1
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
2
|
Yu X, Pei W, Li B, Sun S, Li W, Wu Q. Immunosenescence, Physical Exercise, and their Implications in Tumor Immunity and Immunotherapy. Int J Biol Sci 2025; 21:910-939. [PMID: 39897036 PMCID: PMC11781184 DOI: 10.7150/ijbs.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Aging is associated with a decline in immune function, termed immunosenescence, which compromises host defences and increases susceptibility to infections and cancer. Physical exercise is widely recognized for its myriad health benefits, including the potential to modulate the immune system. This review explores the bidirectional relationship between immunosenescence and physical exercise, focusing on their interplay in shaping antitumor immunity. We summarize the impact of aging on innate and adaptive immune cells, highlighting alterations that contribute to immunosenescence and cancer development. We further delineate the effects of exercise on immune cell function, demonstrating its potential to mitigate immunosenescence and enhance antitumor responses. We also discuss the implications of immunosenescence for the efficacy of immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapy, and explore the potential benefits of combining exercise with these interventions. Collectively, this review underscores the importance of understanding the complex relationship between immunosenescence, physical exercise, and antitumor immunity, paving the way for the development of innovative strategies to improve cancer outcomes in the aging population.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wei Pei
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Oncology, Shanghai GoBroad Cancer Hospital, Shanghai, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
3
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - A novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024; 134:30-47. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
5
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
6
|
Wang Y, Cao X, Yang C, Fan J, Zhang X, Wu X, Guo W, Sun S, Liu M, Zhang L, Li T. Ferroptosis and immunosenescence in colorectal cancer. Semin Cancer Biol 2024; 106-107:156-165. [PMID: 39419366 DOI: 10.1016/j.semcancer.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.
Collapse
Affiliation(s)
- Yao Wang
- Inpatient ward 8, General Surgery, Harbin Medical University Affiliated Second Hospital, Harbin 150000, China
| | - Xinran Cao
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Chunbaixue Yang
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Jianchun Fan
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| | - Xueliang Wu
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China; Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, Zibo 255024, China.
| | - Ming Liu
- General Surgery, Harbin Medical University Affiliated Fourth Hospital, Harbin 150000, China.
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Pletcher E, Faries MB. Selective Sentinel Node Dissection in Melanoma with Trends and Future Directions. Cancers (Basel) 2024; 16:3625. [PMID: 39518065 PMCID: PMC11545298 DOI: 10.3390/cancers16213625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Starting with its earliest descriptions, melanoma has been recognized as a tumor with a predilection for metastasis to regional lymph nodes. This tendency led to initial recommendations for very aggressive early surgical management of the regional nodal basin. However, those recommendations were the source of much controversy over nearly a century, until the minimally invasive surgical technique of sentinel lymph node (SLN) biopsy was developed by Morton, Cochran and colleagues. This technique has been evaluated in a series of prospective clinical trials, which have clarified its role and the management of lymph nodes in this disease. Current controversies relating to SLN biopsy include optimal selection of patients for the procedure, the role of gene expression profiling in initial melanoma management, and the potential therapeutic effects of SLN biopsy-based management. In addition, the SLN appears to be a rich source of data relating to the host-tumor interface and the immune microenvironment, which may advance our understanding of the biology of melanoma. Finally, although the surgical technique is well developed at this point, there may be additional technical improvements that are possible as well.
Collapse
Affiliation(s)
| | - Mark B. Faries
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, 11800 Wilshire Blvd., Los Angeles, CA 90025, USA;
| |
Collapse
|
8
|
Carey AE, Weeraratna AT. Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response. Pharmacol Ther 2024; 262:108698. [PMID: 39098769 DOI: 10.1016/j.pharmthera.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Collapse
Affiliation(s)
- Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Hüser L, Chhabra Y, Gololobova O, Wang V, Liu G, Dixit A, Rocha MR, Harper EI, Fane ME, Marino-Bravante GE, Zabransky DJ, Cai KQ, Utikal J, Slusher BS, Walston J, Lipson EJ, Witwer KW, Weeraratna AT. Aged fibroblast-derived extracellular vesicles promote angiogenesis in melanoma. Cell Rep 2024; 43:114721. [PMID: 39255061 DOI: 10.1016/j.celrep.2024.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.
Collapse
Affiliation(s)
- Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Murilo Ramos Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Q Cai
- Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine - Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology - Hematologic Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yang Y, Chen XQ, Jia YX, Ma J, Xu D, Xiang ZL. Circ-0044539 promotes lymph node metastasis of hepatocellular carcinoma through exosomal-miR-29a-3p. Cell Death Dis 2024; 15:630. [PMID: 39191749 DOI: 10.1038/s41419-024-07004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Lymph node metastasis (LNM) is a common invasive feature of hepatocellular carcinoma (HCC) associated with poor clinical outcomes. Through microarray profiling and bioinformatic analyses, we identified the circ-0044539-miR-29a-3p-VEGFA axis as a potential key factor in the progression of HCC LNM. In HCC cells and nude mice, circ-0044539 downregulation or miR-29a-3p upregulation was associated with small tumor size, PI3K-AKT-mTOR pathway inactivation, and downregulation of the key LNM factors (HIF-1α and CXCR4). Furthermore, circ-0044539 was also responsible for exosomal miR-29a-3p secretion. Exosomal miR-29a-3p was then observed to migrate to the LNs and downregulate High-mobility group box transcription factor 1 (Hbp1) in Polymorphonuclear Myeloid-derived suppressor cells (PMN-MDSCs), inducing the formation of a microenvironment suitable for tumor colonization. Overall, circ-0044539 promotes HCC cell LNM abilities and induces an immune-suppressive environment in LNs through exosomes, highlighting its potential as a target for HCC LNM and HCC immunotherapy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xue-Qin Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ya-Xun Jia
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Ma
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Di Xu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Ji'an City, Jiangxi Province, 343000, China.
| |
Collapse
|
11
|
Faries MB. Sentinel lymph nodes in melanoma: necessary as ever for optimal treatment. Clin Exp Metastasis 2024; 41:369-374. [PMID: 38165559 PMCID: PMC11374908 DOI: 10.1007/s10585-023-10254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 01/04/2024]
Abstract
Lymphatic metastasis is the dominant route of initial spread for most solid tumors. For many such malignancies, including melanomas, surgical treatment previously included removal of all potentially draining regional lymph nodes (elective node dissection). The advent of lymphatic mapping and sentinel lymph node (SLN) biopsy allowed accurate pathologic assessment of the metastatic status of regional nodes and spared patients full dissection if their SLN was clear. In melanoma, recent clinical research has demonstrated that complete lymph node dissection is not clinically beneficial, even for patients with sentinel node metastases and that patients with high-risk primary melanomas benefit from adjuvant systemic immunotherapy, even without nodal disease. These two changes in the standard of care have led to some interest in abandoning surgical nodal staging via the sentinel lymph node biopsy procedure. However, this appears to be premature and potentially detrimental to optimal patient management. The ongoing value of sentinel node biopsy stems from its ability to provide critically important prognostic information as well as durable regional nodal disease control for most patients with nodal metastases, even in the absence of complete dissection of the basin. It also provides an opportunity to identify novel prognostic and predictive immunologic and molecular biomarkers. While it is certainly possible that additional changes in melanoma therapy will make sentinel lymph node biopsy obsolete in the future, at present it remains a minimally invasive, low morbidity means of improving both staging and outcomes.
Collapse
Affiliation(s)
- Mark B Faries
- The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Robertson BM, Fane ME, Weeraratna AT, Rebecca VW. Determinants of resistance and response to melanoma therapy. NATURE CANCER 2024; 5:964-982. [PMID: 39020103 DOI: 10.1038/s43018-024-00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Metastatic melanoma is among the most enigmatic advanced cancers to clinically manage despite immense progress in the way of available therapeutic options and historic decreases in the melanoma mortality rate. Most patients with metastatic melanoma treated with modern targeted therapies (for example, BRAFV600E/K inhibitors) and/or immune checkpoint blockade (for example, anti-programmed death 1 therapy) will progress, owing to profound tumor cell plasticity fueled by genetic and nongenetic mechanisms and dichotomous host microenvironmental influences. Here we discuss the determinants of tumor heterogeneity, mechanisms of therapy resistance and effective therapy regimens that hold curative promise.
Collapse
Affiliation(s)
- Bailey M Robertson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
14
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
15
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
16
|
He Z, Chen M, Li Q, Luo Z, Li X. Multi-omics and tumor immune microenvironment characterization of a prognostic model based on aging-related genes in melanoma. Am J Cancer Res 2024; 14:1052-1070. [PMID: 38590405 PMCID: PMC10998739 DOI: 10.62347/uzgp9704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Melanoma is a common and fatal cutaneous malignancy with strong invasiveness and high mortality rate. Clinically, elderly melanoma patients tend to exhibit stronger invasion ability and poorer prognosis. Given the heterogeneity of tumors, we analyzed the prognosis and risk assessment of melanoma through aging-related genes rather than age stratification. FOXM1 and CCL4 were identified to be closely associated with melanoma prognosis. Single-cell transcriptome analysis showed that FOXM1 was significantly up-regulated in tumor cells, while CCL4 was markedly elevated in immune cells. A melanoma prognostic model was constructed based on the two independent prognostic factors. This model showed a high accuracy in predicting the mortality of melanoma patients over several years. The patients in low-risk group appeared to have more immune cell infiltration and better immune therapy efficacy. Cellular experiments showed that CCL4 could promote apoptosis of melanoma cells through immune cells, and apoptosis could regulate the expression of FOXM1. In addition, the results of the spatial transcriptome and immunohistochemistry suggested that CCL4 was highly expressed in macrophages and the expression of FOXM1 in melanoma cell was negatively correlated with immune cell infiltration, especially macrophages. Here, we established a novel prognostic model for melanoma, which showed promising predictive performance and may serve as a biomarker for the efficacy of immune checkpoint inhibition therapy in melanoma patients. In addition, we explored the function of two genes in the model in melanoma.
Collapse
Affiliation(s)
- Zhenghao He
- Department of Plastic Surgery, Zhongshan City People’s HospitalZhongshan, Guangdong, China
| | - Manli Chen
- Department of Plastic Surgery, Zhongshan City People’s HospitalZhongshan, Guangdong, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical EpigenomicsChangsha, Hunan, China
| | - Zhijun Luo
- Department of Plastic Surgery, Zhongshan City People’s HospitalZhongshan, Guangdong, China
| | - Xidie Li
- Department of Gynaecology and Obstetrics, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South UniversityZhuzhou, Hunan, China
| |
Collapse
|
17
|
Bertolotto C. Mechanisms of melanoma aggressiveness with age. NATURE AGING 2024; 4:287-288. [PMID: 38472453 DOI: 10.1038/s43587-024-00574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Corine Bertolotto
- University Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of Melanocytes, team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
18
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Park CS, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim DK, Kim HH. Comparison of sialylated and fucosylated N-glycans attached to Asn 6 and Asn 41 with different roles in hyaluronan and proteoglycan link protein 1 (HAPLN1). Int J Biol Macromol 2024; 260:129575. [PMID: 38246450 DOI: 10.1016/j.ijbiomac.2024.129575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Hyaluronan and proteoglycan link protein 1 (HAPLN1) is an extracellular matrix protein stabilizing interactions between hyaluronan and proteoglycan. Although HAPLN1 is being investigated for various biological roles, its N-glycosylation is poorly understood. In this study, the structure of N-glycopeptides of trypsin-treated recombinant human HAPLN1 (rhHAPLN1) expressed from CHO cells were identified by nano-liquid chromatography-tandem mass spectrometry. A total of 66 N-glycopeptides were obtained, including 16 and 12 N-glycans at sites Asn 6 (located in the N-terminal region) and Asn 41 (located in the Ig-like domain, which interacts with proteoglycan), respectively. The quantities (%) of each N-glycan relative to the totals (100 %) at each site were calculated. Tri- and tetra-sialylation (to resist proteolysis and extend half-life) were more abundant at Asn 6, and di- (core- and terminal-) fucosylation (to increase binding affinity and stability) and sialyl-Lewis X/a epitope (a major ligand for E-selectin) were more abundant at Asn 41. These results indicate that N-glycans attached to Asn 6 (protecting HAPLN1) and Asn 41 (supporting molecular interactions) play different roles in HAPLN1. This is the first study of site-specific N-glycosylation in rhHAPLN1, which will be useful for understanding its molecular interactions in the extracellular matrix.
Collapse
Affiliation(s)
- Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Mirae Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jieun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Subin Yang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Yeon Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
20
|
Marino-Bravante GE, Carey AE, Hüser L, Dixit A, Wang V, Kaur A, Liu Y, Ding S, Schnellmann R, Gerecht S, Gu L, Eisinger-Mathason TSK, Chhabra Y, Weeraratna AT. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. NATURE AGING 2024; 4:350-363. [PMID: 38472454 DOI: 10.1038/s43587-024-00581-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.
Collapse
Affiliation(s)
- Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanpreet Kaur
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Rahel Schnellmann
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Signaling and Microenvironment, FoxChase Cancer Center, Philadelphia, PA, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
22
|
Zhou D, Jang JM, Yang G, Ha HC, Fu Z, Kim DK. A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence. Biomol Ther (Seoul) 2023; 31:629-639. [PMID: 37551651 PMCID: PMC10616520 DOI: 10.4062/biomolther.2023.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also down-regulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| |
Collapse
|
23
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
24
|
Elshot YS, Bruijn TVM, Ouwerkerk W, Jaspars LH, van de Wiel BA, Zupan-Kajcovski B, de Rie MA, Bekkenk MW, Balm AJM, Klop WMC. The limited value of sentinel lymph node biopsy in lentigo maligna melanoma: A nomogram based on the results of 29 years of the nationwide dutch pathology registry (PALGA). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107053. [PMID: 37778193 DOI: 10.1016/j.ejso.2023.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Lentigo maligna melanoma (LMM) predominantly presents in the head and neck of the elderly. The value of sentinel lymph node biopsy (SLNB) for LMM patients remains to be determined, as the reported average yield of positive lymph nodes is less than 10%. In this nationwide cohort study, we wanted to identify LMM patients with an increased risk of SLNB-positivity. METHODS LMM with an SLNB indication according to the 8th AJCC melanoma guidelines were retrospectively identified from the nationwide network and registry of histo- and cytopathology in the Netherlands (PALGA). A penalized (LASSO) logistic regression analysis was performed to determine the optimal combination of clinicopathological factors to predict a positive SLNB. RESULTS Between 1991 and 2020, 1989 LMM patients met our inclusion criteria. SLNB was performed in 16.7% (n = 333) and was positive in 7.5% (25/333). The false-negative rate was 21.9%. Clinically detectable regional lymph node (LN) metastases were found in 1.3% (n = 25). Clinicopathological characteristics best predictive for SLNB-positivity (Odds ratio; 95% CI) were age (0.95; 0.91-0.99), ulceration 1.59 (0.44-4.83), T4-stage (1.81; 0.43-6.2), male sex (1.97; 0.79-5.27), (lymph)angioinvasion (5.07; 0.94-23.31), and microsatellites (7.23; 1.56-32.7) (C-statistic 0.75). During follow-up, regional LN recurrences were detected in 4.2% (83/1989) of patients, of which the majority (74/83) had no evidence of regional LN metastases at baseline. CONCLUSION Our findings confirm the limited SLNB-positivity in LMM patients. Based on the identified high-risk clinicopathological features, a nomogram was developed to predict the risk of a positive SLNB.
Collapse
Affiliation(s)
- Yannick S Elshot
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands; Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands.
| | - Tristan V M Bruijn
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands; Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Wouter Ouwerkerk
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands; Amsterdam Infection & Immunity Institute, Cancer Center, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lies H Jaspars
- Department of Pathology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Bart A van de Wiel
- Department of Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands
| | - Biljana Zupan-Kajcovski
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands
| | - Menno A de Rie
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Alfons J M Balm
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Univ. of Amsterdam, the Netherlands
| | - W Martin C Klop
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Univ. of Amsterdam, the Netherlands
| |
Collapse
|
25
|
Yang Y, Wang X, Wang P. Signaling mechanisms underlying lymphatic vessel dysfunction in skin aging and possible anti-aging strategies. Biogerontology 2023; 24:727-740. [PMID: 36680698 DOI: 10.1007/s10522-023-10016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Aging-related skin diseases are gradually increasing due to the imbalance of cutaneous homeostasis in the aging population. Skin aging-induced inflammation promotes systemic inflammation and may lead to whole-body aging. Lymphatic vessels play an important role in maintaining fluid and homeostasis balance. In intrinsically aged skin, the number of lymphatic vessels decrease and their functions decline, which is related to the reduced adhesion junctions between lymphatic endothelial cells, particularly VE-cadherin. VEGFC/VEGFR-3 signal pathway plays an important role in remodeling and expansion of lymphatic vessels; the downregulation of this pathway contributes to the dysfunction of lymphatic vessels. Meanwhile, we proposed some additional mechanisms. Decline of the pumping activity of lymphatic vessels might be related to age-related changes in extracellular matrix, ROS increase, and eNOS/iNOS disturbances. In extrinsically aged skin, the hyperpermeability of lymphatic vessels results from a decrease in endothelial-specific tight junction molecules, upregulation of VEGF-A, and downregulation of the VEGFC/VEGFR-3 signaling pathway. Furthermore, some of the Phyto therapeutics could attenuate skin aging by modulating the lymphatic vessels. This review summarized the lymphatic vessel dysfunction in skin aging and anti-aging strategies based on lymphatic vessel modulation.
Collapse
Affiliation(s)
- Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Zhou H, Lu D, Yu D, Luo C, Xie K, Ma H, Li S, Liang J, Wei F, Chen L, Luo D, Wang W, Wei J. Pan-cancer analysis of the oncogenic role of the core osteosarcoma gene VCAN in human tumors. Am J Transl Res 2023; 15:5556-5573. [PMID: 37854213 PMCID: PMC10579017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Versican (VCAN), a member of the multifunctional glycoprotein family, is involved in various aspects of cancer progression. However, the role of VCAN in diverse cancers remains poorly defined. This research aimed to investigate the correlation between VCAN expression and the oncogenic role, as well as visualize its prognostic landscape in pan-cancer. METHODS Raw data in regard to VCAN expression in cancer patients were acquired from GEO GeneChip public database in NCBI. Besides, we selected microarray data GSE16088 for analysis. We retrieved the genes associated with osteosarcoma (OS) from the OMIM database and identified their intersection with the core module. VCAN was suggested to be a potential marker gene for OS. Subsequently, we conducted Gene Set Enrichment Analysis (GSEA) to explore gene functional enrichment. Moreover, we performed pan-cancer analysis on VCAN to gain a comprehensive understanding of its implications across various cancer types. RESULTS The VCAN expression in the tumor tissue was higher than that in normal tissue. Elevated expression of VCAN was associated with high the tumor stage and poor long-term survival. There was a significant positive correlation between VCAN and cancer fibroblasts in all pan cancers. Moreover, FBN1 was the intersection gene of VCAN-related genes and linker genes. ANTXR1, COL5A2, CSGALNACT2, and SPARC were the target genes of VCAN genes. GSEA analysis showed that VCAN was mainly enriched in the extracellular matrix (ECM) signaling pathway. CONCLUSION VCAN can be used as a marker molecule for the early diagnosis of OS and holds significance as a molecule in cases of OS with distant metastasis. The ECM signaling pathway may be a core pathway in OS development and distant metastasis. These findings shed new light on therapeutics of cancers.
Collapse
Affiliation(s)
- Haidong Zhou
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dinggui Lu
- Department of Trauma Orthopedics, Baidong Hospital, Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dianbo Yu
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Changtai Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Kangqi Xie
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Huade Ma
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Shanlang Li
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Jiyun Liang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Fengxu Wei
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Luchang Chen
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Dong Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Wei Wang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Jihua Wei
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| |
Collapse
|
27
|
Harper EI, Weeraratna AT. A Wrinkle in TIME: How Changes in the Aging ECM Drive the Remodeling of the Tumor Immune Microenvironment. Cancer Discov 2023; 13:1973-1981. [PMID: 37671471 PMCID: PMC10654931 DOI: 10.1158/2159-8290.cd-23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
SUMMARY Cancer is an age-related disease, with the majority of patients receiving their diagnosis after the age of 60 and most mortality from cancer occurring after this age. The tumor microenvironment changes drastically with age, which in turn affects cancer progression and treatment efficacy. Age-related changes to individual components of the microenvironment have received well-deserved attention over the past few decades, but the effects of aging at the interface of two or more microenvironmental components have been vastly understudied. In this perspective, we discuss the relationship between the aging extracellular matrix and the aging immune system, how they affect the tumor microenvironment, and how these multidisciplinary studies may open avenues for new therapeutics. Cancer is a disease of aging. With a rapidly aging population, we need to better understand the age-related changes that drive tumor progression, ranging from secreted changes to biophysical and immune changes.
Collapse
Affiliation(s)
- Elizabeth I. Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21205
| |
Collapse
|
28
|
Wu Z, Qu B, Yuan M, Liu J, Zhou C, Sun M, Guo Z, Zhang Y, Song Y, Wang Z. CRIP1 Reshapes the Gastric Cancer Microenvironment to Facilitate Development of Lymphatic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303246. [PMID: 37409440 PMCID: PMC10502640 DOI: 10.1002/advs.202303246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/07/2023]
Abstract
Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Bicheng Qu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Minxian Yuan
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Jingjing Liu
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Cen Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Mingwei Sun
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhexu Guo
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yaqing Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| |
Collapse
|
29
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460 DOI: 10.5483/bmbrep.2023-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 04/03/2024] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
31
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
33
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Ganguly K, Kimmelman AC. Reprogramming of tissue metabolism during cancer metastasis. Trends Cancer 2023; 9:461-471. [PMID: 36935322 PMCID: PMC10192089 DOI: 10.1016/j.trecan.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
Cancer is a systemic disease that involves malignant cell-intrinsic and -extrinsic metabolic adaptations. Most studies have tended to focus on elucidating the metabolic vulnerabilities in the primary tumor microenvironment, leaving the metastatic microenvironment less explored. In this opinion article, we discuss the current understanding of the metabolic crosstalk between the cancer cells and the tumor microenvironment, both at local and systemic levels. We explore the possible influence of the primary tumor secretome to metabolically and epigenetically rewire the nonmalignant distant organs during prometastatic niche formation and successful metastatic colonization by the cancer cells. In an attempt to understand the process of prometastatic niche formation, we have speculated how cancer may hijack the inherent regenerative propensity of tissue parenchyma during metastatic colonization.
Collapse
Affiliation(s)
- Koelina Ganguly
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
36
|
Papageorge MV, Maina RM, King ALO, Lee V, Baumann R, Pucar D, Ariyan S, Khan SA, Weiss SA, Clune J, Olino K. The role of imaging and sentinel lymph node biopsy in patients with T3b-T4b melanoma with clinically negative disease. Front Oncol 2023; 13:1143354. [PMID: 37223678 PMCID: PMC10200883 DOI: 10.3389/fonc.2023.1143354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Background Previous studies demonstrate minimal utility of pre-operative imaging for low-risk melanoma; however, imaging may be more critical for patients with high-risk disease. Our study evaluates the impact of peri-operative cross-sectional imaging in patients with T3b-T4b melanoma. Methods Patients with T3b-T4b melanoma who underwent wide local excision were identified from a single institution (1/1/2005 - 12/31/2020). Cross-sectional imaging was defined as body CT, PET and/or MRI in the perioperative period, with the following findings: in-transit or nodal disease, metastatic disease, incidental cancer, or other. Propensity scores were created for the odds of undergoing pre-operative imaging. Recurrence free survival was analyzed using the Kaplan-Meier method and log-rank test. Results A total of 209 patients were identified with a median age of 65 (IQR 54-76), of which the majority were male (65.1%), with nodular melanoma (39.7%) and T4b disease (47.9%). Overall, 55.0% underwent pre-operative imaging. There were no differences in imaging findings between the pre- and post-operative cohorts. After propensity-score matching, there was no difference in recurrence free survival. Sentinel node biopsy was performed in 77.5% patients, with 47.5% resulting in a positive result. Conclusion Pre-operative cross-sectional imaging does not impact the management of patients with high-risk melanoma. Careful consideration of imaging use is critical in the management of these patients and highlights the importance of sentinel node biopsy for stratification and decision making.
Collapse
Affiliation(s)
| | - Renee M. Maina
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Victor Lee
- Yale University School of Medicine, New Haven, CT, United States
| | - Raymond Baumann
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Darko Pucar
- Department of Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Sajid A. Khan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Sarah A. Weiss
- Rutgers Cancer Institute of New Jersey, Medical Oncology, New Brunswick, NJ, United States
| | - James Clune
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Kelly Olino
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
38
|
Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, Alsina-Sanchis E, Bohnenberger H, Fernandez-Florido E, Mülfarth R, Vacca M, Gerwing J, Conradi LC, Ströbel P, Trumpp A, Mogler C, Fischer A, Rodriguez-Vita J. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun 2023; 14:2353. [PMID: 37095087 PMCID: PMC10126109 DOI: 10.1038/s41467-023-38064-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
Collapse
Affiliation(s)
- Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Vaquero-Siguero
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Elena Fernandez-Florido
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Margherita Vacca
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
39
|
De Bakshi D, Chen YC, Wuerzberger-Davis SM, Ma M, Waters BJ, Li L, Suzuki A, Miyamoto S. Ectopic CH60 mediates HAPLN1-induced cell survival signaling in multiple myeloma. Life Sci Alliance 2023; 6:e202201636. [PMID: 36625202 PMCID: PMC9748848 DOI: 10.26508/lsa.202201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematological malignancy, is generally considered incurable because of the development of drug resistance. We previously reported that hyaluronan and proteoglycan link protein 1 (HAPLN1) produced by stromal cells induces activation of NF-κB, a tumor-supportive transcription factor, and promotes drug resistance in MM cells. However, the identity of the cell surface receptor that detects HAPLN1 and thereby engenders pro-tumorigenic signaling in MM cells remains unknown. Here, we performed an unbiased cell surface biotinylation assay and identified chaperonin 60 (CH60) as the direct binding partner of HAPLN1 on MM cells. Cell surface CH60 specifically interacted with TLR4 to evoke HAPLN1-induced NF-κB signaling, transcription of anti-apoptotic genes, and drug resistance in MM cells. Collectively, our findings identify a cell surface CH60-TLR4 complex as a HAPLN1 receptor and a potential molecular target to overcome drug resistance in MM cells.
Collapse
Affiliation(s)
- Debayan De Bakshi
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Yu-Chia Chen
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Shelly M Wuerzberger-Davis
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Bayley J Waters
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Aussie Suzuki
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Shigeki Miyamoto
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
40
|
He C, Zhang H, Guo Z, Mo Z. A cuproptosis-related signature for predicting the prognosis of gastric cancer. J Gastrointest Oncol 2023; 14:146-164. [PMID: 36915443 PMCID: PMC10007928 DOI: 10.21037/jgo-23-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignancies. Cuproptosis is a newly discovered type of cell death caused by protein toxicity stress, with copper having considerable importance in GC development. Methods First, differentially expressed (DE) cuproptosis-related genes (CRGs) were screened in GC. The tumor mutation burden (TMB) of CRGs was analyzed. We then performed enrichment analyses of DE-CRGs. Next, we constructed a GC cuproptosis-related (CR) signature (CRs) using Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. The predictive efficacy was assessed using receiver operating characteristic (ROC) curves. Furthermore, we performed gene set enrichment analysis (GSEA). Different methods were used to assess tumor immunity of the CRs, and the Wilcoxon test was used to examine the expressions of m6A-, m7G-, and ferroptosis-related genes. The "pRRophetic" R package (The R Foundation for Statistical Computing) was used to predict the half maximal inhibitory concentration IC50 of common chemotherapeutic agents. Finally, the expression of CRGs in different clusters was analyzed using single-cell RNA sequencing (scRNA-seq). Results We identified 8 DE-CRGs in GC. There were 9 CRGs with TMB values >1%. We constructed gene expression networks and CRs for GC. The DE-CRGs were involved in important mitochondrial metabolic pathways, and the CRs was a valuable independent prognosis factor. The GSEA revealed that angiogenesis and metabolic-related pathways were enriched in the high-risk group, whereas the low-risk group showed enrichment in DNA replication mismatch and repair pathways. The expressions of immunological checkpoints, ferroptosis-, m6A-, and m7G-related genes, type II interferon (INF) response, major histocompatibility complex (MHC class-I), and the IC50 of the copper-based carrier drug elesclomol were significantly different between the 2 groups of the CRs. Furthermore, the scRNA-seq analysis showed that most CRGs were mainly upregulated in endothelial cells. Conclusions The novel CRs could predict the prognosis of GC.
Collapse
Affiliation(s)
- Chunmei He
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Zhang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Zehao Guo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
41
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
42
|
Sasson DC, Smetona JT, Parsaei Y, Papageorge M, Ariyan S, Olino K, Clune J. Malignant Melanoma in Older Adults: Different Patient or Different Disease? Cureus 2023; 15:e34742. [PMID: 36909026 PMCID: PMC9998075 DOI: 10.7759/cureus.34742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Objective In this study, we aimed to compare the clinical outcomes between older and younger patients with melanoma and to evaluate for differences in tumor genetic makeup that might explain differences in clinical behavior between older and younger cohorts. Materials and methods A consecutive sample of patients diagnosed with melanoma at a single institution from 1984 to 2019 was categorized by age into younger, middle, and older cohorts. Tumor characteristics, melanoma-specific survival, and recurrence-free survival were assessed while accounting for differential follow-up and death from other causes using Kaplan-Meier analysis with log-rank testing. Results A total of 4378 patients were included in the study. Older patients presented with a higher incidence of T3 and T4 tumors, and a lower incidence of T1 tumors (p<0.001). The same group of patients had a lower nodal positivity at any given Breslow thickness (p<0.01). Melanoma-specific survival was lower for older patients with T2 tumors (p=0.046). There was no difference in recurrence-free survival among all age groups and tumor thicknesses (p>0.05). For patients with a given genetic profile, the melanoma-specific survival and recurrence-free survival were equivalent across ages. BRAF was the most common driver in the younger group, while NRAS and other mutations increased in prevalence as age rose. Conclusions Older adults have decreased melanoma-specific survival for T2 tumors and lower nodal positivity, suggesting a different pattern of metastatic progression. The mutational drivers of cutaneous melanoma change with age and may play a role in the different metastatic progression as well as the differential melanoma-specific survival across all age cohorts.
Collapse
Affiliation(s)
- Daniel C Sasson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - John T Smetona
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Yassmin Parsaei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Marianna Papageorge
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Stephan Ariyan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Kelly Olino
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, USA
| | - James Clune
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, USA
| |
Collapse
|
43
|
Zhang XY, Lv QY, Zou CL. A nomogram model to individually predict prognosis for esophageal cancer with synchronous pulmonary metastasis. Front Oncol 2023; 12:956738. [PMID: 36686804 PMCID: PMC9848734 DOI: 10.3389/fonc.2022.956738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background Esophageal cancer (EC) is a life-threatening disease worldwide. The prognosis of EC patients with synchronous pulmonary metastasis (PM) is unfavorable, but few tools are available to predict the clinical outcomes and prognosis of these patients. This study aimed to construct a nomogram model for the prognosis of EC patients with synchronous PM. Methods From the Surveillance, Epidemiology, and End Results database, we selected 431 EC patients diagnosed with synchronous PM. These cases were randomized into a training cohort (303 patients) and a validation cohort (128 patients). Univariate and multivariate Cox regression analyses, along with the Kaplan-Meier method, were used to estimate the prognosis and cancer-specific survival (CSS) among two cohorts. Relative factors of prognosis in the training cohort were selected to develop a nomogram model which was verified on both cohorts by plotting the receiver operating characteristic (ROC) curves as well as the calibration curves. A risk classification assessment was completed to evaluate the CSS of different groups using the Kaplan-Meier method. Results The nomogram model contained four risk factors, including T stage, bone metastasis, liver metastasis, and chemotherapy. The 6-, 12- and 18-month CSS were 55.1%, 26.7%, and 5.9% and the areas under the ROC curve (AUC) were 0.818, 0.781, and 0.762 in the training cohort. Likewise, the AUC values were 0.731, 0.764, and 0.746 in the validation cohort. The calibration curves showed excellent agreement both in the training and validation cohorts. There was a substantial difference in the CSS between the high-risk and low-risk groups (P<0.01). Conclusion The nomogram model serves as a predictive tool for EC patients with synchronous PM, which would be utilized to estimate the individualized CSS and guide therapeutic decisions.
Collapse
Affiliation(s)
- Xin-yao Zhang
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi-yuan Lv
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang-lin Zou
- Department of Radiotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Chang-lin Zou,
| |
Collapse
|
44
|
Sentinel lymph node biopsy in patients with T1a cutaneous malignant melanoma: A multicenter cohort study. J Am Acad Dermatol 2023; 88:52-59. [PMID: 36184008 DOI: 10.1016/j.jaad.2022.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sentinel lymph node biopsy is not routinely recommended for T1a cutaneous melanoma due to the overall low risk of positivity. Prognostic factors for positive sentinel lymph node (SLN+) in this population are poorly characterized. OBJECTIVE To determine factors associated with SLN+ in patients with T1a melanoma. METHODS Patients with pathologic T1a (<0.80 mm, nonulcerated) cutaneous melanoma from 5 high-volume melanoma centers from 2001 to 2020 who underwent wide local excision with sentinel lymph node biopsy were included in the study. Patient and tumor characteristics associated with SLN+ were analyzed by univariate and multivariable logistic regression analyses. Age was dichotomized into ≤42 (25% quartile cutoff) and >42 years. RESULTS Of the 965 patients identified, the overall SLN+ was 4.4% (N = 43). Factors associated with SLN+ were age ≤42 years (7.5% vs 3.7%; odds ratio [OR], 2.14; P = .03), head/neck primary tumor location (9.2% vs 4%; OR, 2.75; P = .04), lymphovascular invasion (21.4% vs 4.2%; OR, 5.64; P = .01), and ≥2 mitoses/mm2 (8.2% vs 3.4%; OR, 2.31; P = .03). Patients <42 years with ≥2 mitoses/mm2 (N = 38) had a SLN+ rate of 18.4%. LIMITATIONS Retrospective study. CONCLUSION SLN+ is low in patients with T1a melanomas, but younger age, lymphovascular invasion, mitogenicity, and head/neck primary site appear to confer a higher risk of SLN+.
Collapse
|
45
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
46
|
Jinna N, Rida P, Su T, Gong Z, Yao S, LaBarge M, Natarajan R, Jovanovic-Talisman T, Ambrosone C, Seewaldt V. The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACKR1) as a Potential Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Subpopulations. Cells 2022; 11:cells11233818. [PMID: 36497078 PMCID: PMC9740232 DOI: 10.3390/cells11233818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Tianyi Su
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
47
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
48
|
Karapetyan L, Gooding W, Li A, Yang X, Knight A, Abushukair HM, Vargas De Stefano D, Sander C, Karunamurthy A, Panelli M, Storkus WJ, Tarhini AA, Kirkwood JM. Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma. Cancers (Basel) 2022; 14:4973. [PMID: 36291758 PMCID: PMC9599365 DOI: 10.3390/cancers14204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - William Gooding
- Hillman Cancer Center, Biostatistics Facility, Pittsburgh, PA 15213, USA
| | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Danielle Vargas De Stefano
- Department of Pathology, Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Departments of Dermatology and Pathology, Divisions of Dermatopathology and Molecular Genetic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Walter J. Storkus
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
49
|
Yuan SHC, Chang SC, Chou PY, Yang Y, Liu HP. The Implication of Serum Autoantibodies in Prognosis of Canine Mammary Tumors. Animals (Basel) 2022; 12:ani12182463. [PMID: 36139323 PMCID: PMC9495273 DOI: 10.3390/ani12182463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Canine mammary tumor (CMT) is the most prevalent neoplasm in female dogs. Tumor recurrence and metastasis occur in malignant CMT (MMT) dogs after surgery. Identification of serum prognostic biomarkers holds the potential to facilitate prediction of disease outcomes. We have identified CMT-associated autoantibodies against thymidylate synthetase (TYMS), insulin-like growth factor-binding protein 5 (IGFBP5), hyaluronan and proteoglycan link protein 1 (HAPLN1), and anterior gradient 2 (AGR2), i.e., TYMS-AAb, IGFBP5-AAb, HAPLN1-AAb, and AGR2-AAb, respectively, by conducting serological enzyme-linked immunosorbent assays (ELISA). Herein we assessed serum AAb levels in 11 MMT dogs before and after surgery, demonstrating that IGFBP5-AAb and HAPLN1-AAb significantly decrease at 3- and 12-months post-surgery (p < 0.05). We evaluated the correlation between the presurgical AAb level and overall survival (OS) of 90 CMT dogs after surgery. Kaplan-Meier survival analysis reveals that IGFBP5-AAbHIgh and TYMS-AAbHigh are significantly correlated with worse OS (p = 0.017 and p = 0.029, respectively), while AGR2-AAbLow is correlated with somewhat poorer OS (p = 0.086). Areas under a time-dependent receiver operating characteristic curve (AUC) of IGFBP5-AAb and TYMS-AAb in predicting OS of MMT dogs are 0.611 and 0.616, respectively. Notably, MMT dogs presenting TYMS-AAbHigh/IGFBP5-AAbHigh/AGR2-AAbLow have worst OS (p = 0.0004). This study reveals an association between the serum AAb level and CMT prognosis.
Collapse
Affiliation(s)
- Stephen Hsien-Chi Yuan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pei-Yi Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Youngsen Yang
- Division of Hematology-Oncology, Department of Internal Medicine, Taichung, Veterans General Hospital, Taichung 40705, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0368 (ext. 51)
| |
Collapse
|
50
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|