1
|
Lingel H, Fischer L, Remstedt S, Kuropka B, Philipsen L, Han I, Sander JE, Freund C, Arra A, Brunner-Weinzierl MC. SLAMF7 (CD319) on activated CD8 + T cells transduces environmental cues to initiate cytotoxic effector cell responses. Cell Death Differ 2024:10.1038/s41418-024-01399-y. [PMID: 39390117 DOI: 10.1038/s41418-024-01399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
CD8+ T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8+ T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8+ T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8+ T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8+ T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8+ T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.
Collapse
Affiliation(s)
- Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Fischer
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sven Remstedt
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Multi-parametric bioimaging and cytometry (MPBIC) core facility, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Cellular and Molecular Immunology, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Irina Han
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jan-Erik Sander
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
2
|
Sheedy A, Burduli N, Prakash A, Gurney M, Hanley S, Prendeville H, Sarkar S, O'Dwyer J, O'Dwyer M, Dolan E. NK cell line modified to express a potent, DR5 specific variant of TRAIL, show enhanced cytotoxicity in ovarian cancer models. Heliyon 2024; 10:e34976. [PMID: 39170449 PMCID: PMC11336271 DOI: 10.1016/j.heliyon.2024.e34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Ovarian cancer is a lethal gynaecological malignancy with unsatisfactory 5 year survival rates of 30-50 %. Cell immunotherapy is a promising new cancer treatment where immune cells, such as Natural Killer (NK) cells, are administered to enable the patient to fight cancer through direct cytotoxicity. NK cells orchestrate an adaptive immune response by enabling the release of tumour antigens. NK cell cytotoxicity and effector responses are largely driven by TRAIL engagement. In this study we investigated the cytotoxic potential of a human NK cell line that were modified to express a potent DR5 specific TRAIL variant. We hypothesised that this modification would enhance NK cell cytotoxicity against TRAIL sensitive and resistant ovarian cancer cell lines in vitro. Methods KHYG-1 human NK cells were modified with a TRAIL variant targeting DR5 (TRAILv-KHYG-1). Human ovarian cancer cell lines, OVCAR-3 and SKOV-3, were cultured with modified or non-modified NK cells at different effector:target (E:T) ratios for 4 or 16 h. Apoptosis was assessed by Annexin-APC and 7-AAD and measured using flow cytometry. Apoptotic cells were defined as annexin V 7-AAD double positive. Cytokine expression was measured by multiplex ELISA, and analysed by flow cytometry. Results Modified and non-modified NK cells significantly reduced OVCAR-3 cell viability as compared to OVCAR-3 cells that were cultured alone after 4 and 16 h treatment. OVCAR-3 cell viability was reduced after treatment with 1:1 E:T ratio with TRAILv-KHYG-1 cells after 16 h. On the contrary, neither NK cell line had any effect of SKOV-3 cell viability despite SKOV-3 cells having more DR5 surface expression compared to OVCAR-3 cells. Conclusions TRAILv-KHYG-1 cells significantly reduced OVCAR-3 cell viability as compared to non-modified NK cells. However, no significant reduction in viability was observed when SKOV-3 cell were cultured with either NK cells, despite having more DR5 surface expression compared to OVCAR-3 cells. These data indicate that mechanisms other than DR5 expression drive TRAIL resistance in ovarian cancer.
Collapse
Affiliation(s)
- A.M. Sheedy
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - N. Burduli
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- Center for Hematology Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - A. Prakash
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. Gurney
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - S. Hanley
- Flow Cytometry Core Facility, University of Galway, Galway, Ireland
| | - H. Prendeville
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - S. Sarkar
- ONK Therapeutics Inc, Galway, Ireland
| | - J. O'Dwyer
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. O'Dwyer
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- ONK Therapeutics Inc, Galway, Ireland
| | - E.B. Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Hwang JK, Marston DJ, Wrapp D, Li D, Tuyishime M, Brackenridge S, Rhodes B, Quastel M, Kapingidza AB, Gater J, Harner A, Wang Y, Rountree W, Ferrari G, Borrow P, McMichael AJ, Gillespie GM, Haynes BF, Azoitei ML. A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602401. [PMID: 39026709 PMCID: PMC11257447 DOI: 10.1101/2024.07.08.602401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9). We have previously reported the isolation of a murine HLA-E-VL9-specific IgM antibody 3H4 and the generation of a higher affinity IgG version (3H4v3). Here we have used phage display library selection to generate a high affinity version of 3H4v3, called 3H4v31, with an ∼700 fold increase in binding affinity. We show using an HLA-E-VL9+ K562 tumor model that, in vitro, the addition of 3H4v31 to target cells increased direct killing of targets by CD16-negative NK cell line NK-92 and also mediated ADCC by NK-92 cells transfected with CD16. Moreover, ADCC by primary NK cells was also enhanced in vitro by 3H4v31. 3H4v31 was also able to bind and enhance target cell lysis of endogenously expressed HLA-E-VL9 on human cervical cancer and human pancreatic cancer cell lines. In vivo, 3H4v31 slowed the growth rate of HLA-E-VL9+ K562 tumors implanted into NOD/SCID/IL2rγ null mice compared to isotype control when injected with NK-92 cells intratumorally. Together, these data demonstrate that mAb 3H4v31 can enhance NK cell killing of HLA-E-VL9-expressing tumor cells in vitro by both direct killing activity and by ADCC. Moreover, mAb 3H4v31 can enhance NK cell control of tumor growth in vivo. We thus identify HLA-E-VL9 monoclonal antibodies as a promising novel anti-tumor immunotherapy. One Sentence Summary A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing by checkpoint inhibition and antibody dependent cellular cytotoxicity.
Collapse
|
4
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
5
|
Kriegsmann K, Ton GNHQ, Awwad MHS, Benner A, Bertsch U, Besemer B, Hänel M, Fenk R, Munder M, Dürig J, Blau IW, Huhn S, Hose D, Jauch A, Mann C, Weinhold N, Scheid C, Schroers R, von Metzler I, Schieferdecker A, Thomalla J, Reimer P, Mahlberg R, Graeven U, Kremers S, Martens UM, Kunz C, Hensel M, Seidel-Glätzer A, Weisel KC, Salwender HJ, Müller-Tidow C, Raab MS, Goldschmidt H, Mai EK, Hundemer M. CD8 + CD28 - regulatory T cells after induction therapy predict progression-free survival in myeloma patients: results from the GMMG-HD6 multicenter phase III study. Leukemia 2024; 38:1621-1625. [PMID: 38830959 PMCID: PMC11216978 DOI: 10.1038/s41375-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Katharina Kriegsmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Laborarztpraxis Rhein-Main MVZ GbR, Frankfurt am Main, Germany
| | - Gigi Nu Hoang Quy Ton
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohamed H S Awwad
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Uta Bertsch
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Britta Besemer
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz, Chemnitz, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Munder
- Department of Internal Medicine III, University Hospital Mainz, Mainz, Germany
| | - Jan Dürig
- Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Igor W Blau
- Medical Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Stefanie Huhn
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Hose
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Mann
- Department of Hematology, Oncology and Immunology, Phillips-University Marburg, Marburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Roland Schroers
- Department of Hematology, Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ivana von Metzler
- Department of Internal Medicine II, University Hospital Frankfurt a.M., Frankfurt a.M., Germany
| | - Aneta Schieferdecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter Reimer
- Evang. Kliniken Essen-Mitte, Evang. Krankenhaus Essen-Werden, Essen, Germany
| | - Rolf Mahlberg
- Internal Medicine I, Hospital Mutterhaus der Borromäerinnen, Trier, Germany
| | - Ullrich Graeven
- Department of Hematology, Oncology and Gastroenterology, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| | | | - Uwe M Martens
- Hematology, Oncology, Palliative Care, SLK Clinics Heilbronn, Heilbronn, Germany
| | - Christian Kunz
- Hematology and Oncology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | | | | | - Katja C Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans J Salwender
- Asklepios Tumorzentrum Hamburg, Asklepios Hospital Hamburg Altona and St. Georg, Hamburg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Elias K Mai
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Li C, Wang D, Xu Y, Mao X, Que Y, Li Z, Yu Q, Xu M, An N, Long X, Li C. CS1 Expression Pattern in NK Cells and Correlated Factors in Plasma Cell dyscrasias: Implications for Elotuzumab Therapy and CAR-T Efficacy. J Cancer 2024; 15:3065-3075. [PMID: 38706917 PMCID: PMC11064268 DOI: 10.7150/jca.93637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Treatment with elotuzumab alone has no discernible antitumor effect and progress in chimeric antigen receptor T cells (CAR-T) therapy targeting CS1 is relatively slow. A retrospective analysis was performed on 236 patients with multiple myeloma (MM) and 30 patients with other plasma cell dyscrasias (PCDs). CS1 expression in NK cells, lymphocytes, and monoclonal plasma cells was assessed using multiparameter flow cytometry. Furthermore, new explorations were undertaken regarding the antitumor applications of elotuzumab. Patients with MM had significantly higher CS1 expression levels in plasma cells than other patients with PCDs, with no significant differences between lymphocytes and NK cells. In both patients with MM and other PCDs, CS1 expression was significantly higher in plasma cells than in NK cells and lymphocytes. Univariate and multivariate analyses revealed a significant correlation between CS1 expression in plasma (r = 0.60; P < 0.001) and NK (r = 0.79; P < 0.001) cells. Factors such as cytogenetic abnormalities, disease progression, and survival were not associated with CS1 expression in NK cells. Moreover, this study showed that elotuzumab strongly increases the cytotoxicity of NK cells against non-plasma and plasma tumor cells independent of their CS1 expression level. This underscores the potential of elotuzumab in combination with NK cells as an effective therapeutic strategy against a broad spectrum of tumor types.
Collapse
Affiliation(s)
- Chunhui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Yanjie Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yimei Que
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Menglei Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ning An
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| |
Collapse
|
7
|
Nakamura N, Arima N, Takakuwa T, Yoshioka S, Imada K, Fukushima K, Hotta M, Fuchida SI, Kanda J, Uoshima N, Shimura Y, Tanaka H, Ohta K, Kosugi S, Yagi H, Yoshihara S, Yamamura R, Adachi Y, Hanamoto H, Shibayama H, Hosen N, Ito T, Shimazaki C, Takaori-Kondo A, Kuroda J, Matsumura I, Hino M. Efficacy of elotuzumab for multiple myeloma deteriorates after daratumumab: a multicenter retrospective study. Ann Hematol 2024:10.1007/s00277-024-05705-z. [PMID: 38492020 DOI: 10.1007/s00277-024-05705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Elotuzumab-based regimens are sometimes selected for multiple myeloma treatment after daratumumab-based regimens. However, there has been insufficient discussion on the efficacy of elotuzumab after daratumumab. We used Kansai Myeloma Forum registration data in a multicenter retrospective evaluation of the efficacy of elotuzumab after daratumumab. Overall survival (OS) rate and time to next treatment (TTNT) were significantly worse in the cohort given elotuzumab after daratumumab (Dara cohort, n = 47) than in the cohort with no history of daratumumab administration before elotuzumab (No-Dara cohort, n = 80, OS: P = 0.03; TTNT: P = 0.02; best response: P < 0.01). In the Dara cohort, OS and TTNT rates were worse with sequential elotuzumab use after daratumumab than with non-sequential (OS: P = 0.02; TTNT: P = 0.03). In patients given elotuzumab < 180 days after daratumumab, OS (P = 0.08) and best response (P = 0.21) tended to be worse, and TTNT was significantly worse (P = 0.01), than in those given elotuzumab after ≥ 180 days. These findings were confirmed by subgroup analyses and multivariate analyses. Monoclonal-antibody-free treatment might be preferable after daratumumab-based regimens. If possible, elotuzumab-based regimens should be considered only ≥ 180 days after daratumumab use.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-Ku, Kobe, Hyogo, 651-0072, Japan.
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-Ku, Kobe, Hyogo, 651-0072, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Yoshioka
- Department of Hematology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kazunori Imada
- Department of Hematology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaaki Hotta
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Shin-Ichi Fuchida
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | | | - Satoru Kosugi
- Department of Internal Medicine (Hematology), Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Hideo Yagi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Nara, Japan
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ryosuke Yamamura
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, Nakatsu, Japan
| | - Yoko Adachi
- Department of Internal Medicine, JCHO Kobe Central Hospital, Kobe, Japan
| | - Hitoshi Hanamoto
- Department of Hematology, Kindai University Nara Hospital, Nara, Japan
| | - Hirohiko Shibayama
- Department of Hematology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Chihiro Shimazaki
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Wang YH, Hagiwara S, Kazama H, Iizuka Y, Tanaka N, Tanaka J. Elotuzumab Enhances CD16-Independent NK Cell-Mediated Cytotoxicity against Myeloma Cells by Upregulating Several NK Cell-Enhancing Genes. J Immunol Res 2024; 2024:1429879. [PMID: 38444839 PMCID: PMC10914431 DOI: 10.1155/2024/1429879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Multiple myeloma (MM) is an intractable hematological malignancy caused by abnormalities in plasma cells. Combination therapy using antibodies and natural killer (NK) effectors, which are innate immune cells with safe and potent antitumor activity, is a promising approach for cancer immunotherapy and can enhance antitumor effects. Elotuzumab (Elo) is an immune-stimulatory antibody that targets the signaling lymphocytic activation molecule family 7 (SLAMF7) expressed on the surface of MM and NK cells. We confirmed that Elo strongly promoted NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) against SLAMF7-positive MM cells in a CD16-dependent NK cell line, and also activated expanded NK cells derived from peripheral blood mononuclear cells of healthy donors and patients with MM in the present study. However, the antitumor effects and genes involved in the direct promotion of NK cell-mediated activation using Elo in CD16-independent NK cells are not clearly known. In this study, we demonstrated that Elo pretreatment significantly enhanced CD16-independent NK cell-mediated cytotoxicity in both SLAMF7-positive MM.1S and SLAMF7-negative K562, U266, and RPMI 8226 tumor cells. Upon direct simulation of CD16-independent NK cells with Elo, increased levels of CD107a degranulation and IFN-γ secretion were observed along with the upregulation of granzyme B, TNF-α, and IL-1α gene expression. The enhanced NK cell function could also be attributed to the increased expression of the transcription factors T-BET and EOMES. Furthermore, the augmentation of the antitumor effects of CD16-independent NK cells upon pretreatment with Elo enhanced the expression of CRTAM, TNFRSF9, EAT-2, and FOXP3 genes and reduced the expression of HSPA6. Our results suggest that Elo directly promotes the cytotoxic function of CD16-independent NK cells against target cells, which is associated with the upregulation of the expression of several NK cell-enhancing genes.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Shotaro Hagiwara
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Hiroshi Kazama
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
- Department of Medicine, Tokyo Women's Medical University, Adachi Medical Center, 4-33-1, Kohoku, Adachi-Ku, Tokyo 123-8558, Japan
| | - Yuki Iizuka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| |
Collapse
|
9
|
Liu J, Peng H, Yu T, Huang Y, Tan N, Pang L, Wu Y, Wang L. Increased SLAMF7 +CD8 + T cells are associated with the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreatology 2023; 23:767-776. [PMID: 37661465 DOI: 10.1016/j.pan.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IgG4-related autoimmune pancreatitis (AIP) is considered to be a T cell-mediated autoimmune disease. However, CD8+ T cells have only received brief mention, and have yet to be completely studied. The study aimed to investigate the expression of signaling lymphocytic activation molecule family 7 (SLAMF7) on CD8+ T cells and the features of SLAMF7+CD8+ T cells in MRL/Mp mice with AIP. METHODS A murine model of AIP was established by intraperitoneal injection with polyinosinic:polycytidylic acid (poly I:C) for 8 weeks. Dexamethasone treatment was daily administrated for the last 2 weeks during a 6-week course of poly I:C. SLAMF7 expression on CD8+ T cells in the spleen and pancreas was detected by flow cytometry. Granzyme B (GZMB) and cytokines including IFN-γ, TNF-α, and IL-2, were monitored in an in vitro T cell activation assay. Dexamethasone suppression assays were performed to downregulate SLAMF7 expression on T cells upon T cell receptor stimulation. RESULTS AIP in MRL/Mp mice was induced by repeated intraperitoneal administration of poly I:C and CD8+ T cells were increased in the inflamed pancreas. SLAMF7+CD8+ T cells were elevated in the spleen and pancreas of AIP mice. SLAMF7+CD8+ T subsets produced more GZMB, IFN-γ, TNF-α and IL-2 than SLAMF7-CD8+ T subsets. Dexamethasone treatment ameliorated pancreatic inflammatory and fibrosis of AIP. Dexamethasone could downregulate SLAMF7+CD8+ T cells and reduce GZMB, IFN-γ and TNF-α levels both in vitro and in vivo. CONCLUSIONS Increased SLAMF7+CD8+ T cells exhibit enhanced cytotoxicity and cytokines secretion capacity, which may be involved in the pathogenesis of AIP.
Collapse
Affiliation(s)
- Jia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Peng
- Department of Pathology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tingfeng Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanlin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Pang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongtong Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Tojjari A, Giles FJ, Vilbert M, Saeed A, Cavalcante L. SLAM Modification as an Immune-Modulatory Therapeutic Approach in Cancer. Cancers (Basel) 2023; 15:4808. [PMID: 37835502 PMCID: PMC10571764 DOI: 10.3390/cancers15194808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In the field of oncology, the Signaling Lymphocyte Activation Molecule (SLAM) family is emerging as pivotal in modulating immune responses within tumor environments. The SLAM family comprises nine receptors, mainly found on immune cell surfaces. These receptors play complex roles in the interaction between cancer and the host immune system. Research suggests SLAM's role in both enhancing and dampening tumor-immune responses, influencing the progression and treatment outcomes of various cancers. As immunotherapy advances, resistance remains an issue. The nuanced roles of the SLAM family might provide answers. With the rise in technologies like single-cell RNA sequencing and advanced imaging, there is potential for precise SLAM-targeted treatments. This review stresses patient safety, the importance of thorough clinical trials, and the potential of SLAM-focused therapies to transform cancer care. In summary, SLAM's role in oncology signals a new direction for more tailored and adaptable cancer treatments.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | | - Maysa Vilbert
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | |
Collapse
|
11
|
Chu E, Wu J, Kang SS, Kang Y. SLAMF7 as a Promising Immunotherapeutic Target in Multiple Myeloma Treatments. Curr Oncol 2023; 30:7891-7903. [PMID: 37754488 PMCID: PMC10529721 DOI: 10.3390/curroncol30090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy that has fostered several new therapeutic approaches to combat newly diagnosed or relapsed MM. While the field has advanced over the past 2 decades, the majority of patients will develop resistance to these treatments, causing the need for new therapeutic targets. SLAMF7 is an attractive therapeutic target in multiple myeloma, and a monoclonal antibody that targets SLAMF7 has shown consistent beneficial outcomes in clinical trials to date. In this review, we will focus on the structure and regulation of SLAMF7 and its mechanism of action. The most recent clinical trials will be reviewed to further understand the clinical implications and improve the prognosis of MM. Furthermore, the efficacy of anti-SLAMF7 monoclonal antibodies combined with standard therapies and possible resistance mechanisms will be discussed. This review aimed to provide a detailed summary of the role of SLAMF7 in the pathogenesis of patients with MM and the rationale for further investigation into SLAMF7-mediated molecular pathways associated with MM development.
Collapse
Affiliation(s)
- Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| | - Stacey S. Kang
- College of Arts and Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| |
Collapse
|
12
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, Li X, Schrank BR, Dong S, Gallup TD, Kang M, Zhao H, An Y, Yang Z, Li J, Kim BYS, Jiang W. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. NATURE NANOTECHNOLOGY 2022; 17:1332-1341. [PMID: 36357792 PMCID: PMC10036139 DOI: 10.1038/s41565-022-01245-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Solid tumours display a limited response to immunotherapies. By contrast, haematological malignancies exhibit significantly higher response rates to immunotherapies as compared with solid tumours. Among several microenvironmental and biological disparities, the differential expression of unique immune regulatory molecules contributes significantly to the interaction of blood cancer cells with immune cells. The self-ligand receptor of the signalling lymphocytic activation molecule family member 7 (SLAMF7), a molecule that is critical in promoting the body's innate immune cells to detect and engulf cancer cells, is expressed nearly exclusively on the cell surface of haematologic tumours, but not on solid ones. Here we show that a bispecific nanobioconjugate that enables the decoration of SLAMF7 on the surface of solid tumours induces robust phagocytosis and activates the phagocyte cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway, sensitizing the tumours to immune checkpoint blockade. Our findings support an immunological conversion strategy that uses nano-adjuvants to improve the effectiveness of immunotherapies for solid tumours.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Zhao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale New Haven Hospital, New Haven, CT, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Ho M, Xiao A, Yi D, Zanwar S, Bianchi G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr Oncol 2022; 29:8975-9005. [PMID: 36421358 PMCID: PMC9689284 DOI: 10.3390/curroncol29110705] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of multiple myeloma (MM) has evolved considerably with the FDA-approval of at least 15 drugs over the past two decades. Together with the use of autologous stem cell transplantation, these novel therapies have resulted in significant survival benefit for patients with MM. In particular, our improved understanding of the BM and immune microenvironment has led to the development of highly effective immunotherapies that have demonstrated unprecedented response rates even in the multiple refractory disease setting. However, MM remains challenging to treat especially in a high-risk setting. A key mediator of therapeutic resistance in MM is the bone marrow (BM) microenvironment; a deeper understanding is necessary to facilitate the development of therapies that target MM in the context of the BM milieu to elicit deeper and more durable responses with the ultimate goal of long-term control or a cure of MM. In this review, we discuss our current understanding of the role the BM microenvironment plays in MM pathogenesis, with a focus on its immunosuppressive nature. We also review FDA-approved immunotherapies currently in clinical use and highlight promising immunotherapeutic approaches on the horizon.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alexander Xiao
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Dongni Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Giada Bianchi
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
16
|
Wang SH, Chou WC, Huang HC, Lee TA, Hsiao TC, Wang LH, Huang KB, Kuo CT, Chao CH, Chang SJ, Hsu JM, Weng J, Ren N, Li FA, Lai YJ, Zhou C, Hung MC, Li CW. Deglycosylation of SLAMF7 in breast cancers enhances phagocytosis. Am J Cancer Res 2022; 12:4721-4736. [PMID: 36381324 PMCID: PMC9641385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023] Open
Abstract
N-linked glycosylation of proteins is one of the post-translational modifications (PTMs) that shield tumor antigens from immune attack. Signaling lymphocytic activation molecule family 7 (SLAMF7) suppresses cancer cell phagocytosis and is an ideal target under clinical development. PTM of SLAMF7, however, remains less understood. In this study, we investigated the role of N-glycans on SLAMF7 in breast cancer progression. We identified seven N-linked glycosylation motifs on SLAMF7, which are majorly occupied by complex structures. Evolutionally conserved N98 residue is enriched with high mannose and sialylated glycans. Hyperglycosylated SLAMF7 was associated with STT3A expression in breast cancer cells. Inhibition of STT3A by a small molecule inhibitor, N-linked glycosylation inhibitor-1 (NGI-1), reduced glycosylation of SLAMF7, resulting in enhancing antibody affinity and phagocytosis. To provide an on-target effect, we developed an antibody-drug conjugate (ADC) by coupling the anti-SLAMF7 antibody with NGI-1. Deglycosylation of SLAMF7 increases antibody recognition and promotes macrophage engulfment of breast cancer cells. Our work suggests deglycosylation by ADC is a potential strategy to enhance the response of immunotherapeutic agents.
Collapse
Affiliation(s)
- Shih-Han Wang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Te-An Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Tzu-Chun Hsiao
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Ling-Hui Wang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal UniversityGuilin 541004, PR China
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | | | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
- Institute of Fudan Minhang Academic Health System (AHS), and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan UniversityShanghai, PR China
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts LowellLowell, MA, USA
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| |
Collapse
|
17
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
18
|
Richardson K, Keam SP, Zhu JJ, Meyran D, D’Souza C, Macdonald S, Campbell K, Robbins M, Bezman NA, Todd K, Quach H, Ritchie DS, Harrison SJ, Prince HM, Trapani JA, Jenkins MR, Beavis PA, Darcy PK, Neeson PJ. The efficacy of combination treatment with elotuzumab and lenalidomide is dependent on crosstalk between natural killer cells, monocytes and myeloma cells. Haematologica 2022; 108:83-97. [PMID: 35770527 PMCID: PMC9827168 DOI: 10.3324/haematol.2021.279930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.
Collapse
Affiliation(s)
- Kelden Richardson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Simon P. Keam
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Criselle D’Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kerry Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael Robbins
- Translational Medicine, Bristol-Myers Squibb, Cambridge, MA, USA,°Current address: io904 LLC, Jacksonville Beach, FL, USA
| | - Natalie A. Bezman
- Oncology Discovery Research, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Kirsten Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Hang Quach
- Department of Haematology, St Vincent’s Hospital, Melbourne, Australia,Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| | - David S. Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Simon J. Harrison
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia,Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - H. Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Faculty of Medicine, The University of Melbourne, Melbourne, Australia,Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Misty R. Jenkins
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia,Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia,Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Paul A. Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Phillip K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia,P. Neeson
| |
Collapse
|
19
|
Iraqi M, Edri A, Greenshpan Y, Goldstein O, Ofir N, Bolel P, Abu Ahmad M, Zektser M, Campbell KS, Rouvio O, Gazit R, Porgador A. Blocking the PCNA/NKp44 Checkpoint to Stimulate NK Cell Responses to Multiple Myeloma. Int J Mol Sci 2022; 23:4717. [PMID: 35563109 PMCID: PMC9105815 DOI: 10.3390/ijms23094717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Oron Goldstein
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Noa Ofir
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Muhammad Abu Ahmad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Miri Zektser
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Kerry S. Campbell
- Blood Cell Development and Host Defense Program, Research Institute at Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Ory Rouvio
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
20
|
Michel T, Ollert M, Zimmer J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int J Mol Sci 2022; 23:ijms23020797. [PMID: 35054985 PMCID: PMC8776043 DOI: 10.3390/ijms23020797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Correspondence:
| |
Collapse
|
21
|
Gao L, Yang L, Zhang S, Ge Z, Su M, Shi Y, Wang X, Huang C. Engineering NK-92 Cell by Upregulating CXCR2 and IL-2 Via CRISPR-Cas9 Improves Its Antitumor Effects as Cellular Immunotherapy for Human Colon Cancer. J Interferon Cytokine Res 2021; 41:450-460. [PMID: 34935484 DOI: 10.1089/jir.2021.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells have shown good application prospects in adoptive cellular immunotherapy against cancer. However, due to its insufficient infiltration and low activity, the therapeutic effect of infused NK cells has been limited in solid tumors, such as colorectal cancer. It has been proved that tumor-produced chemokines regulate the migration of NK cells expressing corresponding chemokine receptors, and cytokines could enhance the antitumor activity of NK cells. In this study, we innovatively upregulated the expression of chemokine receptor CXC chemokine receptor 2 (CXCR2) and cytokine interleukin (IL)-2 on NK-92 cells using CRISPR-Cas9 gene-editing technology. We demonstrated that overexpressing CXCR2 and IL-2 promotes NK-92 cells to increasingly transfer into tumor sites and achieve stronger cell-killing and proliferation activity. Moreover, the inhibitory effects of gene-edited NK-92 cells on the growth of human colon cancer in vivo were also improved. The tumor burden of tumor-bearing mice was reduced, and their survival time was significantly prolonged. Gene-editing modification NK cells are expected to become a novel and promising tumor treatment strategy.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lili Yang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Siyu Zhang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zuanmin Ge
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng Su
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanfei Shi
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xuechun Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Mohan M, Maatman TC, Schinke C. The Role of Monoclonal Antibodies in the Era of Bi-Specifics Antibodies and CAR T Cell Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4909. [PMID: 34638393 PMCID: PMC8507719 DOI: 10.3390/cancers13194909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) remains largely incurable despite enormous improvement in the outcome of patients. Over the past decade, we have witnessed the "era of monoclonal antibody (moAb)", setting new benchmarks in clinical outcomes for relapsed and newly diagnosed MM. Due to their excellent efficacy and relative safe toxicity profile, moAbs in combination with immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) have become the new backbone of upfront anti-MM therapy. Yet, most patients will eventually relapse and patients who become refractory to IMiDs, PIs and moAbs have a dismal outcome. Emerging T-cell directing therapies, such as bispecific antibody (bsAb) and chimeric antigen receptor T cells (CAR T) have shown unprecedented responses and outcomes in these heavily pretreated and treatment-refractory patients. Their clinical efficacy combined with high tolerability will likely lead to the use of these agents earlier in the treatment course and there is great enthusiasm that a combination of T cell directed therapy with moAbs can lead to long duration remission in the near future, possibly even without the need of high dose chemotherapy and stem cell transplantation. Herein, we summarize the role of naked moAbs in MM in the context of newer immunotherapeutic agents like bsAb and CAR T therapy.
Collapse
Affiliation(s)
- Meera Mohan
- Divicion of Hematology/Oncology, Froedtert Clinical Cancer Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA;
| | - Theresa Camille Maatman
- Divicion of Hematology/Oncology, Froedtert Clinical Cancer Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA;
| | - Carolina Schinke
- Myeloma Center, Division of Hematology/Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Romano A, Storti P, Marchica V, Scandura G, Notarfranchi L, Craviotto L, Di Raimondo F, Giuliani N. Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma. Front Oncol 2021; 11:684561. [PMID: 34307150 PMCID: PMC8297441 DOI: 10.3389/fonc.2021.684561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) directed against antigen-specific of multiple myeloma (MM) cells have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), but the choice of the antigen is crucial for the development of effective immuno-therapy in MM. Recently new immunotherapeutic options in MM patients have been developed against different myeloma-related antigens as drug conjugate-antibody, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)-T cells. In this review, we will highlight the mechanism of action of immuno-therapy currently available in clinical practice to target CD38, SLAMF7, and BCMA, focusing on the biological role of the targets and on mechanisms of actions of the different immunotherapeutic approaches underlying their advantages and disadvantages with critical review of the literature data.
Collapse
Affiliation(s)
- Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Grazia Scandura
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- U.O.C. Ematologia, A.O.U. Policlinico–San Marco, Catania, Italy
| | | |
Collapse
|
24
|
Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol 2021; 12:694763. [PMID: 34177960 PMCID: PMC8226120 DOI: 10.3389/fimmu.2021.694763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need for therapeutic interventions for desensitization and antibody-mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased due to preformed DSA detected at time of transplant or the reactivation of HLA memory after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that develops post-transplant due to inadequate immunosuppression and again may lead to acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the humoral immune response, has been the primary target of desensitization and AMR treatment. However, in many cases these protocols fail to achieve efficient removal of all DSA and long-term outcomes of patients with persistent DSA are far worse when compared to non-sensitized patients. We believe that targeting multiple components of humoral immunity will lead to improved outcomes for such patients. In this review, we will briefly discuss conventional desensitization methods targeting antibody or B cell removal and then present a mechanistically designed desensitization regimen targeting plasma cells and the humoral response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
25
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
26
|
Pazina T, MacFarlane AW, Bernabei L, Dulaimi E, Kotcher R, Yam C, Bezman NA, Robbins MD, Ross EA, Campbell KS, Cohen AD. Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020226. [PMID: 33435153 PMCID: PMC7827733 DOI: 10.3390/cancers13020226] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a deadly cancer localized in the bone marrow, where changes can support progression and therapy resistance. This study examined the expression of numerous biological markers on natural killer (NK) cells in blood and bone marrow of patients with MM. NK cells play key roles in the innate immunosurveillance of MM, so we sought to identify biomarkers on NK cells that may be prognostic for patient outcomes and identify new therapeutic targets in these patients. Biomarker expression was compared on NK cells between MM disease stages and healthy donors, between blood and bone marrow, and associations with disease progression. The study shows that loss of certain biomarkers on NK cells may limit their anti-tumor function in MM patients, that several drug-targetable biomarkers are upregulated on NK cells, and that high expression of the biomarker, SLAMF7, may have prognostic potential to identify patients more likely to show rapid disease progression. Abstract Accumulating evidence demonstrates important roles for natural killer (NK) cells in controlling multiple myeloma (MM). A prospective flow cytometry-based analysis of NK cells in the blood and bone marrow (BM) of MM patient subgroups was performed (smoldering (SMM), newly diagnosed (ND), relapsed/refractory, (RR) and post-stem cell transplantation (pSCT)). Assessments included the biomarker expression and function of NK cells, correlations between the expression of receptors on NK cells with their ligands on myeloma cells, and comparisons between MM patient subgroups and healthy controls. The most striking differences from healthy controls were found in RR and pSCT patients, in which NK cells were less mature and expressed reduced levels of the activating receptors DNAM-1, NKG2D, and CD16. These differences were more pronounced in the BM than in blood, including upregulation of the therapeutic targets TIM3, TIGIT, ICOS, and GITR. Their expression suggests NK cells became exhausted upon chronic encounters with the tumor. A high expression of SLAMF7 on blood NK cells correlated with shorter progression-free survival. This correlation was particularly evident in ND patients, including on mature CD56dim NK cells in the BM. Thus, our NK cell analysis identified possible therapeutic targets in MM and a biomarker with prognostic potential for disease progression.
Collapse
Affiliation(s)
- Tatiana Pazina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (T.P.); (A.W.M.IV)
- FSBSI “Institute of Experimental Medicine”, Department of General Pathology and Pathological Physiology, 197376 St. Petersburg, Russia
| | - Alexander W. MacFarlane
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (T.P.); (A.W.M.IV)
| | - Luca Bernabei
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.B.); (R.K.); (C.Y.)
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Rebecca Kotcher
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.B.); (R.K.); (C.Y.)
| | - Clinton Yam
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.B.); (R.K.); (C.Y.)
| | | | | | - Eric A. Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (T.P.); (A.W.M.IV)
- Correspondence: (K.S.C.); (A.D.C.); Tel.: +1-215-728-7761 (K.S.C.); +1-215-615-5853 (A.D.C.)
| | - Adam D. Cohen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.B.); (R.K.); (C.Y.)
- Correspondence: (K.S.C.); (A.D.C.); Tel.: +1-215-728-7761 (K.S.C.); +1-215-615-5853 (A.D.C.)
| |
Collapse
|
27
|
Zhu S, Chen Y, Lao J, Wu C, Zhan X, Wu Y, Shang Y, Zou Z, Zhou J, Ji X, Huang X, Shi X, Wu M. Signaling Lymphocytic Activation Molecule Family-7 Alleviates Corneal Inflammation by Promoting M2 Polarization. J Infect Dis 2020; 223:854-865. [PMID: 32702113 DOI: 10.1093/infdis/jiaa445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Signaling lymphocytic activation molecule family-7 (SLAMF7) functions as an immune checkpoint molecule on macrophages in antitumor immunity. However, its role in bacterial infection remains largely unknown. METHODS Bone marrow-derived macrophages (BMDMs) isolated from wild-type (WT) or SLAMF7 knockout (KO) mice were infected with bacteria or treated with lipopolysaccharide/interferon-γ to investigate the expression and function of SLAMF7 in macrophage polarization. A Pseudomonas aeruginosa keratitis murine model was established to explore the effect of SLAMF7 on P. aeruginosa keratitis using WT vs SLAMF7 KO mice, or recombinant SLAMF7 vs phosphate-buffered saline-treated mice, respectively. RESULTS SLAMF7 expression was enhanced on M1-polarized or bacterial-infected macrophages, and infiltrating macrophages in P. aeruginosa-infected mouse corneas. SLAMF7 promoted M2 polarization by inducing STAT6 activation. In vivo data showed that SLAMF7 KO aggravated, while treatment with recombinant SLAMF7 alleviated, corneal inflammation and disease severity. In addition, blockage of M2 polarization by Arg-1 inhibitor abrogated the effect of recombinant SLAMF7 in disease progression. CONCLUSIONS SLAMF7 expression in macrophages was induced upon M1 polarization or bacterial infection and alleviated corneal inflammation and disease progression of P. aeruginosa keratitis by promoting M2 polarization. These findings may provide a potential strategy for the treatment of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Siying Zhu
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yu Chen
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Juanfeng Lao
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chenglin Wu
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhengyu Zou
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinyu Zhou
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Ji
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Huang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaomin Shi
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- Program of Infection and Immunology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Meyers S, Henning C, Swift R, Eades B, Spektor TM, Berenson JR. Treatment With Elotuzumab in Combination With Dexamethasone Achieves a Complete Remission in a Previously Treated Patient With Multiple Myeloma: A Case Report. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e801-e804. [PMID: 32682685 DOI: 10.1016/j.clml.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | | | | | - James R Berenson
- James R. Berenson, MD, Inc, West Hollywood, CA; Oncotherapeutics, West Hollywood, CA; Institute for Myeloma and Bone Cancer Research, West Hollywood, CA.
| |
Collapse
|
29
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
30
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
31
|
Pearse RN. Sequence matters: elotuzumab more effective if used before daratumumab. Leuk Lymphoma 2020; 61:507-509. [DOI: 10.1080/10428194.2019.1703972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Suzuki K, Nishiwaki K, Gunji T, Katori M, Masuoka H, Yano S. Elevated eosinophil level predicted long time to next treatment in relapsed or refractory myeloma patients treated with lenalidomide. Cancer Med 2020; 9:1694-1702. [PMID: 31950647 PMCID: PMC7050101 DOI: 10.1002/cam4.2828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Lenalidomide is an immunomodulatory drug that is administered commonly in patients with relapsed or refractory multiple myeloma (RRMM). Eosinophils have immunological functions, for instance, in allergic diseases and asthma. The purpose of this study was to investigate the clinical significance of elevated eosinophil levels in patients with RRMM treated with lenalidomide. A total of 59 patients were included. Elevated eosinophil level was defined as an increase in the eosinophil count of ≥250/µL from the eosinophil count on day 1 during the first cycle. The percentage of patients with elevated eosinophil levels was 22.0%. The overall response ratio in the elevated eosinophil group and nonelevated eosinophil group was 84.6% and 63.0% (P = .189), respectively. The median time to next treatment (TTNT) in the elevated eosinophil group was significantly longer than that in the nonelevated group (40.3 months vs 8.4 months; P = .017). Additionally, TTNT in the elevated eosinophil group with partial response (PR) or better was significantly longer than that in the nonelevated eosinophil group with PR or better (40.3 months vs 11.9 months; P = .021). We concluded that elevated eosinophil levels were frequently observed and might predict a longer TTNT in patients with RRMM treated with lenalidomide.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Tadahiro Gunji
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuji Katori
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Hidekazu Masuoka
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|