1
|
Shen Q, Murakami K, Sotov V, Butler M, Ohashi PS, Reedijk M. Inhibition of Notch enhances efficacy of immune checkpoint blockade in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eado8275. [PMID: 39475614 PMCID: PMC11524187 DOI: 10.1126/sciadv.ado8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Aberrant Notch, which is a defining feature of triple-negative breast cancer (TNBC) cells, regulates intercellular communication in the tumor immune microenvironment (TIME). This includes tumor-associated macrophage (TAM) recruitment through Notch-dependent cytokine secretion, contributing to an immunosuppressive TIME. Despite the low response rate of TNBC to immune checkpoint blockade (ICB), here, we report that inhibition of Notch-driven cytokine-mediated programs reduces TAMs and induces responsiveness to sequentially delivered ICB. This is characterized by the emergence of GrB+ cytotoxic T lymphocytes (CTLs) in the primary tumor. A more impressive effect of sequential treatment is observed in the lung where TAM depletion and increased CTLs are accompanied by near-complete abolition of metastases. This is due to (i) therapeutic reduction in Notch-dependent, prometastatic circulating factors released by the primary tumor, and (ii) elevated PD ligand 1 (PD-L1) in lung metastases, rendering them profoundly sensitive to ICB. These findings highlight the potential of combination cytokine inhibition and ICB as an immunotherapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Qiang Shen
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Kiichi Murakami
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Valentin Sotov
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Marcus Butler
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Room 7205, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
| | - Michael Reedijk
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 8-411, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
2
|
Zheng W, Marini W, Murakami K, Sotov V, Butler M, Gorrini C, Ohashi PS, Reedijk M. Caspase-1-dependent spatiality in triple-negative breast cancer and response to immunotherapy. Nat Commun 2024; 15:8514. [PMID: 39353903 PMCID: PMC11445480 DOI: 10.1038/s41467-024-52553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Tumor immune microenvironment (TIME) spatial organization predicts outcome and therapy response in triple-negative breast cancer (TNBC). An immunosuppressive TIME containing elevated tumor-associated macrophages (TAM) and scarce CD8+ T cells is associated with poor outcome, but the regulatory mechanisms are poorly understood. Here we show that ETS1-driven caspase-1 expression, required for IL1β processing and TAM recruitment, is negatively regulated by estrogen receptors alpha (ERα) and a defining feature of TNBC. Elevated tumoral caspase-1 is associated with a distinct TIME characterized by increased pro-tumoral TAMs and CD8+ T cell exclusion from tumor nests. Mouse models prove the functional importance of ERα, ETS1, caspase-1 and IL1β in TIME conformation. Caspase-1 inhibition induces an immunoreactive TIME and reverses resistance to immune checkpoint blockade, identifying a therapeutically targetable mechanism that governs TNBC spatial organization.
Collapse
Affiliation(s)
- Weiyue Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wanda Marini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kiichi Murakami
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Valentin Sotov
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcus Butler
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Chiara Gorrini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Lu Y, Cao Y, Guo X, Gao Y, Chen X, Zhang Z, Ge Z, Chu D. Notch-Targeted Therapeutic in Colorectal Cancer by Notch1 Attenuation Via Tumor Microenvironment-Responsive Cascade DNA Delivery. Adv Healthc Mater 2024; 13:e2400797. [PMID: 38726796 DOI: 10.1002/adhm.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.
Collapse
Affiliation(s)
- Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
4
|
Zahraeifard S, Xiao Z, So JY, Ahad A, Montoya S, Park WY, Sornapudi T, Andohkow T, Read A, Kedei N, Koparde V, Yang H, Lee M, Wong N, Cam M, Wang K, Ruppin E, Luo J, Hollander C, Yang L. Loss of tumor suppressors promotes inflammatory tumor microenvironment and enhances LAG3+T cell mediated immune suppression. Nat Commun 2024; 15:5873. [PMID: 38997291 PMCID: PMC11245525 DOI: 10.1038/s41467-024-50262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators. Here we identify, by using in vivo CRISPR/Cas9 based loss-of-function screening, that NF1, TSC1, and TGF-β RII as TSs regulating immune composition. Loss of each of these three TSs leads to alterations in chromatin accessibility and enhances IL6-JAK3-STAT3/6 inflammatory pathways. This results in an immune suppressive landscape, characterized by increased numbers of LAG3+ CD8 and CD4 T cells. ICB targeting LAG3 and PD-L1 simultaneously inhibits metastatic progression in preclinical triple negative breast cancer (TNBC) mouse models of NF1-, TSC1- or TGF-β RII- deficient tumors. Our study thus reveals a role of TSs in regulating metastasis via non-cell-autonomous modulation of the immune compartment and provides proof-of-principle for ICB targeting LAG3 for patients with NF1-, TSC1- or TGF-β RII-inactivated cancers.
Collapse
Affiliation(s)
- Sara Zahraeifard
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhiguang Xiao
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdul Ahad
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Selina Montoya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woo Yong Park
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Trinadharao Sornapudi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany Andohkow
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine Hollander
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J. Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep 2024; 14:12386. [PMID: 38811720 PMCID: PMC11137060 DOI: 10.1038/s41598-024-62991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has high heterogeneity, poor prognosis, and limited treatment success. Recently, an immunohistochemistry-based surrogate classification for the "Fudan University Shanghai Cancer Center (FUSCC) subtyping" has been developed and is considered more suitable for clinical application. Seventy-one paraffin-embedded sections of surgically resected TNBC were classified into four molecular subtypes using the IHC-based surrogate classification. Genomic analysis was performed by targeted next-generation sequencing and the specificity of the subtypes was explored by bioinformatics, including survival analysis, multivariate Cox regression, pathway enrichment, Pyclone analysis, mutational signature analysis and PHIAL analysis. AKT1 and BRCA1 mutations were identified as independent prognostic factors in TNBC. TNBC molecular subtypes encompass distinct genomic landscapes that show specific heterogeneities. The luminal androgen receptor (LAR) subtype was associated with mutations in PIK3CA and PI3K pathways, which are potentially sensitive to PI3K pathway inhibitors. The basal-like immune-suppressed (BLIS) subtype was characterized by high genomic instability and the specific possession of signature 19 while patients in the immunomodulatory (IM) subtype belonged to the PD-L1 ≥ 1% subgroup with enrichment in Notch signaling, suggesting a possible benefit of immune checkpoint inhibitors and Notch inhibitors. Moreover, mesenchymal-like (MES) tumors displayed enrichment in the receptor tyrosine kinase (RTK)-RAS pathway and potential sensitivity to RTK pathway inhibitors. The findings suggest potential treatment targets and prognostic factors, indicating the possibility of TNBC stratified therapy in the future.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Lei Yan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hai Xia Ma
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hui Wen Wang
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Feng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Wang M, Yu F, Zhang Y, Li P. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy. Front Immunol 2024; 15:1352484. [PMID: 38444855 PMCID: PMC10912471 DOI: 10.3389/fimmu.2024.1352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Notch signaling pathway is a highly conserved system of cell-to-cell communication that participates in various biological processes, such as stem cell maintenance, cell fate decision, cell proliferation and death during homeostasis and development. Dysregulation of Notch signaling has been associated with many aspects of cancer biology, such as maintenance of cancer stem-like cells (CSCs), cancer cell metabolism, angiogenesis and tumor immunity. Particularly, Notch signaling can regulate antitumor or pro-tumor immune cells within the tumor microenvironment (TME). Currently, Notch signaling has drawn significant attention in the therapeutic development of cancer treatment. In this review, we focus on the role of Notch signaling pathway in remodeling tumor immune microenvironment. We describe the impact of Notch signaling on the efficacy of cancer immunotherapies. Furthermore, we summarize the results of relevant preclinical and clinical trials of Notch-targeted therapeutics and discuss the challenges in their clinical application in cancer therapy. An improved understanding of the involvement of Notch signaling in tumor immunity will open the door to new options in cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Han S, Xu Y, Chen D, Yang F, Wang M, Zhou Q, Wang G, Li L, Xu C, Wang W, Cai S, Xing N. Notch activation defines immune-suppressive subsets of ccRCCs with unfavorable benefits from immunotherapy over VEGFR/mTOR inhibitors. iScience 2024; 27:108290. [PMID: 38179060 PMCID: PMC10765066 DOI: 10.1016/j.isci.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
The evolutionarily conserved Notch pathway, involved in cancer stem cell capacity and cancer immunity, may predict the benefit from immune checkpoint inhibitors (ICIs) in clear cell renal cell carcinoma (ccRCC). In the TCGA dataset, mRNA expression of Notch pathway genes identified three clusters with different prognoses and molecular characteristics. Based on the differentially expressed Notch pathway genes between clusters, we constructed the Notch-score, correlated with Notch activation, angiogenesis, PI3K-AKT-mTOR activity, and sensitivities to VEGFR/mTOR inhibitors. A high Notch-score was linked with more "resting"/"anti-inflammatory" rather than "activated"/"pro-inflammatory" tumor-infiltrating immune cells, inactivated immune pathways, and scarce any benefits from ICI-based therapies over VEGFR/mTOR inhibitors in the JAVELIN Renal 101 (avelumab plus axitinib vs. sunitinib) and the CheckMate-009/010/025 trials (nivolumab vs. everolimus). For the Notch-activated ccRCCs, ICIs provide limited advantages and might not be strongly recommended, by which the cost-effectiveness of treatments in ccRCCs may be potentially improved.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaoxia Zhou
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Ghosh A, Mitra AK. Metastasis and cancer associated fibroblasts: taking it up a NOTCH. Front Cell Dev Biol 2024; 11:1277076. [PMID: 38269089 PMCID: PMC10806909 DOI: 10.3389/fcell.2023.1277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.
Collapse
Affiliation(s)
- Argha Ghosh
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
10
|
Yuan H, You Y, He Y, Wei Y, Zhang Y, Min H, Li C, Chen J. Crystalline Silica-Induced Proinflammatory Interstitial Macrophage Recruitment through Notch3 Signaling Promotes the Pathogenesis of Silicosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14502-14514. [PMID: 37721423 DOI: 10.1021/acs.est.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Crystalline silica (CS) particles are ubiquitous in the environment, especially in occupational conditions, and exposure to respirable CS causes silicosis. The initial response to CS is mediated by innate immunity, where pulmonary macrophages act as central orchestrators. However, the repercussions of CS on functionally distinct macrophage subsets remain to be inconclusive. Herein, to study the effects of inhaled CS, we divided macrophages into three subsets: circulating monocytes, interstitial macrophages (IMs), and alveolar macrophages (AMs). CS-induced massive IMs increase in the lung, the phenotype and function of which differed from those of tissue-resident AMs and circulating monocytes. The augmented IMs were driven by recruitment of circulating macrophages rather than cell proliferation in situ. Moreover, the IMs predominantly exerted a classic activated (M1) phenotype and expressed proinflammatory cytokines, contributing to CS-induced lung injury. Notably, we demonstrated that IMs augmented Notch3 expression. Mechanistically, using myeloid-specific Notch3-knockout mice, we demonstrated that Notch3 signaling not only promoted IMs recruitment by regulating CCR2 expression but also manipulated the proinflammatory phenotype. Mice with conditional Notch3-knockout exhibited alleviation of CS-induced inflammation and fibrosis in lung. Overall, our study identifies IMs as critical mediators in response to CS and highlights the role of Notch3 in IMs recruitment and activation, providing new insights into CS toxicological effects in the lung.
Collapse
Affiliation(s)
- Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuting Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| |
Collapse
|
11
|
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, Tyler B. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15:3889. [PMID: 37568705 PMCID: PMC10417410 DOI: 10.3390/cancers15153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.
Collapse
Affiliation(s)
- Hasan Slika
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Chad Caraway
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Eric M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| |
Collapse
|
12
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023:10.1038/s41423-023-01013-0. [PMID: 37208442 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
13
|
Wilson BE, Shen Q, Cescon DW, Reedijk M. Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Front Genet 2023; 14:1086163. [PMID: 37065483 PMCID: PMC10095561 DOI: 10.3389/fgene.2023.1086163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has poor prognosis when compared to other breast cancer subtypes. Despite pre-clinical data supporting an immune targeted approach for TNBCs, immunotherapy has failed to demonstrate the impressive responses seen in other solid tumor malignancies. Additional strategies to modify the tumor immune microenvironment and potentiate response to immunotherapy are needed. In this review, we summarise phase III data supporting the use of immunotherapy for TNBC. We discuss the role of IL-1β in tumorigenesis and summarize pre-clinical data supporting IL-1β inhibition as a potential therapeutic strategy in TNBC. Finally, we present current trials evaluating IL-1β in breast cancer and other solid tumor malignancies and discuss future studies that may provide a strong scientific rationale for the combination of IL-1β and immunotherapy in the neoadjuvant and metastatic setting for people with TNBC.
Collapse
Affiliation(s)
- Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| | - Qiang Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
- *Correspondence: Michael Reedijk,
| |
Collapse
|
14
|
Yin JZ, Shi XQ, Wang MD, Du H, Zhao XW, Li B, Yang MH. Arsenic trioxide elicits anti-tumor activity by inhibiting polarization of M2-like tumor-associated macrophages via Notch signaling pathway in lung adenocarcinoma. Int Immunopharmacol 2023; 117:109899. [PMID: 36827926 DOI: 10.1016/j.intimp.2023.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Drug-resistant advanced lung adenocarcinoma (LUAD) is an aggressive malignancy with limited treatment options. A therapeutic strategy for drug-resistant LUAD is to target the tumor associated macrophages (TAMs), because they play an important role in tumor immune escape, progression and metastasis. In this study, we conducted in vivo and in vitro investigation of the inhibitory effect of arsenic trioxide (ATO) on polarization of TAMs educated by LUAD. We found that ATO at a concentration of 4 μM disrupted the Notch-dependent positive feedback loop between LUAD and TAMs. In this loop, ATO inhibited the expression of Jagged1 and Notch1 in LUAD and suppressed M2 polarization via down-regulating Notch-dependent paracrine of CCL2 and IL1β. As a result, the secretion of M2-derived TGF-β1 decreased, thus inducing inhibitions of LUAD proliferation, migration, invasion, colony formation and epithelial-mesenchymal transition. In xenograft mouse models, ATO significantly inhibited tumor growth and down-regulated infiltration of M2-like TAMs in tumor tissues. In clinical LUAD biopsy samples, high Jagged1/Notch1 expression positively correlated with tumor-infiltrated M2-like TAMs, leading to poor prognosis. In conclusion, our results identified a novel tumor immunomodulating function for ATO, which can inhibit the polarization of M2-type TAMs to exert anti-tumor effects in the tumor microenvironment. Our results demonstrated the translational potential of repurposing ATO to target TAMs for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Ji-Zhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiao-Qian Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - Ming-Dong Wang
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - He Du
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai 200433, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China; Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China.
| | - Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Marini W, Wilson BE, Reedijk M. Targeting Notch-Driven Cytokine Secretion: Novel Therapies for Triple Negative Breast Cancer. DNA Cell Biol 2023; 42:73-81. [PMID: 36579947 DOI: 10.1089/dna.2022.0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compared with other breast cancer subtypes, triple negative breast cancer (TNBC) is an aggressive malignancy with a high recurrence rate and reduced overall survival. Immune checkpoint inhibition (ICI) has shown modest results in this subgroup, highlighting the need for improved targeted therapeutic options. Notch is a defining feature of TNBC and drives the expression of interleukin-1 beta (IL1β) and C-C motif chemokine ligand 2 (CCL2). These cytokines are involved in the recruitment of tumor-associated macrophages (TAMs) to the tumor, resulting in immune evasion and tumor progression. Targeting Notch, IL1β or CCL2 may reduce TAM recruitment and resistance to ICI, illuminating the potential of combination immunotherapy in TNBC.
Collapse
Affiliation(s)
- Wanda Marini
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brooke E Wilson
- Department of Oncology, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Michael Reedijk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Qiu J, Ma L, Wang T, Chen J, Wang D, Guo Y, Li Y, Ma X, Chen G, Luo Y, Cheng X, Xu L. Bioinformatic analysis of single-cell RNA sequencing dataset dissects cellular heterogeneity of triple-negative breast cancer in transcriptional profile, splicing event and crosstalk network. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1856-1868. [PMID: 36692641 DOI: 10.1007/s12094-023-03083-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high tumoral heterogeneity, while the detailed regulatory network is not well known. METHODS Via single-cell RNA-sequencing (scRNA-seq) data analysis, we comprehensively investigated the transcriptional profile of different subtypes of TNBC epithelial cells with gene regulatory network (GRN) and alternative splicing (AS) event analysis, as well as the crosstalk between epithelial and non-epithelial cells. RESULTS Of note, we found that luminal progenitor subtype exhibited the most complex GRN and splicing events. Besides, hnRNPs negatively regulates AS events in luminal progenitor subtype. In addition, we explored the cellular crosstalk among endothelial cells, stromal cells and immune cells in TNBC and discovered that NOTCH4 was a key receptor and prognostic marker in endothelial cells, which provide potential biomarker and target for TNBC intervention. CONCLUSIONS In summary, our study elaborates on the cellular heterogeneity of TNBC, revealing that NOTCH4 in endothelial cells was critical for TNBC intervention. This in-depth understanding of epithelial cell and non-epithelial cell network would provide theoretical basis for the development of new drugs targeting this sophisticated network in TNBC.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lu Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingting Wang
- Department of Anaesthesia, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, China
| | - Juntong Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yin Li
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Anaesthesia, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Luo
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, China.
| | - Xinghua Cheng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Department of Anaesthesia, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, China.
| |
Collapse
|
17
|
Huang K, Luo W, Fang J, Yu C, Liu G, Yuan X, Liu Y, Wu W. Notch3 signaling promotes colorectal tumor growth by enhancing immunosuppressive cells infiltration in the microenvironment. BMC Cancer 2023; 23:55. [PMID: 36647017 PMCID: PMC9843853 DOI: 10.1186/s12885-023-10526-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Macrophage infiltration in the tumor microenvironment participates in the regulation of tumor progression. Previous studies have found that Notch signaling pathway is involved in regulating the progression of colorectal cancer (CRC), however, the specific mechanism is still unclear. METHODS The correlation between Notch signaling pathway and macrophage infiltration was investigated in TCGA database and verified in clinical samples of patients with CRC using immunohistochemistry. Gene Set Enrichment Analysis was used to find out genes related to Notch3 expression. Colony formation assay, and flow cytometry were utilized to test tumor growth and immune cell infiltration in vitro and in vivo. RESULTS Using bioinformatics analysis and clinical sample validation, we found that Notch3 was highly expressed in colon tumor tissues compared to adjacent normal tissues, and it participated in regulating the recruitment of macrophages to the tumor microenvironment. Furthermore, we found that the Notch3 expression was positively correlated with the expression of macrophage recruitment-related cytokines in colon tumor tissues. Finally, we demonstrated that depletion of Notch3 had no significant effect on the growth of colon tumor cells in vitro, while, attenuated the growth of colon cancer tumors in vivo. Simultaneous, immunosuppressive cells, macrophages and myeloid-derived suppressor cell (MDSC) infiltration were dramatically reduced in the tumor microenvironment. CONCLUSION Our study illustrated that Notch3 could facilitate the progression of CRC by increasing the infiltration of macrophages and MDSCs to promote the immunosuppressive tumor microenvironment. Targeting Notch3 specifically is a potentially effective treatment for CRC.
Collapse
Affiliation(s)
- Kai Huang
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Wenwu Luo
- grid.412679.f0000 0004 1771 3402Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jinmei Fang
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changjun Yu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Guangjie Liu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Xiaodong Yuan
- grid.59053.3a0000000121679639Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Liu
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Wu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China ,Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230011 China
| |
Collapse
|
18
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
19
|
Yang M, Li J, Liu Z, Zhang H, Liu J, Liu Y, Zhuang A, Zhou H, Gu P, Fan X. An injectable vitreous substitute with sustained release of metformin for enhanced uveal melanoma immunotherapy. Biomater Sci 2022; 10:7077-7092. [PMID: 36326609 DOI: 10.1039/d2bm01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with a high rate of metastasis. Conventional treatments have limited effects on metastasis and cause permanent ocular tissue defects. Here, a novel strategy based on an injectable vitreous substitute with sustained metformin release ability (IVS-Met) was reported for efficient UM therapy as well as for repairing vitreous deficiency and preserving visual function. IVS-Met showed an excellent long-term anti-tumor effect by direct tumor attack and modulation of the tumor microenvironment (TME). IVS-Met reduced the proportion of pro-tumor M2 tumor-associated macrophages and induced the pro-inflammatory M1 phenotype, thus reversing the immunosuppressive TME and eliciting robust anti-tumor immune responses. Notably, IVS-Met demonstrated high performance in the inhibition of UM metastasis and significantly extended the survival time of mice. In addition, the vitreous substitute achieved facile administration via direct injection and exhibited excellent rheological and optical properties with the key parameters very close to those of the vitreous body to repair vitreous deficiency and preserve visual function. In summary, this strategy has realized effective UM treatment while retaining eyeballs and vision for the first time, revealing great potential for translation to clinical practice.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
20
|
Ji W, Niu X, Yu Y, Li Z, Gu L, Lu S. SMO mutation predicts the effect of immune checkpoint inhibitor: From NSCLC to multiple cancers. Front Immunol 2022; 13:955800. [DOI: 10.3389/fimmu.2022.955800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundThe emergence of immune checkpoint inhibitors (ICIs) is one of the most promising breakthroughs for the treatment of multiple cancer types, but responses vary. Growing evidence points to a link between developmental signaling pathway-related genes and antitumor immunity, but the association between the genomic alterations in these genes and the response to ICIs still needs to be elucidated.MethodsClinical data and sequencing data from published studies and our cohort were collected to analyze the association of the mutation status of SMO with the efficacy of ICI therapy in the non-small cell lung cancer (NSCLC) cohort and the pan-cancer cohort. Furthermore, the correlation between SMO mutation and immunotherapeutic biomarkers such as immune cell infiltration, immune-related genes, and underlying signaling pathways was analyzed. Three SMO mutant plasmids were transfected into cells to explore the SMO mutation status in the context of its expression and cell growth.ResultIn the NSCLC discovery cohort, the median progression-free survival in the SMO mutant (SMO_MUT) was longer than that in the wild type (SMO_WT) (23.0 vs. 3.8 months, adjusted p = 0.041). This finding was further confirmed in the NSCLC validation cohort (8.7 vs. 5.1 months, adjusted p = 0.013). In the pan-cancer cohort (n = 1,347), a significant overall survival advantage was observed in patients with SMO mutations [not reached (NR) vs. 18 months, adjusted p = 0.024]. In the subgroup analysis, the survival advantage of SMO_MUT against SMO_WT was prominent and consistent across genders, ages, treatment types, cancer types, and the tumor mutation burden (TMB) status (all pinteraction > 0.05). In an in vitro experiment, we found that both the mutant and wild-type plasmids can promote the expression of SMO, but the mutant plasmid had lower SMO mRNA and protein levels than the wild type. In CCK-8 experiments, we found that SMO_MUT plasmids can improve the growth of Calu-1 and PC-9 cells, but this capability varied between different mutations and cells. Upon further exploration, the SMO mutation status was found to be related to a higher TMB, more neoantigen load, more DNA damage repair (DDR) mutations, higher microsatellite instability (MSI) score, and higher CD8+ T-cell infiltration.ConclusionsThe SMO mutation status is an independent prognostic factor that can be used to predict better clinical outcomes of ICI treatment across multiple cancer types.
Collapse
|
21
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
22
|
Parmigiani E, Ivanek R, Rolando C, Hafen K, Turchinovich G, Lehmann FM, Gerber A, Brkic S, Frank S, Meyer SC, Wakimoto H, Günel M, Louvi A, Mariani L, Finke D, Holländer G, Hutter G, Tussiwand R, Taylor V, Giachino C. Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Dev Cell 2022; 57:1847-1865.e9. [PMID: 35803280 DOI: 10.1016/j.devcel.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Immune surveillance is critical to prevent tumorigenesis. Gliomas evade immune attack, but the underlying mechanisms remain poorly understood. We show that glioma cells can sustain growth independent of immune system constraint by reducing Notch signaling. Loss of Notch activity in a mouse model of glioma impairs MHC-I and cytokine expression and curtails the recruitment of anti-tumor immune cell populations in favor of immunosuppressive tumor-associated microglia/macrophages (TAMs). Depletion of T cells simulates Notch inhibition and facilitates tumor initiation. Furthermore, Notch-depleted glioma cells acquire resistance to interferon-γ and TAMs re-educating therapy. Decreased interferon response and cytokine expression by human and mouse glioma cells correlate with low Notch activity. These effects are paralleled by upregulation of oncogenes and downregulation of quiescence genes. Hence, suppression of Notch signaling enables gliomas to evade immune surveillance and increases aggressiveness. Our findings provide insights into how brain tumor cells shape their microenvironment to evade immune niche control.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Robert Ivanek
- Swiss Institute of Bioinformatics, Hebelstrasse 20, 4031 Basel, Switzerland; Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Chiara Rolando
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Katrin Hafen
- Pediatric Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Gleb Turchinovich
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Frank Michael Lehmann
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Alexandra Gerber
- Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Hematology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520-8082, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520-8082, USA
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniela Finke
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Georg Holländer
- Pediatric Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Weatherall Institute of Molecular Medicine and Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Department of Neurosurgery, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Roxane Tussiwand
- Immune Regulation, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Claudio Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
23
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
24
|
Roles of Notch Signaling in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23116241. [PMID: 35682918 PMCID: PMC9181414 DOI: 10.3390/ijms23116241] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.
Collapse
|
25
|
Liu D, Hofman P. Expression of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA is synergistically associated with T cell exclusion, immune checkpoint blockade efficacy and recurrence risk in ER-negative breast cancer. Cell Oncol (Dordr) 2022; 45:463-477. [PMID: 35543859 DOI: 10.1007/s13402-022-00677-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Reliable biomarkers to predict the outcome and treatment response of estrogen receptor (ER)-negative breast cancer (BC) are urgently needed. Since immune-related signaling plays an important role in the tumorigenesis of ER-negative BC, we asked whether Notch genes, alone or in combination with other immune genes, can be used to predict the clinical outcome and immune checkpoint blockade (ICB) for this type of cancer. METHODS We analyzed transcriptome data of 6918 BC samples from five independent cohorts, 81 xenograft triple-negative BC tumors that respond differently to ICB treatment and 754 samples of different cancer types from patients treated with ICB agents. RESULTS We found that among four Notch genes, the expression levels of NOTCH1 and NOTCH4 were positively associated with recurrence of ER-negative BC, and that combined expression of these two genes (named Notch14) further enhanced this association, which was comparable with that of the Notch pathway signature. Analysis of 1182 immune-related genes revealed that the expression levels of most HLA genes, particularly HLA-DMA and -DRA, were reversely associated with recurrence in ER-negative BC with low, but not high Notch14 expression. A combined expression signature of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA was more prognostic for ER-negative and triple-negative BCs than previously reported immune-related signatures. Furthermore, we found that the expression levels of these four genes were also synergistically associated with T cell exclusion score, infiltration of specific T cells and ICB efficacy in ER-negative BC, thereby providing a potential molecular mechanism for the synergistic effect of these genes on BC. CONCLUSIONS Our data indicate that a gene signature composed of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA may serve as a potential promising biomarker for predicting ICB therapy efficacy and recurrence in ER-negative/triple-negative BCs.
Collapse
Affiliation(s)
- Dingxie Liu
- Bluewater Biotech LLC, PO Box 1010, New Providence, NJ, 07974, USA.
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, University Côte d'Azur, 06100, Nice, France.
- Team 4, IRCAN, UMR 7284 U10181, FHU OncoAge, Centre Antoine Lacassagne University Côte d'Azur, 06107, Nice, France.
- Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, FHU OncoAge, University Côte d'Azur, 06100, Nice, France.
| |
Collapse
|
26
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
27
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 354] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
28
|
GIT1 protects against breast cancer growth through negative regulation of Notch. Nat Commun 2022; 13:1537. [PMID: 35318302 PMCID: PMC8940956 DOI: 10.1038/s41467-022-28631-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth. Notch signalling is reported to be hyperactivated in oestrogen receptor-negative (ER-) breast cancer. Here the authors show that G protein-coupled receptor kinase-interacting protein 1 (GIT1) negatively regulates Notch signalling and tumour growth in ER- breast cancer by blocking Notch ICD nuclear translocation.
Collapse
|
29
|
Meng J, Jiang YZ, Zhao S, Tao Y, Zhang T, Wang X, Zhang Y, Sun K, Yuan M, Chen J, Wei Y, Lan X, Chen M, David CJ, Chang Z, Guo X, Pan D, Chen M, Shao ZM, Kang Y, Zheng H. Tumor-derived Jagged1 promotes cancer progression through immune evasion. Cell Rep 2022; 38:110492. [PMID: 35263601 DOI: 10.1016/j.celrep.2022.110492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuxiang Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Keyong Sun
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jin Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mo Chen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Charles J David
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Deng Pan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544, USA.
| | - Hanqiu Zheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Müller A, Köhler UA, Trzebanski S, Vinik Y, Raj HM, Girault J, Ben‐Chetrit N, Maraver A, Jung S, Lev S. Mouse Modeling Dissecting Macrophage-Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105696. [PMID: 35092356 PMCID: PMC8948556 DOI: 10.1002/advs.202105696] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Indexed: 05/30/2023]
Abstract
Macrophage infiltration in mammary tumors is associated with enhanced tumor progression, metastasis, and poor clinical outcome, and considered as target for therapeutic intervention. By using different genetic mouse models, the authors show that ablation of the tyrosine kinase PYK2, either in breast cancer cells, only in the tumor microenvironment, or in both, markedly reduces the number of infiltrating tumor macrophages and concomitantly inhibits tumor angiogenesis and tumor growth. Strikingly, PYK2 ablation only in macrophages is sufficient to induce similar effects. These phenotypic changes are associated with reduced monocyte recruitment and a substantial decrease in tumor-associated macrophages (TAMs). Mechanistically, the authors show that PYK2 mediates mutual communication between breast cancer cells and macrophages through critical effects on key receptor signaling. Specifically, PYK2 ablation inhibits Notch1 signaling and consequently reduces CCL2 secretion by breast cancer cells, and concurrently reduces the levels of CCR2, CXCR4, IL-4Rα, and Stat6 activation in macrophages. These bidirectional effects modulate monocyte recruitment, macrophage polarization, and tumor angiogenesis. The expression of PYK2 is correlated with infiltrated macrophages in breast cancer patients, and its effects on macrophage infiltration and pro-tumorigenic phenotype suggest that PYK2 targeting can be utilized as an effective strategy to modulate TAMs and possibly sensitize breast cancer to immunotherapy.
Collapse
Affiliation(s)
| | - Ulrike A. Köhler
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | | | - Yaron Vinik
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Harsha Mohan Raj
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | | | - Nir Ben‐Chetrit
- Sandra and Edward Meyer Cancer CenterWeill Cornell MedicineNew YorkNY10065USA
| | - Antonio Maraver
- Institut de Recherche en Cancérologie de MontpellierInserm U1194 – Université MontpellierMontpellier34090France
| | - Steffen Jung
- Immunology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Sima Lev
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
31
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
32
|
Otani Y, Yoo JY, Lewis CT, Chao S, Swanner J, Shimizu T, Kang JM, Murphy SA, Rivera-Caraballo K, Hong B, Glorioso JC, Nakashima H, Lawler SE, Banasavadi-Siddegowda Y, Heiss JD, Yan Y, Pei G, Caligiuri MA, Zhao Z, Chiocca EA, Yu J, Kaur B. NOTCH induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates anti-tumor immunotherapy. Clin Cancer Res 2022; 28:1460-1473. [PMID: 35022322 PMCID: PMC8976724 DOI: 10.1158/1078-0432.ccr-21-2347] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Address correspondence and reprint request to Dr. Balveen Kaur, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R164, Houston, TX, 77030. Tel: 713-500-6131, , Or, Dr. Yoshihiro Otani, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R129, Houston, TX, 77030. Tel: 713-500-6118.
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cole T. Lewis
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Samantha Chao
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jessica Swanner
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Toshihiko Shimizu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sara A. Murphy
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Kimberly Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hiroshi Nakashima
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sean E. Lawler
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | | | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yuanqing Yan
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Jianhua Yu
- City of Hope Medical Center, Duarte, CA, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Address correspondence and reprint request to Dr. Balveen Kaur, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R164, Houston, TX, 77030. Tel: 713-500-6131, , Or, Dr. Yoshihiro Otani, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R129, Houston, TX, 77030. Tel: 713-500-6118.
| |
Collapse
|
33
|
Ye JB, Wen JJ, Wu DL, Hu BX, Luo MQ, Lin YQ, Ning YS, Li Y. Elevated DLL3 in stomach cancer by tumor-associated macrophages enhances cancer-cell proliferation and cytokine secretion of macrophages. Gastroenterol Rep (Oxf) 2021; 10:goab052. [PMID: 35382168 PMCID: PMC8973010 DOI: 10.1093/gastro/goab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/13/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The notch signal pathway is important in the development of both tumor-associated macrophages (TAMs) and stomach cancer, but how Notch signaling affects TAMs in stomach cancer is barely understood.
Methods
The expressions of Notch1, Notch2, Notch3, Notch4, hes family bHLH transcription factor 1 (Hes1), and delta-like canonical Notch ligand 3 (DLL3) were detected by Western blot and the expressions of interleukin (IL)-10, IL-12, and IL1-β were detected using enzyme-linked immunosorbent assay after the co-culture of macrophages and stomach-cancer cells. The proliferation and migration of cancer cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scratch assay, respectively, and the cell cycle was detected using Annexin V/propidium iodide assay. The protein interactions with DLL3 were detected using co-immunoprecipitation and mass spectrometry.
Results
The co-culture of macrophages and stomach-cancer cells MKN45 and BGC823 could enhance cell proliferation accompanied by the activation of Notch1/Notch2 signaling and upregulation of DLL3. Notch signaling gamma-secretase inhibitor (DAPT) blocked this process. The overexpression of DLL3 in stomach-cancer cells could promote the proliferation of cancer cells, enhance the activation of Notch1/Notch2 signaling, induce the expression of IL-33, lead to the degradation of galectin-3–binding protein (LG3BP) and heat shock cognate 71 kDa protein (HSPA8), and result in elevated IL-1β, IL-12, and IL-10 secretion by macrophages. Higher expression of DLL3 or IL-33 could lead to a lower survival rate based on University of California, Santa Cruz Xena Functional Genomics Explorer and The Cancer Genome Atlas data set.
Conclusions
This is evidence that DLL3 regulates macrophages in stomach cancer, suggesting that DLL3 may be a novel and potential target for stomach-cancer therapy.
Collapse
Affiliation(s)
- Jian-Bin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jun-Jie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Dan-Lin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bing-Xin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mei-Qun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yan-Qing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yun-Shan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Service Union Medicine, Southern Medical University, Zhuhai, Guangdong, P.R. China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
34
|
Ren K, Peng Q, Ding G, Yu Y, Huang T, Gong L, Yu T, Yang L. Potential biomarkers and resistance mechanisms of atezolizumab in a patient with lung squamous cell carcinoma. Immunotherapy 2021; 14:15-21. [PMID: 34763535 DOI: 10.2217/imt-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: At present, only a small fraction of patients with cancer benefit from treatment with immune checkpoint inhibitors, the reasons for which are not fully understood. Monitoring molecular and immunologic changes during treatment with immune checkpoint inhibitors would help to identify potential biomarkers and mechanisms associated with resistance and guide subsequent treatment. Methods: The authors report on a patient previously treated for lung squamous cell carcinoma who received atezolizumab-based therapy for 24 months. Results & Conclusion: Analysis of samples before and after atezolizumab treatment suggested that genetic mutations in EGFR exon 20 insertion, phosphatase and PTEN and NOTCH1 as well as changes in tumor immune microenvironment may be associated with acquired resistance to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Quanzhou Peng
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Guanggui Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Yefeng Yu
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Longlong Gong
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite D-401, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Tao Yu
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite D-401, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| |
Collapse
|
35
|
Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proc Natl Acad Sci U S A 2021; 118:2101592118. [PMID: 34518219 DOI: 10.1073/pnas.2101592118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype that lacks targeted treatment options. The activation of the Notch developmental signaling pathway, which is a feature of TNBC, results in the secretion of proinflammatory cytokines and the recruitment of protumoral macrophages to the tumor microenvironment. While the Notch pathway is an obvious therapeutic target, its activity is ubiquitous, and predictably, anti-Notch therapies are burdened with significant on-target side effects. Previously, we discovered that, under conditions of cellular stress commonly found in the tumor microenvironment, the deubiquitinase USP9x forms a multiprotein complex with the pseudokinase tribbles homolog 3 (TRB3) that together activate the Notch pathway. Herein, we provide preclinical studies that support the potential of therapeutic USP9x inhibition to deactivate Notch. Using a murine TNBC model, we show that USP9x knockdown abrogates Notch activation, reducing the production of the proinflammatory cytokines, C-C motif chemokine ligand 2 (CCL2) and interleukin-1 beta (IL-1β). Concomitant with these molecular changes, a reduction in tumor inflammation, the augmentation of antitumor immune response, and the suppression of tumor growth were observed. The pharmacological inhibition of USP9x using G9, a partially selective, small-molecule USP9x inhibitor, reduced Notch activity, remodeled the tumor immune landscape, and reduced tumor growth without associated toxicity. Proving the role of Notch, the ectopic expression of the activated Notch1 intracellular domain rescued G9-induced effects. This work supports the potential of USP9x inhibition to target Notch in metabolically vulnerable tissues like TNBC, while sparing normal Notch-dependent tissues.
Collapse
|
36
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
37
|
Khan S, Suryavanshi M, Kaur J, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S. Stem cell therapy: A paradigm shift in breast cancer treatment. World J Stem Cells 2021; 13:841-860. [PMID: 34367480 PMCID: PMC8316873 DOI: 10.4252/wjsc.v13.i7.841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
As per the latest Globocan statistics, the high prevalence rate of breast cancer in low- and middle-income countries has led to it becoming the most common cancer to be diagnosed, hence posing a major public health challenge. As per this data, more than 11.7% of the estimated new cancer cases in 2020 were due to breast cancer. A small but significant subpopulation of cells with self- renewing ability are present in the tumor stroma and have been given the nomenclature of cancer stem cells (CSCs). These cells display a high degree of plasticity owing to their ability to transition from the slowly cycling quiescent phase to the actively proliferating phenotype. This attribute of CSCs allows them to differentiate into various cell types having diverse functions. Breast CSCs have a pivotal role in development, metastasis, treatment resistance and relapse of breast cancers. This review focuses on the pathways regulating breast CSC maintenance and the current strategies that are being explored for directing the development of novel, targeted, therapeutic approaches for limiting and eradicating this aberrant stem cell population.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| | - Moushumi Suryavanshi
- Department of Pathology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Jasamrit Kaur
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh 160030, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | - Anil Khurana
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
38
|
Li X, Wang Y, Li X, Feng G, Hu S, Bai Y. The Impact of NOTCH Pathway Alteration on Tumor Microenvironment and Clinical Survival of Immune Checkpoint Inhibitors in NSCLC. Front Immunol 2021; 12:638763. [PMID: 34305884 PMCID: PMC8302260 DOI: 10.3389/fimmu.2021.638763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) has been proven to induce lasting tumor remission. Screening suitable populations for immunotherapy through predictive markers is an important approach to improving the clinical benefits of patients. Evidence has shown that there may be a close connection between NOTCH signaling and the tumor microenvironment (TME). Hence, we explored the impact of the mutation status of NOTCH signaling on the prognosis of NSCLC patients treated with immunotherapy with the aim to apply NSCLC immunotherapy to the greatest extent possible. We examined two clinical cohorts of NSCLC patients receiving ICIs (MSKCC and NG cohorts). The mutation and prognostic data of the ICI-treated cohort were used to evaluate the association between the mutation status of NOTCH signaling and prognosis following immunotherapy. The expression and mutation data of The Cancer Genome Atlas (TCGA)-NSCLC cohort were used to analyze the differences in the immune microenvironment under different NOTCH signaling mutation states. In the ICI-treated cohorts, the univariate and multivariate Cox regression analyses indicated that high-mutated NOTCH signaling could serve as an independent predictor of NSCLC patients receiving ICIs. Patients with high-mutated NOTCH signaling had significantly improved progression-free survival (PFS) (P = 0.03, HR = 0.69; MSKCC cohort) and prolonged overall survival (OS) (P = 0.004, HR = 0.34; NG cohort). Additionally, high-mutated NOTCH signaling was related to the inflammatory immune microenvironment, inflammatory expression profile, and enhanced immunogenicity. According to this study, high-mutated NOTCH signaling may serve as a biomarker for the prediction of the prognosis of NSCLC patients treated with ICIs. A series of prospective clinical studies and molecular mechanism explorations are still needed in the future.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Yuntao Wang
- Department of Oncology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, The Second Clinical Medical College, Chengdu, China
| | - Xuebing Li
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yaan, Yaan, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sheng Hu
- Department of Respiratory and Intensive Care Medicine, The General Hospital of Western Theatre Command, Chengdu, China
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
Herrada AA, Olate-Briones A, Rojas A, Liu C, Escobedo N, Piesche M. Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obes Rev 2021; 22:e13200. [PMID: 33426811 DOI: 10.1111/obr.13200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Obesity is an increasing problem in developed and developing countries. Individuals with obesity have a higher risk of several diseases, such as cardiovascular disease, increased risk of insulin resistance, type 2 diabetes, infertility, degenerative disorders, and also certain types of cancer. Adipose tissue (AT) is considered an extremely active endocrine organ, and the expansion of AT is accompanied by the infiltration of different types of immune cells, which induces a state of low-grade, chronic inflammation and metabolic dysregulation. Even though the exact mechanism of this low-grade inflammation is not fully understood, there is clear evidence that AT-infiltrating macrophages (ATMs) play a significant role in the pro-inflammatory state and dysregulated metabolism. ATMs represent the most abundant class of leukocytes in AT, constituting 5% of the cells in AT in individuals with normal weight. However, this percentage dramatically increases up to 50% in individuals with obesity, suggesting an important role of ATMs in obesity and its associated complications. In this review, we discuss current knowledge of the function of ATMs during steady-state and obesity and analyze its contribution to different obesity-associated diseases, highlighting the potential therapeutic target of ATMs in these pathological conditions.
Collapse
Affiliation(s)
- Andrés A Herrada
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Noelia Escobedo
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
41
|
Lindblad KE, Ruiz de Galarreta M, Lujambio A. Tumor-Intrinsic Mechanisms Regulating Immune Exclusion in Liver Cancers. Front Immunol 2021; 12:642958. [PMID: 33981303 PMCID: PMC8107356 DOI: 10.3389/fimmu.2021.642958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Representing the fourth leading cause of cancer-related mortality worldwide, liver cancers constitute a major global health concern. Hepatocellular carcinoma (HCC), the most frequent type of liver cancer, is associated with dismal survival outcomes and has traditionally had few treatment options available. In fact, up until 2017, treatment options for advanced HCC were restricted to broad acting tyrosine kinase inhibitors, including Sorafenib, which has been the standard of care for over a decade. Since 2017, a multitude of mono- and combination immunotherapies that include pembrolizumab, nivolumab, ipilumumab, atezolizumab, and bevacizumab have been FDA-approved for the treatment of advanced HCC with unprecedented response rates ranging from 20 to 30% of patients. However, this also means that ~70% of patients do not respond to this treatment and currently very little is known regarding mechanisms of action of these immunotherapies as well as predictors of response to facilitate patient stratification. With the recent success of immunotherapies in HCC, there is a pressing need to understand mechanisms of tumor immune evasion and resistance to these immunotherapies in order to identify biomarkers of resistance or response. This will enable better patient stratification as well as the rational design of combination immunotherapies to restore sensitivity in resistant patients. The aim of this review is to summarize the current knowledge to date of tumor-intrinsic mechanisms of immune escape in liver cancer, specifically in the context of HCC.
Collapse
Affiliation(s)
- Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
42
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
43
|
Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A, Magalhães KG. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci 2021; 28:26. [PMID: 33840390 PMCID: PMC8040227 DOI: 10.1186/s12929-021-00724-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1β and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Susan Costantini
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | - Mickaël Rialland
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
- UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Rebe Cedric
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, 21000, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
| | - Alfredo Budillon
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
44
|
Wang J, Nie W, Xie X, Bai M, Ma Y, Jin L, Xiao L, Shi P, Yang Y, Jose PA, Armando I, Chen J, Lin W, Han F. MicroRNA-874-3p/ADAM (A Disintegrin and Metalloprotease) 19 Mediates Macrophage Activation and Renal Fibrosis After Acute Kidney Injury. Hypertension 2021; 77:1613-1626. [PMID: 33775119 DOI: 10.1161/hypertensionaha.120.16900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Junni Wang
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Wanyun Nie
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Mengqiu Bai
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China (M.B., P.S., W.L.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Yanhong Ma
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Lini Jin
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Liang Xiao
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China (M.B., P.S., W.L.)
| | - Yi Yang
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC (P.A.J., I.A.)
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC (P.A.J., I.A.)
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China (M.B., P.S., W.L.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Institute of Nephrology, Zhejiang University, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.).,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China (J.W., W.N., X.X., M.B., Y.M., L.J., L.X., Y.Y., J.C., W.L., F.H.)
| |
Collapse
|
45
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
46
|
Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Fang W. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics 2021; 11:3489-3501. [PMID: 33537099 PMCID: PMC7847682 DOI: 10.7150/thno.54648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development and remarkable success of checkpoint inhibitors have provided significant breakthroughs in cancer treatment, including hepatocellular carcinoma (HCC). However, only 15-20% of HCC patients can benefit from checkpoint inhibitors. Cancer stem cells (CSCs) are responsible for recurrence, metastasis, and local and systemic therapy resistance in HCC. Accumulating evidence has suggested that HCC CSCs can create an immunosuppressive microenvironment through certain intrinsic and extrinsic mechanisms, resulting in immune evasion. Intrinsic evasion mechanisms mainly include activation of immune-related CSC signaling pathways, low-level expression of antigen presenting molecules, and high-level expression of immunosuppressive molecules. External evasion mechanisms are mainly related to HBV/HCV infection, alcoholic/nonalcoholic steatohepatitis, hypoxia stimulation, abnormal angiogenesis, and crosstalk between CSCs and immune cells. A better understanding of the complex mechanisms of CSCs involved in immune evasion will contribute to therapies for HCC. Here we will outline the detailed mechanisms of immune evasion for CSCs, and provide an overview of the current immunotherapies targeting CSCs in HCC.
Collapse
|
47
|
Economopoulou P, Anastasiou M, Papaxoinis G, Spathas N, Spathis A, Oikonomopoulos N, Kotsantis I, Tsavaris O, Gkotzamanidou M, Gavrielatou N, Vagia E, Kyrodimos E, Gagari E, Giotakis E, Delides A, Psyrri A. Patterns of Response to Immune Checkpoint Inhibitors in Association with Genomic and Clinical Features in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021; 13:cancers13020286. [PMID: 33466719 PMCID: PMC7828787 DOI: 10.3390/cancers13020286] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy agents, such as immune checkpoint inhibitors (ICIs), act through different mechanisms compared to conventional chemotherapy and are characterized by unique patterns of response, such as hyperprogression (HPD), which refers to the paradoxical acceleration of tumor growth kinetics (TGK). In this regard, we sought to compare patterns of response to ICIs with respect to clinical and genomic features in a cohort of patients with recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). In our cohort, HPD was observed in 15.4% of patients. We report for the first time an association of HPD with both shorter progression free survival and overall survival in HNSCC. Importantly, in a multivariate Cox analysis, the presence of HPD remained an independent prognostic factor for survival. Primary site in the oral cavity and administration of ICI in the second/third setting were significant predictors of HPD in multivariate analysis. Genomic profiling revealed that gene amplification was more common in HPD patients. Abstract Background: We sought to compare patterns of response to immune checkpoint inhibitors (ICI) with respect to clinical and genomic features in a retrospective cohort of patients with recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Methods: One hundred seventeen patients with R/M HNSCC treated with ICI were included in this study. Tumor growth kinetics (TGK) prior to and TGK upon immunotherapy (IO) was available for 49 patients. The TGK ratio (TGKR, the ratio of tumor growth velocity before and upon treatment) was calculated. Hyperprogression (HPD) was defined as TGKR ≥ 2. Results: HPD was documented in 18 patients (15.4% of the whole cohort). Patients with HPD had statistically significant shorter progression free survival (PFS) (median PFS 1.8 months (95% CI, 1.03–2.69) vs. 6.1 months for patients with non-HPD (95% CI, 4.78–7.47), p = 0.0001) and overall survival (OS) (median OS 6.53 months (95% CI, 0–13.39) vs. 15 months in patients with non HPD (95% CI, 7.1–22.8), p = 0.0018). In a multivariate Cox analysis, the presence of HPD remained an independent prognostic factor (p = 0.049). Primary site in the oral cavity and administration of ICI in the second/third setting were significant predictors of HPD in multivariate analysis (p = 0.028 and p = 0.012, respectively). Genomic profiling revealed that gene amplification was more common in HPD patients. EGFR gene amplification was only observed in HPD patients, but the number of events was inadequate for the analysis to reach statistical significance. The previously described MDM2 amplification was not identified. Conclusions: HPD was observed in 15.4 % of patients with R/M HNSCC treated with IO and was associated with worse PFS and OS. EGFR amplification was identified in patients with HPD.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Maria Anastasiou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - George Papaxoinis
- Second Department of Medical Oncology, Agios Savas Anticancer Hospital, 11522 Athens, Greece;
| | - Nikolaos Spathas
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.S.); (N.O.)
| | - Nikolaos Oikonomopoulos
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.S.); (N.O.)
| | - Ioannis Kotsantis
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Onoufrios Tsavaris
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Maria Gkotzamanidou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Niki Gavrielatou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Elena Vagia
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Efthymios Kyrodimos
- Department of Otolaryngology-Head and Neck Surgery, Hippokration General Hospital, University of Athens, 11527 Athens, Greece;
| | - Eleni Gagari
- Oral Medicine Clinics, A. Syggros Hospital of Dermatologic and Venereal Diseases, Department of Dermatology, School of Medicine, University of Athens, 16121 Athens, Greece;
| | - Evangelos Giotakis
- Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany;
| | - Alexander Delides
- Second Otolaryngology Department, Attikon University Hospital, 12462 Athens, Greece;
| | - Amanda Psyrri
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
- Correspondence: ; Tel.: +30-2105831664
| |
Collapse
|
48
|
Liu J, Li H, Mao A, Lu J, Liu W, Qie J, Pan G. DCAF13 promotes triple-negative breast cancer metastasis by mediating DTX3 mRNA degradation. Cell Cycle 2020; 19:3622-3631. [PMID: 33300431 DOI: 10.1080/15384101.2020.1859196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DCAF13 is firstly identified as a substrate receptor of CUL4-DDB1 E3 ligase complex. This study disclosed that DCAF13 acted as a novel RNA binding protein (RBP) that contributed to triple-negative breast cancer (TNBC) metastasis. Clinical data obtained from TCGA and our collection showed that DCAF13 was closely correlated with poor clinicopathological characteristics and overall survival, which indicated DCAF13 may serve as a diagnostic marker for TNBC metastasis. Functionally, DCAF13 overexpression or suppression was sufficient to enhance or decrease breast cancer cell migration and invasion. Mechanistically, DCAF13 functioned as an RBP by binding with the AU-rich element (ARE) of DTX3 mRNA 3'UTR to accelerate its degradation. Moreover, we identified that DTX3 promoted the ubiquitination and degradation of NOTCH4. Finally, increased DCAF13 expression led to post-transcriptional decay of DTX3 mRNA and consequently activated of NOTCH4 signaling pathway in TNBC. In conclusion, these results identified that DCAF13 as a diagnostic marker and therapeutic target for TNBC treatment. Abbreviation: DCAF13: DDB1 and CUL4-associated factor 13; DDB1: DNA-binding protein 1; CUL4: Cullin 4; CRL4, Cullin-ring finger ligase 4; RBP: RNA binding protein; TNBC: triple-negative breast cancer; ARE: AU-rich element; DTX3: Deltex E3 ubiquitin ligase 3; HER2: human epidermal growth factor receptor 2; ER: estrogen receptor; PR: progesterone receptor; PTEN: phosphatase and tensin homolog deleted on chromosome 10; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jiazhe Liu
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| | - Hongchang Li
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| | - Anwei Mao
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| | - Jingfeng Lu
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| | - Jingbo Qie
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China.,Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Gaofeng Pan
- Department of General Surgery, Minhang Hospital, Fudan University , Shanghai, China
| |
Collapse
|
49
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2020; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
50
|
Wijetunga NA, Yu Y, Morris LG, Lee N, Riaz N. The head and neck cancer genome in the era of immunotherapy. Oral Oncol 2020; 112:105040. [PMID: 33197752 DOI: 10.1016/j.oraloncology.2020.105040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
The recent success of immunotherapy in head and neck squamous cell carcinoma (HNSCC) has necessitated a new perspective on the cancer genome. Here we review recent advances in the carcinogenesis and molecular genetics of HNSCC with an eye on their implications for cancer immunity. Newer sequencing technologies have recently facilitated dissection of the complex interaction between the HPV virus, tumor, host factors, and the tumor microenvironment (TME) that help shed light on how the immune system interacts with head and neck malignancies.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|