1
|
Lin J, Gong Z, Lu Y, Cai J, Zhang J, Tan J, Huang Z, Chen S. Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy. Molecules 2025; 30:1805. [PMID: 40333779 PMCID: PMC12029830 DOI: 10.3390/molecules30081805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
G-quadruplex (G4) structures are non-canonical nucleic acid conformations that play crucial roles in gene regulation, DNA replication, and telomere maintenance. Recent studies have highlighted G4 ligands as promising anticancer agents due to their ability to modulate oncogene expression and induce DNA damage. By stabilizing G4 structures, these ligands affect tumor progression. Additionally, they have been implicated in tumor immunity modulation, particularly through the activation and immunogenic cell death induction of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Moreover, their disruption of telomere maintenance and regulation of key oncogenes, such as c-MYC and KRAS, position them as candidates for immune-based therapeutic interventions. Despite their therapeutic potential, challenges remain in optimizing their clinical applications, particularly in patient stratification and elucidating their immunomodulatory effects. This review provides a comprehensive overview of the mechanisms through which G4 ligands influence tumor progression and immune regulation, highlighting their potential role in future cancer immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuobin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (J.L.); (Z.G.); (Y.L.); (J.C.); (J.Z.); (J.T.); (Z.H.)
| |
Collapse
|
2
|
Zhang F, Wang B, Wu M, Zhang L, Ji M. Current status of KRAS G12C inhibitors in NSCLC and the potential for combination with anti-PD-(L)1 therapy: a systematic review. Front Immunol 2025; 16:1509173. [PMID: 40303413 PMCID: PMC12037499 DOI: 10.3389/fimmu.2025.1509173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
In recent years, precision medicine for non-small cell lung cancer (NSCLC) has made significant strides, particularly with advancements in diagnostic and therapeutic technologies. Targeted 7therapies and Anti-PD-(L)1 Therapies have emerged as vital treatment options, yet KRAS mutations, especially KRAS G12C, have been historically difficult to address. Due to the unique activation mechanism of KRAS G12C has led to the development of specific inhibitors, such as AMG 510 and MRTX849, which show promising therapeutic potential. However, results from the CodeBreaK 200 Phase III trial indicated that AMG 510 did not significantly improve overall survival compared to docetaxel. Resistance after prolonged use of KRAS G12C inhibitors continues to pose a challenge, prompting interest in new drugs and combination strategies. KRAS mutations can impair tumor-infiltrating T cell function and create an immunosuppressive tumor microenvironment, making the combination of KRAS G12C inhibitors with anti-PD-(L)1 therapies particularly appealing. Preliminary data suggest these combinations may enhance both survival and quality of life, though safety concerns remain a barrier. Ongoing research is crucial to refine treatment regimens and identify suitable patient populations. This review focuses on the development of KRAS G12C inhibitors in monotherapy and combination therapies for NSCLC, discussing major clinical trials and future research directions.
Collapse
Affiliation(s)
| | | | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Uniyal P, Kashyap VK, Behl T, Parashar D, Rawat R. KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy. Cancers (Basel) 2025; 17:785. [PMID: 40075634 PMCID: PMC11899378 DOI: 10.3390/cancers17050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Priyanka Uniyal
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| | - Vivek Kumar Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi Rawat
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| |
Collapse
|
4
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Necker-Brown A, Kooi C, Thorne AJ, Bansal A, Mostafa MM, Chandramohan P, Gao A, Kalyanaraman K, Milani A, Gill S, Georgescu A, Sasse SK, Gerber AN, Leigh R, Newton R. Inducible gene expression of IκB-kinase ε is dependent on nuclear factor-κB in human pulmonary epithelial cells. Biochem J 2024; 481:959-980. [PMID: 38941070 DOI: 10.1042/bcj20230461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1β and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1β- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1β- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1β may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.
Collapse
Affiliation(s)
- Amandah Necker-Brown
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Cora Kooi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Thorne
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Akanksha Bansal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Priyanka Chandramohan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alex Gao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arya Milani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sachman Gill
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Andrei Georgescu
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Richard Leigh
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Magits W, Steklov M, Jang H, Sewduth RN, Florentin A, Lechat B, Sheryazdanova A, Zhang M, Simicek M, Prag G, Nussinov R, Sablina A. K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins. EMBO J 2024; 43:2862-2877. [PMID: 38858602 PMCID: PMC11251195 DOI: 10.1038/s44318-024-00146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Raj N Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Amir Florentin
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Benoit Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | | | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Michal Simicek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Gali Prag
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Miranda A, Shirley CA, Jenkins RW. Emerging roles of TBK1 in cancer immunobiology. Trends Cancer 2024; 10:531-540. [PMID: 38519366 PMCID: PMC11168882 DOI: 10.1016/j.trecan.2024.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a versatile serine/threonine protein kinase with established roles in innate immunity, metabolism, autophagy, cell death, and inflammation. While best known for its role in regulating innate immunity, TBK1 has emerged as a cancer cell-intrinsic immune evasion gene by virtue of its role in modulating cellular responses to inflammatory signals emanating from the immune system. Beyond its effect on cancer cells, TBK1 appears to regulate lymphoid and myeloid cells in the tumor immune microenvironment. In this review, we detail recent advances in our understanding of the tumor-intrinsic and -extrinsic roles and regulation of TBK1 in tumor immunity.
Collapse
Affiliation(s)
- Alex Miranda
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carl A Shirley
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Molina-Arcas M, Downward J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell 2024; 42:338-357. [PMID: 38471457 DOI: 10.1016/j.ccell.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the past decade, RAS oncogenic proteins have transitioned from being deemed undruggable to having two clinically approved drugs, with several more in advanced stages of development. Despite the initial benefit of KRAS-G12C inhibitors for patients with tumors harboring this mutation, the rapid emergence of drug resistance underscores the urgent need to synergize these inhibitors with other therapeutic approaches to improve outcomes. RAS mutant tumor cells can create an immunosuppressive tumor microenvironment (TME), suggesting an increased susceptibility to immunotherapies following RAS inhibition. This provides a rationale for combining RAS inhibitory drugs with immune checkpoint blockade (ICB). However, achieving this synergy in the clinical setting has proven challenging. Here, we explore how understanding the impact of RAS mutant tumor cells on the TME can guide innovative approaches to combining RAS inhibition with immunotherapies, review progress in both pre-clinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
| | - Julian Downward
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Li W, Zhuang Y, Shao SJ, Trivedi P, Zheng B, Huang GL, He Z, Zhang X. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 2024; 29:39. [PMID: 38240082 PMCID: PMC10828999 DOI: 10.3892/mmr.2024.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS‑CoV‑2; known as coronavirus infection‑2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS‑CoV‑2.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yunjing Zhuang
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Song-Jun Shao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University of Rome, Rome I-00158, Italy
| | - Biying Zheng
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Guo-Liang Huang
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
11
|
Lu X, Jin J, Wu Y, Liu X, Liang X, Lin J, Sun Q, Qin J, Zhang W, Luan X. Progress in RAS-targeted therapeutic strategies: From small molecule inhibitors to proteolysis targeting chimeras. Med Res Rev 2024; 44:812-832. [PMID: 38009264 DOI: 10.1002/med.21993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/14/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
As a widely considerable target in chemical biology and pharmacological research, rat sarcoma (RAS) gene mutations play a critical driving factor in several fatal cancers. Despite the great progress of RAS subtype-specific inhibitors, rapid acquired drug resistance could limit their further clinical applications. Proteolysis targeting chimera (PROTAC) has emerged as a powerful tool to handle "undruggable" targets and exhibited significant therapeutic benefit for the combat of drug resistance. Owing to unique molecular mechanism and binding kinetics, PROTAC is expected to become a feasible strategy to break the bottleneck of classical RAS inhibitors. This review aims to discuss the current advances of RAS inhibitors and especially focus on PROTAC strategy targeting RAS mutations and their downstream effectors for relevant cancer treatment.
Collapse
Affiliation(s)
- Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiangjiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Sahu P, Mitra A, Ganguly A. Targeting KRAS and SHP2 signaling pathways for immunomodulation and improving treatment outcomes in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:167-222. [PMID: 38782499 DOI: 10.1016/bs.ircmb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Collapse
Affiliation(s)
- Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
13
|
Yang X, Liu Z. Role of TBK1 Inhibition in Targeted Therapy of Cancer. Mini Rev Med Chem 2024; 24:1031-1045. [PMID: 38314681 DOI: 10.2174/0113895575271977231115062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 02/06/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a serine/threonine protein that plays a crucial role in various biological processes like immunity, autophagy, cell survival, and proliferation. The level and kinase activity of the TBK1 protein is regulated through post-translational modifications (PTMs). TBK1 mainly mediates the activation of IRF3/7 and NF-κB signaling pathways while also participating in the regulation of cellular activities such as autophagy, mitochondrial metabolism, and cell proliferation. TBK1 regulates immune, metabolic, inflammatory, and tumor occurrence and development within the body through these cellular activities. TBK1 kinase has emerged as a promising therapeutic target for tumor immunity. However, its molecular mechanism of action remains largely unknown. The identification of selective TBK1 small molecule inhibitors can serve as valuable tools for investigating the biological function of TBK1 protein and also as potential drug candidates for tumor immunotherapy. The current research progress indicates that some TBK1 inhibitors (compounds 15,16 and 21) exhibit certain antitumor effects in vitro culture systems. Here, we summarize the mechanism of action of TBK1 in tumors in recent years and the progress of small molecule inhibitors of TBK1.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
14
|
Boumelha J, Molina-Arcas M, Downward J. Facts and Hopes on RAS Inhibitors and Cancer Immunotherapy. Clin Cancer Res 2023; 29:5012-5020. [PMID: 37581538 PMCID: PMC10722141 DOI: 10.1158/1078-0432.ccr-22-3655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Although the past decade has seen great strides in the development of immunotherapies that reactivate the immune system against tumors, there have also been major advances in the discovery of drugs blocking oncogenic drivers of cancer growth. However, there has been very little progress in combining immunotherapies with drugs that target oncogenic driver pathways. Some of the most important oncogenes in human cancer encode RAS family proteins, although these have proven challenging to target. Recently drugs have been approved that inhibit a specific mutant form of KRAS: G12C. These have improved the treatment of patients with lung cancer harboring this mutation, but development of acquired drug resistance after initial responses has limited the impact on overall survival. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, targeted KRAS G12C inhibition can indirectly affect antitumor immunity, and does so without compromising the critical role of normal RAS proteins in immune cells. This serves as a rationale for combination with immune checkpoint blockade, which can provide additional combinatorial therapeutic benefit in some preclinical cancer models. However, in clinical trials, combination of KRAS G12C inhibitors with PD-(L)1 blockade has yet to show improved outcome, in part due to treatment toxicities. A greater understanding of how oncogenic KRAS drives immune evasion and how mutant-specific KRAS inhibition impacts the tumor microenvironment can lead to novel approaches to combining RAS inhibition with immunotherapies.
Collapse
|
15
|
Huo JT, Tuersun A, Yu SY, Zhang YC, Feng WQ, Xu ZQ, Zhao JK, Zong YP, Lu AG. Leveraging a KRAS-based signature to predict the prognosis and drug sensitivity of colon cancer and identifying SPINK4 as a new biomarker. Sci Rep 2023; 13:22230. [PMID: 38097680 PMCID: PMC10721872 DOI: 10.1038/s41598-023-48768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
KRAS is one of the leading mutations reported in colon cancer. However, there are few studies on the application of KRAS related signature in predicting prognosis and drug sensitivity of colon cancer patient. We identified KRAS related differentially expressed genes (DEGs) using The Cancer Genome Atlas (TCGA) database. A signature closely related to overall survival was recognized with Kaplan-Meier survival analysis and univariate cox regression analysis. Then we validated this signature with overall expression score (OE score) algorithm using both scRNA-seq and bulk RNA-seq data. Based on this signature, we performed LASSO cox regression to establish a prognostic model, and corresponding scores were calculated. Differences in genomic alteration, immune microenvironment, drug sensitivity between high- and low-KRD score groups were investigated. A KRAS related signature composed of 80 DEGs in colon cancer were recognized, among which 19 genes were selected to construct a prognostic model. This KRAS related signature was significantly correlated with worse prognosis. Furthermore, patients who scored lower in the prognostic model presented a higher likelihood of responding to chemotherapy, targeted therapy and immunotherapy. Furthermore, among the 19 selected genes in the model, SPINK4 was identified as an independent prognostic biomarker. Further validation in vitro indicated the knockdown of SPINK4 promoted the proliferation and migration of SW48 cells. In conclusion, a novel KRAS related signature was identified and validated based on clinical and genomic information from TCGA and GEO databases. The signature was proved to regulate genomic alteration, immune microenvironment and drug sensitivity in colon cancer, and thus might serve as a predictor for individual prognosis and treatment.
Collapse
Affiliation(s)
- Jian-Ting Huo
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Su-Yue Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Yu-Chen Zhang
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Wen-Qing Feng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Zhuo-Qing Xu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Jing-Kun Zhao
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ya-Ping Zong
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ai-Guo Lu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| |
Collapse
|
16
|
Liu Y, Xie B, Chen Q. RAS signaling and immune cells: a sinister crosstalk in the tumor microenvironment. J Transl Med 2023; 21:595. [PMID: 37670322 PMCID: PMC10481548 DOI: 10.1186/s12967-023-04486-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
The rat sarcoma virus (RAS) gene is the most commonly mutated oncogene in cancer, with about 19% of cancer patients carrying RAS mutations. Studies on the interaction between RAS mutation and tumor immune microenvironment (TIM) have been flourishing in recent years. More and more evidence has proved that RAS signals regulate immune cells' recruitment, activation, and differentiation while assisting tumor cells to evade immune surveillance. This review concluded the direct and indirect treatment strategies for RAS mutations. In addition, we updated the underlying mechanisms by which RAS signaling modulated immune infiltration and immune escape. Finally, we discussed advances in RAS-targeted immunotherapies, including cancer vaccines and adoptive cell therapies, with a particular focus on combination strategies with personalized therapy and great potential to achieve lasting clinical benefits.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
17
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
18
|
Miller AL, Perurena N, Gardner A, Hinoue T, Loi P, Laird PW, Cichowski K. DAB2IP Is a Bifunctional Tumor Suppressor That Regulates Wild-Type RAS and Inflammatory Cascades in KRAS Mutant Colon Cancer. Cancer Res 2023; 83:1800-1814. [PMID: 36939385 PMCID: PMC10236151 DOI: 10.1158/0008-5472.can-22-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The DAB2IP tumor suppressor encodes a RAS GTPase-activating protein. Accordingly, DAB2IP has been shown to be mutated or suppressed in tumor types that typically lack RAS mutations. However, here we report that DAB2IP is mutated or selectively silenced in the vast majority of KRAS and BRAF mutant colorectal cancers. In this setting, DAB2IP loss promoted tumor development by activating wild-type H- and N-RAS proteins, which was surprisingly required to achieve robust activation of RAS effector pathways in KRAS-mutant tumors. DAB2IP loss also triggered production of inflammatory mediators and the recruitment of protumorigenic macrophages in vivo. Importantly, tumor growth was suppressed by depleting macrophages or inhibiting cytokine/inflammatory mediator expression with a JAK/TBK1 inhibitor. In human tumors, DAB2IP was lost at early stages of tumor development, and its depletion was associated with an enrichment of macrophage and inflammatory signatures. Together, these findings demonstrate that DAB2IP restrains the activation of the RAS pathway and inflammatory cascades in the colon and that its loss represents a common and unappreciated mechanism for amplifying these two critical oncogenic signals in colorectal cancer. SIGNIFICANCE DAB2IP is lost in early-stage tumors, which amplifies RAS signaling, triggers inflammatory mediators, and recruits macrophages in KRAS-mutant colon cancers.
Collapse
Affiliation(s)
- Abigail L. Miller
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alycia Gardner
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Patrick Loi
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Huang JP, Yang YX, Chen T, Wang DD, Li J, Xu LG. TRAF7 negatively regulates the RLR signaling pathway by facilitating the K48-linked ubiquitination of TBK1. Virol Sin 2023; 38:419-428. [PMID: 37086853 PMCID: PMC10311266 DOI: 10.1016/j.virs.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a nodal protein involved in multiple signal transduction pathways. In RNA virus-mediated innate immunity, TBK1 is recruited to the prion-like platform formed by MAVS and subsequently activates the transcription factors IRF3/7 and NF-κB to produce type I interferon (IFN) and proinflammatory cytokines for the signaling cascade. In this study, TRAF7 was identified as a negative regulator of innate immune signaling. TRAF7 interacts with TBK1 and promotes K48-linked polyubiquitination and degradation of TBK1 through its RING domain, impairing the activation of IRF3 and the production of IFN-β. In addition, we found that the conserved cysteine residues at position 131 of TRAF7 are necessary for its function toward TBK1. Knockout of TRAF7 could facilitate the activation of IRF3 and increase the transcript levels of downstream antiviral genes. These data suggest that TRAF7 negatively regulates innate antiviral immunity by promoting the K48-linked ubiquitination of TBK1.
Collapse
Affiliation(s)
- Jing-Ping Huang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Ya-Xian Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Tian Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Dan-Dan Wang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Jing Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
20
|
Tanjak P, Chaiboonchoe A, Suwatthanarak T, Acharayothin O, Thanormjit K, Chanthercrob J, Suwatthanarak T, Wannasuphaphol B, Chumchuen K, Suktitipat B, Sampattavanich S, Korphaisarn K, Pongpaibul A, Poungvarin N, Grove H, Riansuwan W, Trakarnsanga A, Methasate A, Pithukpakorn M, Chinswangwatanakul V. The KRAS-Mutant Consensus Molecular Subtype 3 Reveals an Immunosuppressive Tumor Microenvironment in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15041098. [PMID: 36831441 PMCID: PMC9953921 DOI: 10.3390/cancers15041098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancers (CRC) with KRAS mutations (KRASmut) are frequently included in consensus molecular subtype 3 (CMS3) with profound metabolic deregulation. We explored the transcriptomic impact of KRASmut, focusing on the tumor microenvironment (TME) and pathways beyond metabolic deregulation. The status of KRASmut in patients with CRC was investigated and overall survival (OS) was compared with wild-type KRAS (KRASwt). Next, we identified CMS, and further investigated differentially expressed genes (DEG) of KRASmut and distinctive pathways. Lastly, we used spatially resolved gene expression profiling to define the effect of KRASmut in the TME regions of CMS3-classified CRC tissues. CRC patients with KRASmut were mainly enriched in CMS3. Their specific enrichments of immune gene signatures in immunosuppressive TME were associated with worse OS. Activation of TGFβ signaling by KRASmut was related to reduced pro-inflammatory and cytokine gene signatures, leading to suppression of immune infiltration. Digital spatial profiling in TME regions of KRASmut CMS3-classified tissues suggested up-regulated genes, CD40, CTLA4, ARG1, STAT3, IDO, and CD274, that could be characteristic of immune suppression in TME. This study may help to depict the complex transcriptomic profile of KRASmut in immunosuppressive TME. Future studies and clinical trials in CRC patients with KRASmut should consider these transcriptional landscapes.
Collapse
Affiliation(s)
- Pariyada Tanjak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tharathorn Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Kullanist Thanormjit
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanawat Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bundit Wannasuphaphol
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Kemmapon Chumchuen
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Krittiya Korphaisarn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Harald Grove
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Woramin Riansuwan
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vitoon Chinswangwatanakul
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
21
|
Song S, Tang H, Ran T, Fang F, Tong L, Chen H, Xie H, Lu X. Application of deep generative model for design of Pyrrolo[2,3-d] pyrimidine derivatives as new selective TANK binding kinase 1 (TBK1) inhibitors. Eur J Med Chem 2023; 247:115034. [PMID: 36603506 DOI: 10.1016/j.ejmech.2022.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The deep conditional transformer neural network SyntaLinker was applied to identify compounds with pyrrolo[2,3-d]pyrimidine scaffold as potent selective TBK1 inhibitor. Further medicinal chemistry optimization campaign led to the discovery of the most potent compound 7l, which exhibited strong enzymatic inhibitory activity against TBK1 with an IC50 value of 22.4 nM 7l had a superior inhibitory activity in human monocytic THP1-Blue cells reporter gene assay than MRT67307. Furthermore, 7l significantly inhibited TBK1 downstream target genes cxcl10 and ifnβ expression in THP1 and RAW264.7 cells induced by poly (I:C) and lipopolysaccharide, respectively. This study suggested that combination of deep conditional transformer neural network SyntaLinker and transfer learning could be a powerful tool for scaffold hopping in drug discovery.
Collapse
Affiliation(s)
- Shukai Song
- School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ting Ran
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou, 510530, China
| | - Feng Fang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai, 201203, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hongming Chen
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou, 510530, China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai, 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Cuiheng New District, Zhongshan City, China.
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
23
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
24
|
Favaro F, Luciano-Mateo F, Moreno-Caceres J, Hernández-Madrigal M, Both D, Montironi C, Püschel F, Nadal E, Eldering E, Muñoz-Pinedo C. TRAIL receptors promote constitutive and inducible IL-8 secretion in non-small cell lung carcinoma. Cell Death Dis 2022; 13:1046. [PMID: 36522309 PMCID: PMC9755151 DOI: 10.1038/s41419-022-05495-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022]
Abstract
Interleukin-8 (IL-8/CXCL8) is a pro-angiogenic and pro-inflammatory chemokine that plays a role in cancer development. Non-small cell lung carcinoma (NSCLC) produces high amounts of IL-8, which is associated with poor prognosis and resistance to chemo-radio and immunotherapy. However, the signaling pathways that lead to IL-8 production in NSCLC are unresolved. Here, we show that expression and release of IL-8 are regulated autonomously by TRAIL death receptors in several squamous and adenocarcinoma NSCLC cell lines. NSCLC constitutively secrete IL-8, which could be further enhanced by glucose withdrawal or by treatment with TRAIL or TNFα. In A549 cells, constitutive and inducible IL-8 production was dependent on NF-κB and MEK/ERK MAP Kinases. DR4 and DR5, known regulators of these signaling pathways, participated in constitutive and glucose deprivation-induced IL-8 secretion. These receptors were mainly located intracellularly. While DR4 signaled through the NF-κB pathway, DR4 and DR5 both regulated the ERK-MAPK and Akt pathways. FADD, caspase-8, RIPK1, and TRADD also regulated IL-8. Analysis of mRNA expression data from patients indicated that IL-8 transcripts correlated with TRAIL, DR4, and DR5 expression levels. Furthermore, TRAIL receptor expression levels also correlated with markers of angiogenesis and neutrophil infiltration in lung squamous carcinoma and adenocarcinoma. Collectively, these data suggest that TRAIL receptor signaling contributes to a pro-tumorigenic inflammatory signature associated with NSCLC.
Collapse
Affiliation(s)
- Francesca Favaro
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain ,grid.509540.d0000 0004 6880 3010Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Fedra Luciano-Mateo
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Joaquim Moreno-Caceres
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Hernández-Madrigal
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Demi Both
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain ,grid.509540.d0000 0004 6880 3010Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Chiara Montironi
- grid.509540.d0000 0004 6880 3010Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Franziska Püschel
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ernest Nadal
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain ,grid.418701.b0000 0001 2097 8389Thoracic Oncology Unit, Department of Medical Oncology, Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Eric Eldering
- grid.509540.d0000 0004 6880 3010Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands ,Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands ,grid.16872.3a0000 0004 0435 165XCancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Cristina Muñoz-Pinedo
- grid.418284.30000 0004 0427 2257Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
25
|
Giliberto M, Santana LM, Holien T, Misund K, Nakken S, Vodak D, Hovig E, Meza-Zepeda LA, Coward E, Waage A, Taskén K, Skånland SS. Mutational analysis and protein profiling predict drug sensitivity in multiple myeloma cell lines. Front Oncol 2022; 12:1040730. [PMID: 36523963 PMCID: PMC9745900 DOI: 10.3389/fonc.2022.1040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. METHODS To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. RESULTS We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. DISCUSSION Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.
Collapse
Affiliation(s)
- Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo Miranda Santana
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodak
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
27
|
Colyn L, Alvarez-Sola G, Latasa MU, Uriarte I, Herranz JM, Arechederra M, Vlachogiannis G, Rae C, Pineda-Lucena A, Casadei-Gardini A, Pedica F, Aldrighetti L, López-López A, López-Gonzálvez A, Barbas C, Ciordia S, Van Liempd SM, Falcón-Pérez JM, Urman J, Sangro B, Vicent S, Iraburu MJ, Prosper F, Nelson LJ, Banales JM, Martinez-Chantar ML, Marin JJG, Braconi C, Trautwein C, Corrales FJ, Cubero FJ, Berasain C, Fernandez-Barrena MG, Avila MA. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J Exp Clin Cancer Res 2022; 41:183. [PMID: 35619118 PMCID: PMC9134609 DOI: 10.1186/s13046-022-02386-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Alvarez-Sola
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | | | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
| | | | | | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, Vita-Salute San Raffaele University, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Angeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | | | - Juan M Falcón-Pérez
- CIBERehd, Madrid, Spain
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Gastroenterology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silve Vicent
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Solid Tumors Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Oncohematology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Leonard J Nelson
- Institute of Engineering, School of Engineering, Faraday Building, The University of Edimburgh, Edinburgh, Scotland, UK
| | - Jesus M Banales
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | | | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Physiology and Pharmacology Department, HEVEPHARM, IBSAL, University of Salamanca, Salamanca, Spain
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Center, Glasgow, UK
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Fernando J Corrales
- CIBERehd, Madrid, Spain
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - F Javier Cubero
- CIBERehd, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain.
- CIBERehd, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
28
|
Liu Z, Huang M, Hong Y, Wang S, Xu Y, Zhong C, Zhang J, Zhuang Z, Shan S, Ren T. Isovalerylspiramycin I suppresses non-small cell lung carcinoma growth through ROS-mediated inhibition of PI3K/AKT signaling pathway. Int J Biol Sci 2022; 18:3714-3730. [PMID: 35813464 PMCID: PMC9254468 DOI: 10.7150/ijbs.69989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Novel drugs are required for non-small cell lung cancer (NSCLC) treatment urgently. Repurposing old drugs as new treatments is a practicable approach with time and cost savings. Some studies have shown that carrimycin, a Chinese Food and Drug Administration (CFDA)-approved macrolide antibiotic, possesses potent anti-tumor effects against oral squamous cell carcinoma. However, its detailed component and underlying mechanisms in anti-NSCLC remain unknown. In our study, isovalerylspiramycin I (ISP-I) was isolated from carrimycin and demonstrated a remarkable anti-NSCLC efficacy in vitro and in vivo with a favorable safety profile. It has been proven that in NSCLC cell lines H460 and A549, ISP-I could induce G2/M arrest and apoptosis, which was mainly attributed to ROS accumulation and subsequently PI3K/AKT signaling pathway inhibition. Numerous downstream genes including mTOR and FOXOs were also changed correspondingly. An observation of NAC-induced reverse effect on ISP-I-leading cell death and PI3K/AKT pathway inhibition, emphasized the necessity of ROS signaling in this event. Moreover, we identified ROS accumulation and PI3K/AKT pathway inhibition in tumor xenograft models in vivo as well. Taken together, our study firstly reveals that ISP-I is a novel ROS inducer and may act as a promising candidate with multi-target and low biological toxicity for anti-NSCLC treatment.
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Moli Huang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Hong
- Stem Cell Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shaoyang Wang
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jingyuan Zhang
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shan Shan
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
29
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
30
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
31
|
Xu H, Tan X, Kong Y, Huang Y, Wei Z, Ye X. Microwave ablation of non-small cell lung cancer tumors changes plasma levels of cytokines IL-2 and IFN-γ. J Cancer Res Ther 2022; 18:532-544. [PMID: 35645125 DOI: 10.4103/jcrt.jcrt_211_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Combined therapy with immune checkpoint inhibitors (ICIs) and microwave ablation (MWA) is known to improve outcome in non-small cell lung cancer (NSCLC). However, the mechanism underlying the synergistic effect of these two treatments is unknown. Tumor immune microenvironment is known to affect the efficacy of ICI. Therefore, in the present study, we evaluated changes in the levels of peripheral cytokines at 48 h and 1-month post-ablation in patients with NSCLC. MATERIALS AND METHODS A total of 44 patients with primary NSCLC were retrospectively enrolled. All patients underwent MWA of the primary tumors. Plasma samples were collected pre- and post-ablation to examine the levels of various cytokines, including interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12, IL-17, tumor necrosis factor (TNF)-α, and interferon-gamma (IFN-γ). RESULTS Although the levels of the majority of cytokines remained within normal range, levels of IL-2 and IFN-γ were significantly decreased at 48 h post-ablation and increased at 1-month post-ablation. In the subgroup analyses, changes in IL-2 and IFN-γ levels were commonly identified. Moreover, the Eastern Cooperative Oncology Group status, sex, pathology type, tumor site, and tumor size were associated with cytokines' levels pre-ablation or post-ablation. CONCLUSION MWA of NSCLC tumors influenced the plasma levels of cytokines IL-2 and IFN-γ.
Collapse
Affiliation(s)
- Hui Xu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong Province, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Yongmei Kong
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong Province, China
| | - Yahan Huang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong Province, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong Province, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong Province, China
| |
Collapse
|
32
|
Alhayyani S, McLeod L, West AC, Balic JJ, Hodges C, Yu L, Smith JA, Prodanovic Z, Bozinovski S, Kumar B, Ruwanpura SM, Saad MI, Jenkins BJ. Oncogenic dependency on STAT3 serine phosphorylation in KRAS mutant lung cancer. Oncogene 2022; 41:809-823. [PMID: 34857889 DOI: 10.1038/s41388-021-02134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.
Collapse
Affiliation(s)
- Sultan Alhayyani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Julian A Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Department of Cardiothoracic Surgery, Monash Health, Clayton, Victoria, 3168, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia
| | - Beena Kumar
- Department of Anatomical Pathology, Monash Health, Clayton, Victoria, 3168, Australia
| | - Saleela M Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
33
|
Zhou H, Sun C, Li C, Hua S, Li F, Li R, Cai D, Zou Y, Cai Y, Jiang X. The MicroRNA-106a/20b Strongly Enhances the Antitumour Immune Responses of Dendritic Cells Pulsed with Glioma Stem Cells by Targeting STAT3. J Immunol Res 2022; 2022:9721028. [PMID: 36157880 PMCID: PMC9499788 DOI: 10.1155/2022/9721028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Evaluate the effect of the miRNA-106a/20b on the efficacy of DCs pulsed with GSCs in activating GSC-specific T cell responses. METHODS We cultured GSCs and prepared GSC antigen lysates by apoptosis. Then, immature DCs were pulsed with GSC antigen lysates in vitro. STAT3 levels in DCs were assessed by Western blotting, and the expression of CD80, CD86, and MHC-II was tested by fluorescence-activated cell sorting. The production and secretion of the cytokines IL-6, IL-12, TNF-α, and IL-10 in DCs induced by GSCs were determined by enzyme-linked immunosorbent assay. Finally, the cytotoxic functions of T cells stimulated by GSC-DC fusion cells transfected with a miR-106a/20b mimic in vitro and the antitumour activity in vivo were detected. RESULTS We found that the levels of miR-106a/20b were downregulated, but the expression of STAT3 was significantly upregulated. Simultaneously, the inhibition of STAT3 in the fusion cells by STAT3-specific siRNA caused significant upregulation of the expression of CD80, CD86, and MHC-II, and the secretion of the cytokines IL-6 and IL-12 was substantially increased, IL-10 was markedly decreased. These findings revealed that STAT3 is an important regulator of DC maturation. Furthermore, the interactional binding sites between the 3'-untranslated region (3'-UTR) of STAT3 mRNA and miR-106a/20b were predicted by bioinformatics and verified by a dual-luciferase assay. Moreover, the reduction in STAT3 levels in GSC-DCs enhanced the generation of CD8+ T cells and reduced the generation of Foxp3+ regulatory T cells. Meanwhile, the secretion of the T cell cytokine IFN-γ was significantly increased. Further research showed that DCs after miR-106a/20b-mimics transfection could promote the inhibition of GSC proliferation by T cells in vitro and suppress tumour growth in vivo. CONCLUSIONS This study indicted that the miR-106a/20b activation could be one of the important molecular mechanisms leading to enhance antitumour immune responses of GSC-mediated DCs, which downregulated the expression of STAT3 to alleviate its the inhibitory effect.
Collapse
Affiliation(s)
- Hui Zhou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Chengmei Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Dongpeng Cai
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, Oh MH, Lam V, Krystal G, Hoover SB, Raffeld M, Simpson RM, Unni AM, Lam WL, Lam S, Abraham N, Bennewith KL, Lockwood WW. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology 2021; 11:2010905. [PMID: 35481284 PMCID: PMC9038050 DOI: 10.1080/2162402x.2021.2010905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Current immunotherapies for lung cancer are only effective in a subset of patients. Identifying tumor-derived factors that facilitate immunosuppression offers the opportunity to develop novel strategies to supplement and improve current therapeutics. We sought to determine whether expression of driver oncogenes in lung cancer cells affects cytokine secretion, alters the local immune environment, and influences lung tumor progression. We demonstrate that oncogenic EGFR and KRAS mutations, which are early events in lung tumourigenesis, can drive cytokine and chemokine production by cancer cells. One of the most prominent changes was in CCL5, which was rapidly induced by KRASG12V or EGFRL858R expression, through MAPK activation. Immunocompetent mice implanted with syngeneic KRAS-mutant lung cancer cells deficient in CCL5 have decreased regulatory T cells (Tregs), evidence of T cell exhaustion, and reduced lung tumor burden, indicating tumor-cell CCL5 production contributes to an immune suppressive environment in the lungs. Furthermore, high CCL5 expression correlates with poor prognosis, immunosuppressive regulatory T cells, and alteration to CD8 effector function in lung adenocarcinoma patients. Our data support targeting CCL5 or CCL5 receptors on immune suppressive cells to prevent formation of an immune suppressive tumor microenvironment that promotes lung cancer progression and immunotherapy insensitivity.
Collapse
Affiliation(s)
- Etienne S. Melese
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth Franks
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Rachel A. Cederberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
| | - Bryant T. Harbourne
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brennan J. Wadsworth
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
| | - Jenna L. Collier
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
| | - Elizabeth C. Halvorsen
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Bc, Canada
| | - Fraser Johnson
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Bc, Canada
| | - Jennifer Luu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
| | - Min Hee Oh
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
| | - Vivian Lam
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shelley B. Hoover
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Raffeld
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R. Mark Simpson
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Bc, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ninan Abraham
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L. Bennewith
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Bc, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Bc, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Bc, Canada
| |
Collapse
|
36
|
Sunaga N, Miura Y, Kasahara N, Sakurai R. Targeting Oncogenic KRAS in Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13235956. [PMID: 34885068 PMCID: PMC8656763 DOI: 10.3390/cancers13235956] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS) is the most common driver in NSCLC, and targeting oncogenic KRAS is a major challenge in the treatment of non-small-cell lung cancer (NSCLC). While several covalent KRAS G12C inhibitors have emerged as a novel anti-KRAS therapy, the development of combined therapies involving the targeting of oncogenic KRAS plus other targeted drugs is still required given the vast heterogeneity of KRAS-mutated tumors. In this review, we summarize the biological and immunological characteristics of oncogenic KRAS-driven NSCLC and the preclinical and clinical evidence for mutant KRAS-targeted therapies. We also discuss the mechanisms of resistance to KRAS G12C inhibitors and possible therapeutic strategies to overcome this drug resistance. Abstract Recent advances in molecular biology and the resultant identification of driver oncogenes have achieved major progress in precision medicine for non-small-cell lung cancer (NSCLC). v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS) is the most common driver in NSCLC, and targeting KRAS is considerably important. The recent discovery of covalent KRAS G12C inhibitors offers hope for improving the prognosis of NSCLC patients, but the development of combination therapies corresponding to tumor characteristics is still required given the vast heterogeneity of KRAS-mutated NSCLC. In this review, we summarize the current understanding of KRAS mutations regarding the involvement of malignant transformation and describe the preclinical and clinical evidence for targeting KRAS-mutated NSCLC. We also discuss the mechanisms of resistance to KRAS G12C inhibitors and possible combination treatment strategies to overcome this drug resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence: ; Tel.: +81-27-220-8000
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Norimitsu Kasahara
- Innovative Medical Research Center, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
37
|
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021; 6:386. [PMID: 34776511 PMCID: PMC8591115 DOI: 10.1038/s41392-021-00780-4] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even "undruggable", after drug-targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS, especially in KRAS (G12C) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
Collapse
Affiliation(s)
- Lamei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhixing Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Fang Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
38
|
Padda SK, Reckamp KL, Koczywas M, Neal JW, Kawashima J, Kong S, Huang DB, Kowalski M, Wakelee HA. A phase 1b study of erlotinib and momelotinib for the treatment of EGFR-mutated, tyrosine kinase inhibitor-naive metastatic non-small cell lung cancer. Cancer Chemother Pharmacol 2021; 89:105-115. [PMID: 34773474 PMCID: PMC8739290 DOI: 10.1007/s00280-021-04369-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Preclinical evidence suggests the feedforward cytokine loop of interleukin-6/Janus kinases (JAK)/STAT3 plays a role in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) resistance in EGFR-mutated non-small cell lung cancer (NSCLC). METHODS In this phase 1b study, the JAK1/2 and TANK-binding kinase 1 (TBK1) inhibitor momelotinib was evaluated in combination with erlotinib in patients with EGFR TKI-naive, EGFR-mutated NSCLC. After erlotinib lead-in (50, 75, 100, or 150 mg oral daily [QD]), momelotinib was combined and dose escalated in a 3 + 3 study design. The primary endpoint of maximum tolerated dose (MTD) of momelotinib was determined based on the incidence of dose-limiting toxicities (DLTs) during the first 28-day cycle. Secondary endpoints included efficacy and pharmacokinetics (PK). RESULTS Eleven patients were enrolled across 3 dose levels of momelotinib (100 mg QD, 200 mg QD, and 100 mg twice daily [BID]). The MTD was momelotinib 200 mg QD in combination with erlotinib. Two DLTs of grade 4 neutropenia without fever and grade 3 diarrhea occurred at momelotinib 100 mg BID. Most common treatment-emergent adverse events included diarrhea, dry skin, fatigue, and decreased appetite; the vast majority being grades 1-2. The overall response rate was 54.5% (90% CI 27.1-80.0; all partial) and median progression-free survival was 9.2 months (90% CI 6.2-12.4). Momelotinib did not affect the PK of erlotinib. CONCLUSIONS The JAK1/2 and TBK1 inhibitor momelotinib in combination with erlotinib did not appear to enhance benefit over the historical data of erlotinib monotherapy in patients with EGFR-mutated NSCLC. CLINICALTRIALS. GOV IDENTIFIER NCT02206763.
Collapse
Affiliation(s)
- Sukhmani K Padda
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA. .,Cedars-Sinai Medical Center, 8700 Beverly Blvd, SCCT 1S31, Los Angeles, CA, 90048, USA.
| | - Karen L Reckamp
- Cedars-Sinai Medical Center, 8700 Beverly Blvd, SCCT 1S31, Los Angeles, CA, 90048, USA.,City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Joel W Neal
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Jun Kawashima
- Gilead Sciences, Inc., Foster City, CA, USA.,Sierra Oncology, Inc., Vancouver, BC, Canada
| | - Shengchun Kong
- Gilead Sciences, Inc., Foster City, CA, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Daniel B Huang
- The Oncology Institute of Hope and Innovation, Santa Ana, CA, USA
| | - Mark Kowalski
- Gilead Sciences, Inc., Foster City, CA, USA.,Sierra Oncology, Inc., Vancouver, BC, Canada
| | - Heather A Wakelee
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
39
|
Leukotriene B4 receptor-2 contributes to KRAS-driven lung tumor formation by promoting interleukin-6-mediated inflammation. Exp Mol Med 2021; 53:1559-1568. [PMID: 34635780 PMCID: PMC8569214 DOI: 10.1038/s12276-021-00682-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/17/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although lung cancer is the leading cause of cancer-related deaths worldwide and KRAS is the most frequently mutated oncogene in lung cancer cases, the mechanism by which KRAS mutation drives lung cancer has not been fully elucidated. Here, we report that the expression levels of leukotriene B4 receptor-2 (BLT2) and its ligand-producing enzymes (5-LOX, 12-LOX) were highly increased by mutant KRAS and that BLT2 or 5-/12-LOX blockade attenuated KRAS-driven lung cell proliferation and production of interleukin-6 (IL-6), a principal proinflammatory mediator of lung cancer development. Next, we explored the roles of BLT2 and 5-/12-LOX in transgenic mice with lung-specific expression of mutant KRAS (KrasG12D) and observed that BLT2 or 5-/12-LOX inhibition decreased IL-6 production and tumor formation. To further determine whether BLT2 is involved in KRAS-driven lung tumor formation, we established a KrasG12D/BLT2-KO double-mutant mouse model. In the double-mutant mice, we observed significantly suppressed IL-6 production and lung tumor formation. Additionally, we observed high BLT2 expression in tissue samples from patients with KrasG12D-expressing lung adenocarcinoma, supporting the contributory role of BLT2 in KRAS-driven human lung cancer. Collectively, our results suggest that BLT2 is a potential contributor to KRAS-driven lung cancer and identify an attractive therapeutic target for KRAS-driven lung cancer.
Collapse
|
40
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Wang X, Lu J, Li J, Liu Y, Guo G, Huang Q. CYT387, a potent IKBKE inhibitor, suppresses human glioblastoma progression by activating the Hippo pathway. J Transl Med 2021; 19:396. [PMID: 34544426 PMCID: PMC8454155 DOI: 10.1186/s12967-021-03070-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Recent studies have showed that IKBKE is overexpressed in several kinds of cancers and that IKBKE-knockdown inhibits tumor progression. In this article, we first verified that two glioblastoma cell lines, U87-MG and LN-229, were sensitive to CYT387 by measuring the half maximal inhibitory concentration (IC50) with a CCK-8 assay and then demonstrated that CYT387, as a potent IKBKE inhibitor, suppressed glioblastoma cell proliferation, migration and invasion. Additionally, CYT387 induced cell apoptosis and arrested the cell cycle at the G2/M checkpoint in vitro. Furthermore, we showed that CYT387 did not simply inhibit IKBKE activity but also decreased IKBKE expression at the protein level rather than at the mRNA level. We discovered that CYT387 restrained malignant tumor progression by activating the Hippo pathway in vitro. By coimmunoprecipitation (co-IP), we showed that IKBKE interacted with TEAD2 and YAP1, thus accelerating TEAD2 and YAP1 transport into the nucleus. In subsequent in vivo experiments, we found that CYT387 inhibited subcutaneous nude mouse tumor growth but had little impact on intracranial orthotopic xenografts, probably due to a limited ability to penetrate the blood–brain barrier (BBB). These results suggest that CYT387 has potential as a new antiglioblastoma drug, but an approach to allow passage through the blood–brain barrier (BBB) is needed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, Shandong, China
| | - Jing Li
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yang Liu
- Department of Neurosurgery, Renmin Hospital of Henan Province, Zhengzhou, Henan, China
| | - Gaochao Guo
- Department of Neurosurgery, Renmin Hospital of Henan Province, Zhengzhou, Henan, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China.
| |
Collapse
|
42
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
43
|
Xu G, Yang Z, Ding Y, Liu Y, Zhang L, Wang B, Tang M, Jing T, Jiao K, Xu X, Chen Z, Xiang L, Xu C, Fu Y, Zhao X, Jin W, Liu Y. The deubiquitinase USP16 functions as an oncogenic factor in K-RAS-driven lung tumorigenesis. Oncogene 2021; 40:5482-5494. [PMID: 34294846 DOI: 10.1038/s41388-021-01964-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
K-RAS mutation and molecular alterations of its surrogates function essentially in lung tumorigenesis and malignant progression. However, it remains elusive how tumor-promoting and deleterious events downstream of K-RAS signaling are coordinated in lung tumorigenesis. Here, we show that USP16, a deubiquitinase involved in various biological processes, functions as a promoter for the development of K-RAS-driven lung tumor. Usp16 deletion significantly attenuates K-rasG12D-mutation-induced lung tumorigenesis in mice. USP16 upregulation upon RAS activation averts reactive oxygen species (ROS)-induced p38 activation that would otherwise detrimentally influence the survival and proliferation of tumor cells. In addition, USP16 interacts with and deubiquitinates JAK1, and thereby promoting lung tumor growth by augmenting JAK1 signaling. Therefore, our results reveal that USP16 functions critically in the K-RAS-driven lung tumorigenesis through modulating the strength of p38 and JAK1 signaling.
Collapse
Affiliation(s)
- Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Zehong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Sonkar A, Kumar P, Gautam A, Maity B, Saha S. New Scope of Targeted Therapies in Lung Carcinoma. Mini Rev Med Chem 2021; 22:629-639. [PMID: 34353252 DOI: 10.2174/1389557521666210805104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and the molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aimto clarify the differences in the extent of various genetic mutations in several areas for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.
Collapse
Affiliation(s)
- Archana Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Anurag Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh. India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| |
Collapse
|
45
|
Tooley AS, Kazyken D, Bodur C, Gonzalez IE, Fingar DC. The innate immune kinase TBK1 directly increases mTORC2 activity and downstream signaling to Akt. J Biol Chem 2021; 297:100942. [PMID: 34245780 PMCID: PMC8342794 DOI: 10.1016/j.jbc.2021.100942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.
Collapse
Affiliation(s)
- Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ian E Gonzalez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
46
|
Chen S, Bie M, Wang X, Fan M, Chen B, Shi Q, Jiang Y. PGRN exacerbates the progression of non-small cell lung cancer via PI3K/AKT/Bcl-2 antiapoptotic signaling. Genes Dis 2021; 9:1650-1661. [PMID: 36157487 PMCID: PMC9485207 DOI: 10.1016/j.gendis.2021.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Progranulin (PGRN) is a growth factor that is involved in the progression of multiple tumors. However, the effects and molecular mechanisms by which PGRN induces lung cancer remain unclear. The expression level of PGRN was analyzed by conducting immunohistochemistry of the histological sections of lung tissues from non-small-cell lung carcinoma (NSCLC) patients. The proliferation, apoptosis, migration, and invasion of NSCLC cells were assessed by the MTT assay, Western blot, degree of wound healing, and Transwell assays. A nude mouse xenograft model was used to validate the role of PGRN in vivo. The expression level of PGRN was higher in male patients with lung adenocarcinoma than in those with lung squamous cell carcinoma; by contrast, no difference was observed in female patients. The overexpression of PGRN promoted the proliferation and anti-apoptosis of H520 (derived from lung squamous cell carcinoma) cells, whereas knockdown of PGRN inhibited the proliferation and anti-apoptosis of A549 (derived from lung adenocarcinoma) cells. Copanlisib (targeting PI3K) inhibited the increase in the expression of cell anti-apoptosis marker Bcl-2 induced by rhPGRN protein; the PI3K agonist 740 Y–P partially reversed the decrease in Bcl-2 expression induced by PGRN deficiency in both A549 and H520 cells. PGRN increased the expression of Ki-67, PCNA, and Bcl-2 in vivo. PGRN inhibited cell apoptosis depending on the PI3K/Akt/Bcl-2 signaling axis; PGRN positivity correlated with lung adenocarcinoma. PGRN is a potential biomarker for the treatment and diagnosis of NSCLC, especially in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengjun Bie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingjiu Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author. Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China. Fax: +86 023 63310999.
| |
Collapse
|
47
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
48
|
Xiang S, Song S, Tang H, Smaill JB, Wang A, Xie H, Lu X. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discov Today 2021; 26:2445-2455. [PMID: 34051368 DOI: 10.1016/j.drudis.2021.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Dysregulation of TANK-binding kinase 1 (TBK1) homeostasis leads to the occurrence and progression of many diseases, such as inflammation, autoimmune diseases, metabolic diseases, and cancer. Therefore, there is a need to develop TBK1 inhibitors as therapeutic agents. In this review, we highlight the diverse biological functions of TBK1 and summarize the promising small-molecule inhibitors of TBK1 that have the potential to be developed as therapeutic candidates.
Collapse
Affiliation(s)
- Shuang Xiang
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shukai Song
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aiqun Wang
- Department of Anesthesiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510220, China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xiaoyun Lu
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
49
|
Tani T, Kitajima S, Conway EB, Knelson EH, Barbie DA. KRAS G12C inhibition and innate immune targeting. Expert Opin Ther Targets 2021; 25:167-174. [PMID: 33703985 DOI: 10.1080/14728222.2021.1902991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION KRAS mutations drive tumorigenesis by altering cell signaling and the tumor immune microenvironment. Recent studies have shown promise for KRAS-G12C covalent inhibitors, which are advancing rapidly through clinical trials. The sequencing and combination of these agents with other therapies including immune checkpoint blockade (ICB) will benefit from strategies that also address the immune microenvironment to improve durability of response. AREAS COVERED This paper reviews KRAS signaling and discusses downstream effects on cytokine production and the tumor immune microenvironment. RAS targeted therapy is introduced and perspectives on therapeutic targeting of KRAS-G12C and its immunosuppressive tumor microenvironment are offered. EXPERT OPINION The availability of KRAS-G12C covalent inhibitors raises hopes for targeting this pervasive oncogene and designing better therapeutic combinations to promote anti-tumor immunity. A comprehensive mechanistic understanding of KRAS immunosuppression is required in order to prioritize agents for clinical trials.
Collapse
Affiliation(s)
- Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ella B Conway
- Department of Health Sciences, Chapman University, Orange, USA
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
50
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|