1
|
Mingyue-Chen, Wu M, Yanhui-Xie, Shen L. Clinical and splenectomy-based treatment outcomes in 40 cases of hepatosplenic T-cell lymphoma: a comprehensive analysis. World J Surg Oncol 2024; 22:330. [PMID: 39696449 DOI: 10.1186/s12957-024-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND/AIM This research study was conducted to examine the clinical characteristics and post-splenectomy survival outcomes of patients diagnosed with hepatosplenic T-cell lymphoma (HSTCL). MATERIALS AND METHODS A total of 10 cases of HSTCL patients admitted to the Hematology Department of Fudan University Affiliated Huadong Hospital between January 2012 and December 2021 were included. In addition, we also included 30 other cases reported from domestic and international sources. All pathological specimens were stained with hematoxylin and eosin (H&E) and immunohistochemistry, with color development using DAB staining. Survival analysis was conducted using Kaplan-Meier curves and log-rank tests. RESULTS In the 10 HSTCL patients, Epstein-Barr virus (EBV) infection was confirmed. Six patients had died, with 5 of them within 1 year of disease onset. Survival analysis showed poorer prognosis in patients with hemophagocytic syndrome and thrombocytopenia. Patients who underwent splenectomy followed by chemotherapy had a higher median and average survival time compared to those who only received chemotherapy. The study included a total of 40 HSTCL patients, with 29 males and 11 females, and an average age of onset at 42.3 years. All patients presented with fever, with some exhibiting emaciation and/or hemophagocytic syndrome. Splenomegaly, hepatomegaly, lymphadenopathy, and bone marrow involvement were found in the patients. Common laboratory findings included leukopenia, anemia, and thrombocytopenia. All patients exhibited elevated ferritin levels and decreased blood calcium levels. CONCLUSION Those patients suffering from hemophagocytic syndrome at the onset of this disease face greater treatment-related difficulties and a higher risk of mortality. Combined chemotherapy after splenectomy may improve HSTCL patient survival.
Collapse
Affiliation(s)
- Mingyue-Chen
- Department of Hematology, Huadong Hospital, Fudan University, No.221, Yan 'an West Road, Jing' an District, Shanghai, 200040, China
| | - Min Wu
- Department of Hematology, Huadong Hospital, Fudan University, No.221, Yan 'an West Road, Jing' an District, Shanghai, 200040, China
| | - Yanhui-Xie
- Department of Hematology, Huadong Hospital, Fudan University, No.221, Yan 'an West Road, Jing' an District, Shanghai, 200040, China.
| | - Lin Shen
- Department of Hematology, Huadong Hospital, Fudan University, No.221, Yan 'an West Road, Jing' an District, Shanghai, 200040, China.
| |
Collapse
|
2
|
Oon ML, Lim JQ, Bosch-Schips J, Climent F, Au-Yeung RKH, Hutchison B, Sohani AR, Eren OC, Kumar J, Dogan A, Ong CK, Quintanilla-Martinez L, Ng SB. Characterizing Nodal Gamma-Delta T-Cell Lymphoma: Clinicopathological and Molecular Insights. Mod Pathol 2024; 38:100685. [PMID: 39675430 DOI: 10.1016/j.modpat.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Peripheral T-cell lymphomas with gamma-delta phenotype (GDTCL) are rare lymphoid malignancies. Beyond the well-recognized entities of extranodal lymphomas with gamma-delta phenotype as defined by the fifth edition of the World Health Organization Classification of Hematolymphoid Tumors and 2022 International Consensus Classification, there is a group of poorly defined gamma-delta T-cell lymphomas with predominantly nodal presentation, termed as nodal GDTCL (nGDTCL). In this study, we present a series of 12 cases of Epstein-Barr virus-negative nGDTCL, highlighting the clinical, histopathological, and molecular features of this rare entity. Seven cases reported in the literature were included in the analysis. Of the 12 cases, nGDTCL shows an increased incidence in elderly men, with a median age of 65.5 years. All cases presented primarily with enlarged lymph nodes, and 4 cases (4/12, 33.3%) showed involvement of extranodal sites, including skin, liver, spleen, and bone marrow. Histologically, 9 cases showed a diffuse and monomorphic proliferation of mostly medium-to-large lymphoid cells, whereas 3 cases demonstrated lymphoepithelioid morphology. All cases (12/12, 100%) were positive for CD3 and TCRγδ. CD4, CD8, and CD56 were positive in 66.7% (8/12), 25% (3/12), and 8.3% (1/11) of cases, respectively. Most cases (8/12, 66.7%) showed a noncytotoxic phenotype. Using immunohistochemistry, the majority of cases (6/8, 75.0%) belonged to the peripheral T-cell lymphoma-GATA3 subtype with GATA3 and/or CCR4 expression and a noncytotoxic CD4-positive phenotype. Two cases (2/8, 25%) belonged to the peripheral T-cell lymphoma-TBX21 subtype, of which 1 displayed a cytotoxic CD8-positive phenotype. Next-generation sequencing was performed in 9 cases, and TP53 mutation was detected in 66.7% (6/9) of the cases. Mutations of ATM and KSR2 were identified in 2 cases each. It remains uncertain whether nGDTCL represents a distinct entity, and further studies are needed for better characterization. Nonetheless, nodal-based GDTCL should be distinguished from secondary nodal involvement by other extranodal GDTCL and Epstein-Barr virus-positive T/NK-cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Ming Liang Oon
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Bosch-Schips
- Department of Pathology, Hospital Universitari de Bellvitge-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rex K H Au-Yeung
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Bailey Hutchison
- Department of Pathology, Froedtert Hospital, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aliyah R Sohani
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ozgur Can Eren
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jyoti Kumar
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Diagnostic Molecular Pathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Choon-Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Siok-Bian Ng
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Chen J, Zhao Y. Pre-treatment [ 18F]FDG PET/CT for assessing bone marrow involvement and prognosis in patients with newly diagnosed peripheral T-cell lymphoma. Hematology 2024; 29:2325317. [PMID: 38465661 DOI: 10.1080/16078454.2024.2325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
PURPOSE To explore the value of [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in assessing bone marrow involvement (BMI) and prognosis in newly diagnosed peripheral T-cell lymphomas (PTCLs) before treatment. METHODS This retrospective study included 201 eligible PTCLs who received pre-bone marrow biopsy (BMB) and PET/CT. The status of bone marrow (BM) by PET was assessed using a visual examination and a quantitative index (the maximal standardized uptake value [SUVmax] of BM divided by the SUVmax of the liver [M/L]). RESULTS Totally 148 patients had no evidence of BMI by PET or BMB; BMI was detected by both methods in 16 patients. The sensitivity and specificity of PET/CT for patients with confirmed BMI by BMB were 43.2% and 90.2%, respectively (κ = 0.353). In addition, 25 patients assessed by PET/CT staging (having stage I to II disease) had no evidence of BMI detected by both PET/CT and BMB. Image-guided biopsy was also recommended when PET/CT showed a focal FDG uptake outside the iliac crest. Survival analysis revealed that BMB was significant for overall survival (OS) (P = 0.020) while M/L for both progression free survival (P = 0.002) and OS (P < 0.001). In multivariate analysis, M/L (HR 1.825, 95% CI 1.071-3.110, P = 0.027) was an independent prognostic factor for OS. There were no statistical differences at the genetic level about BMI confirmed by PET or BMB. CONCLUSION PET/CT has a complementary role in assessing BMI and an ability to predict prognosis in PTCL patients.
Collapse
Affiliation(s)
- Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Min GJ, Oh YE, Jeon Y, Kim TY, Kim BS, Kwag D, Park SS, Park S, Yoon JH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Kim HJ, Min CK, Lee JW, Cho SG. Hematopoietic stem cell transplantation to improve prognosis in aggressive monomorphic epitheliotropic intestinal T-cell lymphoma. Front Oncol 2024; 14:1388623. [PMID: 39640274 PMCID: PMC11617522 DOI: 10.3389/fonc.2024.1388623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare, aggressive subtype of primary gastrointestinal T-cell lymphoma. Owing to the absence of symptoms characteristic of MEITL, diagnosis can be challenging, and the low response rate to conventional chemotherapy leads to an abysmal prognosis. This study aimed to define the clinicopathologic characteristics of MEITL in Korea, evaluate the clinical outcomes of intensive chemotherapy with and without hematopoietic stem cell transplantation (HSCT), and explore prognostic factors. Methods This single-center retrospective study examined the clinical data of 35 patients diagnosed with MEITL at Seoul St. Mary's Hospital from May 2012 to May 2023. Results We included 22 men and 13 women (median age: 59 years; range: 37-79 years). Many patients exhibited acute abdominal pain (n=23, 65.7%) related to bowel perforation (n=21, 60.0%). Most patients (30/35, 85.7%) underwent surgical intervention to diagnose MEITL, whereas only five were diagnosed via endoscopic evaluation. Of the 32 patients receiving first-line therapy, 4 died before assessment, 10 achieved a complete response (CR), 6 had a relapse, and 18 exhibited progressive disease (PD). Seven of 10 patients received upfront HSCT, either autologous (auto-HSCT, n=4) or allogeneic (allo-HSCT, n=3). All four patients on auto-HSCT died after relapse. All three patients who received allo-HSCT maintained a CR by the final follow-up. Three of 6 patients who relapsed and 13 of 18 exhibiting PD received salvage therapy; one patient on salvage auto-HSCT with cytokine-induced killer cell infusion has survived progression free. Salvage allo-HSCT was performed on 6 of 16 patients; among them, 2 achieved a CR, 2 died after relapse, and 2 died owing to septic shock while maintaining a CR. The remaining patients, who received salvage therapy without HSCT, mostly died owing to PD. The median overall survival was 12.1 months, and the median follow-up was 33.2 months. The 1- and 5-year overall survival was 50.9% and 13.3%, respectively. Discussion MEITL is an aggressive disease resistant to conventional therapy. Therefore, intensive chemotherapy followed by upfront allo-HSCT should be considered upon diagnosis. These findings underscore the need for novel therapeutic strategies and further investigation into optimizing treatment protocols for MEITL.
Collapse
Affiliation(s)
- Gi-June Min
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ye Eun Oh
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tong Yoon Kim
- Department of Hematology, Yeouido St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Su Kim
- Department of Hematology, Eunpyeong St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gorodetskiy V, Sudarikov A. Aleukemic variant of T-cell large granular lymphocyte leukemia in patients with rheumatoid arthritis - diagnostically challenging subtype. Expert Rev Clin Immunol 2024; 20:1323-1330. [PMID: 39049194 DOI: 10.1080/1744666x.2024.2384057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The typical clinical manifestations of T-cell large granular lymphocyte (T-LGL) leukemia are an increase in the number of large granular lymphocytes (LGLs) in the blood > 2000 cells/μL, neutropenia, and splenomegaly. In rare cases of so-called 'aleukemic' T-LGL leukemia, the number of LGLs is <400-500 cells/μL. In patients with rheumatoid arthritis (RA), distinguishing T-LGL leukemia with low tumor burden in the blood and bone marrow from Felty syndrome (FS) poses diagnostic challenges. AREAS COVERED This review aimed to describe the basic characteristics and variants of aleukemic T-LGL leukemia, with a special focus on aleukemic T-LGL leukemia with massive splenomegaly (splenic variant of T-LGL leukemia) and differential diagnosis of such cases with hepatosplenic T-cell lymphoma. The significance of mutations in the signal transducer and activator of transcription 3 (STAT3) gene for distinguishing aleukemic RA-associated T-LGL leukemia from FS is discussed, along with the evolution of the T-LGL leukemia diagnostic criteria. PubMed database was used to search for the most relevant literature. EXPERT OPINION Evaluation of STAT3 mutations in the blood and bone marrow using next-generation sequencing, as well as a comprehensive spleen study, may be necessary to establish a diagnosis of aleukemic RA-associated T-LGL leukemia.
Collapse
|
6
|
Marchi E, Craig JW, Kalac M. Current and upcoming treatment approaches to uncommon subtypes of PTCL (EATL, MEITL, SPTCL, and HSTCL). Blood 2024; 144:1898-1909. [PMID: 38657272 DOI: 10.1182/blood.2023021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Rare subtypes of peripheral T-cell lymphoma (PTCL) including enteropathy-associated T-cell lymphoma (EATL), monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), subcutaneous panniculitis-like T-cell lymphoma (SPTCL), and hepatosplenic T-cell lymphoma (HSTCL) are underrepresented in most registries and clinical studies. Most of the literature is obtained from small case series, single-institution retrospective studies, and subgroup analyses of the largest studies with few recent and ongoing exceptions. Although the pathogenesis and biology of these entities have yet to be fully elucidated, global efforts by the scientific community have started to shed some light on the most frequently deregulated pathways. In this review, we highlight the most pertinent clinical and pathologic features of rare subtypes of PTCL including EATL/MEITL, SPTCL, and HSTCL. We also summarize the results of recent developments identifying potential targets for novel therapeutic strategies based on molecular studies. Finally, we highlight the underrepresentation of these rare subtypes in most clinical trials, making evidence-based therapeutic decisions extremely challenging.
Collapse
Affiliation(s)
- Enrica Marchi
- Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Cancer Center, Charlottesville, VA
| | - Matko Kalac
- Department of Hematology and Oncology, University of California, Irvine, CA
| |
Collapse
|
7
|
de Leval L, Gaulard P, Dogan A. A practical approach to the modern diagnosis and classification of T- and NK-cell lymphomas. Blood 2024; 144:1855-1872. [PMID: 38728419 DOI: 10.1182/blood.2023021786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT T- and natural killer (NK)-cell lymphomas are neoplasms derived from immature T cells (lymphoblastic lymphomas), or more commonly, from mature T and NK cells (peripheral T-cell lymphomas, PTCLs). PTCLs are rare but show marked biological and clinical diversity. They are usually aggressive and may present in lymph nodes, blood, bone marrow, or other organs. More than 30 T/NK-cell-derived neoplastic entities are recognized in the International Consensus Classification and the classification of the World Health Organization (fifth edition), both published in 2022, which integrate the most recent knowledge in hematology, immunology, pathology, and genetics. In both proposals, disease definition aims to integrate clinical features, etiology, implied cell of origin, morphology, phenotype, and genetic features into biologically and clinically relevant clinicopathologic entities. Cell derivation from innate immune cells or specific functional subsets of CD4+ T cells such as follicular helper T cells is a major determinant delineating entities. Accurate diagnosis of T/NK-cell lymphoma is essential for clinical management and mostly relies on tissue biopsies. Because the histological presentation may be heterogeneous and overlaps with that of many benign lymphoid proliferations and B-cell lymphomas, the diagnosis is often challenging. Disease location, morphology, and immunophenotyping remain the main features guiding the diagnosis, often complemented by genetic analysis including clonality and high-throughput sequencing mutational studies. This review provides a comprehensive overview of the classification and diagnosis of T-cell lymphoma in the context of current concepts and scientific knowledge.
Collapse
MESH Headings
- Humans
- Lymphoma, Extranodal NK-T-Cell/diagnosis
- Lymphoma, Extranodal NK-T-Cell/classification
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Killer Cells, Natural/pathology
- Killer Cells, Natural/immunology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/genetics
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Miranda RN, Amador C, Chan JKC, Guitart J, Rech KL, Medeiros LJ, Naresh KN. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Mature T-Cell, NK-Cell, and Stroma-Derived Neoplasms of Lymphoid Tissues. Mod Pathol 2024; 37:100512. [PMID: 38734236 DOI: 10.1016/j.modpat.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This review focuses on mature T cells, natural killer (NK) cells, and stroma-derived neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors, including changes from the revised fourth edition. Overall, information has expanded, primarily due to advancements in genomic understanding. The updated classification adopts a hierarchical format. The updated classification relies on a multidisciplinary approach, incorporating insights from a diverse group of pathologists, clinicians, and geneticists. Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract, Epstein-Barr virus-positive nodal T- and NK-cell lymphoma, and several stroma-derived neoplasms of lymphoid tissues have been newly introduced or included. The review also provides guidance on how the fifth edition of the World Health Organization classification of hematolymphoid tumors can be applied in routine clinical practice.
Collapse
Affiliation(s)
- Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catalina Amador
- Department of Pathology, University of Miami, Miami, Florida
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg Medical School, Chicago, Illinois
| | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Bangolo A, Fwelo P, Dey S, Sethi T, Sagireddy S, Chatta J, Goel A, Nagpaul S, Chen EPS, Saravanan C, Gangan S, Thomas J, Potiguara S, Nagesh VK, Elias D, Mansour C, Ratnaparkhi PH, Jain P, Mathew M, Porter T, Sultan S, Abbisetty S, Tran L, Chawla M, Lo A, Weissman S, Cho C. Characteristics and distinct prognostic determinants of individuals with hepatosplenic T-cell lymphoma over the past two decades. World J Clin Oncol 2024; 15:745-754. [PMID: 38946833 PMCID: PMC11212601 DOI: 10.5306/wjco.v15.i6.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Hepatosplenic T-cell lymphoma (HSTCL) is a rare and aggressive peripheral T-cell lymphoma with historically dismal outcomes, representing less than one percent of non-Hodgkin lymphomas. Given its rarity, the true incidence of HSTCL is unknown and most data have been extrapolated through case reports. To the best of our knowledge, the largest and most up to date study addressing the epidemiology and outcomes of patients with HSTCL in the United States covered a period from 1996 to 2014, with a sample size of 122 patients. AIM To paint the most updated epidemiological picture of HSTCL. METHODS A total of 186 patients diagnosed with HSTCL, between 2000 and 2017, were ultimately enrolled in our study by retrieving data from the Surveillance, Epidemiology, and End Results database. We analyzed demographics, clinical characteristics, and overall mortality (OM) as well as cancer-specific mortality (CSM) of HSTCL. Variables with a P value < 0.01 in the univariate Cox regression were incorporated into the multivariate Cox model to determine the independent prognostic factors, with a hazard ratio of greater than 1 representing adverse prognostic factors. RESULTS Male gender was the most represented. HSTCL was most common in middle-aged patients (40-59) and less common in the elderly (80+). Non-Hispanic whites (60.75%) and non-Hispanic blacks (20.97%) were the most represented racial groups. Univariate Cox proportional hazard regression analysis of factors influencing all-cause mortality showed a higher OM among non-Hispanic black patients. CSM was also higher among non-Hispanic blacks and patients with distant metastasis. Multivariate Cox proportional hazard regression analysis of factors affecting CSM revealed higher mortality in patients aged 80 or older and non-Hispanic blacks. CONCLUSION Overall, the outlook for this rare malignancy is very grim. In this retrospective cohort study of the United States population, non-Hispanic blacks and the elderly had a higher CSM. This data highlights the need for larger prospective studies to investigate factors associated with worse prognosis in one ethnic group, such as treatment delays, which have been shown to increase mortality in this racial/ethnic group for other cancers.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Pierre Fwelo
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sowmya Sagireddy
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jawaria Chatta
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ashish Goel
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sneha Nagpaul
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Eric Pin-Shiuan Chen
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chiranjeeve Saravanan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sheeja Gangan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Joel Thomas
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sarah Potiguara
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Daniel Elias
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Charlene Mansour
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Prajakta H Ratnaparkhi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Priyanshu Jain
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Midhun Mathew
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Taylor Porter
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shadiya Sultan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shailaja Abbisetty
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Linh Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Megha Chawla
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Christina Cho
- Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack, NJ 07601, United States
| |
Collapse
|
10
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Desmares A, Bouzy S, Thonier F, Goustille J, Llamas-Gutierrez F, Genevieve F, Cottin L, Baseggio L, Lemaire P, Lafon CL, Cornillet-Lefebvre P, Galoisy AC, Brouzes C, Rault E, Dindinaud E, Fleury C, Blanc-Jouvan F, Wuilleme S, Bardet V, Fest T, Lamy T, Roussel M, Pannetier M, Pastoret C. Hepatosplenic T-cell lymphoma displays an original oyster-shell cytological pattern and a genomic profile distinct from that of γδ T-cell large granular lymphocytic leukemia. Haematologica 2024; 109:1941-1946. [PMID: 38268478 PMCID: PMC11141637 DOI: 10.3324/haematol.2023.283856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Anne Desmares
- Centre Hospitalier Universitaire de Rennes, Laboratoire d'Hématologie, Rennes, France; Groupe Francophone d'Hématologie Cellulaire, Bron
| | - Simon Bouzy
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Nantes, Laboratoire d'Hématologie, Nantes
| | | | - Julien Goustille
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier de Saint-Malo, Laboratoire de Biologie, Saint-Malo
| | | | - Franck Genevieve
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire d'Angers, Laboratoire d'Hématologie, Angers
| | - Laurane Cottin
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire d'Angers, Laboratoire d'Hématologie, Angers
| | - Lucile Baseggio
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Hospices Civils de Lyon - HCL, Laboratoire d'Hématologie, Bron
| | - Pierre Lemaire
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Hôpital Saint-Louis AP-HP, Laboratoire d'hématologie, Paris
| | - Carinne Lecoq Lafon
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Reims, Laboratoire d'hématologie, Reims France
| | | | - Anne-Cécile Galoisy
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Strasbourg, Laboratoire d'Hématologie, Strasbourg
| | - Chantal Brouzes
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Hôpital Necker AP-HP, Laboratoire d'hématologie, Paris
| | - Emmanuelle Rault
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Tours, Laboratoire d'Hématologie, Tours
| | - Elodie Dindinaud
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Poitiers, Laboratoire d'hématologie, Poitiers
| | - Carole Fleury
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Hôpital Avicenne AP-HP, Laboratoire d'hématologie, Bobigny
| | - Florence Blanc-Jouvan
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Annecy Genevois, Laboratoire de biologie, Epagny Metz-Tessy
| | - Soraya Wuilleme
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire de Nantes, Laboratoire d'Hématologie, Nantes
| | - Valérie Bardet
- Groupe Francophone d'Hématologie Cellulaire, Bron, France; Centre Hospitalier Universitaire Ambroise Paré AP-HP, Service d'Hématologie-Immunologie-Transfusion, Paris
| | - Thierry Fest
- Centre Hospitalier Universitaire de Rennes, Laboratoire d'Hématologie, Rennes, France; Université de Rennes 1, INSERM UMR 1236, Rennes
| | - Thierry Lamy
- Université de Rennes 1, INSERM UMR 1236, Rennes, France; Centre Hospitalier Universitaire de Rennes, Hématologie clinique, Rennes
| | - Mikael Roussel
- Centre Hospitalier Universitaire de Rennes, Laboratoire d'Hématologie, Rennes, France; Université de Rennes 1, INSERM UMR 1236, Rennes
| | - Mélanie Pannetier
- Centre Hospitalier Universitaire de Rennes, Laboratoire d'Hématologie, Rennes, France; Groupe Francophone d'Hématologie Cellulaire, Bron
| | - Cédric Pastoret
- Centre Hospitalier Universitaire de Rennes, Laboratoire d'Hématologie, Rennes, France; Université de Rennes 1, INSERM UMR 1236, Rennes.
| |
Collapse
|
13
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
14
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Huang YH, Qiu YR, Zhang QL, Cai MC, Yu H, Zhang JM, Jiang L, Ji MM, Xu PP, Wang L, Cheng S, Zhao WL. Genomic and transcriptomic profiling of peripheral T cell lymphoma reveals distinct molecular and microenvironment subtypes. Cell Rep Med 2024; 5:101416. [PMID: 38350451 PMCID: PMC10897627 DOI: 10.1016/j.xcrm.2024.101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Peripheral T cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin's lymphomas varying in clinical, phenotypic, and genetic features. The molecular pathogenesis and the role of the tumor microenvironment in PTCL are poorly understood, with limited biomarkers available for genetic subtyping and targeted therapies. Through an integrated genomic and transcriptomic study of 221 PTCL patients, we delineate the genetic landscape of PTCL, enabling molecular and microenvironment classification. According to the mutational status of RHOA, TET2, histone-modifying, and immune-related genes, PTCL is divided into 4 molecular subtypes with discrete patterns of gene expression, biological aberrations, and vulnerabilities to targeted agents. We also perform an unsupervised clustering on the microenvironment transcriptional signatures and categorize PTCL into 4 lymphoma microenvironment subtypes based on characteristic activation of oncogenic pathways and composition of immune communities. Our findings highlight the potential clinical rationale of future precision medicine strategies that target both molecular and microenvironment alterations in PTCL.
Collapse
Affiliation(s)
- Yao-Hui Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ran Qiu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun-Ling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ming-Ci Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Department of Research and Development, Shanghai Yuanqi Biomedical Technology Co., Ltd., No. 699, North Huifeng Road, Fengxian District, Shanghai, China
| | - Jian-Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Meng Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
16
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
17
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Lewis NE, Zhou T, Dogan A. Biology and genetics of extranodal mature T-cell and NKcell lymphomas and lymphoproliferative disorders. Haematologica 2023; 108:3261-3277. [PMID: 38037802 PMCID: PMC10690927 DOI: 10.3324/haematol.2023.282718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023] Open
Abstract
The extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders represent a unique group of rare neoplasms with both overlapping and distinct clinicopathological, biological, and genomic features. Their predilection for specific sites, such as the gastrointestinal tract, aerodigestive tract, liver, spleen, and skin/soft tissues, underlies their classification. Recent genomic advances have furthered our understanding of the biology and pathogenesis of these diseases, which is critical for accurate diagnosis, prognostic assessment, and therapeutic decision-making. Here we review clinical, pathological, genomic, and biological features of the following extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders: primary intestinal T-cell and NK-cell neoplasms, hepatosplenic T-cell lymphoma, extranodal NK/T-cell lymphoma, nasal type, and subcutaneous panniculitis-like T-cell lymphoma.
Collapse
Affiliation(s)
- Natasha E. Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ting Zhou
- Molecular Diagnostic Laboratory, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Stuver R, Epstein-Peterson ZD, Horwitz SM. Few and far between: clinical management of rare extranodal subtypes of mature T-cell and NK-cell lymphomas. Haematologica 2023; 108:3244-3260. [PMID: 38037801 PMCID: PMC10690914 DOI: 10.3324/haematol.2023.282717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
While all peripheral T-cell lymphomas are uncommon, certain subtypes are truly rare, with less than a few hundred cases per year in the USA. There are often no dedicated clinical trials in these rare subtypes, and data are generally limited to case reports and retrospective case series. Therefore, clinical management is often based on this limited literature and extrapolation of data from the more common, nodal T-cell lymphomas in conjunction with personal experience. Nevertheless, thanks to tremendous pre-clinical efforts to understand these rare diseases, an increasing appreciation of the biological changes that underlie these entities is forming. In this review, we attempt to summarize the relevant literature regarding the initial management of certain rare subtypes, specifically subcutaneous panniculitis-like T-cell lymphoma, hepatosplenic T-cell lymphoma, intestinal T-cell lymphomas, and extranodal NK/T-cell lymphoma. While unequivocally established approaches in these diseases do not exist, we make cautious efforts to provide our approaches to clinical management when possible.
Collapse
Affiliation(s)
- Robert Stuver
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center.
| | - Zachary D Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
20
|
Madan V, Shyamsunder P, Dakle P, Woon TW, Han L, Cao Z, Nordin HBM, Jizhong S, Shuizhou Y, Hossain MZ, Koeffler HP. Dissecting the role of SWI/SNF component ARID1B in steady-state hematopoiesis. Blood Adv 2023; 7:6553-6566. [PMID: 37611161 PMCID: PMC10632677 DOI: 10.1182/bloodadvances.2023009946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The adenosine triphosphate (ATP)-dependent chromatin remodeling complex, SWItch/Sucrose Non-Fermentable (SWI/SNF), has been implicated in normal hematopoiesis. The AT-rich interaction domain 1B (ARID1B) and its paralog, ARID1A, are mutually exclusive, DNA-interacting subunits of the BRG1/BRM-associated factor (BAF) subclass of SWI/SNF complex. Although the role of several SWI/SNF components in hematopoietic differentiation and stem cell maintenance has been reported, the function of ARID1B in hematopoietic development has not been defined. To this end, we generated a mouse model of Arid1b deficiency specifically in the hematopoietic compartment. Unlike the extensive phenotype observed in mice deficient in its paralog, ARID1A, Arid1b knockout (KO) mice exhibited a modest effect on steady-state hematopoiesis. Nonetheless, transplantation experiments showed that the reconstitution of myeloid cells in irradiated recipient mice was dependent on ARID1B. Furthermore, to assess the effect of the complete loss of ARID1 proteins in the BAF complex, we generated mice lacking both ARID1A and ARID1B in the hematopoietic compartment. The double-KO mice succumbed to acute bone marrow failure resulting from complete loss of BAF-mediated chromatin remodeling activity. Our Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed that >80% of loci regulated by ARID1B were distinct from those regulated by ARID1A; and ARID1B controlled expression of genes crucial in myelopoiesis. Overall, loss of ARID1B affected chromatin dynamics in murine hematopoietic stem and progenitor cells, albeit to a lesser extent than cells lacking ARID1A.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Shi Jizhong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yu Shuizhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore
| |
Collapse
|
21
|
Falini B, Lazzi S, Pileri S. A comparison of the International Consensus and 5th WHO classifications of T-cell lymphomas and histiocytic/dendritic cell tumours. Br J Haematol 2023; 203:369-383. [PMID: 37387351 DOI: 10.1111/bjh.18940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Since the publication in 2017 of the revised 4th Edition of the World Health Organization (WHO) classification of haematolymphoid tumours, here referred to as WHO-HAEM4, significant clinicopathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining the diagnostic criteria of several diseases, upgrading entities previously defined as provisional and identifying new entities. This process has resulted in two recent classification proposals of lymphoid neoplasms: the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, focusing on T-cell lymphomas and histiocytic/dendritic cell tumours. Moreover, we update the genetic data of the various pathological entities. The main goal is to provide a tool to facilitate the work of the pathologists, haematologists and researchers involved in the diagnosis and treatment of these haematological malignancies.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Haematology and CREO, University and Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Institute of Pathology, University of Siena, Siena, Italy
| | - Stefano Pileri
- European Institute of Oncology IRCCS, Milan, Italy
- Diatech Pharmacogenetics, Jesi, Italy
| |
Collapse
|
22
|
Gaillard JB, Chapiro E, Daudignon A, Nadal N, Penther D, Chauzeix J, Nguyen-Khac F, Veronese L, Lefebvre C. Cytogenetics in the management of mature T-cell and NK-cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103428. [PMID: 38016421 DOI: 10.1016/j.retram.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.
Collapse
Affiliation(s)
- Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France.
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
23
|
Mason FM, Kounlavong ES, Tebeje AT, Dahiya R, Guess T, Khan A, Vlach L, Norris SR, Lovejoy CA, Dere R, Strahl BD, Ohi R, Ly P, Walker CL, Rathmell WK. SETD2 safeguards the genome against isochromosome formation. Proc Natl Acad Sci U S A 2023; 120:e2303752120. [PMID: 37722039 PMCID: PMC10523680 DOI: 10.1073/pnas.2303752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.
Collapse
Affiliation(s)
- Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Emily S. Kounlavong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Anteneh T. Tebeje
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tiffany Guess
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Abid Khan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Stephen R. Norris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
24
|
Bhansali RS, Barta SK. SOHO State of the Art Updates and Next Questions | Challenging Cases in Rare T-Cell Lymphomas. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:642-650. [PMID: 37302955 PMCID: PMC10524462 DOI: 10.1016/j.clml.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023]
Abstract
Mature T- and NK-cell neoplasms (MTNKN) collectively represent a rare disorder, representing less than 15% of all non-Hodgkin lymphoma (NHL) cases and qualifying for orphan disease designation by the U.S. Food and Drug Administration (FDA). These consist of 9 families in the fifth revised WHO classification of lymphoid neoplasms, which are made up of over 30 disease subtypes, underscoring the heterogeneity of clinical features, molecular biology, and genetics across this disease group. Moreover, the 5 most common subtypes (peripheral T-cell lymphoma, not otherwise specified; nodal TFH cell lymphoma, angioimmunoblastic type; extranodal NK-cell/T-cell lymphoma; adult T-cell leukemia/lymphoma; and ALK-positive or -negative anaplastic large cell lymphoma) comprise over 75% of MTNKN cases, so other subtypes are exceedingly rare in the context of all NHL diagnoses and consequently often lack consensus on best practices in diagnosis and management. In this review, we discuss the following entities-enteropathy-associated T-cell lymphoma (EATL), monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), hepatosplenic T-cell lymphoma (HSTCL), subcutaneous panniculitis-like T-cell lymphoma (SPTCL), and primary cutaneous ɣδ T-cell lymphoma (PCGD-TCL) - with an emphasis on clinical and diagnostic features and options for management.
Collapse
Affiliation(s)
- Rahul S Bhansali
- Department of Medicine, Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Stefan K Barta
- Department of Medicine, Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
25
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
26
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
27
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
28
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
29
|
An update on genetic aberrations in T-cell neoplasms. Pathology 2023; 55:287-301. [PMID: 36801152 DOI: 10.1016/j.pathol.2022.12.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023]
Abstract
T-cell neoplasms are a highly heterogeneous group of leukaemias and lymphomas that represent 10-15% of all lymphoid neoplasms. Traditionally, our understanding of T-cell leukaemias and lymphomas has lagged behind that of B-cell neoplasms, in part due to their rarity. However, recent advances in our understanding of T-cell differentiation, based on gene expression and mutation profiling and other high throughput methods, have better elucidated the pathogenetic mechanisms of T-cell leukaemias and lymphomas. In this review, we provide an overview of many of the molecular abnormalities that occur in various types of T-cell leukaemia and lymphoma. Much of this knowledge has been used to refine diagnostic criteria that has been included in the fifth edition of the World Health Organization. This knowledge is also being used to improve prognostication and identify novel therapeutic targets, and we expect this progress will continue, eventually resulting in improved outcomes for patients with T-cell leukaemias and lymphomas.
Collapse
|
30
|
Obiorah IE, Karrs J, Brown L, Wang HW, Karai LJ, Hoc-Tran T, Anh T, Xi L, Pittaluga S, Raffeld M, Jaffe ES. Overlapping Features of Primary Cutaneous Marginal Zone Lymphoproliferative Disorder and Primary Cutaneous CD4 + Small/Medium T-Cell Lymphoproliferative Disorder : A Diagnostic Challenge Examined by Genomic Analysis. Am J Surg Pathol 2023; 47:344-353. [PMID: 36598455 PMCID: PMC9974535 DOI: 10.1097/pas.0000000000001984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primary cutaneous marginal zone lymphoproliferative disorder (PCMZL) and primary cutaneous CD4 + small/medium T-cell lymphoproliferative disorder (CD4 + TLPD) are indolent lymphoproliferative disorders. However, cases with overlapping features can be challenging. We identified 56 CD4 + TLPD and 38 PCMZL cases from our pathology archives. Clinical, morphologic, and immunophenotypic features were reviewed. Polymerase chain reaction for immunoglobulin (IG) and T-cell receptor gamma (TRG) gene rearrangements were analyzed. Next-generation sequencing studies were performed on 26 cases with adequate material, 19 with CD4 + TLPD, and 7 with PCMZL. CD4 + TLPD presented mostly (91%) as solitary lesions, located in the head and neck area (64%), while PCMZL occurred mostly in the upper extremity (47%) and trunk (34%). Lesions were sometimes multiple (40%) and recurrences (67%) were more common. Cases of PCMZL had an increase in reactive CD3 + T cells, with frequent programmed cell death protein 1 expression, whereas cases of CD4 + TLPD often contained abundant reactive B cells. Twenty-five cases were identified as having overlapping features: 6 cases of PCMZL were clonal for both IG and TRG; 11 cases of CD4 + TLPD were clonal for IG and TRG and 6 cases of CD4 + TLPD had light chain-restricted plasma cells. By next-generation sequencing, 23 variants were detected in 15 genes, with PCMZL more likely to show alterations, most commonly affecting TNFAIP3 and FAS, altered in 5 cases. Both entities have an indolent clinical course with response to conservative therapy and management, and warrant interpretation as a lymphoproliferative disorder rather than overt lymphoma.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeremiah Karrs
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laura Brown
- Department of Laboratory Medicine, University of California San Francisco Medical Center, San Francisco, CA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Trinh Hoc-Tran
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thu Anh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
31
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
32
|
Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023; 14:1068662. [PMID: 36776886 PMCID: PMC9909478 DOI: 10.3389/fimmu.2023.1068662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare subtypes of non-Hodgkin's lymphoma that are typically associated with poor treatment outcomes. Contemporary first-line treatment strategies generally involve the use of combination chemoimmunotherapy, radiation and/or stem cell transplant. Salvage options incorporate a number of novel agents including epigenetic therapies (e.g. HDAC inhibitors, DNMT inhibitors) as well as immune checkpoint inhibitors. However, validated biomarkers to select patients for individualized precision therapy are presently lacking, resulting in high treatment failure rates, unnecessary exposure to drug toxicities, and missed treatment opportunities. Recent advances in research on the tumor and microenvironmental factors of PTCL and NKTCL, including alterations in specific molecular features and immune signatures, have improved our understanding of these diseases, though several issues continue to impede progress in clinical translation. In this Review, we summarize the progress and development of the current predictive biomarker landscape, highlight potential knowledge gaps, and discuss the implications on novel therapeutics development in PTCL and NKTCL.
Collapse
Affiliation(s)
- Daniel Ren Yi Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Umrau K, Naganuma K, Gao Q, Dogan A, Kizaki M, Roshal M, Liu Y, Yabe M. Activating STAT5B mutations can cause both primary hypereosinophilia and lymphocyte-variant hypereosinophilia. Leuk Lymphoma 2023; 64:238-241. [PMID: 36308018 PMCID: PMC11026062 DOI: 10.1080/10428194.2022.2131413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kavita Umrau
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Naganuma
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Qi Gao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
de Leval L, Feldman AL, Pileri S, Nakamura S, Gaulard P. Extranodal T- and NK-cell lymphomas. Virchows Arch 2023; 482:245-264. [PMID: 36336765 PMCID: PMC9852223 DOI: 10.1007/s00428-022-03434-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
Non-cutaneous extranodal NK/T cell lymphoproliferations constitute a heterogenous group of rare neoplasms, occurring primarily in the gastro-intestinal tract, nasal area, spleen, and liver. Their nomenclature refers to their usual clinical presentation and predilection for specific anatomic sites-i.e. extranodal NK/T-cell lymphoma, nasal-type, hepatosplenic T-cell lymphoma, primary intestinal T-cell lymphomas, indolent lymphoproliferative disorders of the gastrointestinal tract, and breast implant-associated anaplastic large cell lymphoma. Extranodal tissues may also be involved by T-cell leukemias, or other entities usually presenting as nodal diseases. Primary extranodal entities range from indolent to highly aggressive diseases. Here, we will review the clinicopathologic features of the pertinent entities including the recent advances in their molecular and genetic characterization, with an emphasis on the changes introduced in the 2022 International Consensus Classification of lymphoid neoplasms, and highlight the diagnostic criteria helpful to sort out the distinction with potential mimickers.
Collapse
Affiliation(s)
- Laurence de Leval
- grid.8515.90000 0001 0423 4662Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, 25 rue du Bugnon, CH- 1011 Lausanne, Switzerland
| | - Andrew L. Feldman
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Stefano Pileri
- grid.15667.330000 0004 1757 0843Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milano, Italy
| | - Shigeo Nakamura
- grid.437848.40000 0004 0569 8970Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Philippe Gaulard
- grid.412116.10000 0004 1799 3934Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France ,grid.462410.50000 0004 0386 3258Inserm U955, Faculty of Medicine, IMRB, University of Paris-Est Créteil, Créteil, France
| |
Collapse
|
35
|
Murga-Zamalloa C, Inamdar K. Classification and challenges in the histopathological diagnosis of peripheral T-cell lymphomas, emphasis on the WHO-HAEM5 updates. Front Oncol 2022; 12:1099265. [PMID: 36605429 PMCID: PMC9810276 DOI: 10.3389/fonc.2022.1099265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Mature T-cell lymphomas represent neoplastic expansions of T-cell lymphocytes with a post-thymic derivation. Most of these tumors feature aggressive clinical behavior and challenging histopathological diagnosis and classification. Novel findings in the genomic landscape of T-cell lymphomas are helping to improve the understanding of the biology and the molecular mechanisms that underly its clinical behavior. The most recent WHO-HAEM5 classification of hematolymphoid tumors introduced novel molecular and histopathological findings that will aid in the diagnostic classification of this group of neoplasms. The current review article summarizes the most relevant diagnostic features of peripheral T-cell lymphomas with an emphasis on the updates that are incorporated at the WHO-HAEM5.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Carlos Murga-Zamalloa,
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
36
|
Primary pulmonary T-cell lymphoproliferative disorders with a limited-stage, low proliferative index, and unusual clinical behavior: two cases of a rare occurrence. Virchows Arch 2022; 482:899-904. [PMID: 36480066 DOI: 10.1007/s00428-022-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Extranodal T-lymphoproliferative disorders or T-cell lymphomas (TLPD) are classified according to the WHO Classification (4th and upcoming 5th editions) (Swerdlow et al., IARC Press 1; Alaggio et al., Leukemia 36(7):1720-1748, 2) and to the International Consensus Classification Update (Campo et al., Blood 140(11):1229-1253, 3) upon several morphologic, phenotypic, and genetic features. None of those at present included has been characterized by primary pulmonary onset. We herein present two such cases which, to the best of our knowledge, have not been previously reported and that might represent another variant of T-cell proliferation at mucosal sites. The two cases share similar histological and phenotypic features, suggesting an origin from CD4 + effector memory T cells with the expression of a CD279/PD-1 antigen. They are both monoclonal, harbor few mutations, and show no disease progression outside the lung. They only differ concerning the local extension of the process and clinical setting. The two cases are examples of so far unreported primary pulmonary TLDP, with limited stage and low proliferative index. A possible relationship with a local yet unknown inflammatory trigger that might have favored the development of the T-cell clone cannot be ruled out.
Collapse
|
37
|
Wang L, Rocas D, Dalle S, Sako N, Pelletier L, Martin N, Dupuy A, Tazi N, Balme B, Vergier B, Beylot-Barry M, Carlotti A, Bagot M, Battistella M, Chaby G, Ingen-Housz-Oro S, Gaulard P, Ortonne N. Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype: an integrative clinical, pathological and molecular case series study. Br J Dermatol 2022; 187:970-980. [PMID: 35895386 PMCID: PMC10087773 DOI: 10.1111/bjd.21791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype (pcTFH-PTCL) are poorly characterized, and often compared to, but not corresponding with, mycosis fungoides (MF), Sézary syndrome, primary cutaneous CD4+ lymphoproliferative disorder, and skin manifestations of angioimmunoblastic T-cell lymphomas (AITL). OBJECTIVES We describe the clinicopathological features of pcTFH-PTCL in this original series of 23 patients, and also characterize these cases molecularly. METHODS Clinical and histopathological data of the selected patients were reviewed. Patient biopsy samples were also analysed by targeted next-generation sequencing. RESULTS All patients (15 men, eight women; median age 66 years) presented with skin lesions, without systemic disease. Most were stage T3b, with nodular (n = 16), papular (n = 6) or plaque (atypical for MF, n = 1) lesions. Three (13%) developed systemic disease and died of lymphoma. Nine (39%) patients received more than one line of chemotherapy. Histologically, the lymphomas were CD4+ T-cell proliferations, usually dense and located in the deep dermis (n = 14, 61%), with the expression of at least two TFH markers (CD10, CXCL13, PD1, ICOS, BCL6), including three markers in 16 cases (70%). They were associated with a variable proportion of B cells. Eight patients were diagnosed with an associated B-cell lymphoproliferative disorder (LPD) on biopsy, including Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (n = 3), EBV+ LPD (n = 1) and monotypic plasma cell LPD (n = 4). Targeted sequencing showed four patients to have a mutated TET2-RHOAG17V association (as frequently seen in AITL) and another a TET2/DNMT3A/PLCG1/SETD2 mutational profile. The latter patient, one with a TET2-RHOA association, and one with no detected mutations, developed systemic disease and died. Five other patients showed isolated mutations in TET2 (n = 1), PLCG1 (n = 2), SETD2 (n = 1) or STAT5B (n = 1). CONCLUSIONS Patients with pcTFH-PTCL have pathological and genetic features that overlap with those of systemic lymphoma of TFH derivation. Clinically, most remained confined to the skin, with only three patients showing systemic spread and death. Whether pcTFH-PTCL should be integrated as a new subgroup of TFH lymphomas in future classifications is still a matter of debate. What is already known about this topic? There is a group of cutaneous lymphomas that express T-follicular helper (TFH) markers that do not appear to correspond to existing World Health Organization diagnostic entities. These include mycosis fungoides, Sézary syndrome, or primary cutaneous CD4+ small/medium-sized T-cell lymphoproliferative disorder or cutaneous extensions of systemic peripheral T-cell lymphomas (PTCL) with TFH phenotype. What does this study add? This is the first large original series of patients with a diagnosis of primary cutaneous PTCL with a TFH phenotype (pcTFH-PTCL) to be molecularly characterized. pcTFH-PTCL may be a standalone group of cutaneous lymphomas with clinicopathological and molecular characteristics that overlap with those of systemic TFH lymphomas, such as angioimmunoblastic T-cell lymphoma, and does not belong to known diagnostic groups of cutaneous lymphoma. This has an impact on the treatment and follow-up of patients; the clinical behaviour needs to be better clarified in further studies to tailor patient management.
Collapse
Affiliation(s)
- Luojun Wang
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Delphine Rocas
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Stéphane Dalle
- Department of Dermatology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Nouhoum Sako
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Laura Pelletier
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadine Martin
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Aurélie Dupuy
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadia Tazi
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Brigitte Balme
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Béatrice Vergier
- Department of Pathology, CHU de Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France.,Department of Dermatology, CHU de Bordeaux, Saint-André Hospital, 33000, Bordeaux, France
| | - Agnès Carlotti
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Cochin Hospital, 75014, Paris, France
| | - Martine Bagot
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Maxime Battistella
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Guillaume Chaby
- Department of Dermatology, CHU d'Amiens-Picardie, Hôpital Sud, 80054, Amiens, France
| | - Saskia Ingen-Housz-Oro
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nicolas Ortonne
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| |
Collapse
|
38
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Bakr FS, Whittaker SJ. Advances in the understanding and treatment of Cutaneous T-cell Lymphoma. Front Oncol 2022; 12:1043254. [PMID: 36505788 PMCID: PMC9729763 DOI: 10.3389/fonc.2022.1043254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of non-Hodgkin's lymphomas (NHL) characterised by the clonal proliferation of malignant, skin homing T-cells. Recent advances have been made in understanding the molecular pathogenesis of CTCL. Multiple deep sequencing studies have revealed a complex genomic landscape with large numbers of novel single nucleotide variants (SNVs) and copy number variations (CNVs). Commonly perturbed genes include those involved in T-cell receptor signalling, T-cell proliferation, differentiation and survival, epigenetic regulators as well as genes involved in genome maintenance and DNA repair. In addition, studies in CTCL have identified a dominant UV mutational signature in contrast to systemic T-cell lymphomas and this likely contributes to the high tumour mutational burden. As current treatment options for advanced stages of CTCL are associated with short-lived responses, targeting these deregulated pathways could provide novel therapeutic approaches for patients. In this review article we summarise the key pathways disrupted in CTCL and discuss the potential therapeutic implications of these findings.
Collapse
|
40
|
Knisbacher BA, Lin Z, Hahn CK, Nadeu F, Duran-Ferrer M, Stevenson KE, Tausch E, Delgado J, Barbera-Mourelle A, Taylor-Weiner A, Bousquets-Muñoz P, Diaz-Navarro A, Dunford A, Anand S, Kretzmer H, Gutierrez-Abril J, López-Tamargo S, Fernandes SM, Sun C, Sivina M, Rassenti LZ, Schneider C, Li S, Parida L, Meissner A, Aguet F, Burger JA, Wiestner A, Kipps TJ, Brown JR, Hallek M, Stewart C, Neuberg DS, Martín-Subero JI, Puente XS, Stilgenbauer S, Wu CJ, Campo E, Getz G. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat Genet 2022; 54:1664-1674. [PMID: 35927489 PMCID: PMC10084830 DOI: 10.1038/s41588-022-01140-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2022] [Indexed: 01/02/2023]
Abstract
Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the 'CLL map,' we integrated genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be independent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expression features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis and prognostication.
Collapse
Affiliation(s)
| | - Ziao Lin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard University, Cambridge, MA, USA
| | - Cynthia K Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Alex Barbera-Mourelle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Pablo Bousquets-Muñoz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Ander Diaz-Navarro
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jesus Gutierrez-Abril
- Computational Oncology Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara López-Tamargo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mariela Sivina
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Jan A Burger
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Hallek
- Center for Molecular Medicine, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
41
|
Garcha HK, Nawar N, Sorger H, Erdogan F, Aung MMK, Sedighi A, Manaswiyoungkul P, Seo HS, Schönefeldt S, Pölöske D, Dhe-Paganon S, Neubauer HA, Mustjoki SM, Herling M, de Araujo ED, Moriggl R, Gunning PT. High Efficacy and Drug Synergy of HDAC6-Selective Inhibitor NN-429 in Natural Killer (NK)/T-Cell Lymphoma. Pharmaceuticals (Basel) 2022; 15:1321. [PMID: 36355493 PMCID: PMC9692247 DOI: 10.3390/ph15111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies.
Collapse
Affiliation(s)
- Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Helena Sorger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Myint Myat Khine Aung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Daniel Pölöske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Satu M. Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, 04109 Leipzig, Germany
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
42
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Nicolae A, Bouilly J, Lara D, Fataccioli V, Lemonnier F, Drieux F, Parrens M, Robe C, Poullot E, Bisig B, Bossard C, Letourneau A, Missiaglia E, Bonnet C, Szablewski V, Traverse-Glehen A, Delfau-Larue MH, de Leval L, Gaulard P. Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol 2022; 35:1126-1136. [PMID: 35301414 DOI: 10.1038/s41379-022-01022-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Nodal peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) with cytotoxic phenotype is overall rare, with most reports coming from Asia. Given its elusive pathobiology, we undertook a clinicopathological and molecular study of 54 Western patients diagnosed with PTCL, NOS expressing cytotoxic molecules, within a lymph node. More commonly males (M/F-2,6/1) with median age of 60 years were affected. Besides lymphadenopathy, 87% of patients had ≥1 involved extranodal site. High-stage disease (III-IV), International Prognostic Index >2, B symptoms, LDH level, and cytopenia(s) were observed in 92, 63, 67, 78, and 66% of cases, respectively. Ten patients had a history of B-cell malignancies, one each of myeloid neoplasm, breast or prostate cancer, and 4 others had underlying immune disorders. Most patients (70%) died, mostly of disease, with a median overall survival of 12.7 months. Immunophenotypically, the neoplastic lymphocytes were T-cell receptor (TCR) αβ + (47%), TCR-silent (44%) or TCRγδ+ (10%), commonly CD8 + (45%) or CD4-CD8- (32%). All except one had an activated cytotoxic profile, and 95% were subclassified into PTCL-TBX21 subtype based on CXCR3, TBX21, and GATA3 expression pattern. Seven patients (13%) disclosed EBER + tumor cells. Targeted DNA deep-sequencing (33 cases) and multiplex ligation-dependent reverse transcription-polymerase chain reaction assay (43 cases) identified frequent mutations in epigenetic modifiers (73%), including TET2 (61%) and DNMT3A (39%), recurrent alterations affecting the TCR (36%) and JAK/STAT (24%) signaling pathways and TP53 mutations (18%). Fusion transcripts involving VAV1 were identified in 6/43 patients (14%). Patients with nodal cytotoxic PTCL, NOS have an aggressive behavior and frequently present in a background of impaired immunity, although the association with Epstein-Barr virus is rare. The recurrent alterations in genes involved in DNA methylation together with genes related to cytokine or TCR signaling, suggest that co-operation of epigenetic modulation with cell-signaling pathways plays a critical role in the pathogeny of these lymphomas.
Collapse
Affiliation(s)
- Alina Nicolae
- Department of Pathology, Hautepierre, University Hospital Strasbourg, Strasbourg, France.,INSERM, IRFAC / UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, University of Strasbourg, Strasbourg, France.,INSERM U955, Université Paris-Est, Créteil, France
| | - Justine Bouilly
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Diane Lara
- INSERM U955, Université Paris-Est, Créteil, France.,Service d'Hématologie, Centre Hospitalier Robert Boulin, Libourne, France
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France.,Unité Hémopathies lymphoïdes, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France.,Service d'Anatomie et Cytologie Pathologiques, Centre Henri Becquerel, Rouen, France
| | - Marie Parrens
- Département de Pathologie, Hôpital Haut -Lévêque, Université de Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Cyrielle Robe
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologiques, CHU de Nantes, Nantes, France
| | - Audrey Letourneau
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | - Marie-Hélène Delfau-Larue
- INSERM U955, Université Paris-Est, Créteil, France.,Département d'Hématologie et Immunologie Biologique, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France. .,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
44
|
Giannuzzi D, Marconato L, Fanelli A, Licenziato L, De Maria R, Rinaldi A, Rotta L, Rouquet N, Birolo G, Fariselli P, Mensah AA, Bertoni F, Aresu L. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim (NY) 2022; 51:191-202. [PMID: 35726023 DOI: 10.1038/s41684-022-00998-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
45
|
Veloza L, Cavalieri D, Missiaglia E, Ledoux-Pilon A, Bisig B, Pereira B, Bonnet C, Poullot E, Quintanilla-Martinez L, Dubois R, Llamas-Gutierrez F, Bossard C, De Wind R, Drieux F, Fontaine J, Parrens M, Sandrini J, Fataccioli V, Delfau-Larue MH, Daniel A, Lhomme F, Clément-Filliatre L, Lemonnier F, Cairoli A, Morel P, Glaisner S, Joly B, El Yamani A, Laribi K, Bachy E, Siebert R, Vallois D, Gaulard P, Tournilhac O, de Leval L. Monomorphic epitheliotropic intestinal T-cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica 2022; 108:181-195. [PMID: 35708139 PMCID: PMC9827163 DOI: 10.3324/haematol.2022.281226] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare aggressive T-cell lymphoma most reported in Asia. We performed a comprehensive clinical, pathological and genomic study of 71 European MEITL patients (36 males, 35 females, median age 67 years). The majority presented with gastrointestinal involvement and had emergency surgery, and 40% had stage IV disease. The tumors were morphologically classified into two groups: typical (58%) and atypical (i.e., non-monomorphic or with necrosis, angiotropism or starry-sky pattern) (42%), sharing a homogeneous immunophenotypic profile (CD3+ [98%] CD4- [94%] CD5- [97%] CD7+ [97%] CD8+ [90%] CD56+ [86%] CD103+ [80%] cytotoxic marker+ [98%]) with more frequent expression of TCRgd (50%) than TCRab (32%). MYC expression (30% of cases) partly reflecting MYC gene locus alterations, correlated with non-monomorphic cytology. Almost all cases (97%) harbored deleterious mutation(s) and/or deletion of the SETD2 gene and 90% had defective H3K36 trimethylation. Other frequently mutated genes were STAT5B (57%), JAK3 (50%), TP53 (35%), JAK1 (12.5%), BCOR and ATM (11%). Both TP53 mutations and MYC expression correlated with atypical morphology. The median overall survival (OS) of 63 patients (43/63 only received chemotherapy after initial surgery) was 7.8 months. Multivariate analysis found a strong negative impact on outcome of MYC expression, TP53 mutation, STAT5B mutation and poor performance status while aberrant B-cell marker expression (20% of cases) correlated with better survival. In conclusion, MEITL is an aggressive disease with resistance to conventional therapy, predominantly characterized by driver gene alterations deregulating histone methylation and JAK/STAT signaling and encompasses genetic and morphologic variants associated with very high clinical risk.
Collapse
Affiliation(s)
- Luis Veloza
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland,LV and DC contributed equally as co-first authors
| | - Doriane Cavalieri
- Department of Hematology, University Hospital of Clermont-Ferrand, EA7453 CIC1405, Université Clermont Auvergne, Clermont-Ferrand, France,LV and DC contributed equally as co-first authors
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Albane Ledoux-Pilon
- Department of Pathology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Bruno Pereira
- Clinical Research Direction, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Christophe Bonnet
- Department of Hematology, University Hospital Sart Tilman, Liège, Belgium
| | - Elsa Poullot
- AP-HP, Henri Mondor Hospital, Pathology Department, Créteil, France
| | | | - Romain Dubois
- Department of Pathology, University Hospital of Lille, Lille, France
| | | | | | - Roland De Wind
- Department of Pathology, Institute Jules Bordet, Bruxelles, Belgique
| | - Fanny Drieux
- Service of Anatomical and Cytological Pathology, Center Henri Becquerel, Rouen, France
| | - Juliette Fontaine
- Multisite Pathology Institute, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Marie Parrens
- Department of Pathology, CHU de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Jeremy Sandrini
- Department of Pathology, Le Mans Hospital Center, Le Mans, France
| | - Virginie Fataccioli
- AP-HP, Henri Mondor Hospital, Pathology Department, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Marie-Hélène Delfau-Larue
- University Paris Est Créteil, INSERM, IMRB, Créteil, France,Department of Immunobiology and INSERM U955, Henri Mondor University Hospital, Créteil, France
| | - Adrien Daniel
- Department of Hematology, University Hospital of Lille, Lille, France
| | - Faustine Lhomme
- Department of Hematology, University Hospital of Rennes, Hospital Pontchaillou, Rennes, France
| | | | - François Lemonnier
- University Paris Est Créteil, INSERM, IMRB, Créteil, France,AP-HP, Henri Mondor Hospital, Lymphoid Malignancies Unit, Créteil, France
| | - Anne Cairoli
- Service of Hematology, Department of Oncology, Lausanne University, Hospital and Lausanne University, Lausanne, Switzerland
| | - Pierre Morel
- Department of Hematology, Hospital of Lens, Lens and Department of Hematology, University Hospital of Amiens, Amiens, France
| | - Sylvie Glaisner
- Department of Hematology, Institute Curie, Hospital Rene Huguenin, Saint-Cloud, France
| | - Bertrand Joly
- Department of Hematology, Sud-Francilien Hospital Center, Corbeil-Essonnes, France
| | | | - Kamel Laribi
- Department of Hematology, Hospital Center Le Mans, Le Mans, France
| | - Emmanuel Bachy
- Department of Hematology, Center Hospitalier Lyon Sud and INSERM U1111, Pierre Bénite, France
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - David Vallois
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- AP-HP, Henri Mondor Hospital, Pathology Department, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France,PG, OT and LdL contributed equally as co-senior authors
| | - Olivier Tournilhac
- Department of Hematology, University Hospital of Clermont-Ferrand, EA7453 CIC1405, Université Clermont Auvergne, Clermont-Ferrand, France,PG, OT and LdL contributed equally as co-senior authors
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland,PG, OT and LdL contributed equally as co-senior authors
| |
Collapse
|
46
|
Defining TCRγδ lymphoproliferative disorders by combined immunophenotypic and molecular evaluation. Nat Commun 2022; 13:3298. [PMID: 35676278 PMCID: PMC9177852 DOI: 10.1038/s41467-022-31015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative disease, scantily described in literature. A deep-analysis, in an initial cohort of 9 Tγδ LGLL compared to 23 healthy controls, shows that Tγδ LGLL dominant clonotypes are mainly public and exhibit different V-(D)-J γ/δ usage between patients with symptomatic and indolent Tγδ neoplasm. Moreover, some clonotypes share the same rearranged sequence. Data obtained in an enlarged cohort (n = 36) indicate the importance of a combined evaluation of immunophenotype and STAT mutational profile for the correct management of patients with Tγδ cell expansions. In fact, we observe an association between Vδ2/Vγ9 clonality and indolent course, while Vδ2/Vγ9 negativity correlates with symptomatic disease. Moreover, the 7 patients with STAT3 mutations have neutropenia and a CD56-/Vδ2- phenotype, and the 3 cases with STAT5B mutations display an asymptomatic clinical course and CD56/Vδ2 expression. All these data indicate that biological characterization is needed for Tγδ-cell neoplasm definition. Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative neoplasm characterized by the expansion of T large granular lymphocytes expressing γδ TCR. Here, based on deep sequencing analysis of the clonotype repertoire, the authors show that leukemic Tγδ cells are characterized by recurrent public clonotypes that are diversified between symptomatic and asymptomatic patients.
Collapse
|
47
|
Dreyling M, André M, Gökbuget N, Tilly H, Jerkeman M, Gribben J, Ferreri A, Morel P, Stilgenbauer S, Fox C, Maria Ribera J, Zweegman S, Aurer I, Bödör C, Burkhardt B, Buske C, Dollores Caballero M, Campo E, Chapuy B, Davies A, de Leval L, Doorduijn J, Federico M, Gaulard P, Gay F, Ghia P, Grønbæk K, Goldschmidt H, Kersten MJ, Kiesewetter B, Landman-Parker J, Le Gouill S, Lenz G, Leppä S, Lopez-Guillermo A, Macintyre E, Mantega MVM, Moreau P, Moreno C, Nadel B, Okosun J, Owen R, Pospisilova S, Pott C, Robak T, Spina M, Stamatopoulos K, Stary J, Tarte K, Tedeschi A, Thieblemont C, Trappe RU, Trümper LH, Salles G. The EHA Research Roadmap: Malignant Lymphoid Diseases. Hemasphere 2022; 6:e726. [PMID: 35620592 PMCID: PMC9126526 DOI: 10.1097/hs9.0000000000000726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Marc André
- Université Catholique de Louvain, CHU UcL Namur, Yvoir, Belgium
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Hervé Tilly
- INSERM U1245, Department of Hematology, Centre Henri Becquerel and Université de Rouen, France
| | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Andrés Ferreri
- Lymphoma Unit, Department of Onco-hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Pierre Morel
- Service Hematologie Clinique Therapie Cellulaire, CHU Amiens Picardie, Amiens, France
| | - Stephan Stilgenbauer
- Comprehensive Cancer Center Ulm (CCCU), Sektion CLL Klinik für Innere Medizin III, Universität Ulm, Germany
| | - Christopher Fox
- School of Medicine, University of Nottingham, United Kingdom
| | - José Maria Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Igor Aurer
- University Hospital Centre Zagreb and Medical School, University of Zagreb, Croatia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Birgit Burkhardt
- Experimentelle und Translationale päd. Hämatologie u Onkologie, Leitung der Bereiche Lymphome und Stammzelltransplantation, Universitätsklinikum Münster (UKM), Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Munich, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, CCC Ulm, University Hospital Ulm, Germany
| | - Maria Dollores Caballero
- Clinical and Transplant Unit, University Hospital of Salamanca, Spain
- Department of Medicine at the University of Salamanca, Spain
- El Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bjoern Chapuy
- Department of Hematology, Oncology and Tumor Immunology, Charité, University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Andrew Davies
- Southampton NCRI/UK Experimental Cancer Medicines Centre, Faculty of Medicine, University of Southampton, United Kingdom
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jeanette Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Philippe Gaulard
- Département de Pathologie, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Francesca Gay
- Clinical Trial Unit, Division of Hematology 1, AOU Città Della Salute e Della Scienza, University of Torino, Italy
| | - Paolo Ghia
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Hartmut Goldschmidt
- University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marie-Jose Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, the Netherlands
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Judith Landman-Parker
- Pediatric Hematology Oncology, Sorbonne Université APHP/hôpital A Trousseau, Paris, France
| | - Steven Le Gouill
- Service d’Hématologie, Clinique du Centre Hospitalier Universitaire (CHU) de Nantes, France
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| | - Sirpa Leppä
- University of Helsinki and Helsinki University Hospital Comprehensive Cancer Centre, Helsinki, Finland
| | | | - Elizabeth Macintyre
- Onco-hematology, Université de Paris and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, France
| | | | - Philippe Moreau
- Hematology Department, University Hospital Hotel-Dieu, Nantes, France
| | - Carol Moreno
- Hospital de la Santa Creu I Sant Pau, Autonomous University of Barcelona, Spain
| | - Bertrand Nadel
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Roger Owen
- St James’s Institute of Oncology, Leeds, United Kingdom
| | - Sarka Pospisilova
- Department of Internal Medicine—Hematology and Oncology and Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Christiane Pott
- Klinisch-experimentelle Hämatologie, Medizinische Klinik II, Hämatologie und Internistische Onkologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | - Michelle Spina
- Division of Medical Oncology and Immune-related Tumors, National Cancer Institute, Aviano, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Jan Stary
- Department of Pediatric Hematology and Oncology 2nd Faculty of Medicine, Charles University Prague University Hospital, Prague, Czech Republic
| | - Karin Tarte
- Immunology and Cell Therapy Lab at Rennes University Hospital, Rennes, France
| | | | - Catherine Thieblemont
- Department of Hemato-Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ralf Ulrich Trappe
- Department of Internal Medicine II: Haematology and Oncology, DIAKO Hospital Bremen, Germany
| | - Lorenz H. Trümper
- Hematology and Medical Oncology, University Medicine Goettingen, Germany
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
48
|
Muhsen IN, El Fakih R, Hamadani M, Lazarus HM, Kharfan-Dabaja MA, Aljurf M. Clinical, Diagnostic and Prognostic Characteristics of Primary Cutaneous Gamma Delta T-cell Lymphomas. Clin Hematol Int 2022; 4:1-10. [PMID: 35950208 PMCID: PMC9358781 DOI: 10.1007/s44228-022-00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/26/2021] [Indexed: 12/04/2022] Open
Abstract
Primary cutaneous γδ T-cell lymphoma (PCGDTL) is a rare subtype of non-Hodgkin lymphoma (NHL) that arises from T-cells with γδ T-cell receptors. The exact incidence of PCGDTL is unknown, as it is usually lumped with other cutaneous lymphomas, which are also uncommon. It is one of the peripheral T-cell lymphoma (PTCL) subtypes which is known to have a dismal prognosis due to poor response and the paucity of available therapies. Despite the rarity and uncertainties of PCGDTL, a number of studies over the past decade were published about the pathologic, diagnostic, cytogenetic and clinical features of this disease. These diagnostic advances will open the doors to explore new therapeutics for this rare entity, specifically targeted and immune therapies. In this review, we highlight these advances, summarize the contemporary treatment approaches, and shed the light on future potential therapeutic targets.
Collapse
Affiliation(s)
| | - Riad El Fakih
- Oncology Center, King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh, 11211 Saudi Arabia
| | - Mehdi Hamadani
- BMT and Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Hillard M. Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH USA
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapies Program, Mayo Clinic, Jacksonville, FL USA
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
49
|
Yim J, Koh J, Kim S, Song SG, Bae JM, Yun H, Sung JY, Kim TM, Park SH, Jeon YK. Clinicopathologic and Genetic Features of Primary T-cell Lymphomas of the Central Nervous System: An Analysis of 11 Cases Using Targeted Gene Sequencing. Am J Surg Pathol 2022; 46:486-497. [PMID: 34980830 PMCID: PMC8923358 DOI: 10.1097/pas.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) of peripheral T-cell lineage (T-PCNSL) is rare, and its genetic and clinicopathologic features remain unclear. Here, we present 11 cases of T-PCNSL in immunocompetent individuals from a single institute, focusing on their genetic alterations. Seven cases were subject to targeted panel sequencing covering 120 lymphoma-related genes. Nine of the eleven cases were classified as peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), of which one was of γδT-cell lineage. There was one case of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma and another of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) of αβT-cell lineage. The male to female ratio was 7 : 4 and the age ranged from 3 to 75 years (median, 61 y). Most patients presented with neurological deficits (n=10) and showed multifocal lesions (n=9) and deep brain structure involvement (n=9). Tumor cells were mostly small-to-medium, and T-cell monoclonality was detected in all nine evaluated cases. PTCL-NOS was CD4-positive (n=4), CD8-positive (n=3), mixed CD4-positive and CD8-positive (n=1), or CD4/CD8-double-negative (n=1, γδT-cell type). Cytotoxic molecule expression was observed in 4 (67%) of the 6 evaluated cases. Pathogenic alterations were found in 4 patients: one PTCL-NOS case had a frameshift mutation in KMT2C, another PTCL-NOS case harbored a truncating mutation in TET2, and another (γδT-cell-PTCL-NOS) harbored NRAS G12S and JAK3 M511I mutations, and homozygous deletions of CDKN2A and CDKN2B. The ENKTL (αβT-cell lineage) case harbored mutations in genes ARID1B, FAS, TP53, BCOR, KMT2C, POT1, and PRDM1. In conclusion, most of the T-PCNSL were PTCL-NOS, but sporadic cases of other subtypes including γδT-cell lymphoma, anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, and ENKTL were also encountered. Immunophenotypic analysis, clonality test, and targeted gene sequencing along with clinicoradiologic evaluation, may be helpful for establishing the diagnosis of T-PCNSL. Moreover, this study demonstrates genetic alterations with potential diagnostic and therapeutic utility in T-PCNSL.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Anaplastic Lymphoma Kinase/metabolism
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/metabolism
- Central Nervous System Neoplasms/pathology
- Child
- Child, Preschool
- Female
- Humans
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Male
- Middle Aged
- Young Adult
Collapse
Affiliation(s)
| | - Jiwon Koh
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Sehui Kim
- Department of Pathology
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine
| | | | - Jeong Mo Bae
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University School of Medicine
| | - Tae Min Kim
- Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Yoon Kyung Jeon
- Department of Pathology
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Hathuc V, Kreisel F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life (Basel) 2022; 12:life12030410. [PMID: 35330161 PMCID: PMC8954173 DOI: 10.3390/life12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T-Cell lymphoma (PTCL) comprises a heterogenous group of uncommon lymphomas derived from mature, post-thymic or “peripheral” T- and natural killer cells. The World Health Organization (WHO) emphasizes a multiparameter approach in the diagnosis and subclassification of these neoplasms, integrating clinical, morphologic, immunophenotypic, and genetic features into the final diagnosis. Clinical presentation is particularly important due to histologic, immunophenotypic and genetic variations within established subtypes, and no convenient immunophenotypic marker of monoclonality exists. In recent years, widespread use of gene expression profiling and next-generation sequencing (NGS) techniques have contributed to an improved understanding of the pathobiology in PTCLs, and these have been incorporated into the 2016 revised WHO classification of mature T- and NK-cell neoplasms which now encompasses nearly 30 distinct entities. This review discusses the genetic landscape of PTCL and its role in subclassification, prognosis, and potential targeted therapy. In addition to discussing T-Cell lymphoma subtypes with relatively well-defined or relevant genetic aberrancies, special attention is given to genetic advances in T-Cell lymphomas of T follicular helper cell (TFH) origin, highlighting genetic overlaps between angioimmunoblastic T-Cell lymphoma (AITL), follicular T-Cell lymphoma, and nodal peripheral T-Cell lymphoma with a TFH phenotype. Furthermore, genetic drivers will be discussed for ALK-negative anaplastic large cell lymphomas and their role in differentiating these from CD30+ peripheral T-Cell lymphoma, not otherwise specified (NOS) and primary cutaneous anaplastic large cell lymphoma. Lastly, a closer look is given to genetic pathways in peripheral T-Cell lymphoma, NOS, which may guide in teasing out more specific entities in a group of T-Cell lymphomas that represents the most common subcategory and is sometimes referred to as a “wastebasket” category.
Collapse
|