1
|
Li P, Wu D, Yu X. Targeting dePARylation in cancer therapy. DNA Repair (Amst) 2025; 148:103824. [PMID: 40056493 DOI: 10.1016/j.dnarep.2025.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Poly(ADP-ribosyl)ation (PARylation), a reversible post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs), plays crucial roles in DNA replication and DNA damage repair. Since interfering PARylation induces selective cytotoxicity in tumor cells with homologous recombination defects, PARP inhibitors (PARPi) have significant clinical impacts in treating BRCA-mutant cancer patients. Likewise, dePARylation is also essential for optimal DNA damage response and genomic stability. This process is mediated by a group of dePARylation enzymes, such as poly(ADP-ribose) glycohydrolase (PARG). Currently, several novel PARG inhibitors have been developed and examined in preclinical and clinical studies, demonstrating promising anti-cancer activity distinct from PARP inhibitors. This review discusses the role of dePARylation in genome stability and the potential of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
3
|
Zhan S, Chen F, Huang L, Chen L, Jia H, Ma S, Tang M, Zhou C, Chen Y, Yang Y. The Clinical Pathological Characteristics and Prognostic Relevance of Homologous Recombination Repair Gene Mutations in Ovarian Cancer Patients: A Prospective Cohort Study. Obstet Gynecol Int 2025; 2025:5578247. [PMID: 40166687 PMCID: PMC11957853 DOI: 10.1155/ogi/5578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Backgrouds: Whether homologous recombination repair (HRR) mutation has a differential effect on the prognosis has not been confirmed by current studies. The purpose of this study was to explore the clinical importance, prognostic value, and frequency of pathogenic changes in HRR genes in patients with ovarian cancer (OC). Methods: We analyze information including HRR mutation and clinical prognosis of OC patients both in our cohort and in the TCGA-OV database. Blood and/or tumor samples from 98 women admitted to Shanghai General Hospital between January 2021 and May 2024, and DNA sequencing was performed on these samples for all patients included in this retrospective study. Testing was performed for HRR mutations, including germline BRCA1/2 mutations, and defects in HRR were defined as detrimental mutations within relevant genes. Comprehensive medical records were gathered for all patients, with a follow-up period recorded for 74 of them. Results: HRR pathway genes, including BRCA1/2, CDK12, RAD54L, RAD51, ATM, MRE11, and BRIP2, are highly expressed in FIGO Stages I-II OCs among 482 patients in the TCGA-OV database, and 95.06% samples presented mutations. The alignment diagram analyzed by logistic and Cox regression was derived to investigate HRR genes on overall survival (OS < 763 days) of OC patients. A total of 98 patients were enrolled in our study, with 70 harboring HRR mutations (HRRmt) and 28 having the HRR wild-type (HRRwt). The predominant pathological type across all four patient groups was high-grade serous adenocarcinoma, with similar prevalence in HRRmt (84.30%) versus HRRwt (75%, p=0.360) and BRCAmt (94.20%) versus BRCAwt (74.60%, p=0.151) groups. Survival prediction data were collected from 74 patients, and the HRRmt group (n = 50) exhibited a numerically longer PFS compared to the HRRwt group (n = 24), with 23 months versus 17 months, respectively. A significant disparity was noted in the percentage of patients administered PARPi medication between the HRRmt and HRRwt groups (58.00% vs. 20.20%; p=0.003). Patients in both the HRRmt group (p=0.049) and the BRCAwt group (p=0.046) receiving PARPi treatment have extended PFS. Significant differences were identified between HRRmt and HRRwt groups in the size of the initial debulking surgery achieving R0 status (p=0.005), low CA125 levels (< 1000 U/mL) at diagnosis (p=0.015), and the use of PARP inhibitors (PARPi) (p=0.024) and antiangiogenic drugs (p < 0.001). For patients with HRR mutations, the use of PARPi significantly impacted PFS (p=0.049), and achieving R0 status (p=0.005) significantly influenced PFS. Conclusions: This study indicates that mutations in the HRR gene possess significant potential as a prognostic marker in OC. Our aim was to comprehensively explore how HRR gene mutations, including but not limited to BRCA, might influence the clinical course and survival of patients, shedding light on potential new avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Shitong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Feng Chen
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Lijuan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Lin Chen
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Haoyi Jia
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Shaofei Ma
- Pathology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Min Tang
- Surgery Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Chongzhi Zhou
- Educational Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Yanmin Chen
- Educational Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| |
Collapse
|
4
|
Zhu Z, Shi Y. Poly (ADP-ribose) polymerase inhibitors in cancer therapy. Chin Med J (Engl) 2025; 138:634-650. [PMID: 39932206 PMCID: PMC11925422 DOI: 10.1097/cm9.0000000000003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 03/17/2025] Open
Abstract
ABSTRACT Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have emerged as critical agents for cancer therapy. By inhibiting the catalytic activity of PARP enzymes and trapping them in the DNA, PARPis disrupt DNA repair, ultimately leading to cell death, particularly in cancer cells with homologous recombination repair deficiencies, such as those harboring BRCA mutations. This review delves into the mechanisms of action of PARPis in anticancer treatments, including the inhibition of DNA repair, synthetic lethality, and replication stress. Furthermore, the clinical applications of PARPis in various cancers and their adverse effects as well as their combinations with other therapies and the mechanisms underlying resistance are summarized. This review provides comprehensive insights into the role and mechanisms of PARP and PARPis in DNA repair, with a particular focus on the potential of PARPi-based therapies in precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Zhu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Horak J, Vallusova D, Cumova A, Holy P, Vodicka P, Opattova A. Inhibition of homologous recombination repair by Mirin in ovarian cancer ameliorates carboplatin therapy response in vitro. Mutagenesis 2025; 40:87-95. [PMID: 38099488 DOI: 10.1093/mutage/gead036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2025] Open
Abstract
Chemoresistance poses one of the most significant challenges of cancer therapy. Carboplatin (CbPt) is one of the most used chemotherapeutics in ovarian cancer (OVC) treatment. MRE11 constitutes a part of homologous recombination (HR), which is responsible for the repair of CbPt-induced DNA damage, particularly DNA crosslinks. The study's main aim was to address the role of HR in CbPt chemoresistance in OVC and to evaluate the possibility of overcoming CbPt chemoresistance by Mirin-mediated MRE11 inhibition in an OVC cell line. Lower expression of MRE11 was associated with better overall survival in a cohort of OVC patients treated with platinum drugs (TCGA dataset, P < 0.05). Using in vitro analyses, we showed that the high expression of HR genes drives the CbPt chemoresistance in our CbPt-resistant cell line model. Moreover, the HR inhibition by Mirin not only increased sensitivity to carboplatin (P < 0.05) but also rescued the sensitivity in the CbPt-resistant model (P < 0.05). Our results suggest that MRE11 inhibition with Mirin may represent a promising way to overcome OVC resistance. More therapy options will ultimately lead to better personalized cancer therapy and improvement of patients' survival.
Collapse
Affiliation(s)
- Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | | | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Petr Holy
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
6
|
Wang YW, Allen I, Funingana G, Tischkowitz M, Joko-Fru YW. Predictive biomarkers for the efficacy of PARP inhibitors in ovarian cancer: an updated systematic review. BJC REPORTS 2025; 3:14. [PMID: 40069561 PMCID: PMC11897386 DOI: 10.1038/s44276-025-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 01/09/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND PARP inhibitors are effective in treating ovarian cancer, especially for BRCA1/2 pathogenic variant carriers and those with HRD (homologous recombination deficiency). Concerns over toxicity and costs have led to the search for predictive biomarkers. We present an updated systematic review, expanding on a previous ESMO review on PARP inhibitor biomarkers. METHODS Following ESMO's 2020 review protocol, we extended our search to March 31, 2023, including PubMed and clinical trial data. We also reviewed the reference lists of review articles. We conducted a meta-analysis using a random-effects model to evaluate hazard ratios and assess the predictive potential of biomarkers and the effectiveness of PARP inhibitors in survival. RESULTS We found 375 articles, 103 of which were included after screening (62 primary research, 41 reviews). HRD remained the primary biomarker (95%), particularly BRCA1/2 variants (77%). In the non-HRD category, six articles (10%) introduced innovative biomarkers, including ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11. DISCUSSION Prospective assessment of real-time homologous recombination repair via nuclear RAD51 levels shows promise but needs validation. Emerging biomarkers like ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11 offer potential but require large-scale validation.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Division of Gynaecologic Oncology, Department of Obstetrics and Gynaecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Isaac Allen
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Yvonne Walburga Joko-Fru
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Muzzana M, Broggini M, Damia G. The Landscape of PARP Inhibitors in Solid Cancers. Onco Targets Ther 2025; 18:297-317. [PMID: 40051775 PMCID: PMC11884256 DOI: 10.2147/ott.s499226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
PARP inhibitors are a class of agents that have shown significant preclinical activity in models defective in homologous recombination (HR). The identification of synthetic lethality between HR defects and PARP inhibition led to several clinical trials in tumors with known HR defects (initially mutations in BRCA1/2 genes and subsequently in other genes involved in HR). These studies demonstrated significant responses in breast and ovarian cancers, which are known to have a significant proportion of patients with HR defects. Since the approval of the first PARP inhibitor (PARPi), olaparib, several other inhibitors have been developed, expanding the armamentarium available to clinicians in this setting. The positive results obtained in breast and ovarian cancer have expanded the use of PARPi in other solid tumors with HR defects, including prostate and pancreatic cancer in which these defects have been identified. The clinical trials have demonstrated responses to PARPi which are now also available for the subset of patients with prostate and pancreatic cancer with HR defects. This review summarizes the results obtained in solid tumors with PARPi and their potential use when combined with other agents, including immune checkpoint inhibitors that are likely to further increase the survival of these patients which still needs a dramatic improvement.
Collapse
Affiliation(s)
- Marta Muzzana
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimo Broggini
- Experimental Oncology Department, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Damia
- Experimental Oncology Department, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
Sun C, Li X, Teng Q, Liu X, Song L, Schiöth HB, Wu H, Ma X, Zhang Z, Qi C, Zhang H, Song K, Zhang Q, Kong B. Targeting platinum-resistant ovarian cancer by disrupting histone and RAD51 lactylation. Theranostics 2025; 15:3055-3075. [PMID: 40083924 PMCID: PMC11898288 DOI: 10.7150/thno.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Ovarian cancer is a highly lethal gynecological malignancy with common platinum resistance. Lactylation is involved in multiple biological processes. Thus, we explored the role of histone and non-histone lactylation in platinum resistance, providing a potential therapeutic target to overcome platinum resistance in ovarian cancer. Methods: We utilized gene set enrichment analysis to investigate lactylation-related pathway alterations between platinum-resistant and platinum-sensitive patients from the TCGA cohort. Differential expression of H3K9la was demonstrated using Western blotting and immunohistochemistry. Progression-free and overall survival were determined using a log-rank test. Drug response to cisplatin was evaluated by CCK8, apoptosis flow cytometry, and clonogenic assays in vitro. ChIP-seq and ChIP-qPCR assays were performed to identify downstream targets of H3K9la, which was further confirmed by qRT-PCR. LC-MS/MS was conducted to identify specific lactylation sites for RAD51. Co-IP was used to reveal the interaction between GCN5 and H3K9la or RAD51la. Cell line-derived and patient-derived xenograft (PDX) models of ovarian cancer were constructed for the in vivo experiments. Results: Our study showed elevated histone lactylation, especially of H3K9la, in platinum-resistant ovarian cancer. Moreover, high H3K9la indicated platinum resistance and poor prognosis of ovarian cancer. Impairing H3K9la enhanced response to cisplatin. Mechanistically, H3K9la directly activated RAD51 and BRCA2 expression to facilitate homologous recombination (HR) repair. Furthermore, RAD51K73la enhanced HR repair and subsequently conferred cisplatin resistance. H3K9la and RAD51K73la shared the same upstream regulator, GCN5. Notably, a GCN5 inhibitor remarkably improved the tumor-killing ability of cisplatin in PDX models of ovarian cancer. Conclusions: Our study demonstrated the essential role of histone and RAD51 lactylation in HR repair and platinum resistance. It also identified a potential therapeutic strategy to overcome platinum resistance and improve prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qiuli Teng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Li Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhaoyang Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Changjian Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Haocheng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| |
Collapse
|
9
|
Buckley-Benbow L, Agnarelli A, Bellelli R. 'Where is my gap': mechanisms underpinning PARP inhibitor sensitivity in cancer. Biochem Soc Trans 2025; 53:BST20241633. [PMID: 39927794 DOI: 10.1042/bst20241633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The introduction of poly-ADP ribose polymerase (PARP) inhibitors (PARPi) has completely changed the treatment landscape of breast cancer susceptibility 1-2 (BRCA1-BRCA2)-mutant cancers and generated a new avenue of research in the fields of DNA damage response and cancer therapy. Despite this, primary and secondary resistances to PARPi have become a challenge in the clinic, and novel therapies are urgently needed to address this problem. After two decades of research, a unifying model explaining sensitivity of cancer cells to PARPi is still missing. Here, we review the current knowledge in the field and the increasing evidence pointing to a crucial role for replicative gaps in mediating sensitization to PARPi in BRCA-mutant and 'wild-type' cancer cells. Finally, we discuss the challenges to be addressed to further improve the utilization of PARPi and tackle the emergence of resistance in the clinical context.
Collapse
Affiliation(s)
- Lauryn Buckley-Benbow
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Alessandro Agnarelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| |
Collapse
|
10
|
Kono T, Ozawa H. A comprehensive review of current therapeutic strategies in cancers targeting DNA damage response mechanisms in head and neck squamous cell cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189255. [PMID: 39746459 DOI: 10.1016/j.bbcan.2024.189255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The DNA damage response (DDR) is an essential mechanism for maintaining genomic stability. Although DDR-targeted therapeutic strategies are being developed in several familial cancers, evaluation of their utility in head and neck squamous cell cancer (HNSCC) is lagging. This review briefly summarizes the mechanisms of DDR and the current knowledge on discovering DDR-related predictive biomarkers in HNSCC. This review also presents novel therapeutic strategies targeting DDR pathways for HNSCC based on the synthetic lethal concept. The combination of DDR inhibitors with cytotoxic treatments such as radiotherapy, chemotherapy, and immune checkpoint inhibitors is being evaluated, and several clinical trials are ongoing in patients with HNSCC. While DDR inhibitors are considered promising treatment options, resistance to these drugs is frequently observed, and their mechanisms are currently active research areas. A better understanding of the correlation between DDR pathways and cancer biology provides new therapeutic strategies for personalized medicine in HNSCC.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan.
| | - Hiroyuki Ozawa
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan
| |
Collapse
|
11
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
12
|
Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, Colombo N, DeFazio A, McNeish IA, Nogueira-Rodrigues A, Oaknin A, Pignata S, Pujade-Lauraine É, Rouleau É, Ryška A, Van Der Merwe N, Van Gorp T, Vergote I, Weichert W, Wu X, Ray-Coquard I, Pujol P. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur J Cancer 2025; 215:115169. [PMID: 39693891 DOI: 10.1016/j.ejca.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Poly (ADP ribose) polymerase inhibitors (PARPis) are a treatment option for patients with advanced high-grade serous or endometrioid ovarian carcinoma (OC). Recent guidelines have clarified how homologous recombination deficiency (HRD) may influence treatment decision-making in this setting. As a result, numerous companion diagnostic assays (CDx) have been developed to identify HRD. However, the optimal HRD testing strategy is an area of debate. Moreover, recently published clinical and translational data may impact how HRD status may be used to identify patients likely to benefit from PARPi use. We aimed to extensively compare available HRD CDx and establish a worldwide expert consensus on HRD testing in primary and recurrent OC. METHODS A group of 99 global experts from 31 different countries was formed. Using a modified Delphi process, the experts aimed to establish consensus statements based on a systematic literature search and CDx information sought from investigators, companies and/or publications. RESULTS Technical information, including analytical and clinical validation, were obtained from 14 of 15 available HRD CDx (7 academic; 7 commercial). Consensus was reached on 36 statements encompassing the following topics: 1) the predictive impact of HRD status on PARPi use in primary and recurrent OC; 2) analytical and clinical validation requirements of HRD CDx; 3) resource-stratified HRD testing; and 4) how future CDx may include additional approaches to help address unmet testing needs. CONCLUSION This manuscript provides detailed information on currently available HRD CDx and up-to-date guidance from global experts on HRD testing in patients with primary and recurrent OC.
Collapse
Affiliation(s)
- Stanislas Quesada
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Department of Cancer Genetics, University Hospital of Montpellier, Montpellier, France; Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France
| | - Frédérique Penault-Llorca
- Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Department of Biology and Pathology, Centre de Lutte Contre le Cancer Jean Perrin, Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, UMR 1240 INSERM-UCA, Clermont-Ferrand, France; Cours St Paul, Saint Paul, Réunion, France
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain; European Society of Pathology (ESP), Belgium
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - Massimo Barberis
- Division of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Angélica Nogueira-Rodrigues
- Federal University MG, Brazilian Group of Gynecologic Oncology (EVA), Latin American Cooperative Oncology Group (LACOG), Oncoclínicas, DOM Oncologia, Brazil
| | - Ana Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori di Napoli, IRCCS Fondazione Pascale, Napoli, Italy
| | - Éric Pujade-Lauraine
- Association de Recherche Cancers Gynécologiques - Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'ovaire et du Sein (ARCAGY-GINECO), Paris, France
| | - Étienne Rouleau
- Coordinator of Gen&Tiss GFCO, Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France; Cancer Genetics Laboratory, Medical Biology and Pathology Department, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Aleš Ryška
- European Society of Pathology (ESP), Belgium; The Fingerland Department of Pathology, Faculty of Medicine, Charles University and University Hospital, Hradec Kralove, Czech Republic
| | - Nerina Van Der Merwe
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Toon Van Gorp
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Ignace Vergote
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Wilko Weichert
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Isabelle Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Medical Oncology, Centre Léon Bérard and Université Claude Bernard Lyon, Lyon, France
| | - Pascal Pujol
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Center for Ecological and Evolutionary Cancer Research (CREEC), Montpellier University, Montpellier, France.
| |
Collapse
|
13
|
Su H, Wang Y, Chao X, Wu H, You Y, Zhao S, Wang F, Sun B, Zhang Z, Wu M, Zhao Z, Li L. The impact of homologous recombination deficiency on the prognosis of epithelial ovarian cancer. Clin Transl Med 2025; 15:e70143. [PMID: 39724505 DOI: 10.1002/ctm2.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Haiqi Su
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, China
| | - Xiaopei Chao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Yan You
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Shuru Zhao
- Shenzhen Byoryn Technology Co., Ltd, No. 14, Jinxiu Road, Shenzhen, China
| | - Feiyue Wang
- Shenzhen Byoryn Technology Co., Ltd, No. 14, Jinxiu Road, Shenzhen, China
| | - Bao Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhen Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ming Wu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd, No. 14, Jinxiu Road, Shenzhen, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
14
|
Tan JZC, Zhang Z, Goh HX, Ngeow J. BRCA and Beyond: Impact on Therapeutic Choices Across Cancer. Cancers (Basel) 2024; 17:8. [PMID: 39796639 PMCID: PMC11718952 DOI: 10.3390/cancers17010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Identifying patients with gBRCAm is crucial to facilitate screening strategies, preventive measures and the usage of targeted therapeutics in their management. This review examines the evidence for the latest predictive and therapeutic approaches in BRCA-associated cancers. CLINICAL DESCRIPTION Data supports the use of adjuvant olaparib in patients with gBRCAm high-risk HER2-negative breast cancer. In advanced gBRCAm HER2-negative breast cancer, the PARPis talazoparib and olaparib have demonstrated benefit over standard chemotherapy. In ovarian cancer, olaparib, niraparib or rucaparib can be used as monotherapy in frontline maintenance. Olaparib and bevacizumab as a combination can also be used as frontline maintenance. In the relapsed platinum-sensitive setting, olaparib, niraparib and rucaparib are effective maintenance options in BRCAm patients who are PARPi naive. Both olaparib and rucaparib are effective options in BRCAm metastatic castrate-resistant prostate cancer (mCRPC). Evidence also exists for the benefit of PARPi combinations in mCRPC. In metastatic pancreatic cancer, olaparib can be used in gBRCAm patients who are responding to platinum chemotherapy. However, there may be a development of PARPi resistance. Understanding the pathophysiology that contributes to such resistance may allow the development of novel therapeutics. Combination therapy appears to have promising results in emerging trials. Seeking avenues for subsidised genetic testing can reduce the total costs of cancer management, leading to improve detection rates. CONCLUSION Identifying breast, ovarian, pancreatic and prostate cancer patients with gBRCAm plays a crucial predictive role in selecting those who will benefit significantly from PARPi therapy. The use of PARPi in gBRCAm HBOC-related cancers has resulted in significant survival benefits. Beyond BRCA1/2, HRR gene assessment and the consideration of other cancer predisposition syndromes may allow more patients to be eligible for and benefit from targeted therapies.
Collapse
Affiliation(s)
- Joshua Zhi Chien Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
| | - Zewen Zhang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Hui Xuan Goh
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 11 Mandalay Rd, Singapore 308232, Singapore
| |
Collapse
|
15
|
Kekeeva T, Dudina I, Andreeva Y, Tanas A, Kalinkin A, Musatova V, Chernorubashkina N, Khokhlova S, Tikhomirova T, Volkonsky M, Kutsev S, Zaletaev D, Strelnikov V. Molecular Subgroups of HRD Positive Ovarian Cancer and Their Prognostic Significance. Int J Mol Sci 2024; 25:13549. [PMID: 39769312 PMCID: PMC11677867 DOI: 10.3390/ijms252413549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Homologous recombination repair deficiency (HRD) is involved in the development of high-grade serous ovarian carcinoma (HGSOC) and its elevated sensitivity to platinum-based chemotherapy. To investigate the heterogeneity of the HRD-positive HGSOC we evaluated the HRD status, including BRCA mutations, genomic scar score, and methylation status of BRCA1/2 genes in 352 HGSOC specimens. We then divided the HRD-positive cohort into three molecular subgroups, the BRCA mutation cohort (BRCA+), BRCA1 methylation cohort (Meth+), and the rest of the HRD+ cohort (HRD+BRCA-Meth-), and evaluated their first-line chemotherapy response, benefit from olaparib, and progression-free survival (PFS). HRD-positive status was detected in 65% (228/352) of samples. The first group, BRCA+, accounted for 45% (102/228) of HRD positive cases and showed the best outcome in platinum therapy (ORR 96%), the highest olaparib benefit (p = 0.006) and the highest median PFS (46 months). The frequency of the second cohort, Meth+, among HRD-positive patients was 23% (52/228). Patients with Meth+ HGSOC showed a significantly poorer outcome, with a median PFS of 19 months, a significantly lower ORR to platinum therapy (84%) and a modest, but not significant, benefit from olaparib maintenance. The third HRD+BRCA-Meth- group accounted for 32% (74/228) of HRD-positive patients and showed an ORR to platinum therapy similar to that of the BRCA+ group (90%), a higher, but not statistically significant, benefit from olaparib and a median PFS of 23 months. In conclusion, Meth+ subgroup had poor outcomes in terms of chemotherapy response, olaparib benefit, and PFS compared to the other HRD+ subgroups, requiring a more thorough follow-up.
Collapse
Affiliation(s)
- Tatiana Kekeeva
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Irina Dudina
- Day Hospital No. 1, Moscow Municipal Oncological Hospital No. 62, 143515 Moscow, Russia
| | - Yulia Andreeva
- Department of Pathology, Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Alexander Tanas
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Alexey Kalinkin
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Victoria Musatova
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Natalia Chernorubashkina
- Department of Surgical Methods of Treatment No. 9, State Budgetary Healthcare Institution Regional Oncological Dispensary, 664035 Irkutsk, Russia
| | - Svetlana Khokhlova
- Oncological Department of Medical Treatment, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after V. I. Kulakov, 117997 Moscow, Russia
| | - Tatiana Tikhomirova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115522 Moscow, Russia
| | - Mikhail Volkonsky
- Day Hospital No. 1, Moscow Municipal Oncological Hospital No. 62, 143515 Moscow, Russia
| | - Sergey Kutsev
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Dmitry Zaletaev
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| | - Vladimir Strelnikov
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, 115522 Moscow, Russia; (A.T.); (V.M.); (D.Z.); (V.S.)
| |
Collapse
|
16
|
Awasthi S, Dobrolecki LE, Sallas C, Zhang X, Li Y, Khazaei S, Ghosh S, Jeter CR, Liu J, Mills GB, Westin SN, Lewis MT, Peng W, Sood AK, Yap TA, Yi SS, McGrail DJ, Sahni N. UBA1 inhibition sensitizes cancer cells to PARP inhibitors. Cell Rep Med 2024; 5:101834. [PMID: 39626673 PMCID: PMC11722100 DOI: 10.1016/j.xcrm.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Therapeutic strategies targeting the DNA damage response, such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), have revolutionized cancer treatment in tumors deficient in homologous recombination (HR). However, overcoming innate and acquired resistance to PARPi remains a significant challenge. Here, we employ a genome-wide CRISPR knockout screen and discover that the depletion of ubiquitin-activating enzyme E1 (UBA1) enhances sensitivity to PARPi in HR-proficient ovarian cancer cells. We show that silencing or pharmacological inhibition of UBA1 sensitizes multiple cell lines and organoid models to PARPi. Mechanistic studies uncover that UBA1 inhibition not only impedes HR repair to sensitize cells to PARP inhibition but also increases PARylation, which may subsequently be targeted by PARP inhibition. In vivo experiments using patient-derived xenografts demonstrate that combining PARP and UBA1 inhibition provided significant survival benefit compared to individual therapies with no detectable signs of toxicity, establishing this combination approach as a promising strategy to extend PARPi benefit.
Collapse
Affiliation(s)
- Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sima Khazaei
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Ghosh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Division of Oncological Science, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Kozłowska E, Haltia UM, Puszynski K, Färkkilä A. Mathematical modeling framework enhances clinical trial design for maintenance treatment in oncology. Sci Rep 2024; 14:29721. [PMID: 39613825 DOI: 10.1038/s41598-024-80768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Clinical trials are costly and time-intensive endeavors, with a high rate of drug candidate failures. Moreover, the standard approaches often evaluate drugs under a limited number of protocols. In oncology, where multiple treatment protocols can yield divergent outcomes, addressing this issue is crucial. Here, we present a computational framework that simulates clinical trials through a combination of mathematical and statistical models. This approach offers a means to explore diverse treatment protocols efficiently and identify optimal strategies for oncological drug administration. We developed a computational framework with a stochastic mathematical model as its core, capable of simulating virtual clinical trials closely recapitulating the clinical scenarios. Testing our framework on the landmark SOLO-1 clinical trial investigating Poly-ADP-Ribose Polymerase maintenance treatment in high-grade serous ovarian cancer, we demonstrate that managing toxicity through treatment interruptions or dose reductions does not compromise treatment's clinical benefits. Additionally, we provide evidence suggesting that further reduction of hematological toxicity could significantly improve the clinical outcomes. The value of this computational framework lies in its ability to expedite the exploration of new treatment protocols, delivering critical insights pivotal to shaping the landscape of upcoming clinical trials.
Collapse
Affiliation(s)
- Emilia Kozłowska
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland.
| |
Collapse
|
18
|
Guo H, Lu R, Yuan S, Xu F, Huang C, Li J, Ge W, Geng Y, Zhang Y, Liu Q, Wang P, Li W. Activation of cGAS confers PARP inhibitor resistance in ovarian cancer via the TBK1-IRF3 axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:429-438. [PMID: 39660334 PMCID: PMC11626293 DOI: 10.62347/xopn6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES Ovarian cancer is a gynecologic tumor with the highest mortality rate worldwide. Nonetheless, chemoresistance remains a significant obstacle in treating ovarian cancer. PARP inhibitors (PARPis) are effective drugs approved for maintenance therapy in ovarian cancer. However, the development of natural or acquired resistance to PARPis poses a major challenge for ovarian cancer treatment. METHODS Public database analysis of cGAS expression in relation to PARPi resistance. cCK-8 assay was used to determine cell survival. qPCR assay with Western Blot was implemented to determine gene expression and protein activation status. RESULTS Analysis of public databases revealed significantly higher cGAS expression in Olaparib-resistant cells and in recurrent ovarian tumors. Furthermore, high cGAS expression significantly promoted Olaparib tolerance in ovarian cancer cells. Our findings demonstrate that Olaparib treatment induces activation of the TBK1-IRF3 signaling axis downstream of cGAS, leading to the production of type I interferon. This, in turn, activates NF-κB and IL-6-STAT3 signaling, contributing to inflammation and PARPi resistance. Consequently, targeting cGAS effectively counteracts Olaparib resistance and enhances its efficacy in suppressing cancer cell growth, ultimately leading to cell death. CONCLUSIONS Our study highlights the crucial function of cGAS signaling in mediating PARPi resistance in ovarian cancer cells. These findings provide valuable novel therapeutic strategies targeting cGAS to improve the efficacy of PARPi-based treatments for ovarian cancer.
Collapse
Affiliation(s)
- Hongxia Guo
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Rui Lu
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Shuibin Yuan
- Jiangsu Yinfeng Science and Technology AssociationNo. 7, Yongfeng Avenue, Qinhuai District, Nanjing, Jiangsu, China
| | - Falin Xu
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Chunyan Huang
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Jingzhi Li
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Wuqiong Ge
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Yue Geng
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Yan Zhang
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Qiong Liu
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| | - Peng Wang
- Jiangsu Yinfeng Science and Technology AssociationNo. 7, Yongfeng Avenue, Qinhuai District, Nanjing, Jiangsu, China
| | - Wenqing Li
- Shuyang Hospital of Traditional Chinese MedicineNo. 28, Shanghai Middle Road, Shuyang County, Suqian, Jiangsu, China
| |
Collapse
|
19
|
Lin X, Soni A, Hessenow R, Sun Y, Mladenov E, Guberina M, Stuschke M, Iliakis G. Talazoparib enhances resection at DSBs and renders HR-proficient cancer cells susceptible to Polθ inhibition. Radiother Oncol 2024; 200:110475. [PMID: 39147034 DOI: 10.1016/j.radonc.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. The purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells. METHODS AND MATERIALS Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis. RESULTS Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib, or rucaparib were ineffective radiosensitizers under our experimental conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also back up each other. CONCLUSION We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. The combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.
Collapse
Affiliation(s)
- Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Razan Hessenow
- West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Yanjie Sun
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
20
|
Bi R, Chen L, Huang M, Qiao Z, Li Z, Fan G, Wang Y. Emerging strategies to overcome PARP inhibitors' resistance in ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189221. [PMID: 39571765 DOI: 10.1016/j.bbcan.2024.189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The utilization of PARP inhibitors (PARPis) has significantly improved the prognosis for ovarian cancer patients. However, as the use of PARPis increases, the issue of PARPi resistance has become more prominent. Prolonged usage of PARPis can lead to the development of resistance in ovarian cancer, often mediated by mechanisms such as homologous recombination (HR) recovery, ultimately resulting in cancer relapse. Overcoming PARPi resistance in ovarian cancer is a pressing concern, aiming to enhance the clinical benefits of PARPi treatment and delay disease recurrence. Here, we summarize the mechanisms underlying PARPi resistance, methods for analyzing resistance, and strategies for overcoming it. Our goal is to inspire the development of more cost-effective and convenient methods for analyzing resistance mechanisms, as well as safer and more effective strategies to overcome resistance. These advancements can contribute to developing personalized approaches for treating ovarian cancer.
Collapse
Affiliation(s)
- Ruomeng Bi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Qiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Li
- Clinical Research Unit, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Yang D, Liu X, Yang Y, Long Y, Nan D, Shi B, Wang J, Yang M, Cong H, Xing L, Zhou F, Yuan Q, Ta N, Zhang Y, Ma R, Liu F, Liu S. Pharmacological USP2 targeting suppresses ovarian cancer growth by potentiating apoptosis and ferroptosis. Arch Biochem Biophys 2024; 762:110193. [PMID: 39486565 DOI: 10.1016/j.abb.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Ovarian cancer is a frequently observed type of gynaecologic malignancy generally associated with poor prognosis around the world. Ubiquitin-specific proteases (USPs) form the largest subfamily of deubiquitylating enzymes and have emerged as potential therapeutic targets against human cancers. Through a systematic analysis of the prognostic significance of USP expression, USP2 was found to be inversely correlated with patient survival in ovarian cancer. Accordingly, we investigated the effects of pharmacological inhibition of USP2 on ovarian cancer by exploiting its small molecule inhibitor ML364. Our findings show that ML364 effectively hindered ovarian cancer growth and migration using a series of in vitro assays. In addition to apoptosis induction, ML364 also sensitized ovarian cancer cells to ferroptosis. Mechanistically, ML364 treatment resulted in cyclin D1 downregulation, increased poly (ADP-ribose) polymerase (PARP) cleavage, and elevated ROS levels in ovarian cancer cells. Collectively, our findings suggest USP2 as a potential therapeutic target in ovarian cancer, and hence, its pharmacological inhibition warrants further investigation.
Collapse
Affiliation(s)
- Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiuxiu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Department of Gynecology, Zhongshan Hospital of Dalian University, Dalian, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu Long
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ding Nan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bo Shi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinhao Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mei Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haotian Cong
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Xing
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Feixue Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianhui Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Ta
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilan Ma
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Fang Liu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
22
|
Nakao T, Harano K, Wakabayashi M, Naito Y, Tanabe H, Mukohara T. Efficacy of a platinum-based chemotherapy rechallenge for platinum-sensitive recurrence after PARP inhibitor maintenance. Gynecol Oncol Rep 2024; 55:101482. [PMID: 39252764 PMCID: PMC11381465 DOI: 10.1016/j.gore.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Platinum-free interval (PFI) is the period from the end of platinum-based chemotherapy to the date of recurrence. If the PFI is > 6 months, a platinum-based chemotherapy rechallenge is considered; however, its efficacy after poly adenosine 5'-diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy is unknown. This study aimed to examine the efficacy of a platinum-based chemotherapy rechallenge after PARP inhibitor therapy. Methods We retrospectively evaluated patients with ovarian cancer with a PFI≥6 months with PARP inhibitor maintenance therapy, receiving platinum-based chemotherapy. Duration of PARP inhibitor therapy, best response to subsequent platinum chemotherapy rechallenge, and clinical characteristics were collected from medical records. Tumor response was assessed according to RECIST 1.1. Correlations were calculated using Spearman's correlation coefficients. Results Among the 10 included patients, seven (70 %) received PARP inhibitors after primary chemotherapy, and three (30 %) received chemotherapy for platinum-sensitive relapse. One and five patients harbored a germline BRCA1 and BRCA wild-type mutations, respectively, and two had homologous recombination proficiency. The median PFI was 303.5 (182-602) days, and PARP inhibitor therapy duration was 249 (147-570) days. Platinum chemotherapy rechallenge efficacy was complete and partial response and stable disease in one (10 %), six (60 %), and three (30 %) patients, respectively. The longer the duration of PARP inhibitor treatment, better the response to platinum agents (Spearman correlation coefficient 0.284, p = 0.0288). Conclusion Platinum-based chemotherapy rechallenge is reasonable for patients with platinum-sensitive disease, using the traditional PFI cutoff of 6 months, even when the PFI is obtained with a maintenance PARP inhibitor.
Collapse
Affiliation(s)
- Takehiro Nakao
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Tanabe
- Department of Gynecology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
23
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Xu L, Liddell B, Nesic K, Geissler F, Ashwood L, Wakefield M, Scott C, Waddell N, Kondrashova O. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. NAR Cancer 2024; 6:zcae033. [PMID: 39055334 PMCID: PMC11270467 DOI: 10.1093/narcan/zcae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.
Collapse
Affiliation(s)
- Lijun Xu
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Brett Liddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren M Ashwood
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Waddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
27
|
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024; 14:1405361. [PMID: 39220639 PMCID: PMC11361952 DOI: 10.3389/fonc.2024.1405361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
28
|
Nesic K, Krais JJ, Wang Y, Vandenberg CJ, Patel P, Cai KQ, Kwan T, Lieschke E, Ho GY, Barker HE, Bedo J, Casadei S, Farrell A, Radke M, Shield-Artin K, Penington JS, Geissler F, Kyran E, Betsch R, Xu L, Zhang F, Dobrovic A, Olesen I, Kristeleit R, Oza A, McNeish I, Ratnayake G, Traficante N, DeFazio A, Bowtell DDL, Harding TC, Lin K, Swisher EM, Kondrashova O, Scott CL, Johnson N, Wakefield MJ. BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance. Mol Cancer 2024; 23:158. [PMID: 39103848 PMCID: PMC11299415 DOI: 10.1186/s12943-024-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024] Open
Abstract
PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Medicine Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Pooja Patel
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tanya Kwan
- Clovis Oncology Inc., San Francisco, CA, USA
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Holly E Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Bedo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Andrew Farrell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jocelyn S Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lijun Xu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Fan Zhang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Alexander Dobrovic
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Inger Olesen
- The Andrew Love Cancer Centre, Barwon Health, Geelong, VIC, Australia
| | - Rebecca Kristeleit
- Department of Oncology, Guys and St Thomas' NHS Foundation Trust, London, UK
- National Institute for Health Research, University College London Hospitals Clinical Research Facility, London, UK
| | - Amit Oza
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Iain McNeish
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Nadia Traficante
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, VIC, Australia
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney, NSW, Australia
- The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Gynecological Oncology, Westmead Hospital, Western Sydney Local Health District, New South Wales, Australia
| | - David D L Bowtell
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, VIC, Australia
| | | | - Kevin Lin
- Clovis Oncology Inc., San Francisco, CA, USA
| | | | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Royal Women's Hospital, Parkville, VIC, Australia.
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, VIC, Australia.
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia.
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Liu JF, Xiong N, Wenham RM, Wahner-Hendrickson A, Armstrong DK, Chan N, O'Malley DM, Lee JM, Penson RT, Cristea MC, Abbruzzese JL, Matsuo K, Olawaiye AB, Barry WT, Cheng SC, Polak M, Swisher EM, Shapiro GI, Kohn EC, Ivy SP, Matulonis UA. A phase 2 trial exploring the significance of homologous recombination status in patients with platinum sensitive or platinum resistant relapsed ovarian cancer receiving combination cediranib and olaparib. Gynecol Oncol 2024; 187:105-112. [PMID: 38759516 PMCID: PMC11309890 DOI: 10.1016/j.ygyno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Combination cediranib/olaparib has reported activity in relapsed ovarian cancer. This phase 2 trial investigated the activity of cediranib/olaparib in relapsed ovarian cancer and its association with homologous recombination deficiency (HRD). METHODS Seventy patients were enrolled to cohorts of either platinum-sensitive or platinum-resistant ovarian cancer and received olaparib tablets 200 mg twice daily and cediranib tablets 30 mg once daily under a continuous dosing schedule. HRD testing was performed on pre-treatment, on-treatment and archival biopsies by sequencing key homologous recombination repair (HRR) genes and by genomic LOH analysis. The primary objective for the platinum-sensitive cohort was the association of HRD, defined as presence of HRR gene mutation, with progression-free survival (PFS). The primary objective for the platinum-resistant cohort was objective response rate (ORR), with a key secondary endpoint evaluating the association of HRD status with activity. RESULTS In platinum-sensitive ovarian cancer (N = 35), ORR was 77.1% (95% CI 59.9-89.6%) and median PFS was 16.4 months (95% CI 13.2-18.6). Median PFS in platinum-sensitive HRR-HRD cancers (N = 22) was 16.8 months (95% CI 11.3-18.6), and 16.4 months (95% CI 9.4-NA) in HRR-HR proficient cancers (N = 13; p = 0.57). In platinum-resistant ovarian cancer (N = 35), ORR was 22.9% (95% CI 10.4-40.1%) with median PFS 6.8 months (95% CI 4.2-9.1). Median PFS in platinum-resistant HRR-HRD cancers (N = 7) was 10.5 months (95% CI 3.6-NA) and 5.6 months (95% CI 3.6-7.6) in HRR-HR proficient cancers (N = 18; p = 0.23). CONCLUSIONS Cediranib/olaparib had clinical activity in both platinum-sensitive and -resistant ovarian cancer. Presence of HRR gene mutations was not associated with cediranib/olaparib activity in either setting.
Collapse
Affiliation(s)
- Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.
| | - Niya Xiong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Robert M Wenham
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL, United States of America
| | | | - Deborah K Armstrong
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nancy Chan
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America
| | - David M O'Malley
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States of America
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Richard T Penson
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mihaela C Cristea
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America
| | - James L Abbruzzese
- Department of Medical Oncology, Duke Cancer Institute, Durham, NC, United States of America
| | - Koji Matsuo
- Department of Obstetrics & Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States of America
| | - Alexander B Olawaiye
- Department of OBGYN, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - William T Barry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Su-Chun Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Madeline Polak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States of America
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America; Clinical Investigations Branch, NCI Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States of America
| | - S Percy Ivy
- Investigational Drug Branch, NCI Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States of America
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| |
Collapse
|
30
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
31
|
Liu Z, Jiang H, Lee SY, Kong N, Chan YW. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep 2024; 43:114464. [PMID: 38985669 DOI: 10.1016/j.celrep.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
Collapse
Affiliation(s)
- Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Yuen Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
32
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
33
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
34
|
Wu S, Yao X, Sun W, Jiang K, Hao J. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer. Genes Chromosomes Cancer 2024; 63:e23243. [PMID: 38747337 DOI: 10.1002/gcc.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.
Collapse
Affiliation(s)
- Shuyi Wu
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Xuanjie Yao
- The Fourth Clinical Medical College, Zhejiang Chinese Medicine University, HangZhou, China
| | - Weiwei Sun
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Kaitao Jiang
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Jie Hao
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| |
Collapse
|
35
|
Piombino C, Pipitone S, Tonni E, Mastrodomenico L, Oltrecolli M, Tchawa C, Matranga R, Roccabruna S, D’Agostino E, Pirola M, Bacchelli F, Baldessari C, Baschieri MC, Dominici M, Sabbatini R, Vitale MG. Homologous Recombination Repair Deficiency in Metastatic Prostate Cancer: New Therapeutic Opportunities. Int J Mol Sci 2024; 25:4624. [PMID: 38731844 PMCID: PMC11083429 DOI: 10.3390/ijms25094624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.
Collapse
Affiliation(s)
- Claudia Piombino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Elena Tonni
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Luciana Mastrodomenico
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Cyrielle Tchawa
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Rossana Matranga
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Sara Roccabruna
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Elisa D’Agostino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Marta Pirola
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Francesca Bacchelli
- Clinical Trials Office, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (S.P.); (E.T.); (L.M.); (M.O.); (C.T.); (R.M.); (S.R.); (E.D.); (M.P.); (C.B.); (M.D.); (R.S.)
| |
Collapse
|
36
|
Torres-Esquius S, Llop-Guevara A, Gutiérrez-Enríquez S, Romey M, Teulé À, Llort G, Herrero A, Sánchez-Henarejos P, Vallmajó A, González-Santiago S, Chirivella I, Cano JM, Graña B, Simonetti S, Díaz de Corcuera I, Ramon y Cajal T, Sanz J, Serrano S, Otero A, Churruca C, Sánchez-Heras AB, Servitja S, Guillén-Ponce C, Brunet J, Denkert C, Serra V, Balmaña J. Prevalence of Homologous Recombination Deficiency Among Patients With Germline RAD51C/D Breast or Ovarian Cancer. JAMA Netw Open 2024; 7:e247811. [PMID: 38648056 PMCID: PMC11036141 DOI: 10.1001/jamanetworkopen.2024.7811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
Importance RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.
Collapse
Affiliation(s)
- Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Translational Medicine, DNA Damage Response Department, AstraZeneca, Barcelona, Spain
| | | | - Marcel Romey
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Àlex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gemma Llort
- Department of Medical Oncology, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Ana Herrero
- Department of Medical Oncology, Hospital Miguel Servet de Zaragoza, Zaragoza, Spain
| | | | - Anna Vallmajó
- Genetic Counseling Unit, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Isabel Chirivella
- Cancer Genetic Counseling, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Juana Maria Cano
- Department of Medical Oncology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Begoña Graña
- Department of Medical Oncology, Xerencia de Xestión Integrada de A Coruña, Coruña, Spain
| | - Sara Simonetti
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Teresa Ramon y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Judit Sanz
- Unidad de Cáncer Familiar y Hereditario, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | - Sara Serrano
- Department of Medical Oncology, Institute of Oncology of Southern Catalonia (IOCS), Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Andrea Otero
- Institute of Oncology and Molecular Medicine of Asturias (IMOMA) S. A., Oviedo, Spain
| | - Cristina Churruca
- Department of Medical Oncology, Hospital Universitario Donostia, San Sebastián, Gipuzkoa, Spain
| | - Ana Beatriz Sánchez-Heras
- Cancer Genetic Counselling Unit, Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain
| | - Sonia Servitja
- Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Carmen Guillén-Ponce
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
37
|
Harvey-Jones E, Raghunandan M, Robbez-Masson L, Magraner-Pardo L, Alaguthurai T, Yablonovitch A, Yen J, Xiao H, Brough R, Frankum J, Song F, Yeung J, Savy T, Gulati A, Alexander J, Kemp H, Starling C, Konde A, Marlow R, Cheang M, Proszek P, Hubank M, Cai M, Trendell J, Lu R, Liccardo R, Ravindran N, Llop-Guevara A, Rodriguez O, Balmana J, Lukashchuk N, Dorschner M, Drusbosky L, Roxanis I, Serra V, Haider S, Pettitt SJ, Lord CJ, Tutt ANJ. Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann Oncol 2024; 35:364-380. [PMID: 38244928 DOI: 10.1016/j.annonc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Resistance to therapies that target homologous recombination deficiency (HRD) in breast cancer limits their overall effectiveness. Multiple, preclinically validated, mechanisms of resistance have been proposed, but their existence and relative frequency in clinical disease are unclear, as is how to target resistance. PATIENTS AND METHODS Longitudinal mutation and methylation profiling of circulating tumour (ct)DNA was carried out in 47 patients with metastatic BRCA1-, BRCA2- or PALB2-mutant breast cancer treated with HRD-targeted therapy who developed progressive disease-18 patients had primary resistance and 29 exhibited response followed by resistance. ctDNA isolated at multiple time points in the patient treatment course (before, on-treatment and at progression) was sequenced using a novel >750-gene intron/exon targeted sequencing panel. Where available, matched tumour biopsies were whole exome and RNA sequenced and also used to assess nuclear RAD51. RESULTS BRCA1/2 reversion mutations were present in 60% of patients and were the most prevalent form of resistance. In 10 cases, reversions were detected in ctDNA before clinical progression. Two new reversion-based mechanisms were identified: (i) intragenic BRCA1/2 deletions with intronic breakpoints; and (ii) intragenic BRCA1/2 secondary mutations that formed novel splice acceptor sites, the latter being confirmed by in vitro minigene reporter assays. When seen before commencing subsequent treatment, reversions were associated with significantly shorter time to progression. Tumours with reversions retained HRD mutational signatures but had functional homologous recombination based on RAD51 status. Although less frequent than reversions, nonreversion mechanisms [loss-of-function (LoF) mutations in TP53BP1, RIF1 or PAXIP1] were evident in patients with acquired resistance and occasionally coexisted with reversions, challenging the notion that singular resistance mechanisms emerge in each patient. CONCLUSIONS These observations map the prevalence of candidate drivers of resistance across time in a clinical setting, information with implications for clinical management and trial design in HRD breast cancers.
Collapse
Affiliation(s)
- E Harvey-Jones
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK; The City of London Cancer Research UK Centre at King's College London, UK
| | - M Raghunandan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - L Robbez-Masson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - L Magraner-Pardo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - T Alaguthurai
- The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK
| | | | - J Yen
- Guardant Health Inc., Redwood City, USA
| | - H Xiao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Frankum
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - F Song
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Yeung
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - T Savy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - A Gulati
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - H Kemp
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - C Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - A Konde
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Marlow
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - M Cheang
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - P Proszek
- Clinical Genomics, The Royal Marsden Hospital, London, UK
| | - M Hubank
- Clinical Genomics, The Royal Marsden Hospital, London, UK
| | - M Cai
- Guardant Health Inc., Redwood City, USA
| | - J Trendell
- The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK
| | - R Lu
- The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK
| | - R Liccardo
- The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK
| | - N Ravindran
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - O Rodriguez
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - J Balmana
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | - I Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - V Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - S Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S J Pettitt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - A N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The Breast Cancer Now Research Unit, Guy's Hospital Cancer Centre, King's College London, UK; The City of London Cancer Research UK Centre at King's College London, UK.
| |
Collapse
|
38
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
39
|
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O, Ray-Coquard I. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. Front Oncol 2024; 14:1354427. [PMID: 38544832 PMCID: PMC10965616 DOI: 10.3389/fonc.2024.1354427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
BRCA1/2 genes are part of homologous recombination (HR) DNA repair pathways in charge of error-free double-strand break (DSB) repair. Loss-of-function mutations of BRCA1/2 genes have been associated for a long time with breast and ovarian cancer hereditary syndrome. Recently, polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) have revolutionized the therapeutic landscape of BRCA1/2-mutated tumors, especially of BRCA1/2 high-grade serous ovarian cancer (HGSC), taking advantage of HR deficiency through the synthetic lethality concept. However, PARPi efficiency differs among patients, and most of them will develop resistance, particularly in the relapse setting. In the current proposal, we aim to review primary and secondary resistance to PARPi in HGSC owing to BRCA1/2 alterations. Of note, as several mechanisms of primary or secondary resistance to PARPi have been described, BRCA1/2 reversion mutations that restore HR pathways are by far the most reported. First, the type and location of the BRCA1/2 primary mutation have been associated with PARPi and platinum-salt sensitivity and impact the probability of the occurrence and the type of secondary reversion mutation. Furthermore, the presence of multiple reversion mutations and the variation of allelic frequency under treatment underline the role of intratumor heterogeneity (ITH) in treatment resistance. Of note, circulating tumor DNA might help us to detect and characterize reversion mutations and ITH to finally refine the treatment strategy. Importantly, forthcoming therapeutic strategies, including combination with antiangiogenics or with targeted therapies, may help us delay and overcome PARPi resistance secondary to BRCA1/2 reversion mutations. Also, progression despite PARPi therapy does not preclude PARPi rechallenge in selected patients.
Collapse
Affiliation(s)
- Laetitia Collet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Brunhilde Hanvic
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Olivia Le Saux
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
40
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
41
|
Yuan H, Zhang R, Li N, Yao H. Primary fallopian tube cancer followed by primary breast cancer in RAD51C mutation carrier treated with niraparib as first line maintenance therapy: a case report. Hered Cancer Clin Pract 2024; 22:2. [PMID: 38360632 PMCID: PMC10868093 DOI: 10.1186/s13053-024-00274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Given the rarity of RAD51C mutations, the risk and treatment of metachronous breast cancer after the diagnosis of ovarian cancer in RAD51C mutation carriers is not clear, especially for those who have received PARPi treatment. We report the case of a 65-year-old woman diagnosed with stage IIIC high-grade serous primary fallopian tube cancer. The patient had no family history of breast or ovarian cancer. The patient received three cycles of neoadjuvant chemotherapy with paclitaxel and carboplatin and achieved a complete response. After interval debulking surgery, the patient received three cycles of adjuvant chemotherapy. Collection and extraction of saliva DNA for next-generation sequencing identified a RAD51C mutation c.838-2 A > G. The patient received niraparib as front-line maintenance treatment. After 36 months of niraparib treatment, the patient had grade II invasive ductal carcinoma of the left breast that was positive for estrogen receptor (90%) and Ki-67 (30%) and negative for progesterone receptor and human epidermal growth factor receptor 2. Computed tomography revealed the absence of distant metastases. Modified radical mastectomy and axillary lymph node dissection were then performed. The final pathological report of the breast showed a 1.8 cm Bloom-Richardson grade II invasive ductal carcinoma in the left breast with axillary lymph node metastasis (1/21). Finally, the breast cancer was stage IIA, pT1cN1M0. The metachronous breast cancer in this case may be the first report of second primary cancer in fallopian tube cancer patient harboring a RAD51C mutation during niraparib treatment. Further studies are required to determine optimal treatment.
Collapse
Affiliation(s)
- Hua Yuan
- Department of Gynecologic Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 # Panjiayuannanli, Chaoyang District, Beijing, 100021, P.R. China
| | - Rong Zhang
- Department of Gynecologic Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 # Panjiayuannanli, Chaoyang District, Beijing, 100021, P.R. China
| | - Ning Li
- Department of Gynecologic Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 # Panjiayuannanli, Chaoyang District, Beijing, 100021, P.R. China
| | - Hongwen Yao
- Department of Gynecologic Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 # Panjiayuannanli, Chaoyang District, Beijing, 100021, P.R. China.
| |
Collapse
|
42
|
Walmsley CS, Jonsson P, Cheng ML, McBride S, Kaeser C, Vargas HA, Laudone V, Taylor BS, Kappagantula R, Baez P, Richards AL, Noronha AM, Perera D, Berger M, Solit DB, Iacobuzio-Donahue CA, Scher HI, Donoghue MTA, Abida W, Schram AM. Convergent evolution of BRCA2 reversion mutations under therapeutic pressure by PARP inhibition and platinum chemotherapy. NPJ Precis Oncol 2024; 8:34. [PMID: 38355834 PMCID: PMC10866935 DOI: 10.1038/s41698-024-00526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- Grant funding from ASCO Conquer Cancer Foundation CDA, NCI P30CA008748 CCITLA, Memorial Sloan Kettering Cancer Center Support Grant (P30 CA008748).
- WA has received honoraria from Roche, Medscape, Aptitude Health, Clinical Education Alliance, OncLive/MJH Life Sciences, touchIME, Pfizer, and the MedNet. WA has also received advisory board compensation from Clovis Oncology, ORIC pharmaceuticals, Daiichi Sankyo, AstraZeneca/MedImmune, Pfizer and Laekna Therapeutics, and research funding from AstraZeneca, Zenith Epigenetics, Clovis Oncology, ORIC Pharmaceuticals, Epizyme, Nuvation Bio, Merus, and Transthera.
Collapse
Affiliation(s)
- Charlotte S Walmsley
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Philip Jonsson
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael L Cheng
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sean McBride
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Vincent Laudone
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Priscilla Baez
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Dilmi Perera
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael Berger
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Howard I Scher
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alison M Schram
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
43
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
44
|
Roque R, Ribeiro IP, Figueiredo-Dias M, Gourley C, Carreira IM. Current Applications and Challenges of Next-Generation Sequencing in Plasma Circulating Tumour DNA of Ovarian Cancer. BIOLOGY 2024; 13:88. [PMID: 38392306 PMCID: PMC10886635 DOI: 10.3390/biology13020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Circulating tumour DNA (ctDNA) facilitates longitudinal study of the tumour genome, which, unlike tumour tissue biopsies, globally reflects intratumor and intermetastatis heterogeneity. Despite its costs, next-generation sequencing (NGS) has revolutionised the study of ctDNA, ensuring a more comprehensive and multimodal approach, increasing data collection, and introducing new variables that can be correlated with clinical outcomes. Current NGS strategies can comprise a tumour-informed set of genes or the entire genome and detect a tumour fraction as low as 10-5. Despite some conflicting studies, there is evidence that ctDNA levels can predict the worse outcomes of ovarian cancer (OC) in both early and advanced disease. Changes in those levels can also be informative regarding treatment efficacy and tumour recurrence, capable of outperforming CA-125, currently the only universally utilised plasma biomarker in high-grade serous OC (HGSOC). Qualitative evaluation of sequencing shows that increasing copy number alterations and gene variants during treatment may correlate with a worse prognosis in HGSOC. However, following tumour clonality and emerging variants during treatment poses a more unique opportunity to define treatment response, select patients based on their emerging resistance mechanisms, like BRCA secondary mutations, and discover potential targetable variants. Sequencing of tumour biopsies and ctDNA is not always concordant, likely as a result of clonal heterogeneity, which is better captured in the plasma samples than it is in a large number of biopsies. These incoherences may reflect tumour clonality and reveal the acquired alterations that cause treatment resistance. Cell-free DNA methylation profiles can be used to distinguish OC from healthy individuals, and NGS methylation panels have been shown to have excellent diagnostic capabilities. Also, methylation signatures showed promise in explaining treatment responses, including BRCA dysfunction. ctDNA is evolving as a promising new biomarker to track tumour evolution and clonality through the treatment of early and advanced ovarian cancer, with potential applicability in prognostic prediction and treatment selection. While its role in HGSOC paves the way to clinical applicability, its potential interest in other histological subtypes of OC remains unknown.
Collapse
Affiliation(s)
- Ricardo Roque
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre of Investigation on Environment Genetics and Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Portuguese Institute of Oncology of Coimbra, 3000-075 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre of Investigation on Environment Genetics and Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Faculty of Medicine, Gynecology Department, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Academic and Clinical Centre, 3000-370 Coimbra, Portugal
- Gynecology Department, Hospital University Centre of Coimbra, 3004-561 Coimbra, Portugal
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre of Investigation on Environment Genetics and Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
45
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
46
|
Liu Y, Liu G. Targeting NEAT1 Affects the Sensitivity to PARPi in Serous Ovarian Cancer by Regulating the Homologous Recombination Repair Pathway. J Cancer 2024; 15:1397-1413. [PMID: 38356722 PMCID: PMC10861825 DOI: 10.7150/jca.91896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Objective: Patients initially sensitive to PARPi (PARP inhibitor) regain resistance because of homologous recombination (HR) restoration, although PARPi has a synthetic lethality effect on serous ovarian cancer cells with BRCA1/2 mutations. This study aimed to investigate the role of NEAT1 in HR function and whether targeting NEAT1 in serous ovarian cancer cells could increase PARPi sensitivity. Methods: Ovarian cancer patients' clinical information and the expression of NEAT1 were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Ovarian cancer (OC) cells HeyA8 and SKOV3 were silenced by transfecting NEAT1 ASO. QRT-PCR confirmed the mRNA expression of RAD51, FOXM1, NEAT1_1 and NEAT1_2. We assessed the expression of RAD51, FOXM1, and γ-H2AX by Western blotting and Immunofluorescence. Comet Assays were used to detect DNA double-strand damage levels. In OC cells transfected with NEAT1 ASO or co-transfected overexpression RAD51/empty vector and si-NEAT1/si-ctrl, the sensitivity to Olaparib was determined using CCK8 assay. The Kaplan-Meier survival curves assessed the prognostic and predictive roles of NEAT1 in OC. Results: NEAT1 was an independent prognostic marker of ovarian cancer. NEAT1 knockdown reduced the expression of NEAT1_1, NEAT1_2, RAD51, and FOXM1 and increased the expression of γ-H2AX. In addition, Olaparib increased the expression of RAD51, representing HR repair efficiency, which was inhibited by NEAT1 knockdown. Moreover, the knockdown of NEAT1 increased the DNA damage caused by Olaparib, demonstrated by increased nuclear γ-H2AX foci, DNA in the tail, and expression of γ-H2AX. NEAT1 knockdown sensitized ovarian cancer cells to Olaparib by targeting RAD51-HR. NEAT1 expression could predict response to chemotherapy for ovarian cancer. Conclusions: NEAT1 knockdown inhibited HR capacity and increased DNA damage caused by Olaparib in serous ovarian cancer cells, making them more sensitive to Olaparib and providing a crucial therapeutic advantage of increasing sensitivity to Olaparib.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guoyan Liu
- Correspondence to: Dr. Guoyan Liu, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
47
|
Dai Y, Xu J, Gong X, Wei J, Gao Y, Chai R, Lu C, Zhao B, Kang Y. Human Fallopian Tube-Derived Organoids with TP53 and RAD51D Mutations Recapitulate an Early Stage High-Grade Serous Ovarian Cancer Phenotype In Vitro. Int J Mol Sci 2024; 25:886. [PMID: 38255960 PMCID: PMC10815309 DOI: 10.3390/ijms25020886] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
RAD51D mutations have been implicated in the transformation of normal fallopian tube epithelial (FTE) cells into high-grade serous ovarian cancer (HGSOC), one of the most prevalent and aggressive gynecologic malignancies. Currently, no suitable model exists to elucidate the role of RAD51D in disease initiation and progression. Here, we established organoids from primary human FTE and introduced TP53 as well as RAD51D knockdown to enable the exploration of their mutational impact on FTE lesion generation. We observed that TP53 deletion rescued the adverse effects of RAD51D deletion on the proliferation, stemness, senescence, and apoptosis of FTE organoids. RAD51D deletion impaired the homologous recombination (HR) function and induced G2/M phase arrest, whereas concurrent TP53 deletion mitigated G0/G1 phase arrest and boosted DNA replication when combined with RAD51D mutation. The co-deletion of TP53 and RAD51D downregulated cilia assembly, development, and motility, but upregulated multiple HGSOC-associated pathways, including the IL-17 signaling pathway. IL-17A treatment significantly improved cell viability. TP53 and RAD51D co-deleted organoids exhibited heightened sensitivity to platinum, poly-ADP ribose polymerase inhibitors (PARPi), and cell cycle-related medication. In summary, our research highlighted the use of FTE organoids with RAD51D mutations as an invaluable in vitro platform for the early detection of carcinogenesis, mechanistic exploration, and drug screening.
Collapse
Affiliation(s)
- Yilin Dai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofeng Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ranran Chai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Chong Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
48
|
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024; 19:9. [PMID: 38184614 PMCID: PMC10770950 DOI: 10.1186/s13000-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time.Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
Collapse
Affiliation(s)
- Anne Vogel
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Anna Haupts
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.
| |
Collapse
|
49
|
Zhu Q, Dai Q, Zhao L, Zheng C, Li Q, Yuan Z, Li L, Xie Z, Qiu Z, Huang W, Liu G, Zu X, Chu B, Jiang Y. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Cell Death Dis 2024; 15:10. [PMID: 38182579 PMCID: PMC10770036 DOI: 10.1038/s41419-023-06303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
PARP inhibitors and HDAC inhibitors have been approved for the clinical treatment of malignancies, but acquired resistance of or limited effects on solid tumors with a single agent remain as challenges. Bioinformatics analyses and a combination of experiments had demonstrated the synergistic effects of PARP and HDAC inhibitors in triple-negative breast cancer. A series of novel dual PARP and HDAC inhibitors were rationally designed and synthesized, and these molecules exhibited high enzyme inhibition activity with excellent antitumor effects in vitro and in vivo. Mechanistically, dual PARP and HDAC inhibitors induced BRCAness to restore synthetic lethality and promoted cytosolic DNA accumulation, which further activates the cGAS-STING pathway and produces proinflammatory chemokines through type I IFN-mediated JAK-STAT pathway. Moreover, these inhibitors promoted neoantigen generation, upregulated antigen presentation genes and PD-L1, and enhanced antitumor immunity when combined with immune checkpoint blockade therapy. These results indicated that novel dual PARP and HDAC inhibitors have antitumor immunomodulatory functions in triple-negative breast cancer. Novel dual PARP and HDAC inhibitors induce BRCAness to restore synthetic lethality, activating tumoral IFN signaling via the cGAS-STING pathway and inducing cytokine production, promoting neoantigen generation and presentation to enhance the immune response.
Collapse
Affiliation(s)
- Qingyun Zhu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qiuzi Dai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Academics Working Station, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Lei Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chang Zheng
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhuoye Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zixuan Qiu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guowen Liu
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Wang Y, Duval AJ, Adli M, Matei D. Biology-driven therapy advances in high-grade serous ovarian cancer. J Clin Invest 2024; 134:e174013. [PMID: 38165032 PMCID: PMC10760962 DOI: 10.1172/jci174013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Following a period of slow progress, the completion of genome sequencing and the paradigm shift relative to the cell of origin for high grade serous ovarian cancer (HGSOC) led to a new perspective on the biology and therapeutic solutions for this deadly cancer. Experimental models were revisited to address old questions, and improved tools were generated. Additional pathways emerging as drivers of ovarian tumorigenesis and key dependencies for therapeutic targeting, in particular, VEGF-driven angiogenesis and homologous recombination deficiency, were discovered. Molecular profiling of histological subtypes of ovarian cancer defined distinct genetic events for each entity, enabling the first attempts toward personalized treatment. Armed with this knowledge, HGSOC treatment was revised to include new agents. Among them, PARP inhibitors (PARPis) were shown to induce unprecedented improvement in clinical benefit for selected subsets of patients. Research on mechanisms of resistance to PARPis is beginning to discover vulnerabilities and point to new treatment possibilities. This Review highlights these advances, the remaining challenges, and unsolved problems in the field.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology and
| | - Alexander James Duval
- Department of Obstetrics and Gynecology and
- Driskill Graduate Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
- Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|