checkpoint blockade (ICB) is currently approved for the treatment of extensive-stage small-cell lung cancer (SCLC) in combination with chemotherapy, relatively few patients have demonstrated durable clinical benefit (DCB) to these therapies. Biomarkers predicting responses are needed. Biopsies from 35 SCLC patients treated with ICB were subjected to transcriptomic analysis; gene signatures were assessed for associations with responses. Twenty-one patients were treated with ICB in the first-line setting in combination with platinum-based chemotherapy; fourteen patients were treated in the second-line setting with ICB alone. DCB after ICB in SCLC in the second-line setting (3 of 14 patients) was associated with statistically higher transcriptomic levels of genes associated with inflammation (p = 0.003), antigen presentation machinery (p = 0.03), interferon responses (p < 0.05), and increased CD8 T cells (p = 0.02). In contrast, these gene signatures were not significantly different in the first-line setting. Our data suggest that responses to ICB in SCLC in the second-line setting can be predicted by the baseline inflammatory state of the tumor; however, this strong association with inflammation was not seen in the first-line setting. We postulate that chemotherapy alters the immune milieu allowing a response to ICB. Other biomarkers will be needed to predict responses in first-line therapy patients.
Collapse
Affiliation(s)
- Jeffrey C. Thompson
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 228 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; (J.C.T.); (C.T.); (A.G.)
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.D.); (C.J.L.)
| | - Caitlin Tilsed
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 228 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; (J.C.T.); (C.T.); (A.G.)
| | - Christiana Davis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.D.); (C.J.L.)
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aasha Gupta
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 228 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; (J.C.T.); (C.T.); (A.G.)
| | | | - Chifei Sun
- Incyte, Wilmington, DE 19803, USA; (B.M.); (C.S.); (C.T.)
| | - Michael E. Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | | | - Corey J. Langer
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.D.); (C.J.L.)
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M. Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 228 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; (J.C.T.); (C.T.); (A.G.)
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.D.); (C.J.L.)
| |
Collapse
|
2
|
Yang Z, Chu B, Tu Y, Li L, Chen D, Huang S, Huang W, Fan W, Li Q, Zhang C, Yuan Z, Huang J, Leung ELH, Jiang Y. Dual inhibitors of DNMT and HDAC remodels the immune microenvironment of colorectal cancer and enhances the efficacy of anti-PD-L1 therapy. Pharmacol Res 2024; 206:107271. [PMID: 38906202 DOI: 10.1016/j.phrs.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5 % of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.
Collapse
Affiliation(s)
- Zhanbo Yang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bizhu Chu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yao Tu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Dawei Chen
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China
| | - Shouhui Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenjun Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Weiwen Fan
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Cunlong Zhang
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Jumin Huang
- MOE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macao Special Administrative Region of China; Cancer Center, Faculty of Health Sciences, University of Macau, 999078, Macao Special Administrative Region of China
| | - Elaine Lai-Han Leung
- MOE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macao Special Administrative Region of China; Cancer Center, Faculty of Health Sciences, University of Macau, 999078, Macao Special Administrative Region of China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Liang S, Xiao L, Chen T, Roa P, Cocco E, Peng Z, Yu L, Wu M, Liu J, Zhao X, Deng W, Wang X, Zhao C, Deng Y, Mai Y. Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy. ACS NANO 2024; 18:18963-18979. [PMID: 39004822 DOI: 10.1021/acsnano.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen 518020, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Paola Roa
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Jie Liu
- ISCTE Business School, BRU-IUL, University Institute of Lisbon, Avenida das Armadas, Lisbon 1649-026, Portugal
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York 10314, United States
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| |
Collapse
|
4
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
5
|
Wang L, Wei Y, Jin Z, Liu F, Li X, Zhang X, Bai X, Jia Q, Zhu B, Chu Q. IFN-α/β/IFN-γ/IL-15 pathways identify GBP1-expressing tumors with an immune-responsive phenotype. Clin Exp Med 2024; 24:102. [PMID: 38758367 PMCID: PMC11101573 DOI: 10.1007/s10238-024-01328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 05/18/2024]
Abstract
Immunotherapy is widely used in cancer treatment; however, only a subset of patients responds well to it. Significant efforts have been made to identify patients who will benefit from immunotherapy. Successful anti-tumor immunity depends on an intact cancer-immunity cycle, especially long-lasting CD8+ T-cell responses. Interferon (IFN)-α/β/IFN-γ/interleukin (IL)-15 pathways have been reported to be involved in the development of CD8+ T cells. And these pathways may predict responses to immunotherapy. Herein, we aimed to analyze multiple public databases to investigate whether IFN-α/β/IFN-γ/IL-15 pathways could be used to predict the response to immunotherapy. Results showed that IFN-α/β/IFN-γ/IL-15 pathways could efficiently predict immunotherapy response, and guanylate-binding protein 1 (GBP1) could represent the IFN-α/β/IFN-γ/IL-15 pathways. In public and private cohorts, we further demonstrated that GBP1 could efficiently predict the response to immunotherapy. Functionally, GBP1 was mainly expressed in macrophages and strongly correlated with chemokines involved in T-cell migration. Therefore, our study comprehensively investigated the potential role of GBP1 in immunotherapy, which could serve as a novel biomarker for immunotherapy and a target for drug development.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuxuan Wei
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zheng Jin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, People's Republic of China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Fangfang Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xuchang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiao Zhang
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, People's Republic of China
| | - Xiumei Bai
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, People's Republic of China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
7
|
Wang Z, Chen Y, Wu H, Wang M, Mao L, Guo X, Zhu J, Ye Z, Luo X, Yang X, Liu X, Yang J, Sheng Z, Lee J, Guo Z, Liu Y. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep 2024; 14:7366. [PMID: 38548896 PMCID: PMC10978917 DOI: 10.1038/s41598-024-57997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.
Collapse
Affiliation(s)
- Zihao Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China.
| | - Yanni Chen
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Hongyue Wu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Min Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Li Mao
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Xingdong Guo
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jianbo Zhu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zilan Ye
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiaoyan Luo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiurong Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xueke Liu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Junhao Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zhaolang Sheng
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jaewoo Lee
- Immorna Biotherapeutics, Inc., Morrisville, NC, 27560, USA
| | - Zhijun Guo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Yuanqing Liu
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| |
Collapse
|
8
|
Wang Y, Yang X, Ma J, Chen S, Gong P, Dai P. Thyroid dysfunction (TD) induced by PD-1/PD-L1 inhibitors in advanced lung cancer. Heliyon 2024; 10:e27077. [PMID: 38449616 PMCID: PMC10915392 DOI: 10.1016/j.heliyon.2024.e27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background Thyroid Dysfunction (TD) is a common immune-related adverse events (irAEs) in the treatment of advanced lung cancer with programmed cell death protein 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors, with incidence accounting for 6-8% of all irAEs. The incidence of TD is receiving increasing attention from clinicians, given its potential impact on clinical efficacy. However, the molecular mechanisms, biomarkers, and clinical impact of TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer are unclear. Objective To present a comprehensive review of current advancements in research about the molecular mechanisms, influential factors, and clinical manifestations in the treatment of advanced lung cancer with PD-1 and PD-L1 inhibitors, as well as the correlation between TD and the efficacy of PD-1 and PD-L1 inhibitors. Methods A systematic search was conducted using PubMed, Web of Science, Cochrane Library, Embase and Google Scholar databases, with the keywords including thyroid dysfunction, efficacy, mechanisms, immune checkpoint inhibitors, PD-1/PD-L1 inhibitors, and advanced lung cancer. Results PD-1/PD-L1 inhibitors can induce T cell-mediated destructive thyroiditis, thyroid autoantibody-mediated autoimmunity, and a decrease in the number of immunosuppressive monocytes (circulating cluster of differentiation (CD)14+ human leukocyte antigen (HLA)-DRlow/negatives monocytes, CD14+ HLA-DR + lo/neg), leading to TD. Several factors, including peripheral blood inflammatory markers, body mass index (BMI), baseline thyroid-stimulating hormone (TSH) level, gender, smoking history, hypertension, and previous opioid use, may also contribute to the development of TD. However, there is currently a lack of reliable predictive biomarkers for TD, although anti-thyroid antibodies, TSH levels, and peripheral blood inflammatory markers are expected to be predictive.Interestingly, some studies suggested a positive correlation between TD and clinical efficacy, i.e., patients experiencing TD showed better outcomes in objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS), compared with those without TD. However, most of these studies were single-center and had small sample sizes, so more multi-center studies are needed to provide further data support. Conclusion TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer may be associated with good clinical outcomes. The clarification of the molecular mechanisms underlying TD and the identification of reliable predictive biomarkers will guide clinicians in managing TD in this patient population.
Collapse
Affiliation(s)
- Yanling Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaoxuan Yang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jia Ma
- Department of General Surgery, Shanghai Jian Gong Hospital, Shanghai, 200434, People's Republic of China
| | - Shenglan Chen
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Gong
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
- Department of Oncology, The Third Affiliated Hospital of School of Medicine of Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Dai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Wen F, Zhao F, Huang W, Liang Y, Sun R, Lin Y, Zhang W. A novel ferroptosis-related gene signature for overall survival prediction in patients with gastric cancer. Sci Rep 2024; 14:4422. [PMID: 38388534 PMCID: PMC10883968 DOI: 10.1038/s41598-024-53515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The global diagnosis rate and mortality of gastric cancer (GC) are among the highest. Ferroptosis and iron-metabolism have a profound impact on tumor development and are closely linked to cancer treatment and patient's prognosis. In this study, we identified six PRDEGs (prognostic ferroptosis- and iron metabolism-related differentially expressed genes) using LASSO-penalized Cox regression analysis. The TCGA cohort was used to establish a prognostic risk model, which allowed us to categorize GC patients into the high- and the low-risk groups based on the median value of the risk scores. Our study demonstrated that patients in the low-risk group had a higher probability of survival compared to those in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden (TMB) and a longer 5-year survival period when compared to the high-risk group. In summary, the prognostic risk model, based on the six genes associated with ferroptosis and iron-metabolism, performs well in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fan Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yan Liang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruolan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yize Lin
- Clinical Laboratory Department, Hospital of the Office of the People's Government of the Tibet Autonomous Region in Chengdu, Chengdu, 850015, Sichuan, China
| | - Weihua Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
10
|
Li J, Han X, Sun M, Li W, Yang G, Chen H, Guo B, Li J, Li X, Wang H. Caspase-9 inhibition triggers Hsp90-based chemotherapy-mediated tumor intrinsic innate sensing and enhances antitumor immunity. J Immunother Cancer 2023; 11:e007625. [PMID: 38056894 PMCID: PMC10711858 DOI: 10.1136/jitc-2023-007625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Antineoplastic chemotherapies are dramatically efficient when they provoke immunogenic cell death (ICD), thus inducing an antitumor immune response and even tumor elimination. However, activated caspases, the hallmark of most cancer chemotherapeutic agents, render apoptosis immunologically silent. Whether they are dispensable for chemotherapy-induced cell death and the apoptotic clearance of cells in vivo is still elusive. METHODS A rational cell-based anticancer drug library screening was performed to explore the immunogenic apoptosis pathway and therapeutic targets under apoptotic caspase inhibition. Based on this screening, the potential of caspase inhibition in enhancing chemotherapy-induced antitumor immunity and the mechanism of actions was investigated by various cells and mouse models. RESULTS Heat shock protein 90 (Hsp90) inhibition activates caspases in tumor cells to produce abundant genomic and mitochondrial DNA fragments and results in cell apoptosis. Meanwhile, it hijacks Caspase-9 signaling to suppress intrinsic DNA sensing. Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)-β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP-AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death. Importantly, both Caspase-9 and Hsp90 inhibition triggers an ICD, leading to the release of numerous damage-associated molecular patterns such as high-mobility group box protein 1, ATP and type I IFNs in vitro and remarkable antitumor effects in vivo. Moreover, the combination treatment also induces adaptive resistance by upregulating programmed death-ligand 1 (PD-L1). Additional PD-L1 blockade can further overcome this acquired immune resistance and achieve complete tumor regression. CONCLUSIONS Blockade of Caspase-9 signaling selectively provokes Hsp90-based chemotherapy-mediated tumor innate sensing, leading to CD8+ T cell-dependent tumor control. Our findings implicate that pharmacological modulation of caspase pathway increases the tumor-intrinsic innate sensing and immunogenicity of chemotherapy-induced apoptosis, and synergizes with immunotherapy to overcome adaptive resistance.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Han
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mayu Sun
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weida Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanghuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiyi Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Guo
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Noe P, Wang JH, Chung K, Cheng Z, Field JJ, Shen X, Cortesio CL, Pastuskovas CV, Phee H, Tarbell KV, Egen JG, Casbon AJ. Therapeutically targeting type I interferon directly to XCR1+ dendritic cells reveals the role of cDC1s in anti-drug antibodies. Front Immunol 2023; 14:1272055. [PMID: 37942313 PMCID: PMC10628189 DOI: 10.3389/fimmu.2023.1272055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1s) are superior in antigen cross-presentation and priming CD8+ T cell anti-tumor immunity and thus, are a target of high interest for cancer immunotherapy. Type I interferon (IFN) is a potent inducer of antigen cross-presentation, but, unfortunately, shows only modest results in the clinic given the short half-life and high toxicity of current type I IFN therapies, which limit IFN exposure in the tumor. CD8+ T cell immunity is dependent on IFN signaling in cDC1s and preclinical studies suggest targeting IFN directly to cDC1s may be sufficient to drive anti-tumor immunity. Here, we engineered an anti-XCR1 antibody (Ab) and IFN mutein (IFNmut) fusion protein (XCR1Ab-IFNmut) to determine whether systemic delivery could drive selective and sustained type I IFN signaling in cDC1s leading to anti-tumor activity and, in parallel, reduced systemic toxicity. We found that the XCR1Ab-IFNmut fusion specifically enhanced cDC1 activation in the tumor and spleen compared to an untargeted control IFN. However, multiple treatments with the XCR1Ab-IFNmut fusion resulted in robust anti-drug antibodies (ADA) and loss of drug exposure. Using other cDC1-targeting Ab-IFNmut fusions, we found that localizing IFN directly to cDC1s activates their ability to promote ADA responses, regardless of the cDC1 targeting antigen. The development of ADA remains a major hurdle in immunotherapy drug development and the cellular and molecular mechanisms governing the development of ADA responses in humans is not well understood. Our results reveal a role of cDC1s in ADA generation and highlight the potential ADA challenges with targeting immunostimulatory agents to this cellular compartment.
Collapse
Affiliation(s)
- Paul Noe
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Joy H. Wang
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kyu Chung
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Zhiyong Cheng
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jessica J. Field
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Christa L. Cortesio
- Therapeutics Discovery, Amgen Research, South San Francisco, CA, United States
| | - Cinthia V. Pastuskovas
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Hyewon Phee
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kristin V. Tarbell
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jackson G. Egen
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Amy-Jo Casbon
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| |
Collapse
|
12
|
Liu Y, Liu Z, Yang Y, Cui J, Sun J, Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br J Cancer 2023; 129:1041-1049. [PMID: 37452117 PMCID: PMC10539364 DOI: 10.1038/s41416-023-02321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Tumour immunotherapy has achieved remarkable clinical success in many different types of cancer in the past two decades. The outcome of immune checkpoint inhibitors in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell within the tumour microenvironment, suggesting that the immune landscape of a tumour is highly connected to patient response and prognosis. It is critical to understanding tumour immune microenvironments for identifying immune modifiers of cancer progression and developing cancer immunotherapies. The infiltration of solid tumours by immune cells with anti-tumour activity is both a strong prognostic factor and a therapeutic goal. Recent approaches and applications of new technologies, especially single-cell mRNA analysis in dissecting tumour microenvironments have brought important insights into the biology of tumour-infiltrating immune cells, revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune response. In this review, we will discuss recent advances in the understanding of tumour infiltrated lymphocytes, their prognostic benefit, and predictive value for immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Grit Biotechnology Ltd., Building 25, Area C, Sangtian Island Biological Industrial Park, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Zhenjiang Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yixiao Yang
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jun Cui
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jingwei Sun
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yarong Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
13
|
Lominadze Z, Shaik MR, Choi D, Zaffar D, Mishra L, Shetty K. Hepatocellular Carcinoma Genetic Classification. Cancer J 2023; 29:249-258. [PMID: 37796642 PMCID: PMC10686192 DOI: 10.1097/ppo.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) represents a significant global burden, with management complicated by its heterogeneity, varying presentation, and relative resistance to therapy. Recent advances in the understanding of the genetic, molecular, and immunological underpinnings of HCC have allowed a detailed classification of these tumors, with resultant implications for diagnosis, prognostication, and selection of appropriate treatments. Through the correlation of genomic features with histopathology and clinical outcomes, we are moving toward a comprehensive and unifying framework to guide our diagnostic and therapeutic approach to HCC.
Collapse
Affiliation(s)
- Zurabi Lominadze
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| | | | - Dabin Choi
- Department of Medicine, University of Maryland Medical Center
| | - Duha Zaffar
- Department of Medicine, University of Maryland Midtown Medical Center
| | - Lopa Mishra
- Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory; Divisions of Gastroenterology and Hepatology, Northwell Health
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| |
Collapse
|
14
|
Razaghi A, Durand-Dubief M, Brusselaers N, Björnstedt M. Combining PD-1/PD-L1 blockade with type I interferon in cancer therapy. Front Immunol 2023; 14:1249330. [PMID: 37691915 PMCID: PMC10484344 DOI: 10.3389/fimmu.2023.1249330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
PD-1 and PD-L1 are crucial regulators of immunity expressed on the surface of T cells and tumour cells, respectively. Cancer cells frequently use PD-1/PD-L1 to evade immune detection; hence, blocking them exposes tumours to be attacked by activated T cells. The synergy of PD-1/PD-L1 blockade with type I interferon (IFN) can improve cancer treatment efficacy. Type I IFN activates immune cells boosts antigen presentation and controls proliferation. In addition, type I IFN increases tumour cell sensitivity to the blockade. Combining the two therapies increases tumoral T cell infiltration and activation within tumours, and stimulate the generation of memory T cells, leading to prolonged patient survival. However, limitations include heterogeneous responses, the need for biomarkers to predict and monitor outcomes, and adverse effects and toxicity. Although treatment resistance remains an obstacle, the combined therapeutic efficacy of IFNα/β and PD-1/PD-L1 blockade demonstrated considerable benefits across a spectrum of cancer types, notably in melanoma. Overall, the phases I and II clinical trials have demonstrated safety and efficiency. In future, further investigations in clinical trials phases III and IV are essential to compare this combinatorial treatment with standard treatment and assess long-term side effects in patients.
Collapse
Affiliation(s)
- Ali Razaghi
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mickaël Durand-Dubief
- Discovery & Front-End Innovation, Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Baroeul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Dai K, Xu Y, Yang Y, Shen J, Liu X, Tu X, Yu L, Qi X, Li J, Wang L, Zuo X, Liu Y, Yan H, Fan C, Yao G. Edge Length-Programmed Single-Stranded RNA Origami for Predictive Innate Immune Activation and Therapy. J Am Chem Soc 2023; 145:17112-17124. [PMID: 37498993 DOI: 10.1021/jacs.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ligands targeting nucleic acid-sensing receptors activate the innate immune system and play a critical role in antiviral and antitumoral therapy. However, ligand design for in situ stability, targeted delivery, and predictive immunogenicity is largely hampered by the sophisticated mechanism of the nucleic acid-sensing process. Here, we utilize single-stranded RNA (ssRNA) origami with precise structural designability as nucleic acid sensor-based ligands to achieve improved biostability, organelle-level targeting, and predictive immunogenicity. The natural ssRNAs self-fold into compact nanoparticles with defined shapes and morphologies and exhibit resistance against RNase digestion in vitro and prolonged retention in macrophage endolysosomes. We find that programming the edge length of ssRNA origami can precisely regulate the degree of macrophage activation via a toll-like receptor-dependent pathway. Further, we demonstrate that the ssRNA origami-based ligand elicits an anti-tumoral immune response of macrophages and neutrophils in the tumor microenvironment and retards tumor growth in the mouse pancreatic tumor model. Our ssRNA origami strategy utilizes structured RNA ligands to achieve predictive immune activation, providing a new solution for nucleic acid sensor-based ligand design and biomedical applications.
Collapse
Affiliation(s)
- Kun Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Xu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfeng Shen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Tu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Lu Yu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaodong Qi
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Yan
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhang T, Xu H, Zheng X, Xiong X, Zhang S, Yi X, Li J, Wei Q, Ai J. Clinical benefit and safety associated with mRNA vaccines for advanced solid tumors: A meta-analysis. MedComm (Beijing) 2023; 4:e286. [PMID: 37470066 PMCID: PMC10353527 DOI: 10.1002/mco2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 07/21/2023] Open
Abstract
Tumor mRNA vaccines have been developed for over 20 years. Whether mRNA vaccines could promote a clinical benefit to advanced cancer patients is highly unknown. PubMed and Embase were retrieved from January 1, 2000 to January 4, 2023. Random effects models were employed. Clinical benefit (objective response rate [ORR], disease control rate [DCR], 1-year/2-year progression-free survival [PFS], and overall survival [OS]) and safety (vaccine-related grade 3-5 adverse events [AEs]) were evaluated. Overall, 984 patients (32 trials) were enrolled. The most typical cancer types were melanoma (13 trials), non-small cell lung cancer (5 trials), renal cell carcinoma (4 trials), and prostate adenocarcinoma (4 trials). The pooled ORR and DCR estimates were 10.0% (95%CI, 4.6-17.0%) and 34.6% (95%CI, 24.1-45.9%). The estimates for 1-year and 2-year PFS were 38.4% (95%CI, 24.8-53.0%) and 20.0% (95%CI, 10.4-31.7%), respectively. The estimates for 1-year and 2-year OS were 75.3% (95%CI, 62.4-86.3%) and 45.5% (95%CI, 34.0-57.2%), respectively. The estimate for vaccine-related grade 3-5 AEs was 1.0% (95%CI, 0.2-2.4%). Conclusively, mRNA vaccines seem to demonstrate modest clinical response rates, with acceptable survival rates and rare grade 3-5 AEs.
Collapse
Affiliation(s)
- Tian‐yi Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hang Xu
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐nan Zheng
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xing‐yu Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Shi‐yu Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xian‐yanling Yi
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jin Li
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Qiang Wei
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jian‐zhong Ai
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
17
|
Holicek P, Truxova I, Rakova J, Salek C, Hensler M, Kovar M, Reinis M, Mikyskova R, Pasulka J, Vosahlikova S, Remesova H, Valentova I, Lysak D, Holubova M, Kaspar P, Prochazka J, Kasikova L, Spisek R, Galluzzi L, Fucikova J. Type I interferon signaling in malignant blasts contributes to treatment efficacy in AML patients. Cell Death Dis 2023; 14:209. [PMID: 36964168 PMCID: PMC10039058 DOI: 10.1038/s41419-023-05728-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
While type I interferon (IFN) is best known for its key role against viral infection, accumulating preclinical and clinical data indicate that robust type I IFN production in the tumor microenvironment promotes cancer immunosurveillance and contributes to the efficacy of various antineoplastic agents, notably immunogenic cell death inducers. Here, we report that malignant blasts from patients with acute myeloid leukemia (AML) release type I IFN via a Toll-like receptor 3 (TLR3)-dependent mechanism that is not driven by treatment. While in these patients the ability of type I IFN to stimulate anticancer immune responses was abolished by immunosuppressive mechanisms elicited by malignant blasts, type I IFN turned out to exert direct cytostatic, cytotoxic and chemosensitizing activity in primary AML blasts, leukemic stem cells from AML patients and AML xenograft models. Finally, a genetic signature of type I IFN signaling was found to have independent prognostic value on relapse-free survival and overall survival in a cohort of 132 AML patients. These findings delineate a clinically relevant, therapeutically actionable and prognostically informative mechanism through which type I IFN mediates beneficial effects in patients with AML.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Hana Remesova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Iva Valentova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Daniel Lysak
- Department of Hematology and Oncology, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Kaspar
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic.
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
18
|
Zheng B, Li J, Zhang M, Zhang P, Deng W, Pu Y. Analysis of immunotherapeutic response-related signatures in esophageal squamous-cell carcinoma. Front Immunol 2023; 14:1117658. [PMID: 36817484 PMCID: PMC9933905 DOI: 10.3389/fimmu.2023.1117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common and lethal malignant diseases. Immunotherapy has been widely studied and has exhibited potential in ESCC treatment. However, there are only a portion of ESCC patients have benefited from immunotherapy. We herein identified immunotherapeutic response-related signatures (IRRS) and evaluated their performance in ESCC prognosis and immunotherapeutic responsiveness. Methods We constructed an IRRS using the gene expression data of 274 ESCC patients based on y -30significantly differentially expressed genes, which were compared responders and non-responders from various patient cohorts treated with immunotherapy. Survival analysis was performed in both the GSE53625 and TCGA-ESCC cohorts. We also explored the differences in the tumor microenvironment between the high-IRRS and low-IRRS score groups using single-cell data as a reference. Three immunotherapy cohorts were used to verify the value of the IRRS in predicting immunotherapy response. Results Twelve immunotherapy-related genes were selected to construct a signature score and were validated as independent prognostic predictors for patients with ESCC. Patients with high IRRS scores exhibited an immunosuppressive phenotype. Therefore, patients with low IRRS scores may benefit from immunotherapy. Conclusions IRRS score is a biomarker for immunotherapy response and prognosis of ESCC.
Collapse
Affiliation(s)
- Bohao Zheng
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengdi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengju Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Deng
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
19
|
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023; 23:106-120. [PMID: 35697799 DOI: 10.1038/s41577-022-00737-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The Immunotherapy Platform, The University of Texas MD Anderson Cancer, Center, Houston, TX, USA.
| |
Collapse
|
20
|
Zhang X, Jiang D, Li S, Zhang X, Zheng W, Cheng B. A signature-based classification of lung adenocarcinoma that stratifies tumor immunity. Front Oncol 2023; 12:1023833. [PMID: 36713530 PMCID: PMC9878554 DOI: 10.3389/fonc.2022.1023833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Immune-related subgroup classification in immune checkpoint blockade (ICB) therapy is largely inconclusive in lung adenocarcinoma (LUAD). Materials and methods First, the single-sample Gene Set Enrichment Analysis (ssGSEA) and K-means algorithms were used to identify immune-based subtypes for the LUAD cohort based on the immunogenomic profiling of 29 immune signatures from The Cancer Genome Atlas (TCGA) database (n = 504). Second, we examined the prognostic and predictive value of immune-based subtypes using bioinformatics analysis. Survival analysis and additional COX proportional hazards regression analysis were conducted for LUAD. Then, the immune score, tumor-infiltrating immune cells (TIICs), and immune checkpoint expression of the three subtypes were analyzed. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the differentially expressed genes (DEGs) between three immune-based subtypes were subsequently analyzed for functional enrichment pathways. Result A total of three immune-based subtypes with distinct immune signatures have been identified for LUAD and designated as cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Patients in C3 had higher stromal, immune, and ESTIMATE scores, whereas those in C1 had the opposite. Patients in C1 had an enrichment of macrophages M0 and activation of dendritic cells, whereas tumors in C3 had an enrichment of CD8+ T cells, activation of CD4+ memory T cells, and macrophages M1. C3 had a higher immune cell infiltration and a better survival prognosis than other subtypes. Furthermore, patients in C3 had higher expression levels of immune checkpoint proteins such as PD-L1, PD1, CTLA4, LAG3, IDO1, and HAVCR2. No significant differences were found in cluster TMB scores. We also found that immune-related pathways were enriched in C3. Conclusion LUAD subtypes based on immune signatures may aid in the development of novel treatment strategies for LUAD.
Collapse
|
21
|
Yang Q, Liu T, Zheng H, Zhou Z, Huang Y, Jia H, Fu S, Zhang X, Zhang H, Liu Y, Chen X, Shan W. A nanoformulation for immunosuppression reversal and broad-spectrum self-amplifying antitumor ferroptosis-immunotherapy. Biomaterials 2023; 292:121936. [PMID: 36502663 DOI: 10.1016/j.biomaterials.2022.121936] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The efficacy of immunotherapy combined with other therapeutic modalities in the management of cancer has been extensively studied. However, no effective strategy to improve the antitumor effects of immunotherapy at the tumor site has been developed. In this study, we describe a nanoformulation (CP) that integrates ferroptosis-inducing cannabinoid nanoparticles with immunostimulatory Poly(I:C) to enhance antitumor immune responses by activating ferroptosis-immunotherapy pathways. The results indicated that CP nanoformulation effectively induced ferroptosis, cellular immunogenic death, and anti-tumor immune responses which initiate T cell responses leading to the inhibition of established tumors. In addition, CP nanoformulations reversed the tumor immunosuppressive microenvironment and promoted tumor ferroptosis. These results indicated that the self-amplifying nanoformulation may be an effective strategy for broad-spectrum cancer immunotherapy.
Collapse
Affiliation(s)
- Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Zechen Zhou
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Yan Huang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Honglin Jia
- Department of Dermatology, Army Special Medical Center, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Shixiang Fu
- Teaching and Research Office of Field Internal Medicine, Department of Battlefield First Aid and Medicine, The NCO School of Army Medical University, Shijiazhuang, 050085, PR China
| | - Xuan Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ya Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
22
|
Altaf R, Jadoon SS, Muhammad SA, Ilyas U, Duan Y. Recent advances in immune checkpoint inhibitors for non-small lung cancer treatment. Front Oncol 2022; 12:1014156. [PMID: 36237320 PMCID: PMC9552217 DOI: 10.3389/fonc.2022.1014156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is one of the deadliest types of cancer responsible for thousands of cancer-related deaths. Its treatment has remained a challenge for researchers, but an increase in the knowledge of molecular pathways and biology of lung cancer has dramatically changed its management in recent decades. Immunotherapies and immunomodulation of lung cancer have previously failed for a long time but thanks to continuous research work and enthusiasm, now, this field is emerging as a novel effective therapy. Now, it is hope with potential benefits and promising results in the treatment of lung cancer. This review article focuses on immune checkpoints inhibitors: CTLA-4 inhibitors (ipilimumab and tremelimumab) and PDL-1 inhibitors (durvalumab and atezolizumab) that can be blocked to treat lung carcinoma. It is also focused on critically analyzing different studies and clinical trials to determine the potential benefits, risks, and adverse events associated with immunotherapeutic treatment.
Collapse
Affiliation(s)
- Reem Altaf
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
| | - Sarmad Sheraz Jadoon
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| | - Umair Ilyas
- Department of Pharmaceutics, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| |
Collapse
|
23
|
Indini A, Massi D, Pirro M, Roila F, Grossi F, Sahebkar A, Glodde N, Bald T, Mandalà M. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin Cancer Biol 2022; 86:477-490. [DOI: 10.1016/j.semcancer.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 10/31/2022]
|
24
|
Safety, efficacy, and tolerability of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma. Surg Oncol 2022; 42:101748. [DOI: 10.1016/j.suronc.2022.101748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
|
25
|
De Beck L, Awad RM, Basso V, Casares N, De Ridder K, De Vlaeminck Y, Gnata A, Goyvaerts C, Lecocq Q, San José-Enériz E, Verhulst S, Maes K, Vanderkerken K, Agirre X, Prosper F, Lasarte JJ, Mondino A, Breckpot K. Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Front Immunol 2022; 13:799636. [PMID: 35634329 PMCID: PMC9134079 DOI: 10.3389/fimmu.2022.799636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
Collapse
Affiliation(s)
- Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessandra Gnata
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Edurne San José-Enériz
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Xabier Agirre
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
26
|
Xia Z, Rong X, Dai Z, Zhou D. Identification of Novel Prognostic Biomarkers Relevant to Immune Infiltration in Lung Adenocarcinoma. Front Genet 2022; 13:863796. [PMID: 35571056 PMCID: PMC9092026 DOI: 10.3389/fgene.2022.863796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Programmed death ligand-1 (PD-L1) is a biomarker for assessing the immune microenvironment, prognosis, and response to immune checkpoint inhibitors in the clinical treatment of lung adenocarcinoma (LUAD), but it does not work for all patients. This study aims to discover alternative biomarkers. Methods: Public data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) were used to determine the gene modules relevant to tumor immunity. Protein–protein interaction (PPI) network and GO semantic similarity analyses were applied to identify the module hub genes with functional similarities to PD-L1, and we assessed their correlations with immune infiltration, patient prognosis, and immunotherapy response. Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining were used to validate the outcome at the protein level. Results: We identified an immune response–related module, and two hub genes (PSTPIP1 and PILRA) were selected as potential biomarkers with functional similarities to PD-L1. High expression levels of PSTPIP1 and PILRA were associated with longer overall survival and rich immune infiltration in LUAD patients, and both were significantly high in patients who responded to anti–PD-L1 treatment. Compared to PD-L1–negative LUAD tissues, the protein levels of PSTPIP1 and PILRA were relatively increased in the PD-L1–positive tissues, and the expression of PSTPIP1 and PILRA positively correlated with the tumor-infiltrating lymphocytes. Conclusion: We identified PSTPIP1 and PILRA as prognostic biomarkers relevant to immune infiltration in LUAD, and both are associated with the response to anti–PD-L1 treatment.
Collapse
Affiliation(s)
- Zhi Xia
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Xueyao Rong
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Dongbo Zhou
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dongbo Zhou,
| |
Collapse
|
27
|
Single-Cell Sequencing Identifies the Heterogeneity of CD8+ T Cells and Novel Biomarker Genes in Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8256314. [PMID: 35449866 PMCID: PMC9018173 DOI: 10.1155/2022/8256314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
CD8+ T cells are required for the establishment of antitumor immunity, and their substantial infiltration is associated with a good prognosis. However, CD8+ T cell subsets in the tumor microenvironment may play distinct roles in tumor progression, prognosis, and immunotherapy. In this study, we used the scRNA-seq data of hepatocellular carcinoma (HCC) to reveal the heterogeneity of different CD8+ T cell subsets. The scRNA-seq data set GSE149614 was obtained from the GEO database, and the transcriptome and sample phenotypic data of TCGA-LIHC were obtained from the TCGA database. CD8+ T cell subtypes and metabolic gene sets were obtained from published reports. The data processing and analysis of CD8+ T cell groups was performed by R language. The PPI network was constructed to obtain the hub genes, and the KM survival curve of the hub genes was further plotted to determine the hub genes with differences in survival. CD8+ T cells in HCC were divided into 7 subsets, and the cytotoxic CD8 T cells 4 subset showed considerable differences between the TP53-mutant and nonmutant groups, as well as between different degrees of cirrhosis, HCC grades, stages, ages, and body weights. Cytotoxic CD8 T cells 4 differential genes were analyzed by TCGA-LIHC data and single-cell sequencing data set. 10 hub genes were found: FGA, ApoA1, ApoH, AHSG, FGB, HP, TTR, TF, HPX, and APOC3. Different subsets of CD8+ T cells were found to contribute to heterogeneous prognosis and pathway activity in HCC. Alterations in the cytotoxic and immune checkpoint gene expression during CD8+ T cell differentiation were also identified. We found that cytotoxic CD8 T cells 4 is closely associated with survival and prognosis of HCC and identified four differential genes that can be used as biological markers for survival, prognosis, and clinically relevant characteristics of HCC. Results of this study could help finding targets for immunotherapy of HCC and aid in the accelerated development of immunotherapy for HCC.
Collapse
|
28
|
Paschen A, Melero I, Ribas A. Central Role of the Antigen-Presentation and Interferon-γ Pathways in Resistance to Immune Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070220-111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistance to immunotherapy is due in some instances to the acquired stealth mechanisms of tumor cells that lose expression of MHC class I antigen–presenting molecules or downregulate their class I antigen–presentation pathways. Most dramatically, biallelic β2-microglobulin (B2M) loss leads to complete loss of MHC class I expression and to invisibility to CD8+ T cells. MHC class I expression and antigen presentation are potently upregulated by interferon-γ (IFNγ) in a manner that depends on IFNγ receptor (IFNGR) signaling via JAK1 and JAK2. Mutations in these molecules lead to IFNγ unresponsiveness and mediate loss of recognition and killing by cytotoxic T lymphocytes. Loss of MHC class I augments sensitivity of tumor cells to be killed by natural killer (NK) lymphocytes, and this mechanism could be exploited to revert resistance, for instance, with interleukin-2 (IL-2)-based agents. Moreover, in some experimental models,potent local type I interferon responses, such as those following intratumoral injection of Toll-like receptor 9 (TLR9) or TLR3 agonists, revert resistance due to mutations of JAKs.
Collapse
Affiliation(s)
- Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Ignacio Melero
- University Clinic of Navarre (CUN) and Centre of Applied Medical Research (CIMA), University of Navarre, Pamplona, Spain
- CIBERONC (Consorcio Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Antoni Ribas
- Department of Medicine, Department of Surgery, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
29
|
STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nat Commun 2022; 13:1859. [PMID: 35388001 PMCID: PMC8986786 DOI: 10.1038/s41467-022-29541-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
The cohesin complex participates in the organization of 3D genome through generating and maintaining DNA loops. Stromal antigen 2 (STAG2), a core subunit of the cohesin complex, is frequently mutated in various cancers. However, the impact of STAG2 inactivation on 3D genome organization, especially the long-range enhancer-promoter contacts and subsequent gene expression control in cancer, remains poorly understood. Here we show that depletion of STAG2 in melanoma cells leads to expansion of topologically associating domains (TADs) and enhances the formation of acetylated histone H3 lysine 27 (H3K27ac)-associated DNA loops at sites where binding of STAG2 is switched to its paralog STAG1. We further identify Interferon Regulatory Factor 9 (IRF9) as a major direct target of STAG2 in melanoma cells via integrated RNA-seq, STAG2 ChIP-seq and H3K27ac HiChIP analyses. We demonstrate that loss of STAG2 activates IRF9 through modulating the 3D genome organization, which in turn enhances type I interferon signaling and increases the expression of PD-L1. Our findings not only establish a previously unknown role of the STAG2 to STAG1 switch in 3D genome organization, but also reveal a functional link between STAG2 and interferon signaling in cancer cells, which may enhance the immune evasion potential in STAG2-mutant cancer.
Collapse
|
30
|
Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci 2022; 79:191. [PMID: 35292881 PMCID: PMC8924142 DOI: 10.1007/s00018-022-04219-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.
Collapse
Affiliation(s)
- Renren Yu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
31
|
Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu Z, Bei J, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103029. [PMID: 35064757 PMCID: PMC8895117 DOI: 10.1002/advs.202103029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Smad4, a key mediator of the transforming growth factor-β signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.
Collapse
Affiliation(s)
- Wenjing Xiong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Feifei Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Huanling Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Kaili Xing
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jiahui Li
- College of Food Science and EngineeringDalian Polytechnic UniversityLiaoning116034P. R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qiuyao Zhan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Liangping Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
32
|
Nastoupil LJ, Chin CK, Westin JR, Fowler NH, Samaniego F, Cheng X, Ma MCJ, Wang Z, Chu F, Dsouza L, Obi C, Mims J, Feng L, Zhou S, Green M, Davis RE, Neelapu SS. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv 2022; 6:1143-1151. [PMID: 35015819 PMCID: PMC8864656 DOI: 10.1182/bloodadvances.2021006240] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
PD-1 blockade enhances the function of antitumor T cells and antibody-dependent, cell-mediated cytotoxicity (ADCC) of NK cells. In a single-center, open-label, phase 2 trial, we tested the combination of pembrolizumab, an anti-PD-1 monoclonal antibody, and rituximab, an anti-CD20 monoclonal antibody that induces ADCC, in 30 patients with follicular lymphoma (FL) with rituximab-sensitive disease who had relapsed after ≥1 prior therapy. Pembrolizumab was administered at 200 mg IV every 3 weeks for up to 16 cycles, and rituximab was given at 375 mg/m2 IV weekly for 4 weeks in cycle 1 only. The most common grade 3/4 adverse events (AEs) were liver enzyme abnormalities (3%), diarrhea (3%), nausea (3%), aseptic meningitis (3%), and pancreatitis (3%). Low-grade immune-related AEs were reported in 80% of patients, including diarrhea (43%), liver enzyme abnormalities (33%), thyroid dysfunction (27%), and rash (23%). Grade 3 or 4 immune-related AEs occurred in 13% of the patients. Treatment-related AEs led to discontinuation in 6 (20%) patients. The overall response rate (primary end point) was 67%, and the complete response (CR) rate was 50%. Median progression-free survival (PFS) was 12.6 months (95% confidence interval, 8.2-27.6), the 3-year overall survival rate was 97%, and 23% of patients were in remission at a median follow-up of 35 months. The presence of a high CD8+ T-effector score at baseline in the tumor was associated with induction of a CR and improved PFS. In this single-arm, phase 2 study, the combination of pembrolizumab and rituximab demonstrates favorable efficacy and safety profile in relapsed FL. This trial is registered at www.clinicaltrials.gov as #NCT02446457.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fuliang Chu
- Department of Lymphoma/Myeloma, San Diego, CA and
| | - Ly Dsouza
- Department of Lymphoma/Myeloma, San Diego, CA and
| | - Chizobam Obi
- Department of Lymphoma/Myeloma, San Diego, CA and
| | | | - Lei Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shouhao Zhou
- Department of Lymphoma/Myeloma, San Diego, CA and
| | | | | | | |
Collapse
|
33
|
Mesenchymal stromal cells equipped by IFNα empower T cells with potent anti-tumor immunity. Oncogene 2022; 41:1866-1881. [PMID: 35145233 PMCID: PMC8956510 DOI: 10.1038/s41388-022-02201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Cancer treatments have been revolutionized by the emergence of immune checkpoint blockade therapies. However, only a minority of patients with various tumor types have benefited from such treatments. New strategies focusing on the immune contexture of the tumor tissue microenvironment hold great promises. Here, we created IFNα-overexpressing mesenchymal stromal cells (IFNα-MSCs). Upon direct injection into tumors, we found that these cells are powerful in eliminating several types of tumors. Interestingly, the intra-tumoral injection of IFNα-MSCs could also induce specific anti-tumor effects on distant tumors. These IFNα-MSCs promoted tumor cells to produce CXCL10, which in turn potentiates the infiltration of CD8+ T cells in the tumor site. Furthermore, IFNα-MSCs enhanced the expression of granzyme B (GZMB) in CD8+ T cells and invigorated their cytotoxicity in a Stat3-dependent manner. Genetic ablation of Stat3 in CD8+ T cells impaired the effect of IFNα-MSCs on GZMB expression. Importantly, the combination of IFNα-MSCs and PD-L1 blockade induced an even stronger anti-tumor immunity. Therefore, IFNα-MSCs represent a novel tumor immunotherapy strategy, especially when combined with PD-L1 blockade.
Collapse
|
34
|
Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, Eckroth J, Singer D, Stope MB, Wende K, Ritter CA, Schroeder HWS, Marx S. Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers (Basel) 2022; 14:cancers14030813. [PMID: 35159079 PMCID: PMC8834374 DOI: 10.3390/cancers14030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Despite treatment advances, glioblastoma multiforme (GBM) remains an often-fatal disease, motivating novel therapeutic avenues. Gas plasma is a technology that has been recently employed in preclinical oncology research and acts primarily via reactive oxygen-species-induced cell death. In addition, the modulation of immune processes and inflammation have been ascribed to gas plasma exposure. This is the first study that extends those observations from in vitro investigations to a set of 16 patient-derived GBM tumor biopsies analyzed after gas plasma treatment ex vivo. Besides cell culture results showing cell cycle arrest and apoptosis induction, an immunomodulatory potential was identified for gas plasma exposure in vitro and cultured GBM tissues. The proapoptotic action shown in this study might be an important step forward to the first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology. Abstract Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Correspondence:
| | - Mikael Ispirjan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frederik Kinnen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Juliane Moritz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Jacqueline Eckroth
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmaceutics, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany;
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Tong S, Cinelli MA, El-Sayed NS, Huang H, Patel A, Silverman RB, Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep 2022; 12:1701. [PMID: 35105915 PMCID: PMC8807785 DOI: 10.1038/s41598-022-05394-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.
Collapse
Affiliation(s)
- Shirley Tong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Maris A Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Naglaa Salem El-Sayed
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - He Huang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Patel
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
36
|
Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, Collado‐Diaz V, Halin C, Garcia‐Silva S, Peinado H, Dieterich LC. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles 2022; 11:e12197. [PMID: 35188342 PMCID: PMC8859913 DOI: 10.1002/jev2.12197] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour-draining lymph nodes (LNs) undergo massive remodelling including expansion of the lymphatic sinuses, a process that has been linked to lymphatic metastasis by creation of a pre-metastatic niche. However, the signals leading to these changes have not been completely understood. Here, we found that extracellular vesicles (EVs) derived from melanoma cells are rapidly transported by lymphatic vessels to draining LNs, where they selectively interact with lymphatic endothelial cells (LECs) as well as medullary sinus macrophages. Interestingly, uptake of melanoma EVs by LN-resident LECs was partly dependent on lymphatic VCAM-1 expression, and induced transcriptional changes as well as proliferation of those cells. Furthermore, melanoma EVs shuttled tumour antigens to LN LECs for cross-presentation on MHC-I, resulting in apoptosis induction in antigen-specific CD8+ T cells. In conclusion, our data identify EV-mediated melanoma-LN LEC communication as a new pathway involved in tumour progression and tumour immune inhibition, suggesting that EV uptake or effector mechanisms in LECs might represent a new target for melanoma therapy.
Collapse
Affiliation(s)
- Noelle Leary
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Sarina Walser
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Yuliang He
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Nikola Cousin
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Paulo Pereira
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Alessandro Gallo
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Victor Collado‐Diaz
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Cornelia Halin
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Susana Garcia‐Silva
- Microenvironment and Metastasis LaboratorySpanish National Cancer Research CentreMadridSpain
| | - Hector Peinado
- Microenvironment and Metastasis LaboratorySpanish National Cancer Research CentreMadridSpain
| | - Lothar C. Dieterich
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| |
Collapse
|
37
|
Liu Y, Wang L, Song Q, Ali M, Crowe WN, Kucera GL, Hawkins GA, Soker S, Thomas KW, Miller LD, Lu Y, Bellinger CR, Zhang W, Habib AA, Petty WJ, Zhao D. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. NATURE NANOTECHNOLOGY 2022; 17:206-216. [PMID: 34916656 PMCID: PMC9074399 DOI: 10.1038/s41565-021-01032-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/12/2021] [Indexed: 05/02/2023]
Abstract
Malignant pleural effusion (MPE) is indicative of terminal malignancy with a uniformly fatal prognosis. Often, two distinct compartments of tumour microenvironment, the effusion and disseminated pleural tumours, co-exist in the pleural cavity, presenting a major challenge for therapeutic interventions and drug delivery. Clinical evidence suggests that MPE comprises abundant tumour-associated myeloid cells with the tumour-promoting phenotype, impairing antitumour immunity. Here we developed a liposomal nanoparticle loaded with cyclic dinucleotide (LNP-CDN) for targeted activation of stimulators of interferon genes signalling in macrophages and dendritic cells and showed that, on intrapleural administration, they induce drastic changes in the transcriptional landscape in MPE, mitigating the immune cold MPE in both effusion and pleural tumours. Moreover, combination immunotherapy with blockade of programmed death ligand 1 potently reduced MPE volume and inhibited tumour growth not only in the pleural cavity but also in the lung parenchyma, conferring significantly prolonged survival of MPE-bearing mice. Furthermore, the LNP-CDN-induced immunological effects were also observed with clinical MPE samples, suggesting the potential of intrapleural LNP-CDN for clinical MPE immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lulu Wang
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qianqian Song
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Muhammad Ali
- Department of Pulmonary and Critical Care Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William N Crowe
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory L Kucera
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Karl W Thomas
- Department of Pulmonary and Critical Care Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yong Lu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christina R Bellinger
- Department of Pulmonary and Critical Care Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wei Zhang
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center and VA North Texas Medical Center, Dallas, TX, USA
| | - W Jeffrey Petty
- Department of Medicine, Section on hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dawen Zhao
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
38
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Zhai Y, Wang J, Lang T, Kong Y, Rong R, Cai Y, Ran W, Xiong F, Zheng C, Wang Y, Yu Y, Zhu HH, Zhang P, Li Y. T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. NATURE NANOTECHNOLOGY 2021; 16:1271-1280. [PMID: 34580467 DOI: 10.1038/s41565-021-00972-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Impaired type I interferons (IFNs) may cause immune deficiency in tumours. Current supplementary IFN therapy partially restores anticancer immunity but simultaneously induces immune evasion by upregulating multiple immune checkpoints. Here we create a T lymphocyte membrane-decorated epigenetic nanoinducer that is engineered with programmed cell death protein 1 (PD1), which we call OPEN, for the delivery of the IFN inducer ORY-1001. OPEN increases IFNs and blocks IFN-induced immune checkpoint upregulation. OPEN also targets tumours that express programmed cell death ligand 1 (PDL1) through PDL1/PD1 recognition and subsequently triggers the internalization of OPEN and immune checkpoint proteins. OPEN, which is loaded with ORY-1001, upregulates intratumoural IFNs and downstream major histocompatibility complex I and PDL1. The replenished PDL1 enables further ligation of OPEN, which in turn blocks PDL1. These sequential processes result in an eight- and 29-fold increase of the intratumoural densities of total and active cytotoxic T lymphocytes, respectively, and a strong inhibition of xenograft tumour growth. This T lymphocyte membrane-decorated epigenetic nanoinducer presents a generalizable platform to boost antitumour immunity.
Collapse
Affiliation(s)
- Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Kong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yanke Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Helen H Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, China.
| |
Collapse
|
40
|
Huang KCY, Chiang SF, Ke TW, Chen TW, Hu CH, Yang PC, Chang HY, Liang JA, Chen WTL, Chao KSC. DNMT1 constrains IFNβ-mediated anti-tumor immunity and PD-L1 expression to reduce the efficacy of radiotherapy and immunotherapy. Oncoimmunology 2021; 10:1989790. [PMID: 38283033 PMCID: PMC10813565 DOI: 10.1080/2162402x.2021.1989790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022] Open
Abstract
Radiotherapy can boost the therapeutic response to immune checkpoint inhibitors (ICIs) by recruiting T lymphocytes and upregulating PD-L1 expression within the tumor microenvironment (TME). However, in some cases, tumor PD-L1 expression cannot be induced, even in the presence of abundant T lymphocytes, in locally advanced colorectal cancer patients who receive preoperative neoadjuvant concurrent chemoradiotherapy (CCRT). In this study, we found that PD-L1 promoter methylation is negatively correlated with tumor PD-L1 expression and is an independent biomarker for locally advanced colorectal cancer patients. PD-L1 methylation (mCD274) was significantly associated with shorter disease-free survival (cg15837913 loci, p = .0124). By multivariate Cox proportional hazards analyses including influent factors, mCD274 was classified as an independent prognostic factor for poor 5-year DFS [cg15837913, hazard ratio: HR = 4.06, 95% CI = 1.407-11.716, p = .01]. We found that the immunomodulatory agent DNA methyltransferase inhibitor (DNMTi) led to demethylation of the PD-L1 promoter and increased radiotherapy-induced PD-L1 upregulation via interferon β (IFNβ). DNMTi not only induced tumor PD-L1 expression but increased the expression of immune-related genes as well as intratumoral T cell infiltration in vivo. Furthermore, DNMTi strongly enhanced the response to combined treatment with radiotherapy and anti-PD-L1 inhibitors, and prolonged survival in microsatellite stability (MSS) colorectal model. Therefore, DNMTi remodeled the tumor microenvironment to improve the effect of radiotherapy and anti-PD-L1 immunotherapy by directly triggering tumor PD-L1 expression and eliciting stronger immune responses, which may provide potential clinical benefits to colorectal cancer patients in the future.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, TaichungTaiwan
- Translation Research Core, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, TaichungTaiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, TaichungTaiwan
- School of Chinese Medicine, China Medical University, TaichungTaiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, TaichungTaiwan
- Graduate Institute of Biomedical Science, China Medical University, TaichungTaiwan
| | - Ching-Han Hu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Hsin-Yu Chang
- Translation Research Core, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, TaichungTaiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, TaichungTaiwan
- Department of Surgery, School of Medicine, China Medical University, TaichungTaiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChuTaiwan
| | - K. S. Clifford Chao
- Graduate Institute of Biomedical Science, China Medical University, TaichungTaiwan
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
- Department of Radiotherapy, School of Medicine, China Medical University, TaichungTaiwan
| |
Collapse
|
41
|
EZH2 Inhibitor Enhances the STING Agonist‒Induced Antitumor Immunity in Melanoma. J Invest Dermatol 2021; 142:1158-1170.e8. [PMID: 34571002 DOI: 10.1016/j.jid.2021.08.437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
STING agonists are a new class of drugs for cancer immunotherapy that activate both innate and adaptive antitumor immunity. Recently, multiple clinical trials of STING agonists have been conducted in hematological malignancies and solid tumors. However, STING is commonly suppressed in melanoma through mechanisms that remain unclear. We found that STING expression was epigenetically suppressed by H3K27me3 in melanoma, and EZH2 inhibitor could induce an H3K27 shift from trimethylation to acetylation, resulting in increased expression of STING. Furthermore, a combination of STING agonist and EZH2 inhibitor upregulated major histocompatibility complex class I expression and chemokine production. Whole-transcriptome analysis showed that IFN-1‒related genes were significantly upregulated in the combination treatment group. In addition, the combination treatment synergistically reduced tumor growth and increased CD8+ T-cell infiltration in a poorly immunogenic melanoma mouse model B16-F10. These results showed, to our knowledge, a previously unreported mechanism underlying the epigenetic regulation of STING expression in melanoma; a combination of STING agonists and EZH2 inhibitors can boost the antitumor immune response and would be a promising treatment option for patients with melanoma who are refractory to current immunotherapies.
Collapse
|
42
|
Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J Cell Physiol 2021; 237:346-372. [PMID: 34498289 DOI: 10.1002/jcp.30575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.
Collapse
Affiliation(s)
- Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
44
|
Spyrou N, Vallianou N, Kadillari J, Dalamaga M. The interplay of obesity, gut microbiome and diet in the immune check point inhibitors therapy era. Semin Cancer Biol 2021; 73:356-376. [DOI: 10.1016/j.semcancer.2021.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
|
45
|
He Y, Wang L, Wei T, Xiao YT, Sheng H, Su H, Hollern DP, Zhang X, Ma J, Wen S, Xie H, Yan Y, Pan Y, Hou X, Tang X, Suman VJ, Carter JM, Weinshilboum R, Wang L, Kalari KR, Weroha SJ, Bryce AH, Boughey JC, Dong H, Perou CM, Ye D, Goetz MP, Ren S, Huang H. FOXA1 overexpression suppresses interferon signaling and immune response in cancer. J Clin Invest 2021; 131:e147025. [PMID: 34101624 DOI: 10.1172/jci147025] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen receptor-positive prostate cancer (PCa) and estrogen receptor-positive luminal breast cancer (BCa) are generally less responsive to immunotherapy compared with certain tumor types such as melanoma. However, the underlying mechanisms are not fully elucidated. In this study, we found that FOXA1 overexpression inversely correlated with interferon (IFN) signature and antigen presentation gene expression in PCa and BCa patients. FOXA1 bound the STAT2 DNA-binding domain and suppressed STAT2 DNA-binding activity, IFN signaling gene expression, and cancer immune response independently of the transactivation activity of FOXA1 and its mutations detected in PCa and BCa. Increased FOXA1 expression promoted cancer immuno- and chemotherapy resistance in mice and PCa and BCa patients. These findings were also validated in bladder cancer expressing high levels of FOXA1. FOXA1 overexpression could be a prognostic factor to predict therapy resistance and a viable target to sensitize luminal PCa, BCa, and bladder cancer to immuno- and chemotherapy.
Collapse
Affiliation(s)
- Yundong He
- Department of Biochemistry and Molecular Biology.,Department of Urology, and
| | - Liguo Wang
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Ting Wei
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hengchuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jinlin University, Changchun, Jilin, China
| | - Jian Ma
- Department of Biochemistry and Molecular Biology.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simeng Wen
- Department of Biochemistry and Molecular Biology
| | - Hongyan Xie
- Department of Biochemistry and Molecular Biology
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology
| | | | - Xiaojia Tang
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Vera J Suman
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, and
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Krishna R Kalari
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | | | - Alan H Bryce
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Phoenix, Arizona, USA
| | | | - Haidong Dong
- Department of Urology, and.,Department of Immunology, and
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Matthew P Goetz
- Department of Oncology.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology.,Department of Urology, and.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
46
|
Lo JA, Kawakubo M, Juneja VR, Su MY, Erlich TH, LaFleur MW, Kemeny LV, Rashid M, Malehmir M, Rabi SA, Raghavan R, Allouche J, Kasumova G, Frederick DT, Pauken KE, Weng QY, Pereira da Silva M, Xu Y, van der Sande AAJ, Silkworth W, Roider E, Browne EP, Lieb DJ, Wang B, Garraway LA, Wu CJ, Flaherty KT, Brinckerhoff CE, Mullins DW, Adams DJ, Hacohen N, Hoang MP, Boland GM, Freeman GJ, Sharpe AH, Manstein D, Fisher DE. Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Sci Transl Med 2021; 13:13/581/eabd8636. [PMID: 33597266 DOI: 10.1126/scitranslmed.abd8636] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.
Collapse
Affiliation(s)
- Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Masayoshi Kawakubo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vikram R Juneja
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mack Y Su
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Mohsen Malehmir
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - S Alireza Rabi
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rumya Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard-MIT Health Sciences and Technology Program, Cambridge, MA 02139, USA
| | - Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Gyulnara Kasumova
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dennie T Frederick
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Marcelo Pereira da Silva
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yu Xu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anita A J van der Sande
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Whitney Silkworth
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.,Department of Dermatology and Allergology, University of Szeged, Szeged 6727, Hungary.,Department of Dermatology, Venerology, and Allergology, Kantonsspital St. Gallen, St. Gallen 9000, Switzerland.,University of Zurich, Zurich 8006, Switzerland
| | - Edward P Browne
- Department of Medicine, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - David J Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Belinda Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Levi A Garraway
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Constance E Brinckerhoff
- Departments of Medicine and Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - David W Mullins
- Departments of Medical Education and Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Genevieve M Boland
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA. .,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dieter Manstein
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. .,Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
47
|
Kerzeli IK, Lord M, Doroszko M, Elgendy R, Chourlia A, Stepanek I, Larsson E, van Hooren L, Nelander S, Malmstrom PU, Dragomir A, Segersten U, Mangsbo SM. Single-cell RNAseq and longitudinal proteomic analysis of a novel semi-spontaneous urothelial cancer model reveals tumor cell heterogeneity and pretumoral urine protein alterations. PLoS One 2021; 16:e0253178. [PMID: 34232958 PMCID: PMC8262791 DOI: 10.1371/journal.pone.0253178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.
Collapse
Affiliation(s)
- Iliana K. Kerzeli
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milena Doroszko
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Chourlia
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ivan Stepanek
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elinor Larsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Uno Malmstrom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anca Dragomir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sara M. Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
49
|
De Waele J, Verhezen T, van der Heijden S, Berneman ZN, Peeters M, Lardon F, Wouters A, Smits ELJM. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:213. [PMID: 34172082 PMCID: PMC8229304 DOI: 10.1186/s13046-021-02017-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade. Clinically, mostly as an adjuvant to dendritic cell or peptide vaccines, poly-ICLC has been demonstrated to be safe and capable of eliciting immunological activity to boost therapeutic responses. Poly-ICLC could be a valuable tool to enhance immunotherapeutic approaches for glioblastoma. We conclude by proposing several promising combination strategies that might advance glioblastoma immunotherapy and discuss key pre-clinical aspects to improve clinical translation.
Collapse
Affiliation(s)
- Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Sanne van der Heijden
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Department of Hematology, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien L J M Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| |
Collapse
|
50
|
Bindal P, Gray JE, Boyle TA, Florou V, Puri S. Biomarkers of therapeutic response with immune checkpoint inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1040. [PMID: 34277840 PMCID: PMC8267267 DOI: 10.21037/atm-20-6396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors (ICPIs) have revolutionized the treatment paradigm of a wide range of malignancies with durable responses seen in even advanced, refractory cancers. Unfortunately, only a small proportion of patients with cancer derive meaningful benefit to ICPI therapy, and its use is also limited by significant immune and financial toxicities. Thus, there is a critical need for the development of biomarkers to reliably predict response to ICPI therapy. Only a few biomarkers are validated and approved for use with currently Food and Drug administration (FDA)-approved ICPIs. The development and broad application of biomarkers is limited by the lack of complete understanding of the complex interactions of tumor-host environment, the effect of immunotherapies on these already complex interactions, a lack of standardization and interpretation of biomarker assays across tumor types. Despite these challenges, the field of identifying predictive biomarkers is evolving at an unprecedented pace leaving the clinician responsible for identifying the patients that may derive optimal benefit from ICPIs. In this review, we provide clinicians with a current and practical update on the key, clinically relevant biomarkers of response to ICPIs. We categorize the current and emerging biomarkers of response to ICPIs in four major categories that govern anticancer response—the inflamed tumor, tumor antigens, immune suppression, and overall host environment.
Collapse
Affiliation(s)
- Poorva Bindal
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Vaia Florou
- Division of Medical Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|